Merge git://www.linux-watchdog.org/linux-watchdog
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
30
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36 };
37
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
42
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static __init_memblock const char *
45 memblock_type_name(struct memblock_type *type)
46 {
47 if (type == &memblock.memory)
48 return "memory";
49 else if (type == &memblock.reserved)
50 return "reserved";
51 else
52 return "unknown";
53 }
54
55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
57 {
58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
59 }
60
61 /*
62 * Address comparison utilities
63 */
64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
65 phys_addr_t base2, phys_addr_t size2)
66 {
67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
68 }
69
70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
71 phys_addr_t base, phys_addr_t size)
72 {
73 unsigned long i;
74
75 for (i = 0; i < type->cnt; i++) {
76 phys_addr_t rgnbase = type->regions[i].base;
77 phys_addr_t rgnsize = type->regions[i].size;
78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
79 break;
80 }
81
82 return (i < type->cnt) ? i : -1;
83 }
84
85 /**
86 * memblock_find_in_range_node - find free area in given range and node
87 * @start: start of candidate range
88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
89 * @size: size of free area to find
90 * @align: alignment of free area to find
91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
92 *
93 * Find @size free area aligned to @align in the specified range and node.
94 *
95 * RETURNS:
96 * Found address on success, %0 on failure.
97 */
98 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
99 phys_addr_t end, phys_addr_t size,
100 phys_addr_t align, int nid)
101 {
102 phys_addr_t this_start, this_end, cand;
103 u64 i;
104
105 /* pump up @end */
106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107 end = memblock.current_limit;
108
109 /* avoid allocating the first page */
110 start = max_t(phys_addr_t, start, PAGE_SIZE);
111 end = max(start, end);
112
113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114 this_start = clamp(this_start, start, end);
115 this_end = clamp(this_end, start, end);
116
117 if (this_end < size)
118 continue;
119
120 cand = round_down(this_end - size, align);
121 if (cand >= this_start)
122 return cand;
123 }
124 return 0;
125 }
126
127 /**
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
133 *
134 * Find @size free area aligned to @align in the specified range.
135 *
136 * RETURNS:
137 * Found address on success, %0 on failure.
138 */
139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140 phys_addr_t end, phys_addr_t size,
141 phys_addr_t align)
142 {
143 return memblock_find_in_range_node(start, end, size, align,
144 MAX_NUMNODES);
145 }
146
147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
148 {
149 type->total_size -= type->regions[r].size;
150 memmove(&type->regions[r], &type->regions[r + 1],
151 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
152 type->cnt--;
153
154 /* Special case for empty arrays */
155 if (type->cnt == 0) {
156 WARN_ON(type->total_size != 0);
157 type->cnt = 1;
158 type->regions[0].base = 0;
159 type->regions[0].size = 0;
160 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
161 }
162 }
163
164 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
165 phys_addr_t *addr)
166 {
167 if (memblock.reserved.regions == memblock_reserved_init_regions)
168 return 0;
169
170 *addr = __pa(memblock.reserved.regions);
171
172 return PAGE_ALIGN(sizeof(struct memblock_region) *
173 memblock.reserved.max);
174 }
175
176 /**
177 * memblock_double_array - double the size of the memblock regions array
178 * @type: memblock type of the regions array being doubled
179 * @new_area_start: starting address of memory range to avoid overlap with
180 * @new_area_size: size of memory range to avoid overlap with
181 *
182 * Double the size of the @type regions array. If memblock is being used to
183 * allocate memory for a new reserved regions array and there is a previously
184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
185 * waiting to be reserved, ensure the memory used by the new array does
186 * not overlap.
187 *
188 * RETURNS:
189 * 0 on success, -1 on failure.
190 */
191 static int __init_memblock memblock_double_array(struct memblock_type *type,
192 phys_addr_t new_area_start,
193 phys_addr_t new_area_size)
194 {
195 struct memblock_region *new_array, *old_array;
196 phys_addr_t old_alloc_size, new_alloc_size;
197 phys_addr_t old_size, new_size, addr;
198 int use_slab = slab_is_available();
199 int *in_slab;
200
201 /* We don't allow resizing until we know about the reserved regions
202 * of memory that aren't suitable for allocation
203 */
204 if (!memblock_can_resize)
205 return -1;
206
207 /* Calculate new doubled size */
208 old_size = type->max * sizeof(struct memblock_region);
209 new_size = old_size << 1;
210 /*
211 * We need to allocated new one align to PAGE_SIZE,
212 * so we can free them completely later.
