mm/ksm: fix interaction with THP
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 */
96
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
103 */
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
109 };
110
111 /**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
125 };
126
127 /**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138 */
139 struct stable_node {
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
148 };
149 };
150 struct hlist_head hlist;
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160 #define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 int nid;
164 #endif
165 };
166
167 /**
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
178 */
179 struct rmap_item {
180 struct rmap_item *rmap_list;
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183 #ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185 #endif
186 };
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
189 unsigned int oldchecksum; /* when unstable */
190 union {
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
196 };
197 };
198
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
202
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
208
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
212
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
215
216 static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218 };
219 static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
221 };
222
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
226
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
229
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
232
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
235
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
238
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
241
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
244
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
250
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
253
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
256
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
259
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
262
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes 1U
269 #define ksm_nr_node_ids 1
270 #endif
271
272 #define KSM_RUN_STOP 0
273 #define KSM_RUN_MERGE 1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
278
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
286
287 static int __init ksm_slab_init(void)
288 {
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
292
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
296
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
299 goto out_free2;
300
301 return 0;
302
303 out_free2:
304 kmem_cache_destroy(stable_node_cache);
305 out_free1:
306 kmem_cache_destroy(rmap_item_cache);
307 out:
308 return -ENOMEM;
309 }
310
311 static void __init ksm_slab_free(void)
312 {
313 kmem_cache_destroy(mm_slot_cache);
314 kmem_cache_destroy(stable_node_cache);
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
317 }
318
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320 {
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322 }
323
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325 {
326 return dup->head == STABLE_NODE_DUP_HEAD;
327 }
328
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
331 {
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
337 }
338
339 static inline void __stable_node_dup_del(struct stable_node *dup)
340 {
341 VM_BUG_ON(!is_stable_node_dup(dup));
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
344 }
345
346 static inline void stable_node_dup_del(struct stable_node *dup)
347 {
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355 #endif
356 }
357
358 static inline struct rmap_item *alloc_rmap_item(void)
359 {
360 struct rmap_item *rmap_item;
361
362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
367 }
368
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
370 {
371 ksm_rmap_items--;
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
374 }
375
376 static inline struct stable_node *alloc_stable_node(void)
377 {
378 /*
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
382 */
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
384 }
385
386 static inline void free_stable_node(struct stable_node *stable_node)
387 {
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
390 kmem_cache_free(stable_node_cache, stable_node);
391 }
392
393 static inline struct mm_slot *alloc_mm_slot(void)
394 {
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398 }
399
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
401 {
402 kmem_cache_free(mm_slot_cache, mm_slot);
403 }
404
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406 {
407 struct mm_slot *slot;
408
409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410 if (slot->mm == mm)
411 return slot;
412
413 return NULL;
414 }
415
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
418 {
419 mm_slot->mm = mm;
420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
421 }
422
423 /*
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
430 */
431 static inline bool ksm_test_exit(struct mm_struct *mm)
432 {
433 return atomic_read(&mm->mm_users) == 0;
434 }
435
436 /*
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
438 *
439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440 * put_page(page);
441 *
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
446 *
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
450 */
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
452 {
453 struct page *page;
454 int ret = 0;
455
456 do {
457 cond_resched();
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460 if (IS_ERR_OR_NULL(page))
461 break;
462 if (PageKsm(page))
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
469 /*
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 *
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
476 *
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
480 *
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
485 *
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
490 *
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
496 */
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
498 }
499
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
502 {
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
512 }
513
514 static void break_cow(struct rmap_item *rmap_item)
515 {
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
518 struct vm_area_struct *vma;
519
520 /*
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
523 */
524 put_anon_vma(rmap_item->anon_vma);
525
526 down_read(&mm->mmap_sem);
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
530 up_read(&mm->mmap_sem);
531 }
532
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534 {
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
539
540 down_read(&mm->mmap_sem);
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
543 goto out;
544
545 page = follow_page(vma, addr, FOLL_GET);
546 if (IS_ERR_OR_NULL(page))
547 goto out;
548 if (PageAnon(page)) {
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
553 out:
554 page = NULL;
555 }
556 up_read(&mm->mmap_sem);
557 return page;
558 }
559
560 /*
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
565 */
566 static inline int get_kpfn_nid(unsigned long kpfn)
567 {
568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
569 }
570
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
573 {
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582 #endif
583 ksm_stable_node_chains++;
584
585 /*
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
589 */
590 rb_replace_node(&dup->node, &chain->node, root);
591
592 /*
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
598 */
599 stable_node_chain_add_dup(dup, chain);
600 }
601 return chain;
602 }
603
604 static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
606 {
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
610 }
611
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
613 {
614 struct rmap_item *rmap_item;
615
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
618
619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
626 put_anon_vma(rmap_item->anon_vma);
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
629 }
630
631 /*
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
637 */
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
642
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
646 stable_node_dup_del(stable_node);
647 free_stable_node(stable_node);
648 }
649
650 /*
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
656 * But beware, the stable node's page might be being migrated.
