hugetlb: fix resv_map leak in error path
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
30
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36 };
37
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
43 {
44 if (type == &memblock.memory)
45 return "memory";
46 else if (type == &memblock.reserved)
47 return "reserved";
48 else
49 return "unknown";
50 }
51
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54 {
55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56 }
57
58 /*
59 * Address comparison utilities
60 */
61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62 phys_addr_t base2, phys_addr_t size2)
63 {
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65 }
66
67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 phys_addr_t base, phys_addr_t size)
69 {
70 unsigned long i;
71
72 for (i = 0; i < type->cnt; i++) {
73 phys_addr_t rgnbase = type->regions[i].base;
74 phys_addr_t rgnsize = type->regions[i].size;
75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 break;
77 }
78
79 return (i < type->cnt) ? i : -1;
80 }
81
82 /**
83 * memblock_find_in_range_node - find free area in given range and node
84 * @start: start of candidate range
85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86 * @size: size of free area to find
87 * @align: alignment of free area to find
88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
89 *
90 * Find @size free area aligned to @align in the specified range and node.
91 *
92 * RETURNS:
93 * Found address on success, %0 on failure.
94 */
95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 phys_addr_t end, phys_addr_t size,
97 phys_addr_t align, int nid)
98 {
99 phys_addr_t this_start, this_end, cand;
100 u64 i;
101
102 /* pump up @end */
103 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
104 end = memblock.current_limit;
105
106 /* avoid allocating the first page */
107 start = max_t(phys_addr_t, start, PAGE_SIZE);
108 end = max(start, end);
109
110 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
111 this_start = clamp(this_start, start, end);
112 this_end = clamp(this_end, start, end);
113
114 if (this_end < size)
115 continue;
116
117 cand = round_down(this_end - size, align);
118 if (cand >= this_start)
119 return cand;
120 }
121 return 0;
122 }
123
124 /**
125 * memblock_find_in_range - find free area in given range
126 * @start: start of candidate range
127 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
128 * @size: size of free area to find
129 * @align: alignment of free area to find
130 *
131 * Find @size free area aligned to @align in the specified range.
132 *
133 * RETURNS:
134 * Found address on success, %0 on failure.
135 */
136 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
137 phys_addr_t end, phys_addr_t size,
138 phys_addr_t align)
139 {
140 return memblock_find_in_range_node(start, end, size, align,
141 MAX_NUMNODES);
142 }
143
144 /*
145 * Free memblock.reserved.regions
146 */
147 int __init_memblock memblock_free_reserved_regions(void)
148 {
149 if (memblock.reserved.regions == memblock_reserved_init_regions)
150 return 0;
151
152 return memblock_free(__pa(memblock.reserved.regions),
153 sizeof(struct memblock_region) * memblock.reserved.max);
154 }
155
156 /*
157 * Reserve memblock.reserved.regions
158 */
159 int __init_memblock memblock_reserve_reserved_regions(void)
160 {
161 if (memblock.reserved.regions == memblock_reserved_init_regions)
162 return 0;
163
164 return memblock_reserve(__pa(memblock.reserved.regions),
165 sizeof(struct memblock_region) * memblock.reserved.max);
166 }
167
168 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
169 {
170 type->total_size -= type->regions[r].size;
171 memmove(&type->regions[r], &type->regions[r + 1],
172 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
173 type->cnt--;
174
175 /* Special case for empty arrays */
176 if (type->cnt == 0) {
177 WARN_ON(type->total_size != 0);
178 type->cnt = 1;
179 type->regions[0].base = 0;
180 type->regions[0].size = 0;
181 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
182 }
183 }
184
185 static int __init_memblock memblock_double_array(struct memblock_type *type)
186 {
187 struct memblock_region *new_array, *old_array;
188 phys_addr_t old_size, new_size, addr;
189 int use_slab = slab_is_available();
190
191 /* We don't allow resizing until we know about the reserved regions
192 * of memory that aren't suitable for allocation
193 */
194 if (!memblock_can_resize)
195 return -1;
196
197 /* Calculate new doubled size */
198 old_size = type->max * sizeof(struct memblock_region);
199 new_size = old_size << 1;
200
201 /* Try to find some space for it.
