cgroup: rename ->create/post_create/pre_destroy/destroy() to ->css_alloc/online/offli...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56
57 #include <asm/uaccess.h>
58
59 #include <trace/events/vmscan.h>
60
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 #define MEM_CGROUP_RECLAIM_RETRIES 5
63 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64
65 #ifdef CONFIG_MEMCG_SWAP
66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67 int do_swap_account __read_mostly;
68
69 /* for remember boot option*/
70 #ifdef CONFIG_MEMCG_SWAP_ENABLED
71 static int really_do_swap_account __initdata = 1;
72 #else
73 static int really_do_swap_account __initdata = 0;
74 #endif
75
76 #else
77 #define do_swap_account 0
78 #endif
79
80
81 /*
82 * Statistics for memory cgroup.
83 */
84 enum mem_cgroup_stat_index {
85 /*
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 */
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
100 };
101
102 enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
107 MEM_CGROUP_EVENTS_NSTATS,
108 };
109
110 static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
115 };
116
117 /*
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
122 */
123 enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
126 MEM_CGROUP_TARGET_NUMAINFO,
127 MEM_CGROUP_NTARGETS,
128 };
129 #define THRESHOLDS_EVENTS_TARGET 128
130 #define SOFTLIMIT_EVENTS_TARGET 1024
131 #define NUMAINFO_EVENTS_TARGET 1024
132
133 struct mem_cgroup_stat_cpu {
134 long count[MEM_CGROUP_STAT_NSTATS];
135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136 unsigned long nr_page_events;
137 unsigned long targets[MEM_CGROUP_NTARGETS];
138 };
139
140 struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
145 };
146
147 /*
148 * per-zone information in memory controller.
149 */
150 struct mem_cgroup_per_zone {
151 struct lruvec lruvec;
152 unsigned long lru_size[NR_LRU_LISTS];
153
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
161 /* use container_of */
162 };
163
164 struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166 };
167
168 struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170 };
171
172 /*
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
175 */
176
177 struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
180 };
181
182 struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184 };
185
186 struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188 };
189
190 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191
192 struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
195 };
196
197 /* For threshold */
198 struct mem_cgroup_threshold_ary {
199 /* An array index points to threshold just below or equal to usage. */
200 int current_threshold;
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
205 };
206
207 struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
210 /*
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
214 */
215 struct mem_cgroup_threshold_ary *spare;
216 };
217
218 /* for OOM */
219 struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
222 };
223
224 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226
227 /*
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
232 *
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
237 */
238 struct mem_cgroup {
239 struct cgroup_subsys_state css;
240 /*
241 * the counter to account for memory usage
242 */
243 struct res_counter res;
244
245 union {
246 /*
247 * the counter to account for mem+swap usage.
248 */
249 struct res_counter memsw;
250
251 /*
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
259 */
260 struct rcu_head rcu_freeing;
261 /*
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
264 */
265 struct work_struct work_freeing;
266 };
267
268 /*
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
271 */
272 struct mem_cgroup_lru_info info;
273 int last_scanned_node;
274 #if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
278 #endif
279 /*
280 * Should the accounting and control be hierarchical, per subtree?
281 */
282 bool use_hierarchy;
283
284 bool oom_lock;
285 atomic_t under_oom;
286
287 atomic_t refcnt;
288
289 int swappiness;
290 /* OOM-Killer disable */
291 int oom_kill_disable;
292
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
295
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
300 struct mem_cgroup_thresholds thresholds;
301
302 /* thresholds for mem+swap usage. RCU-protected */
303 struct mem_cgroup_thresholds memsw_thresholds;
304
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
307
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
319 /*
320 * percpu counter.
321 */
322 struct mem_cgroup_stat_cpu __percpu *stat;
323 /*
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
326 */
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
329
330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
331 struct tcp_memcontrol tcp_mem;
332 #endif
333 };
334
335 /* Stuffs for move charges at task migration. */
336 /*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340 enum move_type {
341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
343 NR_MOVE_TYPE,
344 };
345
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 spinlock_t lock; /* for from, to */
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
352 unsigned long moved_charge;
353 unsigned long moved_swap;
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356 } mc = {
357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359 };
360
361 static bool move_anon(void)
362 {
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365 }
366
367 static bool move_file(void)
368 {
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371 }
372
373 /*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
379
380 enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_ANON,
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
385 NR_CHARGE_TYPE,
386 };
387
388 /* for encoding cft->private value on file */
389 #define _MEM (0)
390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
397
398 /*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408
409 static inline
410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411 {
412 return container_of(s, struct mem_cgroup, css);
413 }
414
415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416 {
417 return (memcg == root_mem_cgroup);
418 }
419
420 /* Writing them here to avoid exposing memcg's inner layout */
421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
422
423 void sock_update_memcg(struct sock *sk)
424 {
425 if (mem_cgroup_sockets_enabled) {
426 struct mem_cgroup *memcg;
427 struct cg_proto *cg_proto;
428
429 BUG_ON(!sk->sk_prot->proto_cgroup);
430
431 /* Socket cloning can throw us here with sk_cgrp already
432 * filled. It won't however, necessarily happen from
433 * process context. So the test for root memcg given
434 * the current task's memcg won't help us in this case.
435 *
436 * Respecting the original socket's memcg is a better
437 * decision in this case.
438 */
439 if (sk->sk_cgrp) {
440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 mem_cgroup_get(sk->sk_cgrp->memcg);
442 return;
443 }
444
445 rcu_read_lock();
446 memcg = mem_cgroup_from_task(current);
447 cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
449 mem_cgroup_get(memcg);
450 sk->sk_cgrp = cg_proto;
451 }
452 rcu_read_unlock();
453 }
454 }
455 EXPORT_SYMBOL(sock_update_memcg);
456
457 void sock_release_memcg(struct sock *sk)
458 {
459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
460 struct mem_cgroup *memcg;
461 WARN_ON(!sk->sk_cgrp->memcg);
462 memcg = sk->sk_cgrp->memcg;
463 mem_cgroup_put(memcg);
464 }
465 }
466
467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468 {
469 if (!memcg || mem_cgroup_is_root(memcg))
470 return NULL;
471
472 return &memcg->tcp_mem.cg_proto;
473 }
474 EXPORT_SYMBOL(tcp_proto_cgroup);
475
476 static void disarm_sock_keys(struct mem_cgroup *memcg)
477 {
478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 return;
480 static_key_slow_dec(&memcg_socket_limit_enabled);
481 }
482 #else
483 static void disarm_sock_keys(struct mem_cgroup *memcg)
484 {
485 }
486 #endif
487
488 static void drain_all_stock_async(struct mem_cgroup *memcg);
489
490 static struct mem_cgroup_per_zone *
491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492 {
493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 }
495
496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497 {
498 return &memcg->css;
499 }
500
501 static struct mem_cgroup_per_zone *
502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 int nid = page_to_nid(page);
505 int zid = page_zonenum(page);
506
507 return mem_cgroup_zoneinfo(memcg, nid, zid);
508 }
509
510 static struct mem_cgroup_tree_per_zone *
511 soft_limit_tree_node_zone(int nid, int zid)
512 {
513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514 }
515
516 static struct mem_cgroup_tree_per_zone *
517 soft_limit_tree_from_page(struct page *page)
518 {
519 int nid = page_to_nid(page);
520 int zid = page_zonenum(page);
521
522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523 }
524
525 static void
526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527 struct mem_cgroup_per_zone *mz,
528 struct mem_cgroup_tree_per_zone *mctz,
529 unsigned long long new_usage_in_excess)
530 {
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_zone *mz_node;
534
535 if (mz->on_tree)
536 return;
537
538 mz->usage_in_excess = new_usage_in_excess;
539 if (!mz->usage_in_excess)
540 return;
541 while (*p) {
542 parent = *p;
543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 tree_node);
545 if (mz->usage_in_excess < mz_node->usage_in_excess)
546 p = &(*p)->rb_left;
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
557 }
558
559 static void
560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 struct mem_cgroup_per_zone *mz,
562 struct mem_cgroup_tree_per_zone *mctz)
563 {
564 if (!mz->on_tree)
565 return;
566 rb_erase(&mz->tree_node, &mctz->rb_root);
567 mz->on_tree = false;
568 }
569
570 static void
571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 struct mem_cgroup_per_zone *mz,
573 struct mem_cgroup_tree_per_zone *mctz)
574 {
575 spin_lock(&mctz->lock);
576 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 spin_unlock(&mctz->lock);
578 }
579
580
581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582 {
583 unsigned long long excess;
584 struct mem_cgroup_per_zone *mz;
585 struct mem_cgroup_tree_per_zone *mctz;
586 int nid = page_to_nid(page);
587 int zid = page_zonenum(page);
588 mctz = soft_limit_tree_from_page(page);
589
590 /*
591 * Necessary to update all ancestors when hierarchy is used.
592 * because their event counter is not touched.
593 */
594 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 excess = res_counter_soft_limit_excess(&memcg->res);
597 /*
598 * We have to update the tree if mz is on RB-tree or
599 * mem is over its softlimit.
600 */
601 if (excess || mz->on_tree) {
602 spin_lock(&mctz->lock);
603 /* if on-tree, remove it */
604 if (mz->on_tree)
605 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
606 /*
607 * Insert again. mz->usage_in_excess will be updated.
608 * If excess is 0, no tree ops.
609 */
610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 spin_unlock(&mctz->lock);
612 }
613 }
614 }
615
616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 {
618 int node, zone;
619 struct mem_cgroup_per_zone *mz;
620 struct mem_cgroup_tree_per_zone *mctz;
621
622 for_each_node(node) {
623 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624 mz = mem_cgroup_zoneinfo(memcg, node, zone);
625 mctz = soft_limit_tree_node_zone(node, zone);
626 mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 }
628 }
629 }
630
631 static struct mem_cgroup_per_zone *
632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633 {
634 struct rb_node *rightmost = NULL;
635 struct mem_cgroup_per_zone *mz;
636
637 retry:
638 mz = NULL;
639 rightmost = rb_last(&mctz->rb_root);
640 if (!rightmost)
641 goto done; /* Nothing to reclaim from */
642
643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644 /*
645 * Remove the node now but someone else can add it back,
646 * we will to add it back at the end of reclaim to its correct
647 * position in the tree.
648 */
649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 !css_tryget(&mz->memcg->css))
652 goto retry;
653 done:
654 return mz;
655 }
656
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659 {
660 struct mem_cgroup_per_zone *mz;
661
662 spin_lock(&mctz->lock);
663 mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 spin_unlock(&mctz->lock);
665 return mz;
666 }
667
668 /*
669 * Implementation Note: reading percpu statistics for memcg.
670 *
671 * Both of vmstat[] and percpu_counter has threshold and do periodic
672 * synchronization to implement "quick" read. There are trade-off between
673 * reading cost and precision of value. Then, we may have a chance to implement
674 * a periodic synchronizion of counter in memcg's counter.
675 *
676 * But this _read() function is used for user interface now. The user accounts
677 * memory usage by memory cgroup and he _always_ requires exact value because
678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679 * have to visit all online cpus and make sum. So, for now, unnecessary
680 * synchronization is not implemented. (just implemented for cpu hotplug)
681 *
682 * If there are kernel internal actions which can make use of some not-exact
683 * value, and reading all cpu value can be performance bottleneck in some
684 * common workload, threashold and synchonization as vmstat[] should be
685 * implemented.
686 */
687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688 enum mem_cgroup_stat_index idx)
689 {
690 long val = 0;
691 int cpu;
692
693 get_online_cpus();
694 for_each_online_cpu(cpu)
695 val += per_cpu(memcg->stat->count[idx], cpu);
696 #ifdef CONFIG_HOTPLUG_CPU
697 spin_lock(&memcg->pcp_counter_lock);
698 val += memcg->nocpu_base.count[idx];
699 spin_unlock(&memcg->pcp_counter_lock);
700 #endif
701 put_online_cpus();
702 return val;
703 }
704
705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 bool charge)
707 {
708 int val = (charge) ? 1 : -1;
709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 }
711
712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 enum mem_cgroup_events_index idx)
714 {
715 unsigned long val = 0;
716 int cpu;
717
718 for_each_online_cpu(cpu)
719 val += per_cpu(memcg->stat->events[idx], cpu);
720 #ifdef CONFIG_HOTPLUG_CPU
721 spin_lock(&memcg->pcp_counter_lock);
722 val += memcg->nocpu_base.events[idx];
723 spin_unlock(&memcg->pcp_counter_lock);
724 #endif
725 return val;
726 }
727
728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729 bool anon, int nr_pages)
730 {
731 preempt_disable();
732
733 /*
734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 * counted as CACHE even if it's on ANON LRU.
736 */
737 if (anon)
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739 nr_pages);
740 else
741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742 nr_pages);
743
744 /* pagein of a big page is an event. So, ignore page size */
745 if (nr_pages > 0)
746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747 else {
748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 nr_pages = -nr_pages; /* for event */
750 }
751
752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753
754 preempt_enable();
755 }
756
757 unsigned long
758 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
759 {
760 struct mem_cgroup_per_zone *mz;
761
762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 return mz->lru_size[lru];
764 }
765
766 static unsigned long
767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768 unsigned int lru_mask)
769 {
770 struct mem_cgroup_per_zone *mz;
771 enum lru_list lru;
772 unsigned long ret = 0;
773
774 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775
776 for_each_lru(lru) {
777 if (BIT(lru) & lru_mask)
778 ret += mz->lru_size[lru];
779 }
780 return ret;
781 }
782
783 static unsigned long
784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 int nid, unsigned int lru_mask)
786 {
787 u64 total = 0;
788 int zid;
789
790 for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 total += mem_cgroup_zone_nr_lru_pages(memcg,
792 nid, zid, lru_mask);
793
794 return total;
795 }
796
797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798 unsigned int lru_mask)
799 {
800 int nid;
801 u64 total = 0;
802
803 for_each_node_state(nid, N_HIGH_MEMORY)
804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805 return total;
806 }
807
808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 enum mem_cgroup_events_target target)
810 {
811 unsigned long val, next;
812
813 val = __this_cpu_read(memcg->stat->nr_page_events);
814 next = __this_cpu_read(memcg->stat->targets[target]);
815 /* from time_after() in jiffies.h */
816 if ((long)next - (long)val < 0) {
817 switch (target) {
818 case MEM_CGROUP_TARGET_THRESH:
819 next = val + THRESHOLDS_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_SOFTLIMIT:
822 next = val + SOFTLIMIT_EVENTS_TARGET;
823 break;
824 case MEM_CGROUP_TARGET_NUMAINFO:
825 next = val + NUMAINFO_EVENTS_TARGET;
826 break;
827 default:
828 break;
829 }
830 __this_cpu_write(memcg->stat->targets[target], next);
831 return true;
832 }
833 return false;
834 }
835
836 /*
837 * Check events in order.
838 *
839 */
840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841 {
842 preempt_disable();
843 /* threshold event is triggered in finer grain than soft limit */
844 if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_THRESH))) {
846 bool do_softlimit;
847 bool do_numainfo __maybe_unused;
848
849 do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_SOFTLIMIT);
851 #if MAX_NUMNODES > 1
852 do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 MEM_CGROUP_TARGET_NUMAINFO);
854 #endif
855 preempt_enable();
856
857 mem_cgroup_threshold(memcg);
858 if (unlikely(do_softlimit))
859 mem_cgroup_update_tree(memcg, page);
860 #if MAX_NUMNODES > 1
861 if (unlikely(do_numainfo))
862 atomic_inc(&memcg->numainfo_events);
863 #endif
864 } else
865 preempt_enable();
866 }
867
868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
869 {
870 return mem_cgroup_from_css(
871 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
872 }
873
874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 }
886
887 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
888 {
889 struct mem_cgroup *memcg = NULL;
890
891 if (!mm)
892 return NULL;
893 /*
894 * Because we have no locks, mm->owner's may be being moved to other
895 * cgroup. We use css_tryget() here even if this looks
896 * pessimistic (rather than adding locks here).
897 */
898 rcu_read_lock();
899 do {
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
902 break;
903 } while (!css_tryget(&memcg->css));
904 rcu_read_unlock();
905 return memcg;
906 }
907
908 /**
909 * mem_cgroup_iter - iterate over memory cgroup hierarchy
910 * @root: hierarchy root
911 * @prev: previously returned memcg, NULL on first invocation
912 * @reclaim: cookie for shared reclaim walks, NULL for full walks
913 *
914 * Returns references to children of the hierarchy below @root, or
915 * @root itself, or %NULL after a full round-trip.
916 *
917 * Caller must pass the return value in @prev on subsequent
918 * invocations for reference counting, or use mem_cgroup_iter_break()
919 * to cancel a hierarchy walk before the round-trip is complete.
920 *
921 * Reclaimers can specify a zone and a priority level in @reclaim to
922 * divide up the memcgs in the hierarchy among all concurrent
923 * reclaimers operating on the same zone and priority.
924 */
925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 struct mem_cgroup *prev,
927 struct mem_cgroup_reclaim_cookie *reclaim)
928 {
929 struct mem_cgroup *memcg = NULL;
930 int id = 0;
931
932 if (mem_cgroup_disabled())
933 return NULL;
934
935 if (!root)
936 root = root_mem_cgroup;
937
938 if (prev && !reclaim)
939 id = css_id(&prev->css);
940
941 if (prev && prev != root)
942 css_put(&prev->css);
943
944 if (!root->use_hierarchy && root != root_mem_cgroup) {
945 if (prev)
946 return NULL;
947 return root;
948 }
949
950 while (!memcg) {
951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952 struct cgroup_subsys_state *css;
953
954 if (reclaim) {
955 int nid = zone_to_nid(reclaim->zone);
956 int zid = zone_idx(reclaim->zone);
957 struct mem_cgroup_per_zone *mz;
958
959 mz = mem_cgroup_zoneinfo(root, nid, zid);
960 iter = &mz->reclaim_iter[reclaim->priority];
961 if (prev && reclaim->generation != iter->generation)
962 return NULL;
963 id = iter->position;
964 }
965
966 rcu_read_lock();
967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 if (css) {
969 if (css == &root->css || css_tryget(css))
970 memcg = mem_cgroup_from_css(css);
971 } else
972 id = 0;
973 rcu_read_unlock();
974
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
981 }
982
983 if (prev && !css)
984 return NULL;
985 }
986 return memcg;
987 }
988
989 /**
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 */
994 void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
996 {
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1001 }
1002
1003 /*
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008 #define for_each_mem_cgroup_tree(iter, root) \
1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1010 iter != NULL; \
1011 iter = mem_cgroup_iter(root, iter, NULL))
1012
1013 #define for_each_mem_cgroup(iter) \
1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1015 iter != NULL; \
1016 iter = mem_cgroup_iter(NULL, iter, NULL))
1017
1018 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1019 {
1020 struct mem_cgroup *memcg;
1021
1022 if (!mm)
1023 return;
1024
1025 rcu_read_lock();
1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 if (unlikely(!memcg))
1028 goto out;
1029
1030 switch (idx) {
1031 case PGFAULT:
1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 break;
1034 case PGMAJFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 break;
1037 default:
1038 BUG();
1039 }
1040 out:
1041 rcu_read_unlock();
1042 }
1043 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1044
1045 /**
1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047 * @zone: zone of the wanted lruvec
1048 * @memcg: memcg of the wanted lruvec
1049 *
1050 * Returns the lru list vector holding pages for the given @zone and
1051 * @mem. This can be the global zone lruvec, if the memory controller
1052 * is disabled.