657 *
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
667 * is on its way to being freed; but it is an anomaly to bear in mind.
668 */
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
670 {
671 struct page *page;
672 void *expected_mapping;
673 unsigned long kpfn;
674
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
677 again:
678 kpfn = READ_ONCE(stable_node->kpfn);
679 page = pfn_to_page(kpfn);
680
681 /*
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
685 */
686 smp_read_barrier_depends();
687 if (READ_ONCE(page->mapping) != expected_mapping)
688 goto stale;
689
690 /*
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
698 */
699 while (!get_page_unless_zero(page)) {
700 /*
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
707 */
708 if (!PageSwapCache(page))
709 goto stale;
710 cpu_relax();
711 }
712
713 if (READ_ONCE(page->mapping) != expected_mapping) {
714 put_page(page);
715 goto stale;
716 }
717
718 if (lock_it) {
719 lock_page(page);
720 if (READ_ONCE(page->mapping) != expected_mapping) {
721 unlock_page(page);
722 put_page(page);
723 goto stale;
724 }
725 }
726 return page;
727
728 stale:
729 /*
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
734 */
735 smp_rmb();
736 if (READ_ONCE(stable_node->kpfn) != kpfn)
737 goto again;
738 remove_node_from_stable_tree(stable_node);
739 return NULL;
740 }
741
742 /*
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
745 */
746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
747 {
748 if (rmap_item->address & STABLE_FLAG) {
749 struct stable_node *stable_node;
750 struct page *page;
751
752 stable_node = rmap_item->head;
753 page = get_ksm_page(stable_node, true);
754 if (!page)
755 goto out;
756
757 hlist_del(&rmap_item->hlist);
758 unlock_page(page);
759 put_page(page);
760
761 if (!hlist_empty(&stable_node->hlist))
762 ksm_pages_sharing--;
763 else
764 ksm_pages_shared--;
765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 stable_node->rmap_hlist_len--;
767
768 put_anon_vma(rmap_item->anon_vma);
769 rmap_item->address &= PAGE_MASK;
770
771 } else if (rmap_item->address & UNSTABLE_FLAG) {
772 unsigned char age;
773 /*
774 * Usually ksmd can and must skip the rb_erase, because
775 * root_unstable_tree was already reset to RB_ROOT.