202 *
203 * WARNING: We assume that either slab_is_available() and we use it or
204 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 * when bootmem is currently active (unless bootmem itself is implemented
206 * on top of MEMBLOCK which isn't the case yet)
207 *
208 * This should however not be an issue for now, as we currently only
209 * call into MEMBLOCK while it's still active, or much later when slab is
210 * active for memory hotplug operations
211 */
212 if (use_slab) {
213 new_array = kmalloc(new_size, GFP_KERNEL);
214 addr = new_array ? __pa(new_array) : 0;
215 } else
216 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
217 if (!addr) {
218 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
219 memblock_type_name(type), type->max, type->max * 2);
220 return -1;
221 }
222 new_array = __va(addr);
223
224 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
225 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
226
227 /* Found space, we now need to move the array over before
228 * we add the reserved region since it may be our reserved
229 * array itself that is full.
230 */
231 memcpy(new_array, type->regions, old_size);
232 memset(new_array + type->max, 0, old_size);
233 old_array = type->regions;
234 type->regions = new_array;
235 type->max <<= 1;
236
237 /* If we use SLAB that's it, we are done */
238 if (use_slab)
239 return 0;
240
241 /* Add the new reserved region now. Should not fail ! */
242 BUG_ON(memblock_reserve(addr, new_size));
243
244 /* If the array wasn't our static init one, then free it. We only do
245 * that before SLAB is available as later on, we don't know whether
246 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
247 * anyways
248 */
249 if (old_array != memblock_memory_init_regions &&
250 old_array != memblock_reserved_init_regions)
251 memblock_free(__pa(old_array), old_size);
252
253 return 0;
254 }
255
256 /**
257 * memblock_merge_regions - merge neighboring compatible regions
258 * @type: memblock type to scan
259 *
260 * Scan @type and merge neighboring compatible regions.
261 */
262 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
263 {
264 int i = 0;
265
266 /* cnt never goes below 1 */
267 while (i < type->cnt - 1) {
268 struct memblock_region *this = &type->regions[i];
269 struct memblock_region *next = &type->regions[i + 1];
270
271 if (this->base + this->size != next->base ||
272 memblock_get_region_node(this) !=
273 memblock_get_region_node(next)) {
274 BUG_ON(this->base + this->size > next->base);
275 i++;
276 continue;
277 }
278
279 this->size += next->size;
280 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
281 type->cnt--;
282 }
283 }
284
285 /**
286 * memblock_insert_region - insert new memblock region
287 * @type: memblock type to insert into
288 * @idx: index for the insertion point
289 * @base: base address of the new region
290 * @size: size of the new region
291 *
292 * Insert new memblock region [@base,@base+@size) into @type at @idx.
293 * @type must already have extra room to accomodate the new region.
294 */
295 static void __init_memblock memblock_insert_region(struct memblock_type *type,
296 int idx, phys_addr_t base,
297 phys_addr_t size, int nid)
298 {
299 struct memblock_region *rgn = &type->regions[idx];
300
301 BUG_ON(type->cnt >= type->max);
302 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
303 rgn->base = base;
304 rgn->size = size;
305 memblock_set_region_node(rgn, nid);
306 type->cnt++;
307 type->total_size += size;
308 }
309
310 /**
311 * memblock_add_region - add new memblock region
312 * @type: memblock type to add new region into
313 * @base: base address of the new region
314 * @size: size of the new region
315 * @nid: nid of the new region
316 *
317 * Add new memblock region [@base,@base+@size) into @type. The new region
318 * is allowed to overlap with existing ones - overlaps don't affect already
319 * existing regions. @type is guaranteed to be minimal (all neighbouring
320 * compatible regions are merged) after the addition.
321 *
322 * RETURNS:
323 * 0 on success, -errno on failure.
324 */
325 static int __init_memblock memblock_add_region(struct memblock_type *type,
326 phys_addr_t base, phys_addr_t size, int nid)
327 {
328 bool insert = false;
329 phys_addr_t obase = base;
330 phys_addr_t end = base + memblock_cap_size(base, &size);
331 int i, nr_new;
332
333 if (!size)
334 return 0;
335
336 /* special case for empty array */
337 if (type->regions[0].size == 0) {
338 WARN_ON(type->cnt != 1 || type->total_size);
339 type->regions[0].base = base;
340 type->regions[0].size = size;
341 memblock_set_region_node(&type->regions[0], nid);
342 type->total_size = size;
343 return 0;
344 }
345 repeat:
346 /*
347 * The following is executed twice. Once with %false @insert and
348 * then with %true. The first counts the number of regions needed
349 * to accomodate the new area. The second actually inserts them.