1053 */
1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 struct mem_cgroup *memcg)
1056 {
1057 struct mem_cgroup_per_zone *mz;
1058
1059 if (mem_cgroup_disabled())
1060 return &zone->lruvec;
1061
1062 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1063 return &mz->lruvec;
1064 }
1065
1066 /*
1067 * Following LRU functions are allowed to be used without PCG_LOCK.
1068 * Operations are called by routine of global LRU independently from memcg.
1069 * What we have to take care of here is validness of pc->mem_cgroup.
1070 *
1071 * Changes to pc->mem_cgroup happens when
1072 * 1. charge
1073 * 2. moving account
1074 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1075 * It is added to LRU before charge.
1076 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1077 * When moving account, the page is not on LRU. It's isolated.
1078 */
1079
1080 /**
1081 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1082 * @page: the page
1083 * @zone: zone of the page
1084 */
1085 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1086 {
1087 struct mem_cgroup_per_zone *mz;
1088 struct mem_cgroup *memcg;
1089 struct page_cgroup *pc;
1090
1091 if (mem_cgroup_disabled())
1092 return &zone->lruvec;
1093
1094 pc = lookup_page_cgroup(page);
1095 memcg = pc->mem_cgroup;
1096
1097 /*
1098 * Surreptitiously switch any uncharged offlist page to root:
1099 * an uncharged page off lru does nothing to secure
1100 * its former mem_cgroup from sudden removal.
1101 *
1102 * Our caller holds lru_lock, and PageCgroupUsed is updated
1103 * under page_cgroup lock: between them, they make all uses
1104 * of pc->mem_cgroup safe.
1105 */
1106 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1107 pc->mem_cgroup = memcg = root_mem_cgroup;
1108
1109 mz = page_cgroup_zoneinfo(memcg, page);
1110 return &mz->lruvec;
1111 }
1112
1113 /**
1114 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1115 * @lruvec: mem_cgroup per zone lru vector
1116 * @lru: index of lru list the page is sitting on
1117 * @nr_pages: positive when adding or negative when removing
1118 *
1119 * This function must be called when a page is added to or removed from an
1120 * lru list.
1121 */
1122 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1123 int nr_pages)
1124 {
1125 struct mem_cgroup_per_zone *mz;
1126 unsigned long *lru_size;
1127
1128 if (mem_cgroup_disabled())
1129 return;
1130
1131 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1132 lru_size = mz->lru_size + lru;
1133 *lru_size += nr_pages;
1134 VM_BUG_ON((long)(*lru_size) < 0);
1135 }
1136
1137 /*
1138 * Checks whether given mem is same or in the root_mem_cgroup's
1139 * hierarchy subtree
1140 */
1141 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1142 struct mem_cgroup *memcg)
1143 {
1144 if (root_memcg == memcg)
1145 return true;
1146 if (!root_memcg->use_hierarchy || !memcg)
1147 return false;
1148 return css_is_ancestor(&memcg->css, &root_memcg->css);
1149 }
1150
1151 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 struct mem_cgroup *memcg)
1153 {
1154 bool ret;
1155
1156 rcu_read_lock();
1157 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1158 rcu_read_unlock();
1159 return ret;
1160 }
1161
1162 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1163 {
1164 int ret;
1165 struct mem_cgroup *curr = NULL;
1166 struct task_struct *p;
1167
1168 p = find_lock_task_mm(task);
1169 if (p) {
1170 curr = try_get_mem_cgroup_from_mm(p->mm);
1171 task_unlock(p);
1172 } else {
1173 /*
1174 * All threads may have already detached their mm's, but the oom
1175 * killer still needs to detect if they have already been oom
1176 * killed to prevent needlessly killing additional tasks.
1177 */
1178 task_lock(task);
1179 curr = mem_cgroup_from_task(task);
1180 if (curr)
1181 css_get(&curr->css);
1182 task_unlock(task);
1183 }
1184 if (!curr)
1185 return 0;
1186 /*
1187 * We should check use_hierarchy of "memcg" not "curr". Because checking
1188 * use_hierarchy of "curr" here make this function true if hierarchy is
1189 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1190 * hierarchy(even if use_hierarchy is disabled in "memcg").
1191 */
1192 ret = mem_cgroup_same_or_subtree(memcg, curr);
1193 css_put(&curr->css);
1194 return ret;
1195 }
1196
1197 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1198 {
1199 unsigned long inactive_ratio;
1200 unsigned long inactive;
1201 unsigned long active;
1202 unsigned long gb;
1203
1204 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1205 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1206
1207 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1208 if (gb)
1209 inactive_ratio = int_sqrt(10 * gb);
1210 else
1211 inactive_ratio = 1;
1212
1213 return inactive * inactive_ratio < active;
1214 }
1215
1216 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1217 {
1218 unsigned long active;
1219 unsigned long inactive;
1220
1221 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1222 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1223
1224 return (active > inactive);
1225 }
1226
1227 #define mem_cgroup_from_res_counter(counter, member) \
1228 container_of(counter, struct mem_cgroup, member)
1229
1230 /**
1231 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1232 * @memcg: the memory cgroup
1233 *
1234 * Returns the maximum amount of memory @mem can be charged with, in
1235 * pages.
1236 */
1237 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238 {
1239 unsigned long long margin;
1240
1241 margin = res_counter_margin(&memcg->res);
1242 if (do_swap_account)
1243 margin = min(margin, res_counter_margin(&memcg->memsw));
1244 return margin >> PAGE_SHIFT;
1245 }
1246
1247 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1248 {
1249 struct cgroup *cgrp = memcg->css.cgroup;
1250
1251 /* root ? */
1252 if (cgrp->parent == NULL)
1253 return vm_swappiness;
1254
1255 return memcg->swappiness;
1256 }
1257
1258 /*
1259 * memcg->moving_account is used for checking possibility that some thread is
1260 * calling move_account(). When a thread on CPU-A starts moving pages under
1261 * a memcg, other threads should check memcg->moving_account under
1262 * rcu_read_lock(), like this:
1263 *
1264 * CPU-A CPU-B
1265 * rcu_read_lock()
1266 * memcg->moving_account+1 if (memcg->mocing_account)
1267 * take heavy locks.
1268 * synchronize_rcu() update something.
1269 * rcu_read_unlock()
1270 * start move here.
1271 */
1272
1273 /* for quick checking without looking up memcg */
1274 atomic_t memcg_moving __read_mostly;
1275
1276 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1277 {
1278 atomic_inc(&memcg_moving);
1279 atomic_inc(&memcg->moving_account);
1280 synchronize_rcu();
1281 }
1282
1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1284 {
1285 /*
1286 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1287 * We check NULL in callee rather than caller.
1288 */
1289 if (memcg) {
1290 atomic_dec(&memcg_moving);
1291 atomic_dec(&memcg->moving_account);
1292 }
1293 }
1294
1295 /*
1296 * 2 routines for checking "mem" is under move_account() or not.
1297 *
1298 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1299 * is used for avoiding races in accounting. If true,
1300 * pc->mem_cgroup may be overwritten.
1301 *
1302 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1303 * under hierarchy of moving cgroups. This is for
1304 * waiting at hith-memory prressure caused by "move".
1305 */
1306
1307 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1308 {
1309 VM_BUG_ON(!rcu_read_lock_held());
1310 return atomic_read(&memcg->moving_account) > 0;
1311 }
1312
1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1314 {
1315 struct mem_cgroup *from;
1316 struct mem_cgroup *to;
1317 bool ret = false;
1318 /*
1319 * Unlike task_move routines, we access mc.to, mc.from not under
1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321 */
1322 spin_lock(&mc.lock);
1323 from = mc.from;
1324 to = mc.to;
1325 if (!from)
1326 goto unlock;
1327
1328 ret = mem_cgroup_same_or_subtree(memcg, from)
1329 || mem_cgroup_same_or_subtree(memcg, to);
1330 unlock:
1331 spin_unlock(&mc.lock);
1332 return ret;
1333 }
1334
1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1336 {
1337 if (mc.moving_task && current != mc.moving_task) {
1338 if (mem_cgroup_under_move(memcg)) {
1339 DEFINE_WAIT(wait);
1340 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 /* moving charge context might have finished. */
1342 if (mc.moving_task)
1343 schedule();
1344 finish_wait(&mc.waitq, &wait);
1345 return true;
1346 }
1347 }
1348 return false;
1349 }
1350
1351 /*
1352 * Take this lock when
1353 * - a code tries to modify page's memcg while it's USED.
1354 * - a code tries to modify page state accounting in a memcg.
1355 * see mem_cgroup_stolen(), too.
1356 */
1357 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1358 unsigned long *flags)
1359 {
1360 spin_lock_irqsave(&memcg->move_lock, *flags);
1361 }
1362
1363 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1364 unsigned long *flags)
1365 {
1366 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1367 }
1368
1369 /**
1370 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1371 * @memcg: The memory cgroup that went over limit
1372 * @p: Task that is going to be killed
1373 *
1374 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1375 * enabled
1376 */
1377 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1378 {
1379 struct cgroup *task_cgrp;
1380 struct cgroup *mem_cgrp;
1381 /*
1382 * Need a buffer in BSS, can't rely on allocations. The code relies
1383 * on the assumption that OOM is serialized for memory controller.
1384 * If this assumption is broken, revisit this code.
1385 */
1386 static char memcg_name[PATH_MAX];
1387 int ret;
1388
1389 if (!memcg || !p)
1390 return;
1391
1392 rcu_read_lock();
1393
1394 mem_cgrp = memcg->css.cgroup;
1395 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1396
1397 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1398 if (ret < 0) {
1399 /*
1400 * Unfortunately, we are unable to convert to a useful name
1401 * But we'll still print out the usage information
1402 */
1403 rcu_read_unlock();
1404 goto done;
1405 }
1406 rcu_read_unlock();
1407
1408 printk(KERN_INFO "Task in %s killed", memcg_name);
1409
1410 rcu_read_lock();
1411 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1412 if (ret < 0) {
1413 rcu_read_unlock();
1414 goto done;
1415 }
1416 rcu_read_unlock();
1417
1418 /*
1419 * Continues from above, so we don't need an KERN_ level
1420 */
1421 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1422 done:
1423
1424 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1425 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1426 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1427 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1428 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1429 "failcnt %llu\n",
1430 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1433 }
1434
1435 /*
1436 * This function returns the number of memcg under hierarchy tree. Returns
1437 * 1(self count) if no children.
1438 */
1439 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1440 {
1441 int num = 0;
1442 struct mem_cgroup *iter;
1443
1444 for_each_mem_cgroup_tree(iter, memcg)
1445 num++;
1446 return num;
1447 }
1448
1449 /*
1450 * Return the memory (and swap, if configured) limit for a memcg.
1451 */
1452 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1453 {
1454 u64 limit;
1455 u64 memsw;
1456
1457 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1458 limit += total_swap_pages << PAGE_SHIFT;
1459
1460 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1461 /*
1462 * If memsw is finite and limits the amount of swap space available
1463 * to this memcg, return that limit.
1464 */
1465 return min(limit, memsw);
1466 }
1467
1468 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1469 int order)
1470 {
1471 struct mem_cgroup *iter;
1472 unsigned long chosen_points = 0;
1473 unsigned long totalpages;
1474 unsigned int points = 0;
1475 struct task_struct *chosen = NULL;
1476
1477 /*
1478 * If current has a pending SIGKILL, then automatically select it. The
1479 * goal is to allow it to allocate so that it may quickly exit and free
1480 * its memory.
1481 */
1482 if (fatal_signal_pending(current)) {
1483 set_thread_flag(TIF_MEMDIE);
1484 return;
1485 }
1486
1487 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1488 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1489 for_each_mem_cgroup_tree(iter, memcg) {
1490 struct cgroup *cgroup = iter->css.cgroup;
1491 struct cgroup_iter it;
1492 struct task_struct *task;
1493
1494 cgroup_iter_start(cgroup, &it);
1495 while ((task = cgroup_iter_next(cgroup, &it))) {
1496 switch (oom_scan_process_thread(task, totalpages, NULL,
1497 false)) {
1498 case OOM_SCAN_SELECT:
1499 if (chosen)
1500 put_task_struct(chosen);
1501 chosen = task;
1502 chosen_points = ULONG_MAX;
1503 get_task_struct(chosen);
1504 /* fall through */
1505 case OOM_SCAN_CONTINUE:
1506 continue;
1507 case OOM_SCAN_ABORT:
1508 cgroup_iter_end(cgroup, &it);
1509 mem_cgroup_iter_break(memcg, iter);
1510 if (chosen)
1511 put_task_struct(chosen);
1512 return;
1513 case OOM_SCAN_OK:
1514 break;
1515 };
1516 points = oom_badness(task, memcg, NULL, totalpages);
1517 if (points > chosen_points) {
1518 if (chosen)
1519 put_task_struct(chosen);
1520 chosen = task;
1521 chosen_points = points;
1522 get_task_struct(chosen);
1523 }
1524 }
1525 cgroup_iter_end(cgroup, &it);
1526 }
1527
1528 if (!chosen)
1529 return;
1530 points = chosen_points * 1000 / totalpages;
1531 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1532 NULL, "Memory cgroup out of memory");
1533 }
1534
1535 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1536 gfp_t gfp_mask,
1537 unsigned long flags)
1538 {
1539 unsigned long total = 0;
1540 bool noswap = false;
1541 int loop;
1542
1543 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1544 noswap = true;
1545 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1546 noswap = true;
1547
1548 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1549 if (loop)
1550 drain_all_stock_async(memcg);
1551 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1552 /*
1553 * Allow limit shrinkers, which are triggered directly
1554 * by userspace, to catch signals and stop reclaim
1555 * after minimal progress, regardless of the margin.
1556 */
1557 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1558 break;
1559 if (mem_cgroup_margin(memcg))
1560 break;
1561 /*
1562 * If nothing was reclaimed after two attempts, there
1563 * may be no reclaimable pages in this hierarchy.
1564 */
1565 if (loop && !total)
1566 break;
1567 }
1568 return total;
1569 }
1570
1571 /**
1572 * test_mem_cgroup_node_reclaimable
1573 * @memcg: the target memcg
1574 * @nid: the node ID to be checked.
1575 * @noswap : specify true here if the user wants flle only information.
1576 *
1577 * This function returns whether the specified memcg contains any
1578 * reclaimable pages on a node. Returns true if there are any reclaimable
1579 * pages in the node.
1580 */
1581 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1582 int nid, bool noswap)
1583 {
1584 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1585 return true;
1586 if (noswap || !total_swap_pages)
1587 return false;
1588 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1589 return true;
1590 return false;
1591
1592 }
1593 #if MAX_NUMNODES > 1
1594
1595 /*
1596 * Always updating the nodemask is not very good - even if we have an empty
1597 * list or the wrong list here, we can start from some node and traverse all
1598 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1599 *
1600 */
1601 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1602 {
1603 int nid;
1604 /*
1605 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1606 * pagein/pageout changes since the last update.
1607 */
1608 if (!atomic_read(&memcg->numainfo_events))
1609 return;
1610 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1611 return;
1612
1613 /* make a nodemask where this memcg uses memory from */
1614 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1615
1616 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1617
1618 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1619 node_clear(nid, memcg->scan_nodes);
1620 }
1621
1622 atomic_set(&memcg->numainfo_events, 0);
1623 atomic_set(&memcg->numainfo_updating, 0);
1624 }
1625
1626 /*
1627 * Selecting a node where we start reclaim from. Because what we need is just
1628 * reducing usage counter, start from anywhere is O,K. Considering
1629 * memory reclaim from current node, there are pros. and cons.
1630 *
1631 * Freeing memory from current node means freeing memory from a node which
1632 * we'll use or we've used. So, it may make LRU bad. And if several threads
1633 * hit limits, it will see a contention on a node. But freeing from remote
1634 * node means more costs for memory reclaim because of memory latency.
1635 *
1636 * Now, we use round-robin. Better algorithm is welcomed.
1637 */
1638 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1639 {
1640 int node;
1641
1642 mem_cgroup_may_update_nodemask(memcg);
1643 node = memcg->last_scanned_node;
1644
1645 node = next_node(node, memcg->scan_nodes);
1646 if (node == MAX_NUMNODES)
1647 node = first_node(memcg->scan_nodes);
1648 /*
1649 * We call this when we hit limit, not when pages are added to LRU.
1650 * No LRU may hold pages because all pages are UNEVICTABLE or
1651 * memcg is too small and all pages are not on LRU. In that case,
1652 * we use curret node.
1653 */
1654 if (unlikely(node == MAX_NUMNODES))
1655 node = numa_node_id();
1656
1657 memcg->last_scanned_node = node;
1658 return node;
1659 }
1660
1661 /*
1662 * Check all nodes whether it contains reclaimable pages or not.
1663 * For quick scan, we make use of scan_nodes. This will allow us to skip
1664 * unused nodes. But scan_nodes is lazily updated and may not cotain
1665 * enough new information. We need to do double check.
1666 */
1667 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668 {
1669 int nid;
1670
1671 /*
1672 * quick check...making use of scan_node.
1673 * We can skip unused nodes.
1674 */
1675 if (!nodes_empty(memcg->scan_nodes)) {
1676 for (nid = first_node(memcg->scan_nodes);
1677 nid < MAX_NUMNODES;
1678 nid = next_node(nid, memcg->scan_nodes)) {
1679
1680 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1681 return true;
1682 }
1683 }
1684 /*
1685 * Check rest of nodes.
1686 */
1687 for_each_node_state(nid, N_HIGH_MEMORY) {
1688 if (node_isset(nid, memcg->scan_nodes))
1689 continue;
1690 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1691 return true;
1692 }
1693 return false;
1694 }
1695
1696 #else
1697 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1698 {
1699 return 0;
1700 }
1701
1702 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1703 {
1704 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1705 }
1706 #endif
1707
1708 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1709 struct zone *zone,
1710 gfp_t gfp_mask,
1711 unsigned long *total_scanned)
1712 {
1713 struct mem_cgroup *victim = NULL;
1714 int total = 0;
1715 int loop = 0;
1716 unsigned long excess;
1717 unsigned long nr_scanned;
1718 struct mem_cgroup_reclaim_cookie reclaim = {
1719 .zone = zone,
1720 .priority = 0,
1721 };
1722
1723 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1724
1725 while (1) {
1726 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1727 if (!victim) {
1728 loop++;
1729 if (loop >= 2) {
1730 /*
1731 * If we have not been able to reclaim
1732 * anything, it might because there are
1733 * no reclaimable pages under this hierarchy
1734 */
1735 if (!total)
1736 break;
1737 /*
1738 * We want to do more targeted reclaim.
1739 * excess >> 2 is not to excessive so as to
1740 * reclaim too much, nor too less that we keep
1741 * coming back to reclaim from this cgroup
1742 */
1743 if (total >= (excess >> 2) ||
1744 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1745 break;
1746 }
1747 continue;
1748 }
1749 if (!mem_cgroup_reclaimable(victim, false))
1750 continue;
1751 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1752 zone, &nr_scanned);
1753 *total_scanned += nr_scanned;
1754 if (!res_counter_soft_limit_excess(&root_memcg->res))
1755 break;
1756 }
1757 mem_cgroup_iter_break(root_memcg, victim);
1758 return total;
1759 }
1760
1761 /*
1762 * Check OOM-Killer is already running under our hierarchy.