213 */
214 old_alloc_size = PAGE_ALIGN(old_size);
215 new_alloc_size = PAGE_ALIGN(new_size);
216
217 /* Retrieve the slab flag */
218 if (type == &memblock.memory)
219 in_slab = &memblock_memory_in_slab;
220 else
221 in_slab = &memblock_reserved_in_slab;
222
223 /* Try to find some space for it.
224 *
225 * WARNING: We assume that either slab_is_available() and we use it or
226 * we use MEMBLOCK for allocations. That means that this is unsafe to
227 * use when bootmem is currently active (unless bootmem itself is
228 * implemented on top of MEMBLOCK which isn't the case yet)
229 *
230 * This should however not be an issue for now, as we currently only
231 * call into MEMBLOCK while it's still active, or much later when slab
232 * is active for memory hotplug operations
233 */
234 if (use_slab) {
235 new_array = kmalloc(new_size, GFP_KERNEL);
236 addr = new_array ? __pa(new_array) : 0;
237 } else {
238 /* only exclude range when trying to double reserved.regions */
239 if (type != &memblock.reserved)
240 new_area_start = new_area_size = 0;
241
242 addr = memblock_find_in_range(new_area_start + new_area_size,
243 memblock.current_limit,
244 new_alloc_size, PAGE_SIZE);
245 if (!addr && new_area_size)
246 addr = memblock_find_in_range(0,
247 min(new_area_start, memblock.current_limit),
248 new_alloc_size, PAGE_SIZE);
249
250 new_array = addr ? __va(addr) : NULL;
251 }
252 if (!addr) {
253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
254 memblock_type_name(type), type->max, type->max * 2);
255 return -1;
256 }
257
258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
259 memblock_type_name(type), type->max * 2, (u64)addr,
260 (u64)addr + new_size - 1);
261
262 /*
263 * Found space, we now need to move the array over before we add the
264 * reserved region since it may be our reserved array itself that is
265 * full.
266 */
267 memcpy(new_array, type->regions, old_size);
268 memset(new_array + type->max, 0, old_size);
269 old_array = type->regions;
270 type->regions = new_array;
271 type->max <<= 1;
272
273 /* Free old array. We needn't free it if the array is the static one */
274 if (*in_slab)
275 kfree(old_array);
276 else if (old_array != memblock_memory_init_regions &&
277 old_array != memblock_reserved_init_regions)
278 memblock_free(__pa(old_array), old_alloc_size);
279
280 /*
281 * Reserve the new array if that comes from the memblock. Otherwise, we
282 * needn't do it
283 */
284 if (!use_slab)
285 BUG_ON(memblock_reserve(addr, new_alloc_size));
286
287 /* Update slab flag */
288 *in_slab = use_slab;
289
290 return 0;
291 }
292
293 /**
294 * memblock_merge_regions - merge neighboring compatible regions
295 * @type: memblock type to scan
296 *
297 * Scan @type and merge neighboring compatible regions.
298 */
299 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
300 {
301 int i = 0;
302
303 /* cnt never goes below 1 */
304 while (i < type->cnt - 1) {
305 struct memblock_region *this = &type->regions[i];
306 struct memblock_region *next = &type->regions[i + 1];
307
308 if (this->base + this->size != next->base ||
309 memblock_get_region_node(this) !=
310 memblock_get_region_node(next)) {
311 BUG_ON(this->base + this->size > next->base);
312 i++;
313 continue;
314 }
315
316 this->size += next->size;
317 /* move forward from next + 1, index of which is i + 2 */
318 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
319 type->cnt--;
320 }
321 }
322
323 /**
324 * memblock_insert_region - insert new memblock region
325 * @type: memblock type to insert into
326 * @idx: index for the insertion point
327 * @base: base address of the new region
328 * @size: size of the new region
329 *
330 * Insert new memblock region [@base,@base+@size) into @type at @idx.