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
779 */
780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
781 BUG_ON(age > 1);
782 if (!age)
783 rb_erase(&rmap_item->node,
784 root_unstable_tree + NUMA(rmap_item->nid));
785 ksm_pages_unshared--;
786 rmap_item->address &= PAGE_MASK;
787 }
788 out:
789 cond_resched(); /* we're called from many long loops */
790 }
791
792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
793 struct rmap_item **rmap_list)
794 {
795 while (*rmap_list) {
796 struct rmap_item *rmap_item = *rmap_list;
797 *rmap_list = rmap_item->rmap_list;
798 remove_rmap_item_from_tree(rmap_item);
799 free_rmap_item(rmap_item);
800 }
801 }
802
803 /*
804 * Though it's very tempting to unmerge rmap_items from stable tree rather
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
810 *
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
815 */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
818 {
819 unsigned long addr;
820 int err = 0;
821
822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823 if (ksm_test_exit(vma->vm_mm))
824 break;
825 if (signal_pending(current))
826 err = -ERESTARTSYS;
827 else
828 err = break_ksm(vma, addr);
829 }
830 return err;
831 }
832
833 #ifdef CONFIG_SYSFS
834 /*
835 * Only called through the sysfs control interface:
836 */
837 static int remove_stable_node(struct stable_node *stable_node)
838 {
839 struct page *page;
840 int err;
841
842 page = get_ksm_page(stable_node, true);
843 if (!page) {
844 /*
845 * get_ksm_page did remove_node_from_stable_tree itself.
846 */
847 return 0;
848 }
849
850 if (WARN_ON_ONCE(page_mapped(page))) {
851 /*
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
854 */
855 err = -EBUSY;
856 } else {
857 /*
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
864 */
865 set_page_stable_node(page, NULL);
866 remove_node_from_stable_tree(stable_node);
867 err = 0;
868 }
869
870 unlock_page(page);
871 put_page(page);
872 return err;
873 }
874
875 static int remove_stable_node_chain(struct stable_node *stable_node,
876 struct rb_root *root)
877 {
878 struct stable_node *dup;
879 struct hlist_node *hlist_safe;
880
881 if (!is_stable_node_chain(stable_node)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node));
883 if (remove_stable_node(stable_node))
884 return true;
885 else
886 return false;
887 }
888
889 hlist_for_each_entry_safe(dup, hlist_safe,
890 &stable_node->hlist, hlist_dup) {
891 VM_BUG_ON(!is_stable_node_dup(dup));
892 if (remove_stable_node(dup))
893 return true;
894 }
895 BUG_ON(!hlist_empty(&stable_node->hlist));
896 free_stable_node_chain(stable_node, root);
897 return false;
898 }
899
900 static int remove_all_stable_nodes(void)
901 {
902 struct stable_node *stable_node, *next;
903 int nid;
904 int err = 0;
905
906 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
907 while (root_stable_tree[nid].rb_node) {
908 stable_node = rb_entry(root_stable_tree[nid].rb_node,
909 struct stable_node, node);
910 if (remove_stable_node_chain(stable_node,
911 root_stable_tree + nid)) {
912 err = -EBUSY;
913 break; /* proceed to next nid */
914 }
915 cond_resched();
916 }
917 }
918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
919 if (remove_stable_node(stable_node))
920 err = -EBUSY;
921 cond_resched();
922 }
923 return err;
924 }
925
926 static int unmerge_and_remove_all_rmap_items(void)
927 {
928 struct mm_slot *mm_slot;
929 struct mm_struct *mm;
930 struct vm_area_struct *vma;
931 int err = 0;
932
933 spin_lock(&ksm_mmlist_lock);
934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
935 struct mm_slot, mm_list);
936 spin_unlock(&ksm_mmlist_lock);
937
938 for (mm_slot = ksm_scan.mm_slot;
939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
940 mm = mm_slot->mm;
941 down_read(&mm->mmap_sem);
942 for (vma = mm->mmap; vma; vma = vma->vm_next) {
943 if (ksm_test_exit(mm))
944 break;
945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946 continue;