1763 * If someone is running, return false.
1764 * Has to be called with memcg_oom_lock
1765 */
1766 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1767 {
1768 struct mem_cgroup *iter, *failed = NULL;
1769
1770 for_each_mem_cgroup_tree(iter, memcg) {
1771 if (iter->oom_lock) {
1772 /*
1773 * this subtree of our hierarchy is already locked
1774 * so we cannot give a lock.
1775 */
1776 failed = iter;
1777 mem_cgroup_iter_break(memcg, iter);
1778 break;
1779 } else
1780 iter->oom_lock = true;
1781 }
1782
1783 if (!failed)
1784 return true;
1785
1786 /*
1787 * OK, we failed to lock the whole subtree so we have to clean up
1788 * what we set up to the failing subtree
1789 */
1790 for_each_mem_cgroup_tree(iter, memcg) {
1791 if (iter == failed) {
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1794 }
1795 iter->oom_lock = false;
1796 }
1797 return false;
1798 }
1799
1800 /*
1801 * Has to be called with memcg_oom_lock
1802 */
1803 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1804 {
1805 struct mem_cgroup *iter;
1806
1807 for_each_mem_cgroup_tree(iter, memcg)
1808 iter->oom_lock = false;
1809 return 0;
1810 }
1811
1812 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1813 {
1814 struct mem_cgroup *iter;
1815
1816 for_each_mem_cgroup_tree(iter, memcg)
1817 atomic_inc(&iter->under_oom);
1818 }
1819
1820 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1821 {
1822 struct mem_cgroup *iter;
1823
1824 /*
1825 * When a new child is created while the hierarchy is under oom,
1826 * mem_cgroup_oom_lock() may not be called. We have to use
1827 * atomic_add_unless() here.
1828 */
1829 for_each_mem_cgroup_tree(iter, memcg)
1830 atomic_add_unless(&iter->under_oom, -1, 0);
1831 }
1832
1833 static DEFINE_SPINLOCK(memcg_oom_lock);
1834 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1835
1836 struct oom_wait_info {
1837 struct mem_cgroup *memcg;
1838 wait_queue_t wait;
1839 };
1840
1841 static int memcg_oom_wake_function(wait_queue_t *wait,
1842 unsigned mode, int sync, void *arg)
1843 {
1844 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845 struct mem_cgroup *oom_wait_memcg;
1846 struct oom_wait_info *oom_wait_info;
1847
1848 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849 oom_wait_memcg = oom_wait_info->memcg;
1850
1851 /*
1852 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1853 * Then we can use css_is_ancestor without taking care of RCU.
1854 */
1855 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1856 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1857 return 0;
1858 return autoremove_wake_function(wait, mode, sync, arg);
1859 }
1860
1861 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1862 {
1863 /* for filtering, pass "memcg" as argument. */
1864 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865 }
1866
1867 static void memcg_oom_recover(struct mem_cgroup *memcg)
1868 {
1869 if (memcg && atomic_read(&memcg->under_oom))
1870 memcg_wakeup_oom(memcg);
1871 }
1872
1873 /*
1874 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1875 */
1876 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1877 int order)
1878 {
1879 struct oom_wait_info owait;
1880 bool locked, need_to_kill;
1881
1882 owait.memcg = memcg;
1883 owait.wait.flags = 0;
1884 owait.wait.func = memcg_oom_wake_function;
1885 owait.wait.private = current;
1886 INIT_LIST_HEAD(&owait.wait.task_list);
1887 need_to_kill = true;
1888 mem_cgroup_mark_under_oom(memcg);
1889
1890 /* At first, try to OOM lock hierarchy under memcg.*/
1891 spin_lock(&memcg_oom_lock);
1892 locked = mem_cgroup_oom_lock(memcg);
1893 /*
1894 * Even if signal_pending(), we can't quit charge() loop without
1895 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1896 * under OOM is always welcomed, use TASK_KILLABLE here.
1897 */
1898 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1899 if (!locked || memcg->oom_kill_disable)
1900 need_to_kill = false;
1901 if (locked)
1902 mem_cgroup_oom_notify(memcg);
1903 spin_unlock(&memcg_oom_lock);
1904
1905 if (need_to_kill) {
1906 finish_wait(&memcg_oom_waitq, &owait.wait);
1907 mem_cgroup_out_of_memory(memcg, mask, order);
1908 } else {
1909 schedule();
1910 finish_wait(&memcg_oom_waitq, &owait.wait);
1911 }
1912 spin_lock(&memcg_oom_lock);
1913 if (locked)
1914 mem_cgroup_oom_unlock(memcg);
1915 memcg_wakeup_oom(memcg);
1916 spin_unlock(&memcg_oom_lock);
1917
1918 mem_cgroup_unmark_under_oom(memcg);
1919
1920 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1921 return false;
1922 /* Give chance to dying process */
1923 schedule_timeout_uninterruptible(1);
1924 return true;
1925 }
1926
1927 /*
1928 * Currently used to update mapped file statistics, but the routine can be
1929 * generalized to update other statistics as well.
1930 *
1931 * Notes: Race condition
1932 *
1933 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1934 * it tends to be costly. But considering some conditions, we doesn't need
1935 * to do so _always_.
1936 *
1937 * Considering "charge", lock_page_cgroup() is not required because all
1938 * file-stat operations happen after a page is attached to radix-tree. There
1939 * are no race with "charge".
1940 *
1941 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1942 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1943 * if there are race with "uncharge". Statistics itself is properly handled
1944 * by flags.
1945 *
1946 * Considering "move", this is an only case we see a race. To make the race
1947 * small, we check mm->moving_account and detect there are possibility of race
1948 * If there is, we take a lock.
1949 */
1950
1951 void __mem_cgroup_begin_update_page_stat(struct page *page,
1952 bool *locked, unsigned long *flags)
1953 {
1954 struct mem_cgroup *memcg;
1955 struct page_cgroup *pc;
1956
1957 pc = lookup_page_cgroup(page);
1958 again:
1959 memcg = pc->mem_cgroup;
1960 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1961 return;
1962 /*
1963 * If this memory cgroup is not under account moving, we don't
1964 * need to take move_lock_mem_cgroup(). Because we already hold
1965 * rcu_read_lock(), any calls to move_account will be delayed until
1966 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1967 */
1968 if (!mem_cgroup_stolen(memcg))
1969 return;
1970
1971 move_lock_mem_cgroup(memcg, flags);
1972 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1973 move_unlock_mem_cgroup(memcg, flags);
1974 goto again;
1975 }
1976 *locked = true;
1977 }
1978
1979 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1980 {
1981 struct page_cgroup *pc = lookup_page_cgroup(page);
1982
1983 /*
1984 * It's guaranteed that pc->mem_cgroup never changes while
1985 * lock is held because a routine modifies pc->mem_cgroup
1986 * should take move_lock_mem_cgroup().
1987 */
1988 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1989 }
1990
1991 void mem_cgroup_update_page_stat(struct page *page,
1992 enum mem_cgroup_page_stat_item idx, int val)
1993 {
1994 struct mem_cgroup *memcg;
1995 struct page_cgroup *pc = lookup_page_cgroup(page);
1996 unsigned long uninitialized_var(flags);
1997
1998 if (mem_cgroup_disabled())
1999 return;
2000
2001 memcg = pc->mem_cgroup;
2002 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2003 return;
2004
2005 switch (idx) {
2006 case MEMCG_NR_FILE_MAPPED:
2007 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2008 break;
2009 default:
2010 BUG();
2011 }
2012
2013 this_cpu_add(memcg->stat->count[idx], val);
2014 }
2015
2016 /*
2017 * size of first charge trial. "32" comes from vmscan.c's magic value.
2018 * TODO: maybe necessary to use big numbers in big irons.
2019 */
2020 #define CHARGE_BATCH 32U
2021 struct memcg_stock_pcp {
2022 struct mem_cgroup *cached; /* this never be root cgroup */
2023 unsigned int nr_pages;
2024 struct work_struct work;
2025 unsigned long flags;
2026 #define FLUSHING_CACHED_CHARGE 0
2027 };
2028 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2029 static DEFINE_MUTEX(percpu_charge_mutex);
2030
2031 /*
2032 * Try to consume stocked charge on this cpu. If success, one page is consumed
2033 * from local stock and true is returned. If the stock is 0 or charges from a
2034 * cgroup which is not current target, returns false. This stock will be
2035 * refilled.
2036 */
2037 static bool consume_stock(struct mem_cgroup *memcg)
2038 {
2039 struct memcg_stock_pcp *stock;
2040 bool ret = true;
2041
2042 stock = &get_cpu_var(memcg_stock);
2043 if (memcg == stock->cached && stock->nr_pages)
2044 stock->nr_pages--;
2045 else /* need to call res_counter_charge */
2046 ret = false;
2047 put_cpu_var(memcg_stock);
2048 return ret;
2049 }
2050
2051 /*
2052 * Returns stocks cached in percpu to res_counter and reset cached information.
2053 */
2054 static void drain_stock(struct memcg_stock_pcp *stock)
2055 {
2056 struct mem_cgroup *old = stock->cached;
2057
2058 if (stock->nr_pages) {
2059 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2060
2061 res_counter_uncharge(&old->res, bytes);
2062 if (do_swap_account)
2063 res_counter_uncharge(&old->memsw, bytes);
2064 stock->nr_pages = 0;
2065 }
2066 stock->cached = NULL;
2067 }
2068
2069 /*
2070 * This must be called under preempt disabled or must be called by
2071 * a thread which is pinned to local cpu.
2072 */
2073 static void drain_local_stock(struct work_struct *dummy)
2074 {
2075 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2076 drain_stock(stock);
2077 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2078 }
2079
2080 /*
2081 * Cache charges(val) which is from res_counter, to local per_cpu area.
2082 * This will be consumed by consume_stock() function, later.
2083 */
2084 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2085 {
2086 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2087
2088 if (stock->cached != memcg) { /* reset if necessary */
2089 drain_stock(stock);
2090 stock->cached = memcg;
2091 }
2092 stock->nr_pages += nr_pages;
2093 put_cpu_var(memcg_stock);
2094 }
2095
2096 /*
2097 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2098 * of the hierarchy under it. sync flag says whether we should block
2099 * until the work is done.
2100 */
2101 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2102 {
2103 int cpu, curcpu;
2104
2105 /* Notify other cpus that system-wide "drain" is running */
2106 get_online_cpus();
2107 curcpu = get_cpu();
2108 for_each_online_cpu(cpu) {
2109 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110 struct mem_cgroup *memcg;
2111
2112 memcg = stock->cached;
2113 if (!memcg || !stock->nr_pages)
2114 continue;
2115 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2116 continue;
2117 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2118 if (cpu == curcpu)
2119 drain_local_stock(&stock->work);
2120 else
2121 schedule_work_on(cpu, &stock->work);
2122 }
2123 }
2124 put_cpu();
2125
2126 if (!sync)
2127 goto out;
2128
2129 for_each_online_cpu(cpu) {
2130 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2131 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2132 flush_work(&stock->work);
2133 }
2134 out:
2135 put_online_cpus();
2136 }
2137
2138 /*
2139 * Tries to drain stocked charges in other cpus. This function is asynchronous
2140 * and just put a work per cpu for draining localy on each cpu. Caller can
2141 * expects some charges will be back to res_counter later but cannot wait for
2142 * it.
2143 */
2144 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2145 {
2146 /*
2147 * If someone calls draining, avoid adding more kworker runs.
2148 */
2149 if (!mutex_trylock(&percpu_charge_mutex))
2150 return;
2151 drain_all_stock(root_memcg, false);
2152 mutex_unlock(&percpu_charge_mutex);
2153 }
2154
2155 /* This is a synchronous drain interface. */
2156 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2157 {
2158 /* called when force_empty is called */
2159 mutex_lock(&percpu_charge_mutex);
2160 drain_all_stock(root_memcg, true);
2161 mutex_unlock(&percpu_charge_mutex);
2162 }
2163
2164 /*
2165 * This function drains percpu counter value from DEAD cpu and
2166 * move it to local cpu. Note that this function can be preempted.
2167 */
2168 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2169 {
2170 int i;
2171
2172 spin_lock(&memcg->pcp_counter_lock);
2173 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2174 long x = per_cpu(memcg->stat->count[i], cpu);
2175
2176 per_cpu(memcg->stat->count[i], cpu) = 0;
2177 memcg->nocpu_base.count[i] += x;
2178 }
2179 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2180 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2181
2182 per_cpu(memcg->stat->events[i], cpu) = 0;
2183 memcg->nocpu_base.events[i] += x;
2184 }
2185 spin_unlock(&memcg->pcp_counter_lock);
2186 }
2187
2188 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2189 unsigned long action,
2190 void *hcpu)
2191 {
2192 int cpu = (unsigned long)hcpu;
2193 struct memcg_stock_pcp *stock;
2194 struct mem_cgroup *iter;
2195
2196 if (action == CPU_ONLINE)
2197 return NOTIFY_OK;
2198
2199 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2200 return NOTIFY_OK;
2201
2202 for_each_mem_cgroup(iter)
2203 mem_cgroup_drain_pcp_counter(iter, cpu);
2204
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
2207 return NOTIFY_OK;
2208 }
2209
2210
2211 /* See __mem_cgroup_try_charge() for details */
2212 enum {
2213 CHARGE_OK, /* success */
2214 CHARGE_RETRY, /* need to retry but retry is not bad */
2215 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2216 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2217 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2218 };
2219
2220 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221 unsigned int nr_pages, bool oom_check)
2222 {
2223 unsigned long csize = nr_pages * PAGE_SIZE;
2224 struct mem_cgroup *mem_over_limit;
2225 struct res_counter *fail_res;
2226 unsigned long flags = 0;
2227 int ret;
2228
2229 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2230
2231 if (likely(!ret)) {
2232 if (!do_swap_account)
2233 return CHARGE_OK;
2234 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235 if (likely(!ret))
2236 return CHARGE_OK;
2237
2238 res_counter_uncharge(&memcg->res, csize);
2239 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2240 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2241 } else
2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2243 /*
2244 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2245 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2246 *
2247 * Never reclaim on behalf of optional batching, retry with a
2248 * single page instead.
2249 */
2250 if (nr_pages == CHARGE_BATCH)
2251 return CHARGE_RETRY;
2252
2253 if (!(gfp_mask & __GFP_WAIT))
2254 return CHARGE_WOULDBLOCK;
2255
2256 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258 return CHARGE_RETRY;
2259 /*
2260 * Even though the limit is exceeded at this point, reclaim
2261 * may have been able to free some pages. Retry the charge
2262 * before killing the task.
2263 *
2264 * Only for regular pages, though: huge pages are rather
2265 * unlikely to succeed so close to the limit, and we fall back
2266 * to regular pages anyway in case of failure.
2267 */
2268 if (nr_pages == 1 && ret)
2269 return CHARGE_RETRY;
2270
2271 /*
2272 * At task move, charge accounts can be doubly counted. So, it's
2273 * better to wait until the end of task_move if something is going on.
2274 */
2275 if (mem_cgroup_wait_acct_move(mem_over_limit))
2276 return CHARGE_RETRY;
2277
2278 /* If we don't need to call oom-killer at el, return immediately */
2279 if (!oom_check)
2280 return CHARGE_NOMEM;
2281 /* check OOM */
2282 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2283 return CHARGE_OOM_DIE;
2284
2285 return CHARGE_RETRY;
2286 }
2287
2288 /*
2289 * __mem_cgroup_try_charge() does
2290 * 1. detect memcg to be charged against from passed *mm and *ptr,
2291 * 2. update res_counter
2292 * 3. call memory reclaim if necessary.
2293 *
2294 * In some special case, if the task is fatal, fatal_signal_pending() or
2295 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2296 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2297 * as possible without any hazards. 2: all pages should have a valid
2298 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2299 * pointer, that is treated as a charge to root_mem_cgroup.
2300 *
2301 * So __mem_cgroup_try_charge() will return
2302 * 0 ... on success, filling *ptr with a valid memcg pointer.
2303 * -ENOMEM ... charge failure because of resource limits.
2304 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2305 *
2306 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2307 * the oom-killer can be invoked.
2308 */
2309 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2310 gfp_t gfp_mask,
2311 unsigned int nr_pages,
2312 struct mem_cgroup **ptr,
2313 bool oom)
2314 {
2315 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2316 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2317 struct mem_cgroup *memcg = NULL;
2318 int ret;
2319
2320 /*
2321 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2322 * in system level. So, allow to go ahead dying process in addition to
2323 * MEMDIE process.
2324 */
2325 if (unlikely(test_thread_flag(TIF_MEMDIE)
2326 || fatal_signal_pending(current)))
2327 goto bypass;
2328
2329 /*
2330 * We always charge the cgroup the mm_struct belongs to.
2331 * The mm_struct's mem_cgroup changes on task migration if the
2332 * thread group leader migrates. It's possible that mm is not
2333 * set, if so charge the root memcg (happens for pagecache usage).
2334 */
2335 if (!*ptr && !mm)
2336 *ptr = root_mem_cgroup;
2337 again:
2338 if (*ptr) { /* css should be a valid one */
2339 memcg = *ptr;
2340 if (mem_cgroup_is_root(memcg))
2341 goto done;
2342 if (nr_pages == 1 && consume_stock(memcg))
2343 goto done;
2344 css_get(&memcg->css);
2345 } else {
2346 struct task_struct *p;
2347
2348 rcu_read_lock();
2349 p = rcu_dereference(mm->owner);
2350 /*
2351 * Because we don't have task_lock(), "p" can exit.
2352 * In that case, "memcg" can point to root or p can be NULL with
2353 * race with swapoff. Then, we have small risk of mis-accouning.
2354 * But such kind of mis-account by race always happens because
2355 * we don't have cgroup_mutex(). It's overkill and we allo that
2356 * small race, here.
2357 * (*) swapoff at el will charge against mm-struct not against
2358 * task-struct. So, mm->owner can be NULL.
2359 */
2360 memcg = mem_cgroup_from_task(p);
2361 if (!memcg)
2362 memcg = root_mem_cgroup;
2363 if (mem_cgroup_is_root(memcg)) {
2364 rcu_read_unlock();
2365 goto done;
2366 }
2367 if (nr_pages == 1 && consume_stock(memcg)) {
2368 /*
2369 * It seems dagerous to access memcg without css_get().
2370 * But considering how consume_stok works, it's not
2371 * necessary. If consume_stock success, some charges
2372 * from this memcg are cached on this cpu. So, we
2373 * don't need to call css_get()/css_tryget() before
2374 * calling consume_stock().