331 * @type must already have extra room to accomodate the new region.
332 */
333 static void __init_memblock memblock_insert_region(struct memblock_type *type,
334 int idx, phys_addr_t base,
335 phys_addr_t size, int nid)
336 {
337 struct memblock_region *rgn = &type->regions[idx];
338
339 BUG_ON(type->cnt >= type->max);
340 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
341 rgn->base = base;
342 rgn->size = size;
343 memblock_set_region_node(rgn, nid);
344 type->cnt++;
345 type->total_size += size;
346 }
347
348 /**
349 * memblock_add_region - add new memblock region
350 * @type: memblock type to add new region into
351 * @base: base address of the new region
352 * @size: size of the new region
353 * @nid: nid of the new region
354 *
355 * Add new memblock region [@base,@base+@size) into @type. The new region
356 * is allowed to overlap with existing ones - overlaps don't affect already
357 * existing regions. @type is guaranteed to be minimal (all neighbouring
358 * compatible regions are merged) after the addition.
359 *
360 * RETURNS:
361 * 0 on success, -errno on failure.
362 */
363 static int __init_memblock memblock_add_region(struct memblock_type *type,
364 phys_addr_t base, phys_addr_t size, int nid)
365 {
366 bool insert = false;
367 phys_addr_t obase = base;
368 phys_addr_t end = base + memblock_cap_size(base, &size);
369 int i, nr_new;
370
371 if (!size)
372 return 0;
373
374 /* special case for empty array */
375 if (type->regions[0].size == 0) {
376 WARN_ON(type->cnt != 1 || type->total_size);
377 type->regions[0].base = base;
378 type->regions[0].size = size;
379 memblock_set_region_node(&type->regions[0], nid);
380 type->total_size = size;
381 return 0;
382 }
383 repeat:
384 /*
385 * The following is executed twice. Once with %false @insert and
386 * then with %true. The first counts the number of regions needed
387 * to accomodate the new area. The second actually inserts them.
388 */
389 base = obase;
390 nr_new = 0;
391
392 for (i = 0; i < type->cnt; i++) {
393 struct memblock_region *rgn = &type->regions[i];
394 phys_addr_t rbase = rgn->base;
395 phys_addr_t rend = rbase + rgn->size;
396
397 if (rbase >= end)
398 break;
399 if (rend <= base)
400 continue;
401 /*
402 * @rgn overlaps. If it separates the lower part of new
403 * area, insert that portion.
404 */
405 if (rbase > base) {
406 nr_new++;
407 if (insert)
408 memblock_insert_region(type, i++, base,
409 rbase - base, nid);
410 }
411 /* area below @rend is dealt with, forget about it */
412 base = min(rend, end);
413 }
414
415 /* insert the remaining portion */
416 if (base < end) {
417 nr_new++;
418 if (insert)
419 memblock_insert_region(type, i, base, end - base, nid);
420 }
421
422 /*
423 * If this was the first round, resize array and repeat for actual
424 * insertions; otherwise, merge and return.
425 */
426 if (!insert) {
427 while (type->cnt + nr_new > type->max)
428 if (memblock_double_array(type, obase, size) < 0)
429 return -ENOMEM;
430 insert = true;
431 goto repeat;
432 } else {
433 memblock_merge_regions(type);
434 return 0;
435 }
436 }
437
438 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
439 int nid)
440 {
441 return memblock_add_region(&memblock.memory, base, size, nid);
442 }
443
444 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
445 {
446 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
447 }
448
449 /**
450 * memblock_isolate_range - isolate given range into disjoint memblocks
451 * @type: memblock type to isolate range for
452 * @base: base of range to isolate
453 * @size: size of range to isolate
454 * @start_rgn: out parameter for the start of isolated region
455 * @end_rgn: out parameter for the end of isolated region
456 *
457 * Walk @type and ensure that regions don't cross the boundaries defined by
458 * [@base,@base+@size). Crossing regions are split at the boundaries,
459 * which may create at most two more regions. The index of the first
460 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
461 *
462 * RETURNS:
463 * 0 on success, -errno on failure.