350 */
351 base = obase;
352 nr_new = 0;
353
354 for (i = 0; i < type->cnt; i++) {
355 struct memblock_region *rgn = &type->regions[i];
356 phys_addr_t rbase = rgn->base;
357 phys_addr_t rend = rbase + rgn->size;
358
359 if (rbase >= end)
360 break;
361 if (rend <= base)
362 continue;
363 /*
364 * @rgn overlaps. If it separates the lower part of new
365 * area, insert that portion.
366 */
367 if (rbase > base) {
368 nr_new++;
369 if (insert)
370 memblock_insert_region(type, i++, base,
371 rbase - base, nid);
372 }
373 /* area below @rend is dealt with, forget about it */
374 base = min(rend, end);
375 }
376
377 /* insert the remaining portion */
378 if (base < end) {
379 nr_new++;
380 if (insert)
381 memblock_insert_region(type, i, base, end - base, nid);
382 }
383
384 /*
385 * If this was the first round, resize array and repeat for actual
386 * insertions; otherwise, merge and return.
387 */
388 if (!insert) {
389 while (type->cnt + nr_new > type->max)
390 if (memblock_double_array(type) < 0)
391 return -ENOMEM;
392 insert = true;
393 goto repeat;
394 } else {
395 memblock_merge_regions(type);
396 return 0;
397 }
398 }
399
400 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
401 int nid)
402 {
403 return memblock_add_region(&memblock.memory, base, size, nid);
404 }
405
406 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
407 {
408 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
409 }
410
411 /**
412 * memblock_isolate_range - isolate given range into disjoint memblocks
413 * @type: memblock type to isolate range for
414 * @base: base of range to isolate
415 * @size: size of range to isolate
416 * @start_rgn: out parameter for the start of isolated region
417 * @end_rgn: out parameter for the end of isolated region
418 *
419 * Walk @type and ensure that regions don't cross the boundaries defined by
420 * [@base,@base+@size). Crossing regions are split at the boundaries,
421 * which may create at most two more regions. The index of the first
422 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
423 *
424 * RETURNS:
425 * 0 on success, -errno on failure.
426 */
427 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
428 phys_addr_t base, phys_addr_t size,
429 int *start_rgn, int *end_rgn)
430 {
431 phys_addr_t end = base + memblock_cap_size(base, &size);
432 int i;
433
434 *start_rgn = *end_rgn = 0;
435
436 if (!size)
437 return 0;
438
439 /* we'll create at most two more regions */
440 while (type->cnt + 2 > type->max)
441 if (memblock_double_array(type) < 0)
442 return -ENOMEM;
443
444 for (i = 0; i < type->cnt; i++) {
445 struct memblock_region *rgn = &type->regions[i];
446 phys_addr_t rbase = rgn->base;
447 phys_addr_t rend = rbase + rgn->size;
448
449 if (rbase >= end)
450 break;
451 if (rend <= base)
452 continue;
453
454 if (rbase < base) {
455 /*
456 * @rgn intersects from below. Split and continue
457 * to process the next region - the new top half.
458 */
459 rgn->base = base;
460 rgn->size -= base - rbase;
461 type->total_size -= base - rbase;
462 memblock_insert_region(type, i, rbase, base - rbase,
463 memblock_get_region_node(rgn));
464 } else if (rend > end) {
465 /*
466 * @rgn intersects from above. Split and redo the
467 * current region - the new bottom half.