2375 */
2376 rcu_read_unlock();
2377 goto done;
2378 }
2379 /* after here, we may be blocked. we need to get refcnt */
2380 if (!css_tryget(&memcg->css)) {
2381 rcu_read_unlock();
2382 goto again;
2383 }
2384 rcu_read_unlock();
2385 }
2386
2387 do {
2388 bool oom_check;
2389
2390 /* If killed, bypass charge */
2391 if (fatal_signal_pending(current)) {
2392 css_put(&memcg->css);
2393 goto bypass;
2394 }
2395
2396 oom_check = false;
2397 if (oom && !nr_oom_retries) {
2398 oom_check = true;
2399 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2400 }
2401
2402 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2403 switch (ret) {
2404 case CHARGE_OK:
2405 break;
2406 case CHARGE_RETRY: /* not in OOM situation but retry */
2407 batch = nr_pages;
2408 css_put(&memcg->css);
2409 memcg = NULL;
2410 goto again;
2411 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2412 css_put(&memcg->css);
2413 goto nomem;
2414 case CHARGE_NOMEM: /* OOM routine works */
2415 if (!oom) {
2416 css_put(&memcg->css);
2417 goto nomem;
2418 }
2419 /* If oom, we never return -ENOMEM */
2420 nr_oom_retries--;
2421 break;
2422 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2423 css_put(&memcg->css);
2424 goto bypass;
2425 }
2426 } while (ret != CHARGE_OK);
2427
2428 if (batch > nr_pages)
2429 refill_stock(memcg, batch - nr_pages);
2430 css_put(&memcg->css);
2431 done:
2432 *ptr = memcg;
2433 return 0;
2434 nomem:
2435 *ptr = NULL;
2436 return -ENOMEM;
2437 bypass:
2438 *ptr = root_mem_cgroup;
2439 return -EINTR;
2440 }
2441
2442 /*
2443 * Somemtimes we have to undo a charge we got by try_charge().
2444 * This function is for that and do uncharge, put css's refcnt.
2445 * gotten by try_charge().
2446 */
2447 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2448 unsigned int nr_pages)
2449 {
2450 if (!mem_cgroup_is_root(memcg)) {
2451 unsigned long bytes = nr_pages * PAGE_SIZE;
2452
2453 res_counter_uncharge(&memcg->res, bytes);
2454 if (do_swap_account)
2455 res_counter_uncharge(&memcg->memsw, bytes);
2456 }
2457 }
2458
2459 /*
2460 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2461 * This is useful when moving usage to parent cgroup.
2462 */
2463 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2464 unsigned int nr_pages)
2465 {
2466 unsigned long bytes = nr_pages * PAGE_SIZE;
2467
2468 if (mem_cgroup_is_root(memcg))
2469 return;
2470
2471 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2472 if (do_swap_account)
2473 res_counter_uncharge_until(&memcg->memsw,
2474 memcg->memsw.parent, bytes);
2475 }
2476
2477 /*
2478 * A helper function to get mem_cgroup from ID. must be called under
2479 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2480 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2481 * called against removed memcg.)
2482 */
2483 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2484 {
2485 struct cgroup_subsys_state *css;
2486
2487 /* ID 0 is unused ID */
2488 if (!id)
2489 return NULL;
2490 css = css_lookup(&mem_cgroup_subsys, id);
2491 if (!css)
2492 return NULL;
2493 return mem_cgroup_from_css(css);
2494 }
2495
2496 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2497 {
2498 struct mem_cgroup *memcg = NULL;
2499 struct page_cgroup *pc;
2500 unsigned short id;
2501 swp_entry_t ent;
2502
2503 VM_BUG_ON(!PageLocked(page));
2504
2505 pc = lookup_page_cgroup(page);
2506 lock_page_cgroup(pc);
2507 if (PageCgroupUsed(pc)) {
2508 memcg = pc->mem_cgroup;
2509 if (memcg && !css_tryget(&memcg->css))
2510 memcg = NULL;
2511 } else if (PageSwapCache(page)) {
2512 ent.val = page_private(page);
2513 id = lookup_swap_cgroup_id(ent);
2514 rcu_read_lock();
2515 memcg = mem_cgroup_lookup(id);
2516 if (memcg && !css_tryget(&memcg->css))
2517 memcg = NULL;
2518 rcu_read_unlock();
2519 }
2520 unlock_page_cgroup(pc);
2521 return memcg;
2522 }
2523
2524 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2525 struct page *page,
2526 unsigned int nr_pages,
2527 enum charge_type ctype,
2528 bool lrucare)
2529 {
2530 struct page_cgroup *pc = lookup_page_cgroup(page);
2531 struct zone *uninitialized_var(zone);
2532 struct lruvec *lruvec;
2533 bool was_on_lru = false;
2534 bool anon;
2535
2536 lock_page_cgroup(pc);
2537 VM_BUG_ON(PageCgroupUsed(pc));
2538 /*
2539 * we don't need page_cgroup_lock about tail pages, becase they are not
2540 * accessed by any other context at this point.
2541 */
2542
2543 /*
2544 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2545 * may already be on some other mem_cgroup's LRU. Take care of it.
2546 */
2547 if (lrucare) {
2548 zone = page_zone(page);
2549 spin_lock_irq(&zone->lru_lock);
2550 if (PageLRU(page)) {
2551 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2552 ClearPageLRU(page);
2553 del_page_from_lru_list(page, lruvec, page_lru(page));
2554 was_on_lru = true;
2555 }
2556 }
2557
2558 pc->mem_cgroup = memcg;
2559 /*
2560 * We access a page_cgroup asynchronously without lock_page_cgroup().
2561 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2562 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2563 * before USED bit, we need memory barrier here.
2564 * See mem_cgroup_add_lru_list(), etc.
2565 */
2566 smp_wmb();
2567 SetPageCgroupUsed(pc);
2568
2569 if (lrucare) {
2570 if (was_on_lru) {
2571 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2572 VM_BUG_ON(PageLRU(page));
2573 SetPageLRU(page);
2574 add_page_to_lru_list(page, lruvec, page_lru(page));
2575 }
2576 spin_unlock_irq(&zone->lru_lock);
2577 }
2578
2579 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2580 anon = true;
2581 else
2582 anon = false;
2583
2584 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2585 unlock_page_cgroup(pc);
2586
2587 /*
2588 * "charge_statistics" updated event counter. Then, check it.
2589 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2590 * if they exceeds softlimit.
2591 */
2592 memcg_check_events(memcg, page);
2593 }
2594
2595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2596
2597 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2598 /*
2599 * Because tail pages are not marked as "used", set it. We're under
2600 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2601 * charge/uncharge will be never happen and move_account() is done under
2602 * compound_lock(), so we don't have to take care of races.
2603 */
2604 void mem_cgroup_split_huge_fixup(struct page *head)
2605 {
2606 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2607 struct page_cgroup *pc;
2608 int i;
2609
2610 if (mem_cgroup_disabled())
2611 return;
2612 for (i = 1; i < HPAGE_PMD_NR; i++) {
2613 pc = head_pc + i;
2614 pc->mem_cgroup = head_pc->mem_cgroup;
2615 smp_wmb();/* see __commit_charge() */
2616 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2617 }
2618 }
2619 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2620
2621 /**
2622 * mem_cgroup_move_account - move account of the page
2623 * @page: the page
2624 * @nr_pages: number of regular pages (>1 for huge pages)
2625 * @pc: page_cgroup of the page.
2626 * @from: mem_cgroup which the page is moved from.
2627 * @to: mem_cgroup which the page is moved to. @from != @to.
2628 *
2629 * The caller must confirm following.
2630 * - page is not on LRU (isolate_page() is useful.)
2631 * - compound_lock is held when nr_pages > 1
2632 *
2633 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2634 * from old cgroup.
2635 */
2636 static int mem_cgroup_move_account(struct page *page,
2637 unsigned int nr_pages,
2638 struct page_cgroup *pc,
2639 struct mem_cgroup *from,
2640 struct mem_cgroup *to)
2641 {
2642 unsigned long flags;
2643 int ret;
2644 bool anon = PageAnon(page);
2645
2646 VM_BUG_ON(from == to);
2647 VM_BUG_ON(PageLRU(page));
2648 /*
2649 * The page is isolated from LRU. So, collapse function
2650 * will not handle this page. But page splitting can happen.
2651 * Do this check under compound_page_lock(). The caller should
2652 * hold it.
2653 */
2654 ret = -EBUSY;
2655 if (nr_pages > 1 && !PageTransHuge(page))
2656 goto out;
2657
2658 lock_page_cgroup(pc);
2659
2660 ret = -EINVAL;
2661 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2662 goto unlock;
2663
2664 move_lock_mem_cgroup(from, &flags);
2665
2666 if (!anon && page_mapped(page)) {
2667 /* Update mapped_file data for mem_cgroup */
2668 preempt_disable();
2669 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2670 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2671 preempt_enable();
2672 }
2673 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2674
2675 /* caller should have done css_get */
2676 pc->mem_cgroup = to;
2677 mem_cgroup_charge_statistics(to, anon, nr_pages);
2678 move_unlock_mem_cgroup(from, &flags);
2679 ret = 0;
2680 unlock:
2681 unlock_page_cgroup(pc);
2682 /*
2683 * check events
2684 */
2685 memcg_check_events(to, page);
2686 memcg_check_events(from, page);
2687 out:
2688 return ret;
2689 }
2690
2691 /**
2692 * mem_cgroup_move_parent - moves page to the parent group
2693 * @page: the page to move
2694 * @pc: page_cgroup of the page
2695 * @child: page's cgroup
2696 *
2697 * move charges to its parent or the root cgroup if the group has no
2698 * parent (aka use_hierarchy==0).
2699 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2700 * mem_cgroup_move_account fails) the failure is always temporary and
2701 * it signals a race with a page removal/uncharge or migration. In the
2702 * first case the page is on the way out and it will vanish from the LRU
2703 * on the next attempt and the call should be retried later.
2704 * Isolation from the LRU fails only if page has been isolated from
2705 * the LRU since we looked at it and that usually means either global
2706 * reclaim or migration going on. The page will either get back to the
2707 * LRU or vanish.
2708 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2709 * (!PageCgroupUsed) or moved to a different group. The page will
2710 * disappear in the next attempt.
2711 */
2712 static int mem_cgroup_move_parent(struct page *page,
2713 struct page_cgroup *pc,
2714 struct mem_cgroup *child)
2715 {
2716 struct mem_cgroup *parent;
2717 unsigned int nr_pages;
2718 unsigned long uninitialized_var(flags);
2719 int ret;
2720
2721 VM_BUG_ON(mem_cgroup_is_root(child));
2722
2723 ret = -EBUSY;
2724 if (!get_page_unless_zero(page))
2725 goto out;
2726 if (isolate_lru_page(page))
2727 goto put;
2728
2729 nr_pages = hpage_nr_pages(page);
2730
2731 parent = parent_mem_cgroup(child);
2732 /*
2733 * If no parent, move charges to root cgroup.
2734 */
2735 if (!parent)
2736 parent = root_mem_cgroup;
2737
2738 if (nr_pages > 1) {
2739 VM_BUG_ON(!PageTransHuge(page));
2740 flags = compound_lock_irqsave(page);
2741 }
2742
2743 ret = mem_cgroup_move_account(page, nr_pages,
2744 pc, child, parent);
2745 if (!ret)
2746 __mem_cgroup_cancel_local_charge(child, nr_pages);
2747
2748 if (nr_pages > 1)
2749 compound_unlock_irqrestore(page, flags);
2750 putback_lru_page(page);
2751 put:
2752 put_page(page);
2753 out:
2754 return ret;
2755 }
2756
2757 /*
2758 * Charge the memory controller for page usage.
2759 * Return
2760 * 0 if the charge was successful
2761 * < 0 if the cgroup is over its limit
2762 */
2763 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2764 gfp_t gfp_mask, enum charge_type ctype)
2765 {
2766 struct mem_cgroup *memcg = NULL;
2767 unsigned int nr_pages = 1;
2768 bool oom = true;
2769 int ret;
2770
2771 if (PageTransHuge(page)) {
2772 nr_pages <<= compound_order(page);
2773 VM_BUG_ON(!PageTransHuge(page));
2774 /*
2775 * Never OOM-kill a process for a huge page. The
2776 * fault handler will fall back to regular pages.
2777 */
2778 oom = false;
2779 }
2780
2781 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2782 if (ret == -ENOMEM)
2783 return ret;
2784 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2785 return 0;
2786 }
2787
2788 int mem_cgroup_newpage_charge(struct page *page,
2789 struct mm_struct *mm, gfp_t gfp_mask)
2790 {
2791 if (mem_cgroup_disabled())
2792 return 0;
2793 VM_BUG_ON(page_mapped(page));
2794 VM_BUG_ON(page->mapping && !PageAnon(page));
2795 VM_BUG_ON(!mm);
2796 return mem_cgroup_charge_common(page, mm, gfp_mask,
2797 MEM_CGROUP_CHARGE_TYPE_ANON);
2798 }
2799
2800 /*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2805 */
2806 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 struct page *page,
2808 gfp_t mask,
2809 struct mem_cgroup **memcgp)
2810 {
2811 struct mem_cgroup *memcg;
2812 struct page_cgroup *pc;
2813 int ret;
2814
2815 pc = lookup_page_cgroup(page);
2816 /*
2817 * Every swap fault against a single page tries to charge the
2818 * page, bail as early as possible. shmem_unuse() encounters
2819 * already charged pages, too. The USED bit is protected by
2820 * the page lock, which serializes swap cache removal, which
2821 * in turn serializes uncharging.
2822 */
2823 if (PageCgroupUsed(pc))
2824 return 0;
2825 if (!do_swap_account)
2826 goto charge_cur_mm;
2827 memcg = try_get_mem_cgroup_from_page(page);
2828 if (!memcg)
2829 goto charge_cur_mm;
2830 *memcgp = memcg;
2831 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2832 css_put(&memcg->css);
2833 if (ret == -EINTR)
2834 ret = 0;
2835 return ret;
2836 charge_cur_mm:
2837 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2838 if (ret == -EINTR)
2839 ret = 0;
2840 return ret;
2841 }
2842
2843 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2844 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2845 {
2846 *memcgp = NULL;
2847 if (mem_cgroup_disabled())
2848 return 0;
2849 /*
2850 * A racing thread's fault, or swapoff, may have already
2851 * updated the pte, and even removed page from swap cache: in
2852 * those cases unuse_pte()'s pte_same() test will fail; but
2853 * there's also a KSM case which does need to charge the page.
2854 */
2855 if (!PageSwapCache(page)) {
2856 int ret;
2857
2858 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2859 if (ret == -EINTR)
2860 ret = 0;
2861 return ret;
2862 }
2863 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2864 }
2865
2866 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2867 {
2868 if (mem_cgroup_disabled())
2869 return;
2870 if (!memcg)
2871 return;
2872 __mem_cgroup_cancel_charge(memcg, 1);
2873 }
2874
2875 static void
2876 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2877 enum charge_type ctype)
2878 {
2879 if (mem_cgroup_disabled())
2880 return;
2881 if (!memcg)
2882 return;
2883
2884 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2885 /*
2886 * Now swap is on-memory. This means this page may be
2887 * counted both as mem and swap....double count.
2888 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2889 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2890 * may call delete_from_swap_cache() before reach here.
2891 */
2892 if (do_swap_account && PageSwapCache(page)) {
2893 swp_entry_t ent = {.val = page_private(page)};
2894 mem_cgroup_uncharge_swap(ent);
2895 }
2896 }
2897
2898 void mem_cgroup_commit_charge_swapin(struct page *page,
2899 struct mem_cgroup *memcg)
2900 {
2901 __mem_cgroup_commit_charge_swapin(page, memcg,
2902 MEM_CGROUP_CHARGE_TYPE_ANON);
2903 }
2904
2905 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2906 gfp_t gfp_mask)
2907 {
2908 struct mem_cgroup *memcg = NULL;
2909 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2910 int ret;
2911
2912 if (mem_cgroup_disabled())
2913 return 0;
2914 if (PageCompound(page))
2915 return 0;
2916
2917 if (!PageSwapCache(page))
2918 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2919 else { /* page is swapcache/shmem */
2920 ret = __mem_cgroup_try_charge_swapin(mm, page,
2921 gfp_mask, &memcg);
2922 if (!ret)
2923 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2924 }
2925 return ret;
2926 }
2927
2928 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2929 unsigned int nr_pages,
2930 const enum charge_type ctype)
2931 {
2932 struct memcg_batch_info *batch = NULL;
2933 bool uncharge_memsw = true;
2934
2935 /* If swapout, usage of swap doesn't decrease */
2936 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2937 uncharge_memsw = false;
2938
2939 batch = &current->memcg_batch;
2940 /*
2941 * In usual, we do css_get() when we remember memcg pointer.
2942 * But in this case, we keep res->usage until end of a series of
2943 * uncharges. Then, it's ok to ignore memcg's refcnt.
2944 */
2945 if (!batch->memcg)
2946 batch->memcg = memcg;
2947 /*
2948 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2949 * In those cases, all pages freed continuously can be expected to be in
2950 * the same cgroup and we have chance to coalesce uncharges.
2951 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2952 * because we want to do uncharge as soon as possible.
2953 */
2954
2955 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2956 goto direct_uncharge;
2957
2958 if (nr_pages > 1)
2959 goto direct_uncharge;
2960
2961 /*
2962 * In typical case, batch->memcg == mem. This means we can
2963 * merge a series of uncharges to an uncharge of res_counter.
2964 * If not, we uncharge res_counter ony by one.
2965 */
2966 if (batch->memcg != memcg)
2967 goto direct_uncharge;
2968 /* remember freed charge and uncharge it later */
2969 batch->nr_pages++;
2970 if (uncharge_memsw)
2971 batch->memsw_nr_pages++;
2972 return;
2973 direct_uncharge:
2974 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2975 if (uncharge_memsw)
2976 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2977 if (unlikely(batch->memcg != memcg))
2978 memcg_oom_recover(memcg);
2979 }
2980
2981 /*
2982 * uncharge if !page_mapped(page)
2983 */
2984 static struct mem_cgroup *
2985 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2986 bool end_migration)
2987 {
2988 struct mem_cgroup *memcg = NULL;
2989 unsigned int nr_pages = 1;
2990 struct page_cgroup *pc;
2991 bool anon;
2992
2993 if (mem_cgroup_disabled())
2994 return NULL;
2995
2996 VM_BUG_ON(PageSwapCache(page));
2997
2998 if (PageTransHuge(page)) {
2999 nr_pages <<= compound_order(page);
3000 VM_BUG_ON(!PageTransHuge(page));
3001 }
3002 /*
3003 * Check if our page_cgroup is valid
3004 */
3005 pc = lookup_page_cgroup(page);
3006 if (unlikely(!PageCgroupUsed(pc)))
3007 return NULL;
3008
3009 lock_page_cgroup(pc);
3010
3011 memcg = pc->mem_cgroup;
3012
3013 if (!PageCgroupUsed(pc))
3014 goto unlock_out;
3015
3016 anon = PageAnon(page);
3017
3018 switch (ctype) {
3019 case MEM_CGROUP_CHARGE_TYPE_ANON:
3020 /*
3021 * Generally PageAnon tells if it's the anon statistics to be
3022 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3023 * used before page reached the stage of being marked PageAnon.
3024 */
3025 anon = true;
3026 /* fallthrough */
3027 case MEM_CGROUP_CHARGE_TYPE_DROP:
3028 /* See mem_cgroup_prepare_migration() */
3029 if (page_mapped(page))
3030 goto unlock_out;
3031 /*
3032 * Pages under migration may not be uncharged. But
3033 * end_migration() /must/ be the one uncharging the
3034 * unused post-migration page and so it has to call
3035 * here with the migration bit still set. See the
3036 * res_counter handling below.