947 err = unmerge_ksm_pages(vma,
948 vma->vm_start, vma->vm_end);
949 if (err)
950 goto error;
951 }
952
953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
954 up_read(&mm->mmap_sem);
955
956 spin_lock(&ksm_mmlist_lock);
957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
958 struct mm_slot, mm_list);
959 if (ksm_test_exit(mm)) {
960 hash_del(&mm_slot->link);
961 list_del(&mm_slot->mm_list);
962 spin_unlock(&ksm_mmlist_lock);
963
964 free_mm_slot(mm_slot);
965 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
966 mmdrop(mm);
967 } else
968 spin_unlock(&ksm_mmlist_lock);
969 }
970
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
973 ksm_scan.seqnr = 0;
974 return 0;
975
976 error:
977 up_read(&mm->mmap_sem);
978 spin_lock(&ksm_mmlist_lock);
979 ksm_scan.mm_slot = &ksm_mm_head;
980 spin_unlock(&ksm_mmlist_lock);
981 return err;
982 }
983 #endif /* CONFIG_SYSFS */
984
985 static u32 calc_checksum(struct page *page)
986 {
987 u32 checksum;
988 void *addr = kmap_atomic(page);
989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
990 kunmap_atomic(addr);
991 return checksum;
992 }
993
994 static int memcmp_pages(struct page *page1, struct page *page2)
995 {
996 char *addr1, *addr2;
997 int ret;
998
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
1004 return ret;
1005 }
1006
1007 static inline int pages_identical(struct page *page1, struct page *page2)
1008 {
1009 return !memcmp_pages(page1, page2);
1010 }
1011
1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1014 {
1015 struct mm_struct *mm = vma->vm_mm;
1016 struct page_vma_mapped_walk pvmw = {
1017 .page = page,
1018 .vma = vma,
1019 };
1020 int swapped;
1021 int err = -EFAULT;
1022 unsigned long mmun_start; /* For mmu_notifiers */
1023 unsigned long mmun_end; /* For mmu_notifiers */
1024
1025 pvmw.address = page_address_in_vma(page, vma);
1026 if (pvmw.address == -EFAULT)
1027 goto out;
1028
1029 BUG_ON(PageTransCompound(page));
1030
1031 mmun_start = pvmw.address;
1032 mmun_end = pvmw.address + PAGE_SIZE;
1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1034
1035 if (!page_vma_mapped_walk(&pvmw))
1036 goto out_mn;
1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038 goto out_unlock;
1039
1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1042 mm_tlb_flush_pending(mm)) {
1043 pte_t entry;
1044
1045 swapped = PageSwapCache(page);
1046 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1047 /*
1048 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1049 * take any lock, therefore the check that we are going to make
1050 * with the pagecount against the mapcount is racey and
1051 * O_DIRECT can happen right after the check.
1052 * So we clear the pte and flush the tlb before the check
1053 * this assure us that no O_DIRECT can happen after the check
1054 * or in the middle of the check.
1055 */
1056 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
1057 /*
1058 * Check that no O_DIRECT or similar I/O is in progress on the
1059 * page
1060 */
1061 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1062 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1063 goto out_unlock;
1064 }
1065 if (pte_dirty(entry))
1066 set_page_dirty(page);
1067
1068 if (pte_protnone(entry))
1069 entry = pte_mkclean(pte_clear_savedwrite(entry));
1070 else
1071 entry = pte_mkclean(pte_wrprotect(entry));
1072 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1073 }
1074 *orig_pte = *pvmw.pte;
1075 err = 0;
1076
1077 out_unlock:
1078 page_vma_mapped_walk_done(&pvmw);
1079 out_mn:
1080 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1081 out:
1082 return err;
1083 }
1084
1085 /**
1086 * replace_page - replace page in vma by new ksm page
1087 * @vma: vma that holds the pte pointing to page
1088 * @page: the page we are replacing by kpage
1089 * @kpage: the ksm page we replace page by
1090 * @orig_pte: the original value of the pte
1091 *
1092 * Returns 0 on success, -EFAULT on failure.