468 */
469 rgn->base = end;
470 rgn->size -= end - rbase;
471 type->total_size -= end - rbase;
472 memblock_insert_region(type, i--, rbase, end - rbase,
473 memblock_get_region_node(rgn));
474 } else {
475 /* @rgn is fully contained, record it */
476 if (!*end_rgn)
477 *start_rgn = i;
478 *end_rgn = i + 1;
479 }
480 }
481
482 return 0;
483 }
484
485 static int __init_memblock __memblock_remove(struct memblock_type *type,
486 phys_addr_t base, phys_addr_t size)
487 {
488 int start_rgn, end_rgn;
489 int i, ret;
490
491 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
492 if (ret)
493 return ret;
494
495 for (i = end_rgn - 1; i >= start_rgn; i--)
496 memblock_remove_region(type, i);
497 return 0;
498 }
499
500 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
501 {
502 return __memblock_remove(&memblock.memory, base, size);
503 }
504
505 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
506 {
507 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
508 (unsigned long long)base,
509 (unsigned long long)base + size,
510 (void *)_RET_IP_);
511
512 return __memblock_remove(&memblock.reserved, base, size);
513 }
514
515 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
516 {
517 struct memblock_type *_rgn = &memblock.reserved;
518
519 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
520 (unsigned long long)base,
521 (unsigned long long)base + size,
522 (void *)_RET_IP_);
523
524 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
525 }
526
527 /**
528 * __next_free_mem_range - next function for for_each_free_mem_range()
529 * @idx: pointer to u64 loop variable
530 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
531 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
532 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
533 * @p_nid: ptr to int for nid of the range, can be %NULL
534 *
535 * Find the first free area from *@idx which matches @nid, fill the out
536 * parameters, and update *@idx for the next iteration. The lower 32bit of
537 * *@idx contains index into memory region and the upper 32bit indexes the
538 * areas before each reserved region. For example, if reserved regions
539 * look like the following,
540 *
541 * 0:[0-16), 1:[32-48), 2:[128-130)
542 *
543 * The upper 32bit indexes the following regions.
544 *
545 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
546 *
547 * As both region arrays are sorted, the function advances the two indices
548 * in lockstep and returns each intersection.
549 */
550 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
551 phys_addr_t *out_start,
552 phys_addr_t *out_end, int *out_nid)
553 {
554 struct memblock_type *mem = &memblock.memory;
555 struct memblock_type *rsv = &memblock.reserved;
556 int mi = *idx & 0xffffffff;
557 int ri = *idx >> 32;
558
559 for ( ; mi < mem->cnt; mi++) {
560 struct memblock_region *m = &mem->regions[mi];
561 phys_addr_t m_start = m->base;
562 phys_addr_t m_end = m->base + m->size;
563
564 /* only memory regions are associated with nodes, check it */
565 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
566 continue;
567
568 /* scan areas before each reservation for intersection */
569 for ( ; ri < rsv->cnt + 1; ri++) {
570 struct memblock_region *r = &rsv->regions[ri];
571 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
572 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
573
574 /* if ri advanced past mi, break out to advance mi */
575 if (r_start >= m_end)
576 break;
577 /* if the two regions intersect, we're done */
578 if (m_start < r_end) {
579 if (out_start)
580 *out_start = max(m_start, r_start);
581 if (out_end)
582 *out_end = min(m_end, r_end);
583 if (out_nid)
584 *out_nid = memblock_get_region_node(m);
585 /*
586 * The region which ends first is advanced
587 * for the next iteration.
588 */
589 if (m_end <= r_end)
590 mi++;
591 else
592 ri++;
593 *idx = (u32)mi | (u64)ri << 32;
594 return;
595 }
596 }
597 }
598
599 /* signal end of iteration */
600 *idx = ULLONG_MAX;
601 }
602
603 /**
604 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
605 * @idx: pointer to u64 loop variable
606 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
607 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
608 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
609 * @p_nid: ptr to int for nid of the range, can be %NULL
610 *
611 * Reverse of __next_free_mem_range().