3037 */
3038 if (!end_migration && PageCgroupMigration(pc))
3039 goto unlock_out;
3040 break;
3041 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3042 if (!PageAnon(page)) { /* Shared memory */
3043 if (page->mapping && !page_is_file_cache(page))
3044 goto unlock_out;
3045 } else if (page_mapped(page)) /* Anon */
3046 goto unlock_out;
3047 break;
3048 default:
3049 break;
3050 }
3051
3052 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3053
3054 ClearPageCgroupUsed(pc);
3055 /*
3056 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3057 * freed from LRU. This is safe because uncharged page is expected not
3058 * to be reused (freed soon). Exception is SwapCache, it's handled by
3059 * special functions.
3060 */
3061
3062 unlock_page_cgroup(pc);
3063 /*
3064 * even after unlock, we have memcg->res.usage here and this memcg
3065 * will never be freed.
3066 */
3067 memcg_check_events(memcg, page);
3068 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3069 mem_cgroup_swap_statistics(memcg, true);
3070 mem_cgroup_get(memcg);
3071 }
3072 /*
3073 * Migration does not charge the res_counter for the
3074 * replacement page, so leave it alone when phasing out the
3075 * page that is unused after the migration.
3076 */
3077 if (!end_migration && !mem_cgroup_is_root(memcg))
3078 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3079
3080 return memcg;
3081
3082 unlock_out:
3083 unlock_page_cgroup(pc);
3084 return NULL;
3085 }
3086
3087 void mem_cgroup_uncharge_page(struct page *page)
3088 {
3089 /* early check. */
3090 if (page_mapped(page))
3091 return;
3092 VM_BUG_ON(page->mapping && !PageAnon(page));
3093 if (PageSwapCache(page))
3094 return;
3095 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3096 }
3097
3098 void mem_cgroup_uncharge_cache_page(struct page *page)
3099 {
3100 VM_BUG_ON(page_mapped(page));
3101 VM_BUG_ON(page->mapping);
3102 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3103 }
3104
3105 /*
3106 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3107 * In that cases, pages are freed continuously and we can expect pages
3108 * are in the same memcg. All these calls itself limits the number of
3109 * pages freed at once, then uncharge_start/end() is called properly.
3110 * This may be called prural(2) times in a context,
3111 */
3112
3113 void mem_cgroup_uncharge_start(void)
3114 {
3115 current->memcg_batch.do_batch++;
3116 /* We can do nest. */
3117 if (current->memcg_batch.do_batch == 1) {
3118 current->memcg_batch.memcg = NULL;
3119 current->memcg_batch.nr_pages = 0;
3120 current->memcg_batch.memsw_nr_pages = 0;
3121 }
3122 }
3123
3124 void mem_cgroup_uncharge_end(void)
3125 {
3126 struct memcg_batch_info *batch = &current->memcg_batch;
3127
3128 if (!batch->do_batch)
3129 return;
3130
3131 batch->do_batch--;
3132 if (batch->do_batch) /* If stacked, do nothing. */
3133 return;
3134
3135 if (!batch->memcg)
3136 return;
3137 /*
3138 * This "batch->memcg" is valid without any css_get/put etc...
3139 * bacause we hide charges behind us.
3140 */
3141 if (batch->nr_pages)
3142 res_counter_uncharge(&batch->memcg->res,
3143 batch->nr_pages * PAGE_SIZE);
3144 if (batch->memsw_nr_pages)
3145 res_counter_uncharge(&batch->memcg->memsw,
3146 batch->memsw_nr_pages * PAGE_SIZE);
3147 memcg_oom_recover(batch->memcg);
3148 /* forget this pointer (for sanity check) */
3149 batch->memcg = NULL;
3150 }
3151
3152 #ifdef CONFIG_SWAP
3153 /*
3154 * called after __delete_from_swap_cache() and drop "page" account.
3155 * memcg information is recorded to swap_cgroup of "ent"
3156 */
3157 void
3158 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3159 {
3160 struct mem_cgroup *memcg;
3161 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3162
3163 if (!swapout) /* this was a swap cache but the swap is unused ! */
3164 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3165
3166 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3167
3168 /*
3169 * record memcg information, if swapout && memcg != NULL,
3170 * mem_cgroup_get() was called in uncharge().
3171 */
3172 if (do_swap_account && swapout && memcg)
3173 swap_cgroup_record(ent, css_id(&memcg->css));
3174 }
3175 #endif
3176
3177 #ifdef CONFIG_MEMCG_SWAP
3178 /*
3179 * called from swap_entry_free(). remove record in swap_cgroup and
3180 * uncharge "memsw" account.
3181 */
3182 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3183 {
3184 struct mem_cgroup *memcg;
3185 unsigned short id;
3186
3187 if (!do_swap_account)
3188 return;
3189
3190 id = swap_cgroup_record(ent, 0);
3191 rcu_read_lock();
3192 memcg = mem_cgroup_lookup(id);
3193 if (memcg) {
3194 /*
3195 * We uncharge this because swap is freed.
3196 * This memcg can be obsolete one. We avoid calling css_tryget
3197 */
3198 if (!mem_cgroup_is_root(memcg))
3199 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3200 mem_cgroup_swap_statistics(memcg, false);
3201 mem_cgroup_put(memcg);
3202 }
3203 rcu_read_unlock();
3204 }
3205
3206 /**
3207 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3208 * @entry: swap entry to be moved
3209 * @from: mem_cgroup which the entry is moved from
3210 * @to: mem_cgroup which the entry is moved to
3211 *
3212 * It succeeds only when the swap_cgroup's record for this entry is the same
3213 * as the mem_cgroup's id of @from.
3214 *
3215 * Returns 0 on success, -EINVAL on failure.
3216 *
3217 * The caller must have charged to @to, IOW, called res_counter_charge() about
3218 * both res and memsw, and called css_get().
3219 */
3220 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3221 struct mem_cgroup *from, struct mem_cgroup *to)
3222 {
3223 unsigned short old_id, new_id;
3224
3225 old_id = css_id(&from->css);
3226 new_id = css_id(&to->css);
3227
3228 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3229 mem_cgroup_swap_statistics(from, false);
3230 mem_cgroup_swap_statistics(to, true);
3231 /*
3232 * This function is only called from task migration context now.
3233 * It postpones res_counter and refcount handling till the end
3234 * of task migration(mem_cgroup_clear_mc()) for performance
3235 * improvement. But we cannot postpone mem_cgroup_get(to)
3236 * because if the process that has been moved to @to does
3237 * swap-in, the refcount of @to might be decreased to 0.
3238 */
3239 mem_cgroup_get(to);
3240 return 0;
3241 }
3242 return -EINVAL;
3243 }
3244 #else
3245 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3246 struct mem_cgroup *from, struct mem_cgroup *to)
3247 {
3248 return -EINVAL;
3249 }
3250 #endif
3251
3252 /*
3253 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3254 * page belongs to.
3255 */
3256 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3257 struct mem_cgroup **memcgp)
3258 {
3259 struct mem_cgroup *memcg = NULL;
3260 struct page_cgroup *pc;
3261 enum charge_type ctype;
3262
3263 *memcgp = NULL;
3264
3265 VM_BUG_ON(PageTransHuge(page));
3266 if (mem_cgroup_disabled())
3267 return;
3268
3269 pc = lookup_page_cgroup(page);
3270 lock_page_cgroup(pc);
3271 if (PageCgroupUsed(pc)) {
3272 memcg = pc->mem_cgroup;
3273 css_get(&memcg->css);
3274 /*
3275 * At migrating an anonymous page, its mapcount goes down
3276 * to 0 and uncharge() will be called. But, even if it's fully
3277 * unmapped, migration may fail and this page has to be
3278 * charged again. We set MIGRATION flag here and delay uncharge
3279 * until end_migration() is called
3280 *
3281 * Corner Case Thinking
3282 * A)
3283 * When the old page was mapped as Anon and it's unmap-and-freed
3284 * while migration was ongoing.
3285 * If unmap finds the old page, uncharge() of it will be delayed
3286 * until end_migration(). If unmap finds a new page, it's
3287 * uncharged when it make mapcount to be 1->0. If unmap code
3288 * finds swap_migration_entry, the new page will not be mapped
3289 * and end_migration() will find it(mapcount==0).
3290 *
3291 * B)
3292 * When the old page was mapped but migraion fails, the kernel
3293 * remaps it. A charge for it is kept by MIGRATION flag even
3294 * if mapcount goes down to 0. We can do remap successfully
3295 * without charging it again.
3296 *
3297 * C)
3298 * The "old" page is under lock_page() until the end of
3299 * migration, so, the old page itself will not be swapped-out.
3300 * If the new page is swapped out before end_migraton, our
3301 * hook to usual swap-out path will catch the event.
3302 */
3303 if (PageAnon(page))
3304 SetPageCgroupMigration(pc);
3305 }
3306 unlock_page_cgroup(pc);
3307 /*
3308 * If the page is not charged at this point,
3309 * we return here.
3310 */
3311 if (!memcg)
3312 return;
3313
3314 *memcgp = memcg;
3315 /*
3316 * We charge new page before it's used/mapped. So, even if unlock_page()
3317 * is called before end_migration, we can catch all events on this new
3318 * page. In the case new page is migrated but not remapped, new page's
3319 * mapcount will be finally 0 and we call uncharge in end_migration().
3320 */
3321 if (PageAnon(page))
3322 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3323 else
3324 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3325 /*
3326 * The page is committed to the memcg, but it's not actually
3327 * charged to the res_counter since we plan on replacing the
3328 * old one and only one page is going to be left afterwards.
3329 */
3330 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3331 }
3332
3333 /* remove redundant charge if migration failed*/
3334 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3335 struct page *oldpage, struct page *newpage, bool migration_ok)
3336 {
3337 struct page *used, *unused;
3338 struct page_cgroup *pc;
3339 bool anon;
3340
3341 if (!memcg)
3342 return;
3343
3344 if (!migration_ok) {
3345 used = oldpage;
3346 unused = newpage;
3347 } else {
3348 used = newpage;
3349 unused = oldpage;
3350 }
3351 anon = PageAnon(used);
3352 __mem_cgroup_uncharge_common(unused,
3353 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3354 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3355 true);
3356 css_put(&memcg->css);
3357 /*
3358 * We disallowed uncharge of pages under migration because mapcount
3359 * of the page goes down to zero, temporarly.
3360 * Clear the flag and check the page should be charged.
3361 */
3362 pc = lookup_page_cgroup(oldpage);
3363 lock_page_cgroup(pc);
3364 ClearPageCgroupMigration(pc);
3365 unlock_page_cgroup(pc);
3366
3367 /*
3368 * If a page is a file cache, radix-tree replacement is very atomic
3369 * and we can skip this check. When it was an Anon page, its mapcount
3370 * goes down to 0. But because we added MIGRATION flage, it's not
3371 * uncharged yet. There are several case but page->mapcount check
3372 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3373 * check. (see prepare_charge() also)
3374 */
3375 if (anon)
3376 mem_cgroup_uncharge_page(used);
3377 }
3378
3379 /*
3380 * At replace page cache, newpage is not under any memcg but it's on
3381 * LRU. So, this function doesn't touch res_counter but handles LRU
3382 * in correct way. Both pages are locked so we cannot race with uncharge.
3383 */
3384 void mem_cgroup_replace_page_cache(struct page *oldpage,
3385 struct page *newpage)
3386 {
3387 struct mem_cgroup *memcg = NULL;
3388 struct page_cgroup *pc;
3389 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3390
3391 if (mem_cgroup_disabled())
3392 return;
3393
3394 pc = lookup_page_cgroup(oldpage);
3395 /* fix accounting on old pages */
3396 lock_page_cgroup(pc);
3397 if (PageCgroupUsed(pc)) {
3398 memcg = pc->mem_cgroup;
3399 mem_cgroup_charge_statistics(memcg, false, -1);
3400 ClearPageCgroupUsed(pc);
3401 }
3402 unlock_page_cgroup(pc);
3403
3404 /*
3405 * When called from shmem_replace_page(), in some cases the
3406 * oldpage has already been charged, and in some cases not.
3407 */
3408 if (!memcg)
3409 return;
3410 /*
3411 * Even if newpage->mapping was NULL before starting replacement,
3412 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3413 * LRU while we overwrite pc->mem_cgroup.
3414 */
3415 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3416 }
3417
3418 #ifdef CONFIG_DEBUG_VM
3419 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3420 {
3421 struct page_cgroup *pc;
3422
3423 pc = lookup_page_cgroup(page);
3424 /*
3425 * Can be NULL while feeding pages into the page allocator for
3426 * the first time, i.e. during boot or memory hotplug;
3427 * or when mem_cgroup_disabled().
3428 */
3429 if (likely(pc) && PageCgroupUsed(pc))
3430 return pc;
3431 return NULL;
3432 }
3433
3434 bool mem_cgroup_bad_page_check(struct page *page)
3435 {
3436 if (mem_cgroup_disabled())
3437 return false;
3438
3439 return lookup_page_cgroup_used(page) != NULL;
3440 }
3441
3442 void mem_cgroup_print_bad_page(struct page *page)
3443 {
3444 struct page_cgroup *pc;
3445
3446 pc = lookup_page_cgroup_used(page);
3447 if (pc) {
3448 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3449 pc, pc->flags, pc->mem_cgroup);
3450 }
3451 }
3452 #endif
3453
3454 static DEFINE_MUTEX(set_limit_mutex);
3455
3456 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3457 unsigned long long val)
3458 {
3459 int retry_count;
3460 u64 memswlimit, memlimit;
3461 int ret = 0;
3462 int children = mem_cgroup_count_children(memcg);
3463 u64 curusage, oldusage;
3464 int enlarge;
3465
3466 /*
3467 * For keeping hierarchical_reclaim simple, how long we should retry
3468 * is depends on callers. We set our retry-count to be function
3469 * of # of children which we should visit in this loop.
3470 */
3471 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3472
3473 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3474
3475 enlarge = 0;
3476 while (retry_count) {
3477 if (signal_pending(current)) {
3478 ret = -EINTR;
3479 break;
3480 }
3481 /*
3482 * Rather than hide all in some function, I do this in
3483 * open coded manner. You see what this really does.
3484 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3485 */
3486 mutex_lock(&set_limit_mutex);
3487 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3488 if (memswlimit < val) {
3489 ret = -EINVAL;
3490 mutex_unlock(&set_limit_mutex);
3491 break;
3492 }
3493
3494 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3495 if (memlimit < val)
3496 enlarge = 1;
3497
3498 ret = res_counter_set_limit(&memcg->res, val);
3499 if (!ret) {
3500 if (memswlimit == val)
3501 memcg->memsw_is_minimum = true;
3502 else
3503 memcg->memsw_is_minimum = false;
3504 }
3505 mutex_unlock(&set_limit_mutex);
3506
3507 if (!ret)
3508 break;
3509
3510 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3511 MEM_CGROUP_RECLAIM_SHRINK);
3512 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3513 /* Usage is reduced ? */
3514 if (curusage >= oldusage)
3515 retry_count--;
3516 else
3517 oldusage = curusage;
3518 }
3519 if (!ret && enlarge)
3520 memcg_oom_recover(memcg);
3521
3522 return ret;
3523 }
3524
3525 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3526 unsigned long long val)
3527 {
3528 int retry_count;
3529 u64 memlimit, memswlimit, oldusage, curusage;
3530 int children = mem_cgroup_count_children(memcg);
3531 int ret = -EBUSY;
3532 int enlarge = 0;
3533
3534 /* see mem_cgroup_resize_res_limit */
3535 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3536 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3537 while (retry_count) {
3538 if (signal_pending(current)) {
3539 ret = -EINTR;
3540 break;
3541 }
3542 /*
3543 * Rather than hide all in some function, I do this in
3544 * open coded manner. You see what this really does.
3545 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3546 */
3547 mutex_lock(&set_limit_mutex);
3548 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3549 if (memlimit > val) {
3550 ret = -EINVAL;
3551 mutex_unlock(&set_limit_mutex);
3552 break;
3553 }
3554 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3555 if (memswlimit < val)
3556 enlarge = 1;
3557 ret = res_counter_set_limit(&memcg->memsw, val);
3558 if (!ret) {
3559 if (memlimit == val)
3560 memcg->memsw_is_minimum = true;
3561 else
3562 memcg->memsw_is_minimum = false;
3563 }
3564 mutex_unlock(&set_limit_mutex);
3565
3566 if (!ret)
3567 break;
3568
3569 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3570 MEM_CGROUP_RECLAIM_NOSWAP |
3571 MEM_CGROUP_RECLAIM_SHRINK);
3572 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3573 /* Usage is reduced ? */
3574 if (curusage >= oldusage)
3575 retry_count--;
3576 else
3577 oldusage = curusage;
3578 }
3579 if (!ret && enlarge)
3580 memcg_oom_recover(memcg);
3581 return ret;
3582 }
3583
3584 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3585 gfp_t gfp_mask,
3586 unsigned long *total_scanned)
3587 {
3588 unsigned long nr_reclaimed = 0;
3589 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3590 unsigned long reclaimed;
3591 int loop = 0;
3592 struct mem_cgroup_tree_per_zone *mctz;
3593 unsigned long long excess;
3594 unsigned long nr_scanned;
3595
3596 if (order > 0)
3597 return 0;
3598
3599 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3600 /*
3601 * This loop can run a while, specially if mem_cgroup's continuously
3602 * keep exceeding their soft limit and putting the system under
3603 * pressure
3604 */
3605 do {
3606 if (next_mz)
3607 mz = next_mz;
3608 else
3609 mz = mem_cgroup_largest_soft_limit_node(mctz);
3610 if (!mz)
3611 break;
3612
3613 nr_scanned = 0;
3614 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3615 gfp_mask, &nr_scanned);
3616 nr_reclaimed += reclaimed;
3617 *total_scanned += nr_scanned;
3618 spin_lock(&mctz->lock);
3619
3620 /*
3621 * If we failed to reclaim anything from this memory cgroup
3622 * it is time to move on to the next cgroup
3623 */
3624 next_mz = NULL;
3625 if (!reclaimed) {
3626 do {
3627 /*
3628 * Loop until we find yet another one.
3629 *
3630 * By the time we get the soft_limit lock
3631 * again, someone might have aded the
3632 * group back on the RB tree. Iterate to
3633 * make sure we get a different mem.
3634 * mem_cgroup_largest_soft_limit_node returns
3635 * NULL if no other cgroup is present on
3636 * the tree
3637 */
3638 next_mz =
3639 __mem_cgroup_largest_soft_limit_node(mctz);
3640 if (next_mz == mz)
3641 css_put(&next_mz->memcg->css);
3642 else /* next_mz == NULL or other memcg */
3643 break;
3644 } while (1);
3645 }
3646 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3647 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3648 /*
3649 * One school of thought says that we should not add
3650 * back the node to the tree if reclaim returns 0.
3651 * But our reclaim could return 0, simply because due
3652 * to priority we are exposing a smaller subset of
3653 * memory to reclaim from. Consider this as a longer
3654 * term TODO.