464 */
465 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
466 phys_addr_t base, phys_addr_t size,
467 int *start_rgn, int *end_rgn)
468 {
469 phys_addr_t end = base + memblock_cap_size(base, &size);
470 int i;
471
472 *start_rgn = *end_rgn = 0;
473
474 if (!size)
475 return 0;
476
477 /* we'll create at most two more regions */
478 while (type->cnt + 2 > type->max)
479 if (memblock_double_array(type, base, size) < 0)
480 return -ENOMEM;
481
482 for (i = 0; i < type->cnt; i++) {
483 struct memblock_region *rgn = &type->regions[i];
484 phys_addr_t rbase = rgn->base;
485 phys_addr_t rend = rbase + rgn->size;
486
487 if (rbase >= end)
488 break;
489 if (rend <= base)
490 continue;
491
492 if (rbase < base) {
493 /*
494 * @rgn intersects from below. Split and continue
495 * to process the next region - the new top half.
496 */
497 rgn->base = base;
498 rgn->size -= base - rbase;
499 type->total_size -= base - rbase;
500 memblock_insert_region(type, i, rbase, base - rbase,
501 memblock_get_region_node(rgn));
502 } else if (rend > end) {
503 /*
504 * @rgn intersects from above. Split and redo the
505 * current region - the new bottom half.
506 */
507 rgn->base = end;
508 rgn->size -= end - rbase;
509 type->total_size -= end - rbase;
510 memblock_insert_region(type, i--, rbase, end - rbase,
511 memblock_get_region_node(rgn));
512 } else {
513 /* @rgn is fully contained, record it */
514 if (!*end_rgn)
515 *start_rgn = i;
516 *end_rgn = i + 1;
517 }
518 }
519
520 return 0;
521 }
522
523 static int __init_memblock __memblock_remove(struct memblock_type *type,
524 phys_addr_t base, phys_addr_t size)
525 {
526 int start_rgn, end_rgn;
527 int i, ret;
528
529 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
530 if (ret)
531 return ret;
532
533 for (i = end_rgn - 1; i >= start_rgn; i--)
534 memblock_remove_region(type, i);
535 return 0;
536 }
537
538 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
539 {
540 return __memblock_remove(&memblock.memory, base, size);
541 }
542
543 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
544 {
545 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
546 (unsigned long long)base,
547 (unsigned long long)base + size,
548 (void *)_RET_IP_);
549
550 return __memblock_remove(&memblock.reserved, base, size);
551 }
552
553 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
554 {
555 struct memblock_type *_rgn = &memblock.reserved;
556
557 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
558 (unsigned long long)base,
559 (unsigned long long)base + size,
560 (void *)_RET_IP_);
561
562 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
563 }
564
565 /**
566 * __next_free_mem_range - next function for for_each_free_mem_range()
567 * @idx: pointer to u64 loop variable
568 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
569 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
570 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
571 * @out_nid: ptr to int for nid of the range, can be %NULL
572 *
573 * Find the first free area from *@idx which matches @nid, fill the out
574 * parameters, and update *@idx for the next iteration. The lower 32bit of
575 * *@idx contains index into memory region and the upper 32bit indexes the
576 * areas before each reserved region. For example, if reserved regions
577 * look like the following,
578 *
579 * 0:[0-16), 1:[32-48), 2:[128-130)
580 *
581 * The upper 32bit indexes the following regions.
582 *
583 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
584 *
585 * As both region arrays are sorted, the function advances the two indices
586 * in lockstep and returns each intersection.