612 */
613 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
614 phys_addr_t *out_start,
615 phys_addr_t *out_end, int *out_nid)
616 {
617 struct memblock_type *mem = &memblock.memory;
618 struct memblock_type *rsv = &memblock.reserved;
619 int mi = *idx & 0xffffffff;
620 int ri = *idx >> 32;
621
622 if (*idx == (u64)ULLONG_MAX) {
623 mi = mem->cnt - 1;
624 ri = rsv->cnt;
625 }
626
627 for ( ; mi >= 0; mi--) {
628 struct memblock_region *m = &mem->regions[mi];
629 phys_addr_t m_start = m->base;
630 phys_addr_t m_end = m->base + m->size;
631
632 /* only memory regions are associated with nodes, check it */
633 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
634 continue;
635
636 /* scan areas before each reservation for intersection */
637 for ( ; ri >= 0; ri--) {
638 struct memblock_region *r = &rsv->regions[ri];
639 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
640 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
641
642 /* if ri advanced past mi, break out to advance mi */
643 if (r_end <= m_start)
644 break;
645 /* if the two regions intersect, we're done */
646 if (m_end > r_start) {
647 if (out_start)
648 *out_start = max(m_start, r_start);
649 if (out_end)
650 *out_end = min(m_end, r_end);
651 if (out_nid)
652 *out_nid = memblock_get_region_node(m);
653
654 if (m_start >= r_start)
655 mi--;
656 else
657 ri--;
658 *idx = (u32)mi | (u64)ri << 32;
659 return;
660 }
661 }
662 }
663
664 *idx = ULLONG_MAX;
665 }
666
667 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
668 /*
669 * Common iterator interface used to define for_each_mem_range().
670 */
671 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
672 unsigned long *out_start_pfn,
673 unsigned long *out_end_pfn, int *out_nid)
674 {
675 struct memblock_type *type = &memblock.memory;
676 struct memblock_region *r;
677
678 while (++*idx < type->cnt) {
679 r = &type->regions[*idx];
680
681 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
682 continue;
683 if (nid == MAX_NUMNODES || nid == r->nid)
684 break;
685 }
686 if (*idx >= type->cnt) {
687 *idx = -1;
688 return;
689 }
690
691 if (out_start_pfn)
692 *out_start_pfn = PFN_UP(r->base);
693 if (out_end_pfn)
694 *out_end_pfn = PFN_DOWN(r->base + r->size);
695 if (out_nid)
696 *out_nid = r->nid;
697 }
698
699 /**
700 * memblock_set_node - set node ID on memblock regions
701 * @base: base of area to set node ID for
702 * @size: size of area to set node ID for
703 * @nid: node ID to set
704 *
705 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
706 * Regions which cross the area boundaries are split as necessary.
707 *
708 * RETURNS:
709 * 0 on success, -errno on failure.
710 */
711 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
712 int nid)
713 {
714 struct memblock_type *type = &memblock.memory;
715 int start_rgn, end_rgn;
716 int i, ret;
717
718 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
719 if (ret)
720 return ret;
721
722 for (i = start_rgn; i < end_rgn; i++)
723 type->regions[i].nid = nid;
724
725 memblock_merge_regions(type);
726 return 0;
727 }
728 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
729
730 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
731 phys_addr_t align, phys_addr_t max_addr,
732 int nid)
733 {
734 phys_addr_t found;
735
736 /* align @size to avoid excessive fragmentation on reserved array */
737 size = round_up(size, align);
738
739 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
740 if (found && !memblock_reserve(found, size))
741 return found;
742
743 return 0;
744 }
745
746 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
747 {
748 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
749 }
750
751 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
752 {
753 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
754 }
755
756 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
757 {
758 phys_addr_t alloc;
759
760 alloc = __memblock_alloc_base(size, align, max_addr);
761
762 if (alloc == 0)
763 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
764 (unsigned long long) size, (unsigned long long) max_addr);
765
766 return alloc;
767 }
768
769 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
770 {
771 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
772 }
773
774 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
775 {
776 phys_addr_t res = memblock_alloc_nid(size, align, nid);
777
778 if (res)
779 return res;
780 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
781 }
782
783
784 /*
785 * Remaining API functions
786 */
787
788 phys_addr_t __init memblock_phys_mem_size(void)
789 {
790 return memblock.memory.total_size;
791 }
792
793 /* lowest address */
794 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
795 {
796 return memblock.memory.regions[0].base;
797 }
798