3655 */
3656 /* If excess == 0, no tree ops */
3657 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3658 spin_unlock(&mctz->lock);
3659 css_put(&mz->memcg->css);
3660 loop++;
3661 /*
3662 * Could not reclaim anything and there are no more
3663 * mem cgroups to try or we seem to be looping without
3664 * reclaiming anything.
3665 */
3666 if (!nr_reclaimed &&
3667 (next_mz == NULL ||
3668 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3669 break;
3670 } while (!nr_reclaimed);
3671 if (next_mz)
3672 css_put(&next_mz->memcg->css);
3673 return nr_reclaimed;
3674 }
3675
3676 /**
3677 * mem_cgroup_force_empty_list - clears LRU of a group
3678 * @memcg: group to clear
3679 * @node: NUMA node
3680 * @zid: zone id
3681 * @lru: lru to to clear
3682 *
3683 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3684 * reclaim the pages page themselves - pages are moved to the parent (or root)
3685 * group.
3686 */
3687 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3688 int node, int zid, enum lru_list lru)
3689 {
3690 struct mem_cgroup_per_zone *mz;
3691 unsigned long flags;
3692 struct list_head *list;
3693 struct page *busy;
3694 struct zone *zone;
3695
3696 zone = &NODE_DATA(node)->node_zones[zid];
3697 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3698 list = &mz->lruvec.lists[lru];
3699
3700 busy = NULL;
3701 do {
3702 struct page_cgroup *pc;
3703 struct page *page;
3704
3705 spin_lock_irqsave(&zone->lru_lock, flags);
3706 if (list_empty(list)) {
3707 spin_unlock_irqrestore(&zone->lru_lock, flags);
3708 break;
3709 }
3710 page = list_entry(list->prev, struct page, lru);
3711 if (busy == page) {
3712 list_move(&page->lru, list);
3713 busy = NULL;
3714 spin_unlock_irqrestore(&zone->lru_lock, flags);
3715 continue;
3716 }
3717 spin_unlock_irqrestore(&zone->lru_lock, flags);
3718
3719 pc = lookup_page_cgroup(page);
3720
3721 if (mem_cgroup_move_parent(page, pc, memcg)) {
3722 /* found lock contention or "pc" is obsolete. */
3723 busy = page;
3724 cond_resched();
3725 } else
3726 busy = NULL;
3727 } while (!list_empty(list));
3728 }
3729
3730 /*
3731 * make mem_cgroup's charge to be 0 if there is no task by moving
3732 * all the charges and pages to the parent.
3733 * This enables deleting this mem_cgroup.
3734 *
3735 * Caller is responsible for holding css reference on the memcg.
3736 */
3737 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3738 {
3739 int node, zid;
3740
3741 do {
3742 /* This is for making all *used* pages to be on LRU. */
3743 lru_add_drain_all();
3744 drain_all_stock_sync(memcg);
3745 mem_cgroup_start_move(memcg);
3746 for_each_node_state(node, N_HIGH_MEMORY) {
3747 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3748 enum lru_list lru;
3749 for_each_lru(lru) {
3750 mem_cgroup_force_empty_list(memcg,
3751 node, zid, lru);
3752 }
3753 }
3754 }
3755 mem_cgroup_end_move(memcg);
3756 memcg_oom_recover(memcg);
3757 cond_resched();
3758
3759 /*
3760 * This is a safety check because mem_cgroup_force_empty_list
3761 * could have raced with mem_cgroup_replace_page_cache callers
3762 * so the lru seemed empty but the page could have been added
3763 * right after the check. RES_USAGE should be safe as we always
3764 * charge before adding to the LRU.
3765 */
3766 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3767 }
3768
3769 /*
3770 * Reclaims as many pages from the given memcg as possible and moves
3771 * the rest to the parent.
3772 *
3773 * Caller is responsible for holding css reference for memcg.
3774 */
3775 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3776 {
3777 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3778 struct cgroup *cgrp = memcg->css.cgroup;
3779
3780 /* returns EBUSY if there is a task or if we come here twice. */
3781 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3782 return -EBUSY;
3783
3784 /* we call try-to-free pages for make this cgroup empty */
3785 lru_add_drain_all();
3786 /* try to free all pages in this cgroup */
3787 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3788 int progress;
3789
3790 if (signal_pending(current))
3791 return -EINTR;
3792
3793 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3794 false);
3795 if (!progress) {
3796 nr_retries--;
3797 /* maybe some writeback is necessary */
3798 congestion_wait(BLK_RW_ASYNC, HZ/10);
3799 }
3800
3801 }
3802 lru_add_drain();
3803 mem_cgroup_reparent_charges(memcg);
3804
3805 return 0;
3806 }
3807
3808 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3809 {
3810 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3811 int ret;
3812
3813 if (mem_cgroup_is_root(memcg))
3814 return -EINVAL;
3815 css_get(&memcg->css);
3816 ret = mem_cgroup_force_empty(memcg);
3817 css_put(&memcg->css);
3818
3819 return ret;
3820 }
3821
3822
3823 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3824 {
3825 return mem_cgroup_from_cont(cont)->use_hierarchy;
3826 }
3827
3828 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3829 u64 val)
3830 {
3831 int retval = 0;
3832 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3833 struct cgroup *parent = cont->parent;
3834 struct mem_cgroup *parent_memcg = NULL;
3835
3836 if (parent)
3837 parent_memcg = mem_cgroup_from_cont(parent);
3838
3839 cgroup_lock();
3840
3841 if (memcg->use_hierarchy == val)
3842 goto out;
3843
3844 /*
3845 * If parent's use_hierarchy is set, we can't make any modifications
3846 * in the child subtrees. If it is unset, then the change can
3847 * occur, provided the current cgroup has no children.
3848 *
3849 * For the root cgroup, parent_mem is NULL, we allow value to be
3850 * set if there are no children.
3851 */
3852 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3853 (val == 1 || val == 0)) {
3854 if (list_empty(&cont->children))
3855 memcg->use_hierarchy = val;
3856 else
3857 retval = -EBUSY;
3858 } else
3859 retval = -EINVAL;
3860
3861 out:
3862 cgroup_unlock();
3863
3864 return retval;
3865 }
3866
3867
3868 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3869 enum mem_cgroup_stat_index idx)
3870 {
3871 struct mem_cgroup *iter;
3872 long val = 0;
3873
3874 /* Per-cpu values can be negative, use a signed accumulator */
3875 for_each_mem_cgroup_tree(iter, memcg)
3876 val += mem_cgroup_read_stat(iter, idx);
3877
3878 if (val < 0) /* race ? */
3879 val = 0;
3880 return val;
3881 }
3882
3883 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3884 {
3885 u64 val;
3886
3887 if (!mem_cgroup_is_root(memcg)) {
3888 if (!swap)
3889 return res_counter_read_u64(&memcg->res, RES_USAGE);
3890 else
3891 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3892 }
3893
3894 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3895 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3896
3897 if (swap)
3898 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3899
3900 return val << PAGE_SHIFT;
3901 }
3902
3903 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3904 struct file *file, char __user *buf,
3905 size_t nbytes, loff_t *ppos)
3906 {
3907 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3908 char str[64];
3909 u64 val;
3910 int type, name, len;
3911
3912 type = MEMFILE_TYPE(cft->private);
3913 name = MEMFILE_ATTR(cft->private);
3914
3915 if (!do_swap_account && type == _MEMSWAP)
3916 return -EOPNOTSUPP;
3917
3918 switch (type) {
3919 case _MEM:
3920 if (name == RES_USAGE)
3921 val = mem_cgroup_usage(memcg, false);
3922 else
3923 val = res_counter_read_u64(&memcg->res, name);
3924 break;
3925 case _MEMSWAP:
3926 if (name == RES_USAGE)
3927 val = mem_cgroup_usage(memcg, true);
3928 else
3929 val = res_counter_read_u64(&memcg->memsw, name);
3930 break;
3931 default:
3932 BUG();
3933 }
3934
3935 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3936 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3937 }
3938 /*
3939 * The user of this function is...
3940 * RES_LIMIT.
3941 */
3942 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3943 const char *buffer)
3944 {
3945 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3946 int type, name;
3947 unsigned long long val;
3948 int ret;
3949
3950 type = MEMFILE_TYPE(cft->private);
3951 name = MEMFILE_ATTR(cft->private);
3952
3953 if (!do_swap_account && type == _MEMSWAP)
3954 return -EOPNOTSUPP;
3955
3956 switch (name) {
3957 case RES_LIMIT:
3958 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3959 ret = -EINVAL;
3960 break;
3961 }
3962 /* This function does all necessary parse...reuse it */
3963 ret = res_counter_memparse_write_strategy(buffer, &val);
3964 if (ret)
3965 break;
3966 if (type == _MEM)
3967 ret = mem_cgroup_resize_limit(memcg, val);
3968 else
3969 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3970 break;
3971 case RES_SOFT_LIMIT:
3972 ret = res_counter_memparse_write_strategy(buffer, &val);
3973 if (ret)
3974 break;
3975 /*
3976 * For memsw, soft limits are hard to implement in terms
3977 * of semantics, for now, we support soft limits for
3978 * control without swap
3979 */
3980 if (type == _MEM)
3981 ret = res_counter_set_soft_limit(&memcg->res, val);
3982 else
3983 ret = -EINVAL;
3984 break;
3985 default:
3986 ret = -EINVAL; /* should be BUG() ? */
3987 break;
3988 }
3989 return ret;
3990 }
3991
3992 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3993 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3994 {
3995 struct cgroup *cgroup;
3996 unsigned long long min_limit, min_memsw_limit, tmp;
3997
3998 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3999 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4000 cgroup = memcg->css.cgroup;
4001 if (!memcg->use_hierarchy)
4002 goto out;
4003
4004 while (cgroup->parent) {
4005 cgroup = cgroup->parent;
4006 memcg = mem_cgroup_from_cont(cgroup);
4007 if (!memcg->use_hierarchy)
4008 break;
4009 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4010 min_limit = min(min_limit, tmp);
4011 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4012 min_memsw_limit = min(min_memsw_limit, tmp);
4013 }
4014 out:
4015 *mem_limit = min_limit;
4016 *memsw_limit = min_memsw_limit;
4017 }
4018
4019 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4020 {
4021 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4022 int type, name;
4023
4024 type = MEMFILE_TYPE(event);
4025 name = MEMFILE_ATTR(event);
4026
4027 if (!do_swap_account && type == _MEMSWAP)
4028 return -EOPNOTSUPP;
4029
4030 switch (name) {
4031 case RES_MAX_USAGE:
4032 if (type == _MEM)
4033 res_counter_reset_max(&memcg->res);
4034 else
4035 res_counter_reset_max(&memcg->memsw);
4036 break;
4037 case RES_FAILCNT:
4038 if (type == _MEM)
4039 res_counter_reset_failcnt(&memcg->res);
4040 else
4041 res_counter_reset_failcnt(&memcg->memsw);
4042 break;
4043 }
4044
4045 return 0;
4046 }
4047
4048 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4049 struct cftype *cft)
4050 {
4051 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4052 }
4053
4054 #ifdef CONFIG_MMU
4055 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4056 struct cftype *cft, u64 val)
4057 {
4058 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4059
4060 if (val >= (1 << NR_MOVE_TYPE))
4061 return -EINVAL;
4062 /*
4063 * We check this value several times in both in can_attach() and
4064 * attach(), so we need cgroup lock to prevent this value from being
4065 * inconsistent.
4066 */
4067 cgroup_lock();
4068 memcg->move_charge_at_immigrate = val;
4069 cgroup_unlock();
4070
4071 return 0;
4072 }
4073 #else
4074 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4075 struct cftype *cft, u64 val)
4076 {
4077 return -ENOSYS;
4078 }
4079 #endif
4080
4081 #ifdef CONFIG_NUMA
4082 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4083 struct seq_file *m)
4084 {
4085 int nid;
4086 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4087 unsigned long node_nr;
4088 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4089
4090 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4091 seq_printf(m, "total=%lu", total_nr);
4092 for_each_node_state(nid, N_HIGH_MEMORY) {
4093 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4094 seq_printf(m, " N%d=%lu", nid, node_nr);
4095 }
4096 seq_putc(m, '\n');
4097
4098 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4099 seq_printf(m, "file=%lu", file_nr);
4100 for_each_node_state(nid, N_HIGH_MEMORY) {
4101 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4102 LRU_ALL_FILE);
4103 seq_printf(m, " N%d=%lu", nid, node_nr);
4104 }
4105 seq_putc(m, '\n');
4106
4107 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4108 seq_printf(m, "anon=%lu", anon_nr);
4109 for_each_node_state(nid, N_HIGH_MEMORY) {
4110 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4111 LRU_ALL_ANON);
4112 seq_printf(m, " N%d=%lu", nid, node_nr);
4113 }
4114 seq_putc(m, '\n');
4115
4116 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4117 seq_printf(m, "unevictable=%lu", unevictable_nr);
4118 for_each_node_state(nid, N_HIGH_MEMORY) {
4119 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4120 BIT(LRU_UNEVICTABLE));
4121 seq_printf(m, " N%d=%lu", nid, node_nr);
4122 }
4123 seq_putc(m, '\n');
4124 return 0;
4125 }
4126 #endif /* CONFIG_NUMA */
4127
4128 static const char * const mem_cgroup_lru_names[] = {
4129 "inactive_anon",
4130 "active_anon",
4131 "inactive_file",
4132 "active_file",
4133 "unevictable",
4134 };
4135
4136 static inline void mem_cgroup_lru_names_not_uptodate(void)
4137 {
4138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4139 }
4140
4141 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4142 struct seq_file *m)
4143 {
4144 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4145 struct mem_cgroup *mi;
4146 unsigned int i;
4147
4148 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4149 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4150 continue;
4151 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4152 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4153 }
4154
4155 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4156 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4157 mem_cgroup_read_events(memcg, i));
4158
4159 for (i = 0; i < NR_LRU_LISTS; i++)
4160 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4161 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4162
4163 /* Hierarchical information */
4164 {
4165 unsigned long long limit, memsw_limit;
4166 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4167 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4168 if (do_swap_account)
4169 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4170 memsw_limit);
4171 }
4172
4173 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4174 long long val = 0;
4175
4176 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4177 continue;
4178 for_each_mem_cgroup_tree(mi, memcg)
4179 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4180 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4181 }
4182
4183 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4184 unsigned long long val = 0;
4185
4186 for_each_mem_cgroup_tree(mi, memcg)
4187 val += mem_cgroup_read_events(mi, i);
4188 seq_printf(m, "total_%s %llu\n",
4189 mem_cgroup_events_names[i], val);
4190 }
4191
4192 for (i = 0; i < NR_LRU_LISTS; i++) {
4193 unsigned long long val = 0;
4194
4195 for_each_mem_cgroup_tree(mi, memcg)
4196 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4197 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4198 }
4199
4200 #ifdef CONFIG_DEBUG_VM
4201 {
4202 int nid, zid;
4203 struct mem_cgroup_per_zone *mz;
4204 struct zone_reclaim_stat *rstat;
4205 unsigned long recent_rotated[2] = {0, 0};
4206 unsigned long recent_scanned[2] = {0, 0};
4207
4208 for_each_online_node(nid)
4209 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4210 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4211 rstat = &mz->lruvec.reclaim_stat;
4212
4213 recent_rotated[0] += rstat->recent_rotated[0];
4214 recent_rotated[1] += rstat->recent_rotated[1];
4215 recent_scanned[0] += rstat->recent_scanned[0];
4216 recent_scanned[1] += rstat->recent_scanned[1];
4217 }
4218 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4219 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4220 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4221 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4222 }
4223 #endif
4224
4225 return 0;
4226 }
4227
4228 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4229 {
4230 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4231
4232 return mem_cgroup_swappiness(memcg);
4233 }
4234
4235 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4236 u64 val)
4237 {
4238 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4239 struct mem_cgroup *parent;
4240
4241 if (val > 100)
4242 return -EINVAL;
4243
4244 if (cgrp->parent == NULL)
4245 return -EINVAL;
4246
4247 parent = mem_cgroup_from_cont(cgrp->parent);
4248
4249 cgroup_lock();
4250
4251 /* If under hierarchy, only empty-root can set this value */
4252 if ((parent->use_hierarchy) ||
4253 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4254 cgroup_unlock();
4255 return -EINVAL;
4256 }
4257
4258 memcg->swappiness = val;
4259
4260 cgroup_unlock();
4261
4262 return 0;
4263 }
4264
4265 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4266 {
4267 struct mem_cgroup_threshold_ary *t;
4268 u64 usage;
4269 int i;
4270
4271 rcu_read_lock();
4272 if (!swap)
4273 t = rcu_dereference(memcg->thresholds.primary);
4274 else
4275 t = rcu_dereference(memcg->memsw_thresholds.primary);
4276
4277 if (!t)
4278 goto unlock;
4279
4280 usage = mem_cgroup_usage(memcg, swap);
4281
4282 /*
4283 * current_threshold points to threshold just below or equal to usage.
4284 * If it's not true, a threshold was crossed after last
4285 * call of __mem_cgroup_threshold().
4286 */
4287 i = t->current_threshold;
4288
4289 /*
4290 * Iterate backward over array of thresholds starting from
4291 * current_threshold and check if a threshold is crossed.
4292 * If none of thresholds below usage is crossed, we read
4293 * only one element of the array here.
4294 */
4295 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4296 eventfd_signal(t->entries[i].eventfd, 1);
4297
4298 /* i = current_threshold + 1 */
4299 i++;
4300
4301 /*
4302 * Iterate forward over array of thresholds starting from
4303 * current_threshold+1 and check if a threshold is crossed.
4304 * If none of thresholds above usage is crossed, we read
4305 * only one element of the array here.
4306 */
4307 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4308 eventfd_signal(t->entries[i].eventfd, 1);
4309
4310 /* Update current_threshold */
4311 t->current_threshold = i - 1;
4312 unlock:
4313 rcu_read_unlock();
4314 }
4315
4316 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4317 {
4318 while (memcg) {
4319 __mem_cgroup_threshold(memcg, false);
4320 if (do_swap_account)
4321 __mem_cgroup_threshold(memcg, true);
4322
4323 memcg = parent_mem_cgroup(memcg);
4324 }
4325 }
4326
4327 static int compare_thresholds(const void *a, const void *b)
4328 {
4329 const struct mem_cgroup_threshold *_a = a;
4330 const struct mem_cgroup_threshold *_b = b;
4331
4332 return _a->threshold - _b->threshold;
4333 }
4334
4335 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4336 {
4337 struct mem_cgroup_eventfd_list *ev;
4338
4339 list_for_each_entry(ev, &memcg->oom_notify, list)
4340 eventfd_signal(ev->eventfd, 1);
4341 return 0;
4342 }
4343
4344 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4345 {
4346 struct mem_cgroup *iter;
4347
4348 for_each_mem_cgroup_tree(iter, memcg)
4349 mem_cgroup_oom_notify_cb(iter);
4350 }
4351
4352 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4353 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4354 {
4355 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4356 struct mem_cgroup_thresholds *thresholds;
4357 struct mem_cgroup_threshold_ary *new;
4358 int type = MEMFILE_TYPE(cft->private);
4359 u64 threshold, usage;
4360 int i, size, ret;
4361
4362 ret = res_counter_memparse_write_strategy(args, &threshold);
4363 if (ret)
4364 return ret;
4365
4366 mutex_lock(&memcg->thresholds_lock);
4367
4368 if (type == _MEM)
4369 thresholds = &memcg->thresholds;
4370 else if (type == _MEMSWAP)
4371 thresholds = &memcg->memsw_thresholds;
4372 else
4373 BUG();
4374
4375 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4376
4377 /* Check if a threshold crossed before adding a new one */
4378 if (thresholds->primary)
4379 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4380
4381 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4382
4383 /* Allocate memory for new array of thresholds */
4384 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4385 GFP_KERNEL);
4386 if (!new) {
4387 ret = -ENOMEM;
4388 goto unlock;
4389 }
4390 new->size = size;
4391
4392 /* Copy thresholds (if any) to new array */
4393 if (thresholds->primary) {
4394 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4395 sizeof(struct mem_cgroup_threshold));
4396 }
4397
4398 /* Add new threshold */
4399 new->entries[size - 1].eventfd = eventfd;
4400 new->entries[size - 1].threshold = threshold;
4401
4402 /* Sort thresholds. Registering of new threshold isn't time-critical */
4403 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4404 compare_thresholds, NULL);
4405
4406 /* Find current threshold */
4407 new->current_threshold = -1;
4408 for (i = 0; i < size; i++) {
4409 if (new->entries[i].threshold <= usage) {
4410 /*
4411 * new->current_threshold will not be used until
4412 * rcu_assign_pointer(), so it's safe to increment
4413 * it here.