587 */
588 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
589 phys_addr_t *out_start,
590 phys_addr_t *out_end, int *out_nid)
591 {
592 struct memblock_type *mem = &memblock.memory;
593 struct memblock_type *rsv = &memblock.reserved;
594 int mi = *idx & 0xffffffff;
595 int ri = *idx >> 32;
596
597 for ( ; mi < mem->cnt; mi++) {
598 struct memblock_region *m = &mem->regions[mi];
599 phys_addr_t m_start = m->base;
600 phys_addr_t m_end = m->base + m->size;
601
602 /* only memory regions are associated with nodes, check it */
603 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
604 continue;
605
606 /* scan areas before each reservation for intersection */
607 for ( ; ri < rsv->cnt + 1; ri++) {
608 struct memblock_region *r = &rsv->regions[ri];
609 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
610 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
611
612 /* if ri advanced past mi, break out to advance mi */
613 if (r_start >= m_end)
614 break;
615 /* if the two regions intersect, we're done */
616 if (m_start < r_end) {
617 if (out_start)
618 *out_start = max(m_start, r_start);
619 if (out_end)
620 *out_end = min(m_end, r_end);
621 if (out_nid)
622 *out_nid = memblock_get_region_node(m);
623 /*
624 * The region which ends first is advanced
625 * for the next iteration.
626 */
627 if (m_end <= r_end)
628 mi++;
629 else
630 ri++;
631 *idx = (u32)mi | (u64)ri << 32;
632 return;
633 }
634 }
635 }
636
637 /* signal end of iteration */
638 *idx = ULLONG_MAX;
639 }
640
641 /**
642 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
643 * @idx: pointer to u64 loop variable
644 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
645 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
646 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
647 * @out_nid: ptr to int for nid of the range, can be %NULL
648 *
649 * Reverse of __next_free_mem_range().
650 */
651 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
652 phys_addr_t *out_start,
653 phys_addr_t *out_end, int *out_nid)
654 {
655 struct memblock_type *mem = &memblock.memory;
656 struct memblock_type *rsv = &memblock.reserved;
657 int mi = *idx & 0xffffffff;
658 int ri = *idx >> 32;
659
660 if (*idx == (u64)ULLONG_MAX) {
661 mi = mem->cnt - 1;
662 ri = rsv->cnt;
663 }
664
665 for ( ; mi >= 0; mi--) {
666 struct memblock_region *m = &mem->regions[mi];
667 phys_addr_t m_start = m->base;
668 phys_addr_t m_end = m->base + m->size;
669
670 /* only memory regions are associated with nodes, check it */
671 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
672 continue;
673
674 /* scan areas before each reservation for intersection */
675 for ( ; ri >= 0; ri--) {
676 struct memblock_region *r = &rsv->regions[ri];
677 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
678 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
679
680 /* if ri advanced past mi, break out to advance mi */
681 if (r_end <= m_start)
682 break;
683 /* if the two regions intersect, we're done */
684 if (m_end > r_start) {
685 if (out_start)
686 *out_start = max(m_start, r_start);
687 if (out_end)
688 *out_end = min(m_end, r_end);
689 if (out_nid)
690 *out_nid = memblock_get_region_node(m);
691
692 if (m_start >= r_start)
693 mi--;
694 else
695 ri--;
696 *idx = (u32)mi | (u64)ri << 32;
697 return;
698 }
699 }
700 }
701
702 *idx = ULLONG_MAX;
703 }
704
705 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
706 /*
707 * Common iterator interface used to define for_each_mem_range().
708 */
709 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
710 unsigned long *out_start_pfn,
711 unsigned long *out_end_pfn, int *out_nid)
712 {
713 struct memblock_type *type = &memblock.memory;
714 struct memblock_region *r;
715
716 while (++*idx < type->cnt) {
717 r = &type->regions[*idx];
718
719 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
720 continue;
721 if (nid == MAX_NUMNODES || nid == r->nid)
722 break;
723 }
724 if (*idx >= type->cnt) {
725 *idx = -1;
726 return;
727 }
728
729 if (out_start_pfn)
730 *out_start_pfn = PFN_UP(r->base);
731 if (out_end_pfn)
732 *out_end_pfn = PFN_DOWN(r->base + r->size);
733 if (out_nid)
734 *out_nid = r->nid;
735 }
736
737 /**
738 * memblock_set_node - set node ID on memblock regions
739 * @base: base of area to set node ID for
740 * @size: size of area to set node ID for
741 * @nid: node ID to set
742 *
743 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
744 * Regions which cross the area boundaries are split as necessary.
745 *
746 * RETURNS:
747 * 0 on success, -errno on failure.