799 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
800 {
801 int idx = memblock.memory.cnt - 1;
802
803 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
804 }
805
806 void __init memblock_enforce_memory_limit(phys_addr_t limit)
807 {
808 unsigned long i;
809 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
810
811 if (!limit)
812 return;
813
814 /* find out max address */
815 for (i = 0; i < memblock.memory.cnt; i++) {
816 struct memblock_region *r = &memblock.memory.regions[i];
817
818 if (limit <= r->size) {
819 max_addr = r->base + limit;
820 break;
821 }
822 limit -= r->size;
823 }
824
825 /* truncate both memory and reserved regions */
826 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
827 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
828 }
829
830 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
831 {
832 unsigned int left = 0, right = type->cnt;
833
834 do {
835 unsigned int mid = (right + left) / 2;
836
837 if (addr < type->regions[mid].base)
838 right = mid;
839 else if (addr >= (type->regions[mid].base +
840 type->regions[mid].size))
841 left = mid + 1;
842 else
843 return mid;
844 } while (left < right);
845 return -1;
846 }
847
848 int __init memblock_is_reserved(phys_addr_t addr)
849 {
850 return memblock_search(&memblock.reserved, addr) != -1;
851 }
852
853 int __init_memblock memblock_is_memory(phys_addr_t addr)
854 {
855 return memblock_search(&memblock.memory, addr) != -1;
856 }
857
858 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
859 {
860 int idx = memblock_search(&memblock.memory, base);
861 phys_addr_t end = base + memblock_cap_size(base, &size);
862
863 if (idx == -1)
864 return 0;
865 return memblock.memory.regions[idx].base <= base &&
866 (memblock.memory.regions[idx].base +
867 memblock.memory.regions[idx].size) >= end;
868 }
869
870 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
871 {
872 memblock_cap_size(base, &size);
873 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
874 }
875
876
877 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
878 {
879 memblock.current_limit = limit;
880 }
881
882 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
883 {
884 unsigned long long base, size;
885 int i;
886
887 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
888
889 for (i = 0; i < type->cnt; i++) {
890 struct memblock_region *rgn = &type->regions[i];
891 char nid_buf[32] = "";
892
893 base = rgn->base;
894 size = rgn->size;
895 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
896 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
897 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
898 memblock_get_region_node(rgn));
899 #endif
900 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
901 name, i, base, base + size - 1, size, nid_buf);
902 }
903 }
904
905 void __init_memblock __memblock_dump_all(void)
906 {
907 pr_info("MEMBLOCK configuration:\n");
908 pr_info(" memory size = %#llx reserved size = %#llx\n",
909 (unsigned long long)memblock.memory.total_size,
910 (unsigned long long)memblock.reserved.total_size);
911
912 memblock_dump(&memblock.memory, "memory");
913 memblock_dump(&memblock.reserved, "reserved");
914 }
915
916 void __init memblock_allow_resize(void)
917 {
918 memblock_can_resize = 1;
919 }
920
921 static int __init early_memblock(char *p)
922 {
923 if (p && strstr(p, "debug"))
924 memblock_debug = 1;
925 return 0;
926 }
927 early_param("memblock", early_memblock);
928
929 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
930
931 static int memblock_debug_show(struct seq_file *m, void *private)
932 {
933 struct memblock_type *type = m->private;
934 struct memblock_region *reg;
935 int i;
936
937 for (i = 0; i < type->cnt; i++) {
938 reg = &type->regions[i];
939 seq_printf(m, "%4d: ", i);
940 if (sizeof(phys_addr_t) == 4)
941 seq_printf(m, "0x%08lx..0x%08lx\n",
942 (unsigned long)reg->base,
943 (unsigned long)(reg->base + reg->size - 1));
944 else
945 seq_printf(m, "0x%016llx..0x%016llx\n",
946 (unsigned long long)reg->base,
947 (unsigned long long)(reg->base + reg->size - 1));
948
949 }
950 return 0;
951 }
952
953 static int memblock_debug_open(struct inode *inode, struct file *file)
954 {
955 return single_open(file, memblock_debug_show, inode->i_private);
956 }
957
958 static const struct file_operations memblock_debug_fops = {
959 .open = memblock_debug_open,
960 .read = seq_read,
961 .llseek = seq_lseek,
962 .release = single_release,
963 };
964
965 static int __init memblock_init_debugfs(void)
966 {
967 struct dentry *root = debugfs_create_dir("memblock", NULL);
968 if (!root)
969 return -ENXIO;
970 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
971 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
972
973 return 0;
974 }
975 __initcall(memblock_init_debugfs);
976
977 #endif /* CONFIG_DEBUG_FS */