4414 */
4415 ++new->current_threshold;
4416 } else
4417 break;
4418 }
4419
4420 /* Free old spare buffer and save old primary buffer as spare */
4421 kfree(thresholds->spare);
4422 thresholds->spare = thresholds->primary;
4423
4424 rcu_assign_pointer(thresholds->primary, new);
4425
4426 /* To be sure that nobody uses thresholds */
4427 synchronize_rcu();
4428
4429 unlock:
4430 mutex_unlock(&memcg->thresholds_lock);
4431
4432 return ret;
4433 }
4434
4435 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4436 struct cftype *cft, struct eventfd_ctx *eventfd)
4437 {
4438 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4439 struct mem_cgroup_thresholds *thresholds;
4440 struct mem_cgroup_threshold_ary *new;
4441 int type = MEMFILE_TYPE(cft->private);
4442 u64 usage;
4443 int i, j, size;
4444
4445 mutex_lock(&memcg->thresholds_lock);
4446 if (type == _MEM)
4447 thresholds = &memcg->thresholds;
4448 else if (type == _MEMSWAP)
4449 thresholds = &memcg->memsw_thresholds;
4450 else
4451 BUG();
4452
4453 if (!thresholds->primary)
4454 goto unlock;
4455
4456 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4457
4458 /* Check if a threshold crossed before removing */
4459 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4460
4461 /* Calculate new number of threshold */
4462 size = 0;
4463 for (i = 0; i < thresholds->primary->size; i++) {
4464 if (thresholds->primary->entries[i].eventfd != eventfd)
4465 size++;
4466 }
4467
4468 new = thresholds->spare;
4469
4470 /* Set thresholds array to NULL if we don't have thresholds */
4471 if (!size) {
4472 kfree(new);
4473 new = NULL;
4474 goto swap_buffers;
4475 }
4476
4477 new->size = size;
4478
4479 /* Copy thresholds and find current threshold */
4480 new->current_threshold = -1;
4481 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4482 if (thresholds->primary->entries[i].eventfd == eventfd)
4483 continue;
4484
4485 new->entries[j] = thresholds->primary->entries[i];
4486 if (new->entries[j].threshold <= usage) {
4487 /*
4488 * new->current_threshold will not be used
4489 * until rcu_assign_pointer(), so it's safe to increment
4490 * it here.
4491 */
4492 ++new->current_threshold;
4493 }
4494 j++;
4495 }
4496
4497 swap_buffers:
4498 /* Swap primary and spare array */
4499 thresholds->spare = thresholds->primary;
4500 /* If all events are unregistered, free the spare array */
4501 if (!new) {
4502 kfree(thresholds->spare);
4503 thresholds->spare = NULL;
4504 }
4505
4506 rcu_assign_pointer(thresholds->primary, new);
4507
4508 /* To be sure that nobody uses thresholds */
4509 synchronize_rcu();
4510 unlock:
4511 mutex_unlock(&memcg->thresholds_lock);
4512 }
4513
4514 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4515 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4516 {
4517 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4518 struct mem_cgroup_eventfd_list *event;
4519 int type = MEMFILE_TYPE(cft->private);
4520
4521 BUG_ON(type != _OOM_TYPE);
4522 event = kmalloc(sizeof(*event), GFP_KERNEL);
4523 if (!event)
4524 return -ENOMEM;
4525
4526 spin_lock(&memcg_oom_lock);
4527
4528 event->eventfd = eventfd;
4529 list_add(&event->list, &memcg->oom_notify);
4530
4531 /* already in OOM ? */
4532 if (atomic_read(&memcg->under_oom))
4533 eventfd_signal(eventfd, 1);
4534 spin_unlock(&memcg_oom_lock);
4535
4536 return 0;
4537 }
4538
4539 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4540 struct cftype *cft, struct eventfd_ctx *eventfd)
4541 {
4542 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4543 struct mem_cgroup_eventfd_list *ev, *tmp;
4544 int type = MEMFILE_TYPE(cft->private);
4545
4546 BUG_ON(type != _OOM_TYPE);
4547
4548 spin_lock(&memcg_oom_lock);
4549
4550 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4551 if (ev->eventfd == eventfd) {
4552 list_del(&ev->list);
4553 kfree(ev);
4554 }
4555 }
4556
4557 spin_unlock(&memcg_oom_lock);
4558 }
4559
4560 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4561 struct cftype *cft, struct cgroup_map_cb *cb)
4562 {
4563 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4564
4565 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4566
4567 if (atomic_read(&memcg->under_oom))
4568 cb->fill(cb, "under_oom", 1);
4569 else
4570 cb->fill(cb, "under_oom", 0);
4571 return 0;
4572 }
4573
4574 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4575 struct cftype *cft, u64 val)
4576 {
4577 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4578 struct mem_cgroup *parent;
4579
4580 /* cannot set to root cgroup and only 0 and 1 are allowed */
4581 if (!cgrp->parent || !((val == 0) || (val == 1)))
4582 return -EINVAL;
4583
4584 parent = mem_cgroup_from_cont(cgrp->parent);
4585
4586 cgroup_lock();
4587 /* oom-kill-disable is a flag for subhierarchy. */
4588 if ((parent->use_hierarchy) ||
4589 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4590 cgroup_unlock();
4591 return -EINVAL;
4592 }
4593 memcg->oom_kill_disable = val;
4594 if (!val)
4595 memcg_oom_recover(memcg);
4596 cgroup_unlock();
4597 return 0;
4598 }
4599
4600 #ifdef CONFIG_MEMCG_KMEM
4601 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4602 {
4603 return mem_cgroup_sockets_init(memcg, ss);
4604 };
4605
4606 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4607 {
4608 mem_cgroup_sockets_destroy(memcg);
4609 }
4610 #else
4611 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4612 {
4613 return 0;
4614 }
4615
4616 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4617 {
4618 }
4619 #endif
4620
4621 static struct cftype mem_cgroup_files[] = {
4622 {
4623 .name = "usage_in_bytes",
4624 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4625 .read = mem_cgroup_read,
4626 .register_event = mem_cgroup_usage_register_event,
4627 .unregister_event = mem_cgroup_usage_unregister_event,
4628 },
4629 {
4630 .name = "max_usage_in_bytes",
4631 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4632 .trigger = mem_cgroup_reset,
4633 .read = mem_cgroup_read,
4634 },
4635 {
4636 .name = "limit_in_bytes",
4637 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4638 .write_string = mem_cgroup_write,
4639 .read = mem_cgroup_read,
4640 },
4641 {
4642 .name = "soft_limit_in_bytes",
4643 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4644 .write_string = mem_cgroup_write,
4645 .read = mem_cgroup_read,
4646 },
4647 {
4648 .name = "failcnt",
4649 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4650 .trigger = mem_cgroup_reset,
4651 .read = mem_cgroup_read,
4652 },
4653 {
4654 .name = "stat",
4655 .read_seq_string = memcg_stat_show,
4656 },
4657 {
4658 .name = "force_empty",
4659 .trigger = mem_cgroup_force_empty_write,
4660 },
4661 {
4662 .name = "use_hierarchy",
4663 .write_u64 = mem_cgroup_hierarchy_write,
4664 .read_u64 = mem_cgroup_hierarchy_read,
4665 },
4666 {
4667 .name = "swappiness",
4668 .read_u64 = mem_cgroup_swappiness_read,
4669 .write_u64 = mem_cgroup_swappiness_write,
4670 },
4671 {
4672 .name = "move_charge_at_immigrate",
4673 .read_u64 = mem_cgroup_move_charge_read,
4674 .write_u64 = mem_cgroup_move_charge_write,
4675 },
4676 {
4677 .name = "oom_control",
4678 .read_map = mem_cgroup_oom_control_read,
4679 .write_u64 = mem_cgroup_oom_control_write,
4680 .register_event = mem_cgroup_oom_register_event,
4681 .unregister_event = mem_cgroup_oom_unregister_event,
4682 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4683 },
4684 #ifdef CONFIG_NUMA
4685 {
4686 .name = "numa_stat",
4687 .read_seq_string = memcg_numa_stat_show,
4688 },
4689 #endif
4690 #ifdef CONFIG_MEMCG_SWAP
4691 {
4692 .name = "memsw.usage_in_bytes",
4693 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4694 .read = mem_cgroup_read,
4695 .register_event = mem_cgroup_usage_register_event,
4696 .unregister_event = mem_cgroup_usage_unregister_event,
4697 },
4698 {
4699 .name = "memsw.max_usage_in_bytes",
4700 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4701 .trigger = mem_cgroup_reset,
4702 .read = mem_cgroup_read,
4703 },
4704 {
4705 .name = "memsw.limit_in_bytes",
4706 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4707 .write_string = mem_cgroup_write,
4708 .read = mem_cgroup_read,
4709 },
4710 {
4711 .name = "memsw.failcnt",
4712 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4713 .trigger = mem_cgroup_reset,
4714 .read = mem_cgroup_read,
4715 },
4716 #endif
4717 { }, /* terminate */
4718 };
4719
4720 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4721 {
4722 struct mem_cgroup_per_node *pn;
4723 struct mem_cgroup_per_zone *mz;
4724 int zone, tmp = node;
4725 /*
4726 * This routine is called against possible nodes.
4727 * But it's BUG to call kmalloc() against offline node.
4728 *
4729 * TODO: this routine can waste much memory for nodes which will
4730 * never be onlined. It's better to use memory hotplug callback
4731 * function.
4732 */
4733 if (!node_state(node, N_NORMAL_MEMORY))
4734 tmp = -1;
4735 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4736 if (!pn)
4737 return 1;
4738
4739 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4740 mz = &pn->zoneinfo[zone];
4741 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4742 mz->usage_in_excess = 0;
4743 mz->on_tree = false;
4744 mz->memcg = memcg;
4745 }
4746 memcg->info.nodeinfo[node] = pn;
4747 return 0;
4748 }
4749
4750 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4751 {
4752 kfree(memcg->info.nodeinfo[node]);
4753 }
4754
4755 static struct mem_cgroup *mem_cgroup_alloc(void)
4756 {
4757 struct mem_cgroup *memcg;
4758 int size = sizeof(struct mem_cgroup);
4759
4760 /* Can be very big if MAX_NUMNODES is very big */
4761 if (size < PAGE_SIZE)
4762 memcg = kzalloc(size, GFP_KERNEL);
4763 else
4764 memcg = vzalloc(size);
4765
4766 if (!memcg)
4767 return NULL;
4768
4769 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4770 if (!memcg->stat)
4771 goto out_free;
4772 spin_lock_init(&memcg->pcp_counter_lock);
4773 return memcg;
4774
4775 out_free:
4776 if (size < PAGE_SIZE)
4777 kfree(memcg);
4778 else
4779 vfree(memcg);
4780 return NULL;
4781 }
4782
4783 /*
4784 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4785 * but in process context. The work_freeing structure is overlaid
4786 * on the rcu_freeing structure, which itself is overlaid on memsw.
4787 */
4788 static void free_work(struct work_struct *work)
4789 {
4790 struct mem_cgroup *memcg;
4791 int size = sizeof(struct mem_cgroup);
4792
4793 memcg = container_of(work, struct mem_cgroup, work_freeing);
4794 /*
4795 * We need to make sure that (at least for now), the jump label
4796 * destruction code runs outside of the cgroup lock. This is because
4797 * get_online_cpus(), which is called from the static_branch update,
4798 * can't be called inside the cgroup_lock. cpusets are the ones
4799 * enforcing this dependency, so if they ever change, we might as well.
4800 *
4801 * schedule_work() will guarantee this happens. Be careful if you need
4802 * to move this code around, and make sure it is outside
4803 * the cgroup_lock.
4804 */
4805 disarm_sock_keys(memcg);
4806 if (size < PAGE_SIZE)
4807 kfree(memcg);
4808 else
4809 vfree(memcg);
4810 }
4811
4812 static void free_rcu(struct rcu_head *rcu_head)
4813 {
4814 struct mem_cgroup *memcg;
4815
4816 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4817 INIT_WORK(&memcg->work_freeing, free_work);
4818 schedule_work(&memcg->work_freeing);
4819 }
4820
4821 /*
4822 * At destroying mem_cgroup, references from swap_cgroup can remain.
4823 * (scanning all at force_empty is too costly...)
4824 *
4825 * Instead of clearing all references at force_empty, we remember
4826 * the number of reference from swap_cgroup and free mem_cgroup when
4827 * it goes down to 0.
4828 *
4829 * Removal of cgroup itself succeeds regardless of refs from swap.
4830 */
4831
4832 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4833 {
4834 int node;
4835
4836 mem_cgroup_remove_from_trees(memcg);
4837 free_css_id(&mem_cgroup_subsys, &memcg->css);
4838
4839 for_each_node(node)
4840 free_mem_cgroup_per_zone_info(memcg, node);
4841
4842 free_percpu(memcg->stat);
4843 call_rcu(&memcg->rcu_freeing, free_rcu);
4844 }
4845
4846 static void mem_cgroup_get(struct mem_cgroup *memcg)
4847 {
4848 atomic_inc(&memcg->refcnt);
4849 }
4850
4851 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4852 {
4853 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4854 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4855 __mem_cgroup_free(memcg);
4856 if (parent)
4857 mem_cgroup_put(parent);
4858 }
4859 }
4860
4861 static void mem_cgroup_put(struct mem_cgroup *memcg)
4862 {
4863 __mem_cgroup_put(memcg, 1);
4864 }
4865
4866 /*
4867 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4868 */
4869 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4870 {
4871 if (!memcg->res.parent)
4872 return NULL;
4873 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4874 }
4875 EXPORT_SYMBOL(parent_mem_cgroup);
4876
4877 #ifdef CONFIG_MEMCG_SWAP
4878 static void __init enable_swap_cgroup(void)
4879 {
4880 if (!mem_cgroup_disabled() && really_do_swap_account)
4881 do_swap_account = 1;
4882 }
4883 #else
4884 static void __init enable_swap_cgroup(void)
4885 {
4886 }
4887 #endif
4888
4889 static int mem_cgroup_soft_limit_tree_init(void)
4890 {
4891 struct mem_cgroup_tree_per_node *rtpn;
4892 struct mem_cgroup_tree_per_zone *rtpz;
4893 int tmp, node, zone;
4894
4895 for_each_node(node) {
4896 tmp = node;
4897 if (!node_state(node, N_NORMAL_MEMORY))
4898 tmp = -1;
4899 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4900 if (!rtpn)
4901 goto err_cleanup;
4902
4903 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4904
4905 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4906 rtpz = &rtpn->rb_tree_per_zone[zone];
4907 rtpz->rb_root = RB_ROOT;
4908 spin_lock_init(&rtpz->lock);
4909 }
4910 }
4911 return 0;
4912
4913 err_cleanup:
4914 for_each_node(node) {
4915 if (!soft_limit_tree.rb_tree_per_node[node])
4916 break;
4917 kfree(soft_limit_tree.rb_tree_per_node[node]);
4918 soft_limit_tree.rb_tree_per_node[node] = NULL;
4919 }
4920 return 1;
4921
4922 }
4923
4924 static struct cgroup_subsys_state * __ref
4925 mem_cgroup_css_alloc(struct cgroup *cont)
4926 {
4927 struct mem_cgroup *memcg, *parent;
4928 long error = -ENOMEM;
4929 int node;
4930
4931 memcg = mem_cgroup_alloc();
4932 if (!memcg)
4933 return ERR_PTR(error);
4934
4935 for_each_node(node)
4936 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4937 goto free_out;
4938
4939 /* root ? */
4940 if (cont->parent == NULL) {
4941 int cpu;
4942 enable_swap_cgroup();
4943 parent = NULL;
4944 if (mem_cgroup_soft_limit_tree_init())
4945 goto free_out;
4946 root_mem_cgroup = memcg;
4947 for_each_possible_cpu(cpu) {
4948 struct memcg_stock_pcp *stock =
4949 &per_cpu(memcg_stock, cpu);
4950 INIT_WORK(&stock->work, drain_local_stock);
4951 }
4952 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4953 } else {
4954 parent = mem_cgroup_from_cont(cont->parent);
4955 memcg->use_hierarchy = parent->use_hierarchy;
4956 memcg->oom_kill_disable = parent->oom_kill_disable;
4957 }
4958
4959 if (parent && parent->use_hierarchy) {
4960 res_counter_init(&memcg->res, &parent->res);
4961 res_counter_init(&memcg->memsw, &parent->memsw);
4962 /*
4963 * We increment refcnt of the parent to ensure that we can
4964 * safely access it on res_counter_charge/uncharge.
4965 * This refcnt will be decremented when freeing this
4966 * mem_cgroup(see mem_cgroup_put).
4967 */
4968 mem_cgroup_get(parent);
4969 } else {
4970 res_counter_init(&memcg->res, NULL);
4971 res_counter_init(&memcg->memsw, NULL);
4972 /*
4973 * Deeper hierachy with use_hierarchy == false doesn't make
4974 * much sense so let cgroup subsystem know about this
4975 * unfortunate state in our controller.