748 */
749 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
750 int nid)
751 {
752 struct memblock_type *type = &memblock.memory;
753 int start_rgn, end_rgn;
754 int i, ret;
755
756 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
757 if (ret)
758 return ret;
759
760 for (i = start_rgn; i < end_rgn; i++)
761 memblock_set_region_node(&type->regions[i], nid);
762
763 memblock_merge_regions(type);
764 return 0;
765 }
766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
767
768 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
769 phys_addr_t align, phys_addr_t max_addr,
770 int nid)
771 {
772 phys_addr_t found;
773
774 /* align @size to avoid excessive fragmentation on reserved array */
775 size = round_up(size, align);
776
777 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
778 if (found && !memblock_reserve(found, size))
779 return found;
780
781 return 0;
782 }
783
784 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
785 {
786 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
787 }
788
789 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
790 {
791 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
792 }
793
794 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
795 {
796 phys_addr_t alloc;
797
798 alloc = __memblock_alloc_base(size, align, max_addr);
799
800 if (alloc == 0)
801 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
802 (unsigned long long) size, (unsigned long long) max_addr);
803
804 return alloc;
805 }
806
807 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
808 {
809 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
810 }
811
812 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
813 {
814 phys_addr_t res = memblock_alloc_nid(size, align, nid);
815
816 if (res)
817 return res;
818 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
819 }
820
821
822 /*
823 * Remaining API functions
824 */
825
826 phys_addr_t __init memblock_phys_mem_size(void)
827 {
828 return memblock.memory.total_size;
829 }
830
831 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
832 {
833 unsigned long pages = 0;
834 struct memblock_region *r;
835 unsigned long start_pfn, end_pfn;
836
837 for_each_memblock(memory, r) {
838 start_pfn = memblock_region_memory_base_pfn(r);
839 end_pfn = memblock_region_memory_end_pfn(r);
840 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
841 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
842 pages += end_pfn - start_pfn;
843 }
844
845 return (phys_addr_t)pages << PAGE_SHIFT;
846 }
847
848 /* lowest address */
849 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
850 {
851 return memblock.memory.regions[0].base;
852 }
853
854 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
855 {
856 int idx = memblock.memory.cnt - 1;
857
858 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
859 }
860
861 void __init memblock_enforce_memory_limit(phys_addr_t limit)
862 {
863 unsigned long i;
864 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
865
866 if (!limit)
867 return;
868
869 /* find out max address */
870 for (i = 0; i < memblock.memory.cnt; i++) {
871 struct memblock_region *r = &memblock.memory.regions[i];
872
873 if (limit <= r->size) {
874 max_addr = r->base + limit;
875 break;
876 }
877 limit -= r->size;
878 }
879
880 /* truncate both memory and reserved regions */
881 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
882 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
883 }
884
885 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
886 {
887 unsigned int left = 0, right = type->cnt;
888
889 do {
890 unsigned int mid = (right + left) / 2;
891
892 if (addr < type->regions[mid].base)
893 right = mid;
894 else if (addr >= (type->regions[mid].base +
895 type->regions[mid].size))
896 left = mid + 1;
897 else
898 return mid;
899 } while (left < right);
900 return -1;
901 }
902
903 int __init memblock_is_reserved(phys_addr_t addr)
904 {
905 return memblock_search(&memblock.reserved, addr) != -1;
906 }
907
908 int __init_memblock memblock_is_memory(phys_addr_t addr)
909 {
910 return memblock_search(&memblock.memory, addr) != -1;
911 }
912
913 /**
914 * memblock_is_region_memory - check if a region is a subset of memory
915 * @base: base of region to check
916 * @size: size of region to check
917 *
918 * Check if the region [@base, @base+@size) is a subset of a memory block.
919 *
920 * RETURNS:
921 * 0 if false, non-zero if true
922 */
923 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
924 {
925 int idx = memblock_search(&memblock.memory, base);
926 phys_addr_t end = base + memblock_cap_size(base, &size);
927
928 if (idx == -1)
929 return 0;
930 return memblock.memory.regions[idx].base <= base &&
931 (memblock.memory.regions[idx].base +
932 memblock.memory.regions[idx].size) >= end;
933 }
934
935 /**
936 * memblock_is_region_reserved - check if a region intersects reserved memory
937 * @base: base of region to check
938 * @size: size of region to check
939 *
940 * Check if the region [@base, @base+@size) intersects a reserved memory block.
941 *
942 * RETURNS:
943 * 0 if false, non-zero if true
944 */
945 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
946 {
947 memblock_cap_size(base, &size);
948 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
949 }
950
951 void __init_memblock memblock_trim_memory(phys_addr_t align)
952 {
953 int i;
954 phys_addr_t start, end, orig_start, orig_end;
955 struct memblock_type *mem = &memblock.memory;
956
957 for (i = 0; i < mem->cnt; i++) {
958 orig_start = mem->regions[i].base;
959 orig_end = mem->regions[i].base + mem->regions[i].size;
960 start = round_up(orig_start, align);
961 end = round_down(orig_end, align);
962
963 if (start == orig_start && end == orig_end)
964 continue;
965
966 if (start < end) {
967 mem->regions[i].base = start;
968 mem->regions[i].size = end - start;
969 } else {
970 memblock_remove_region(mem, i);
971 i--;
972 }
973 }
974 }
975
976 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
977 {
978 memblock.current_limit = limit;
979 }
980
981 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
982 {
983 unsigned long long base, size;
984 int i;
985
986 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
987
988 for (i = 0; i < type->cnt; i++) {
989 struct memblock_region *rgn = &type->regions[i];
990 char nid_buf[32] = "";
991
992 base = rgn->base;
993 size = rgn->size;
994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
995 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
996 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
997 memblock_get_region_node(rgn));
998 #endif
999 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
1000 name, i, base, base + size - 1, size, nid_buf);
1001 }
1002 }
1003
1004 void __init_memblock __memblock_dump_all(void)
1005 {
1006 pr_info("MEMBLOCK configuration:\n");
1007 pr_info(" memory size = %#llx reserved size = %#llx\n",
1008 (unsigned long long)memblock.memory.total_size,
1009 (unsigned long long)memblock.reserved.total_size);
1010
1011 memblock_dump(&memblock.memory, "memory");
1012 memblock_dump(&memblock.reserved, "reserved");
1013 }
1014
1015 void __init memblock_allow_resize(void)
1016 {
1017 memblock_can_resize = 1;
1018 }
1019
1020 static int __init early_memblock(char *p)
1021 {
1022 if (p && strstr(p, "debug"))
1023 memblock_debug = 1;
1024 return 0;
1025 }
1026 early_param("memblock", early_memblock);
1027
1028 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1029
1030 static int memblock_debug_show(struct seq_file *m, void *private)
1031 {
1032 struct memblock_type *type = m->private;
1033 struct memblock_region *reg;
1034 int i;
1035
1036 for (i = 0; i < type->cnt; i++) {
1037 reg = &type->regions[i];
1038 seq_printf(m, "%4d: ", i);
1039 if (sizeof(phys_addr_t) == 4)
1040 seq_printf(m, "0x%08lx..0x%08lx\n",
1041 (unsigned long)reg->base,
1042 (unsigned long)(reg->base + reg->size - 1));
1043 else
1044 seq_printf(m, "0x%016llx..0x%016llx\n",
1045 (unsigned long long)reg->base,
1046 (unsigned long long)(reg->base + reg->size - 1));
1047
1048 }
1049 return 0;
1050 }
1051
1052 static int memblock_debug_open(struct inode *inode, struct file *file)
1053 {
1054 return single_open(file, memblock_debug_show, inode->i_private);
1055 }
1056
1057 static const struct file_operations memblock_debug_fops = {
1058 .open = memblock_debug_open,
1059 .read = seq_read,
1060 .llseek = seq_lseek,
1061 .release = single_release,
1062 };
1063
1064 static int __init memblock_init_debugfs(void)
1065 {
1066 struct dentry *root = debugfs_create_dir("memblock", NULL);
1067 if (!root)
1068 return -ENXIO;
1069 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1070 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1071
1072 return 0;
1073 }
1074 __initcall(memblock_init_debugfs);
1075
1076 #endif /* CONFIG_DEBUG_FS */