4976 */
4977 if (parent && parent != root_mem_cgroup)
4978 mem_cgroup_subsys.broken_hierarchy = true;
4979 }
4980 memcg->last_scanned_node = MAX_NUMNODES;
4981 INIT_LIST_HEAD(&memcg->oom_notify);
4982
4983 if (parent)
4984 memcg->swappiness = mem_cgroup_swappiness(parent);
4985 atomic_set(&memcg->refcnt, 1);
4986 memcg->move_charge_at_immigrate = 0;
4987 mutex_init(&memcg->thresholds_lock);
4988 spin_lock_init(&memcg->move_lock);
4989
4990 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4991 if (error) {
4992 /*
4993 * We call put now because our (and parent's) refcnts
4994 * are already in place. mem_cgroup_put() will internally
4995 * call __mem_cgroup_free, so return directly
4996 */
4997 mem_cgroup_put(memcg);
4998 return ERR_PTR(error);
4999 }
5000 return &memcg->css;
5001 free_out:
5002 __mem_cgroup_free(memcg);
5003 return ERR_PTR(error);
5004 }
5005
5006 static void mem_cgroup_css_offline(struct cgroup *cont)
5007 {
5008 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5009
5010 mem_cgroup_reparent_charges(memcg);
5011 }
5012
5013 static void mem_cgroup_css_free(struct cgroup *cont)
5014 {
5015 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5016
5017 kmem_cgroup_destroy(memcg);
5018
5019 mem_cgroup_put(memcg);
5020 }
5021
5022 #ifdef CONFIG_MMU
5023 /* Handlers for move charge at task migration. */
5024 #define PRECHARGE_COUNT_AT_ONCE 256
5025 static int mem_cgroup_do_precharge(unsigned long count)
5026 {
5027 int ret = 0;
5028 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5029 struct mem_cgroup *memcg = mc.to;
5030
5031 if (mem_cgroup_is_root(memcg)) {
5032 mc.precharge += count;
5033 /* we don't need css_get for root */
5034 return ret;
5035 }
5036 /* try to charge at once */
5037 if (count > 1) {
5038 struct res_counter *dummy;
5039 /*
5040 * "memcg" cannot be under rmdir() because we've already checked
5041 * by cgroup_lock_live_cgroup() that it is not removed and we
5042 * are still under the same cgroup_mutex. So we can postpone
5043 * css_get().
5044 */
5045 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5046 goto one_by_one;
5047 if (do_swap_account && res_counter_charge(&memcg->memsw,
5048 PAGE_SIZE * count, &dummy)) {
5049 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5050 goto one_by_one;
5051 }
5052 mc.precharge += count;
5053 return ret;
5054 }
5055 one_by_one:
5056 /* fall back to one by one charge */
5057 while (count--) {
5058 if (signal_pending(current)) {
5059 ret = -EINTR;
5060 break;
5061 }
5062 if (!batch_count--) {
5063 batch_count = PRECHARGE_COUNT_AT_ONCE;
5064 cond_resched();
5065 }
5066 ret = __mem_cgroup_try_charge(NULL,
5067 GFP_KERNEL, 1, &memcg, false);
5068 if (ret)
5069 /* mem_cgroup_clear_mc() will do uncharge later */
5070 return ret;
5071 mc.precharge++;
5072 }
5073 return ret;
5074 }
5075
5076 /**
5077 * get_mctgt_type - get target type of moving charge
5078 * @vma: the vma the pte to be checked belongs
5079 * @addr: the address corresponding to the pte to be checked
5080 * @ptent: the pte to be checked
5081 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5082 *
5083 * Returns
5084 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5085 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5086 * move charge. if @target is not NULL, the page is stored in target->page
5087 * with extra refcnt got(Callers should handle it).
5088 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5089 * target for charge migration. if @target is not NULL, the entry is stored
5090 * in target->ent.
5091 *
5092 * Called with pte lock held.
5093 */
5094 union mc_target {
5095 struct page *page;
5096 swp_entry_t ent;
5097 };
5098
5099 enum mc_target_type {
5100 MC_TARGET_NONE = 0,
5101 MC_TARGET_PAGE,
5102 MC_TARGET_SWAP,
5103 };
5104
5105 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5106 unsigned long addr, pte_t ptent)
5107 {
5108 struct page *page = vm_normal_page(vma, addr, ptent);
5109
5110 if (!page || !page_mapped(page))
5111 return NULL;
5112 if (PageAnon(page)) {
5113 /* we don't move shared anon */
5114 if (!move_anon())
5115 return NULL;
5116 } else if (!move_file())
5117 /* we ignore mapcount for file pages */
5118 return NULL;
5119 if (!get_page_unless_zero(page))
5120 return NULL;
5121
5122 return page;
5123 }
5124
5125 #ifdef CONFIG_SWAP
5126 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5127 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5128 {
5129 struct page *page = NULL;
5130 swp_entry_t ent = pte_to_swp_entry(ptent);
5131
5132 if (!move_anon() || non_swap_entry(ent))
5133 return NULL;
5134 /*
5135 * Because lookup_swap_cache() updates some statistics counter,
5136 * we call find_get_page() with swapper_space directly.
5137 */
5138 page = find_get_page(&swapper_space, ent.val);
5139 if (do_swap_account)
5140 entry->val = ent.val;
5141
5142 return page;
5143 }
5144 #else
5145 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5146 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5147 {
5148 return NULL;
5149 }
5150 #endif
5151
5152 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5153 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5154 {
5155 struct page *page = NULL;
5156 struct address_space *mapping;
5157 pgoff_t pgoff;
5158
5159 if (!vma->vm_file) /* anonymous vma */
5160 return NULL;
5161 if (!move_file())
5162 return NULL;
5163
5164 mapping = vma->vm_file->f_mapping;
5165 if (pte_none(ptent))
5166 pgoff = linear_page_index(vma, addr);
5167 else /* pte_file(ptent) is true */
5168 pgoff = pte_to_pgoff(ptent);
5169
5170 /* page is moved even if it's not RSS of this task(page-faulted). */
5171 page = find_get_page(mapping, pgoff);
5172
5173 #ifdef CONFIG_SWAP
5174 /* shmem/tmpfs may report page out on swap: account for that too. */
5175 if (radix_tree_exceptional_entry(page)) {
5176 swp_entry_t swap = radix_to_swp_entry(page);
5177 if (do_swap_account)
5178 *entry = swap;
5179 page = find_get_page(&swapper_space, swap.val);
5180 }
5181 #endif
5182 return page;
5183 }
5184
5185 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5186 unsigned long addr, pte_t ptent, union mc_target *target)
5187 {
5188 struct page *page = NULL;
5189 struct page_cgroup *pc;
5190 enum mc_target_type ret = MC_TARGET_NONE;
5191 swp_entry_t ent = { .val = 0 };
5192
5193 if (pte_present(ptent))
5194 page = mc_handle_present_pte(vma, addr, ptent);
5195 else if (is_swap_pte(ptent))
5196 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5197 else if (pte_none(ptent) || pte_file(ptent))
5198 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5199
5200 if (!page && !ent.val)
5201 return ret;
5202 if (page) {
5203 pc = lookup_page_cgroup(page);
5204 /*
5205 * Do only loose check w/o page_cgroup lock.
5206 * mem_cgroup_move_account() checks the pc is valid or not under
5207 * the lock.
5208 */
5209 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5210 ret = MC_TARGET_PAGE;
5211 if (target)
5212 target->page = page;
5213 }
5214 if (!ret || !target)
5215 put_page(page);
5216 }
5217 /* There is a swap entry and a page doesn't exist or isn't charged */
5218 if (ent.val && !ret &&
5219 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5220 ret = MC_TARGET_SWAP;
5221 if (target)
5222 target->ent = ent;
5223 }
5224 return ret;
5225 }
5226
5227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5228 /*
5229 * We don't consider swapping or file mapped pages because THP does not
5230 * support them for now.
5231 * Caller should make sure that pmd_trans_huge(pmd) is true.
5232 */
5233 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5234 unsigned long addr, pmd_t pmd, union mc_target *target)
5235 {
5236 struct page *page = NULL;
5237 struct page_cgroup *pc;
5238 enum mc_target_type ret = MC_TARGET_NONE;
5239
5240 page = pmd_page(pmd);
5241 VM_BUG_ON(!page || !PageHead(page));
5242 if (!move_anon())
5243 return ret;
5244 pc = lookup_page_cgroup(page);
5245 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5246 ret = MC_TARGET_PAGE;
5247 if (target) {
5248 get_page(page);
5249 target->page = page;
5250 }
5251 }
5252 return ret;
5253 }
5254 #else
5255 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5256 unsigned long addr, pmd_t pmd, union mc_target *target)
5257 {
5258 return MC_TARGET_NONE;
5259 }
5260 #endif
5261
5262 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5263 unsigned long addr, unsigned long end,
5264 struct mm_walk *walk)
5265 {
5266 struct vm_area_struct *vma = walk->private;
5267 pte_t *pte;
5268 spinlock_t *ptl;
5269
5270 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5271 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5272 mc.precharge += HPAGE_PMD_NR;
5273 spin_unlock(&vma->vm_mm->page_table_lock);
5274 return 0;
5275 }
5276
5277 if (pmd_trans_unstable(pmd))
5278 return 0;
5279 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5280 for (; addr != end; pte++, addr += PAGE_SIZE)
5281 if (get_mctgt_type(vma, addr, *pte, NULL))
5282 mc.precharge++; /* increment precharge temporarily */
5283 pte_unmap_unlock(pte - 1, ptl);
5284 cond_resched();
5285
5286 return 0;
5287 }
5288
5289 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5290 {
5291 unsigned long precharge;
5292 struct vm_area_struct *vma;
5293
5294 down_read(&mm->mmap_sem);
5295 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5296 struct mm_walk mem_cgroup_count_precharge_walk = {
5297 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5298 .mm = mm,
5299 .private = vma,
5300 };
5301 if (is_vm_hugetlb_page(vma))
5302 continue;
5303 walk_page_range(vma->vm_start, vma->vm_end,
5304 &mem_cgroup_count_precharge_walk);
5305 }
5306 up_read(&mm->mmap_sem);
5307
5308 precharge = mc.precharge;
5309 mc.precharge = 0;
5310
5311 return precharge;
5312 }
5313
5314 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5315 {
5316 unsigned long precharge = mem_cgroup_count_precharge(mm);
5317
5318 VM_BUG_ON(mc.moving_task);
5319 mc.moving_task = current;
5320 return mem_cgroup_do_precharge(precharge);
5321 }
5322
5323 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5324 static void __mem_cgroup_clear_mc(void)
5325 {
5326 struct mem_cgroup *from = mc.from;
5327 struct mem_cgroup *to = mc.to;
5328
5329 /* we must uncharge all the leftover precharges from mc.to */
5330 if (mc.precharge) {
5331 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5332 mc.precharge = 0;
5333 }
5334 /*
5335 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5336 * we must uncharge here.
5337 */
5338 if (mc.moved_charge) {
5339 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5340 mc.moved_charge = 0;
5341 }
5342 /* we must fixup refcnts and charges */
5343 if (mc.moved_swap) {
5344 /* uncharge swap account from the old cgroup */
5345 if (!mem_cgroup_is_root(mc.from))
5346 res_counter_uncharge(&mc.from->memsw,
5347 PAGE_SIZE * mc.moved_swap);
5348 __mem_cgroup_put(mc.from, mc.moved_swap);
5349
5350 if (!mem_cgroup_is_root(mc.to)) {
5351 /*
5352 * we charged both to->res and to->memsw, so we should
5353 * uncharge to->res.
5354 */
5355 res_counter_uncharge(&mc.to->res,
5356 PAGE_SIZE * mc.moved_swap);
5357 }
5358 /* we've already done mem_cgroup_get(mc.to) */
5359 mc.moved_swap = 0;
5360 }
5361 memcg_oom_recover(from);
5362 memcg_oom_recover(to);
5363 wake_up_all(&mc.waitq);
5364 }
5365
5366 static void mem_cgroup_clear_mc(void)
5367 {
5368 struct mem_cgroup *from = mc.from;
5369
5370 /*
5371 * we must clear moving_task before waking up waiters at the end of
5372 * task migration.
5373 */
5374 mc.moving_task = NULL;
5375 __mem_cgroup_clear_mc();
5376 spin_lock(&mc.lock);
5377 mc.from = NULL;
5378 mc.to = NULL;
5379 spin_unlock(&mc.lock);
5380 mem_cgroup_end_move(from);
5381 }
5382
5383 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5384 struct cgroup_taskset *tset)
5385 {
5386 struct task_struct *p = cgroup_taskset_first(tset);
5387 int ret = 0;
5388 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5389
5390 if (memcg->move_charge_at_immigrate) {
5391 struct mm_struct *mm;
5392 struct mem_cgroup *from = mem_cgroup_from_task(p);
5393
5394 VM_BUG_ON(from == memcg);
5395
5396 mm = get_task_mm(p);
5397 if (!mm)
5398 return 0;
5399 /* We move charges only when we move a owner of the mm */
5400 if (mm->owner == p) {
5401 VM_BUG_ON(mc.from);
5402 VM_BUG_ON(mc.to);
5403 VM_BUG_ON(mc.precharge);
5404 VM_BUG_ON(mc.moved_charge);
5405 VM_BUG_ON(mc.moved_swap);
5406 mem_cgroup_start_move(from);
5407 spin_lock(&mc.lock);
5408 mc.from = from;
5409 mc.to = memcg;
5410 spin_unlock(&mc.lock);
5411 /* We set mc.moving_task later */
5412
5413 ret = mem_cgroup_precharge_mc(mm);
5414 if (ret)
5415 mem_cgroup_clear_mc();
5416 }
5417 mmput(mm);
5418 }
5419 return ret;
5420 }
5421
5422 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5423 struct cgroup_taskset *tset)
5424 {
5425 mem_cgroup_clear_mc();
5426 }
5427
5428 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5429 unsigned long addr, unsigned long end,
5430 struct mm_walk *walk)
5431 {
5432 int ret = 0;
5433 struct vm_area_struct *vma = walk->private;
5434 pte_t *pte;
5435 spinlock_t *ptl;
5436 enum mc_target_type target_type;
5437 union mc_target target;
5438 struct page *page;
5439 struct page_cgroup *pc;
5440
5441 /*
5442 * We don't take compound_lock() here but no race with splitting thp
5443 * happens because:
5444 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5445 * under splitting, which means there's no concurrent thp split,
5446 * - if another thread runs into split_huge_page() just after we
5447 * entered this if-block, the thread must wait for page table lock
5448 * to be unlocked in __split_huge_page_splitting(), where the main
5449 * part of thp split is not executed yet.
5450 */
5451 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5452 if (mc.precharge < HPAGE_PMD_NR) {
5453 spin_unlock(&vma->vm_mm->page_table_lock);
5454 return 0;
5455 }
5456 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5457 if (target_type == MC_TARGET_PAGE) {
5458 page = target.page;
5459 if (!isolate_lru_page(page)) {
5460 pc = lookup_page_cgroup(page);
5461 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5462 pc, mc.from, mc.to)) {
5463 mc.precharge -= HPAGE_PMD_NR;
5464 mc.moved_charge += HPAGE_PMD_NR;
5465 }
5466 putback_lru_page(page);
5467 }
5468 put_page(page);
5469 }
5470 spin_unlock(&vma->vm_mm->page_table_lock);
5471 return 0;
5472 }
5473
5474 if (pmd_trans_unstable(pmd))
5475 return 0;
5476 retry:
5477 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5478 for (; addr != end; addr += PAGE_SIZE) {
5479 pte_t ptent = *(pte++);
5480 swp_entry_t ent;
5481
5482 if (!mc.precharge)
5483 break;
5484
5485 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5486 case MC_TARGET_PAGE:
5487 page = target.page;
5488 if (isolate_lru_page(page))
5489 goto put;
5490 pc = lookup_page_cgroup(page);
5491 if (!mem_cgroup_move_account(page, 1, pc,
5492 mc.from, mc.to)) {
5493 mc.precharge--;
5494 /* we uncharge from mc.from later. */
5495 mc.moved_charge++;
5496 }
5497 putback_lru_page(page);
5498 put: /* get_mctgt_type() gets the page */
5499 put_page(page);
5500 break;
5501 case MC_TARGET_SWAP:
5502 ent = target.ent;
5503 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5504 mc.precharge--;
5505 /* we fixup refcnts and charges later. */
5506 mc.moved_swap++;
5507 }
5508 break;
5509 default:
5510 break;
5511 }
5512 }
5513 pte_unmap_unlock(pte - 1, ptl);
5514 cond_resched();
5515
5516 if (addr != end) {
5517 /*
5518 * We have consumed all precharges we got in can_attach().
5519 * We try charge one by one, but don't do any additional
5520 * charges to mc.to if we have failed in charge once in attach()
5521 * phase.
5522 */
5523 ret = mem_cgroup_do_precharge(1);
5524 if (!ret)
5525 goto retry;
5526 }
5527
5528 return ret;
5529 }
5530
5531 static void mem_cgroup_move_charge(struct mm_struct *mm)
5532 {
5533 struct vm_area_struct *vma;
5534
5535 lru_add_drain_all();
5536 retry:
5537 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5538 /*
5539 * Someone who are holding the mmap_sem might be waiting in
5540 * waitq. So we cancel all extra charges, wake up all waiters,
5541 * and retry. Because we cancel precharges, we might not be able
5542 * to move enough charges, but moving charge is a best-effort
5543 * feature anyway, so it wouldn't be a big problem.
5544 */
5545 __mem_cgroup_clear_mc();
5546 cond_resched();
5547 goto retry;
5548 }
5549 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5550 int ret;
5551 struct mm_walk mem_cgroup_move_charge_walk = {
5552 .pmd_entry = mem_cgroup_move_charge_pte_range,
5553 .mm = mm,
5554 .private = vma,
5555 };
5556 if (is_vm_hugetlb_page(vma))
5557 continue;
5558 ret = walk_page_range(vma->vm_start, vma->vm_end,
5559 &mem_cgroup_move_charge_walk);
5560 if (ret)
5561 /*
5562 * means we have consumed all precharges and failed in
5563 * doing additional charge. Just abandon here.
5564 */
5565 break;
5566 }
5567 up_read(&mm->mmap_sem);
5568 }
5569
5570 static void mem_cgroup_move_task(struct cgroup *cont,
5571 struct cgroup_taskset *tset)
5572 {
5573 struct task_struct *p = cgroup_taskset_first(tset);
5574 struct mm_struct *mm = get_task_mm(p);
5575
5576 if (mm) {
5577 if (mc.to)
5578 mem_cgroup_move_charge(mm);
5579 mmput(mm);
5580 }
5581 if (mc.to)
5582 mem_cgroup_clear_mc();
5583 }
5584 #else /* !CONFIG_MMU */
5585 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5586 struct cgroup_taskset *tset)
5587 {
5588 return 0;
5589 }
5590 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5591 struct cgroup_taskset *tset)
5592 {
5593 }
5594 static void mem_cgroup_move_task(struct cgroup *cont,
5595 struct cgroup_taskset *tset)
5596 {
5597 }
5598 #endif
5599
5600 struct cgroup_subsys mem_cgroup_subsys = {
5601 .name = "memory",
5602 .subsys_id = mem_cgroup_subsys_id,
5603 .css_alloc = mem_cgroup_css_alloc,
5604 .css_offline = mem_cgroup_css_offline,
5605 .css_free = mem_cgroup_css_free,
5606 .can_attach = mem_cgroup_can_attach,
5607 .cancel_attach = mem_cgroup_cancel_attach,
5608 .attach = mem_cgroup_move_task,
5609 .base_cftypes = mem_cgroup_files,
5610 .early_init = 0,
5611 .use_id = 1,
5612 };
5613
5614 #ifdef CONFIG_MEMCG_SWAP
5615 static int __init enable_swap_account(char *s)
5616 {
5617 /* consider enabled if no parameter or 1 is given */
5618 if (!strcmp(s, "1"))
5619 really_do_swap_account = 1;
5620 else if (!strcmp(s, "0"))
5621 really_do_swap_account = 0;
5622 return 1;
5623 }
5624 __setup("swapaccount=", enable_swap_account);
5625
5626 #endif