1093 */
1094 static int replace_page(struct vm_area_struct *vma, struct page *page,
1095 struct page *kpage, pte_t orig_pte)
1096 {
1097 struct mm_struct *mm = vma->vm_mm;
1098 pmd_t *pmd;
1099 pte_t *ptep;
1100 pte_t newpte;
1101 spinlock_t *ptl;
1102 unsigned long addr;
1103 int err = -EFAULT;
1104 unsigned long mmun_start; /* For mmu_notifiers */
1105 unsigned long mmun_end; /* For mmu_notifiers */
1106
1107 addr = page_address_in_vma(page, vma);
1108 if (addr == -EFAULT)
1109 goto out;
1110
1111 pmd = mm_find_pmd(mm, addr);
1112 if (!pmd)
1113 goto out;
1114
1115 mmun_start = addr;
1116 mmun_end = addr + PAGE_SIZE;
1117 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1118
1119 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1120 if (!pte_same(*ptep, orig_pte)) {
1121 pte_unmap_unlock(ptep, ptl);
1122 goto out_mn;
1123 }
1124
1125 /*
1126 * No need to check ksm_use_zero_pages here: we can only have a
1127 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1128 */
1129 if (!is_zero_pfn(page_to_pfn(kpage))) {
1130 get_page(kpage);
1131 page_add_anon_rmap(kpage, vma, addr, false);
1132 newpte = mk_pte(kpage, vma->vm_page_prot);
1133 } else {
1134 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1135 vma->vm_page_prot));
1136 /*
1137 * We're replacing an anonymous page with a zero page, which is
1138 * not anonymous. We need to do proper accounting otherwise we
1139 * will get wrong values in /proc, and a BUG message in dmesg
1140 * when tearing down the mm.
1141 */
1142 dec_mm_counter(mm, MM_ANONPAGES);
1143 }
1144
1145 flush_cache_page(vma, addr, pte_pfn(*ptep));
1146 ptep_clear_flush_notify(vma, addr, ptep);
1147 set_pte_at_notify(mm, addr, ptep, newpte);
1148
1149 page_remove_rmap(page, false);
1150 if (!page_mapped(page))
1151 try_to_free_swap(page);
1152 put_page(page);
1153
1154 pte_unmap_unlock(ptep, ptl);
1155 err = 0;
1156 out_mn:
1157 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1158 out:
1159 return err;
1160 }
1161
1162 /*
1163 * try_to_merge_one_page - take two pages and merge them into one
1164 * @vma: the vma that holds the pte pointing to page
1165 * @page: the PageAnon page that we want to replace with kpage
1166 * @kpage: the PageKsm page that we want to map instead of page,
1167 * or NULL the first time when we want to use page as kpage.
1168 *
1169 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1170 */
1171 static int try_to_merge_one_page(struct vm_area_struct *vma,
1172 struct page *page, struct page *kpage)
1173 {
1174 pte_t orig_pte = __pte(0);
1175 int err = -EFAULT;
1176
1177 if (page == kpage) /* ksm page forked */
1178 return 0;
1179
1180 if (!PageAnon(page))
1181 goto out;
1182
1183 /*
1184 * We need the page lock to read a stable PageSwapCache in
1185 * write_protect_page(). We use trylock_page() instead of
1186 * lock_page() because we don't want to wait here - we
1187 * prefer to continue scanning and merging different pages,
1188 * then come back to this page when it is unlocked.
1189 */
1190 if (!trylock_page(page))
1191 goto out;
1192
1193 if (PageTransCompound(page)) {
1194 if (split_huge_page(page))
1195 goto out_unlock;
1196 }
1197
1198 /*
1199 * If this anonymous page is mapped only here, its pte may need
1200 * to be write-protected. If it's mapped elsewhere, all of its
1201 * ptes are necessarily already write-protected. But in either
1202 * case, we need to lock and check page_count is not raised.
1203 */
1204 if (write_protect_page(vma, page, &orig_pte) == 0) {
1205 if (!kpage) {
1206 /*
1207 * While we hold page lock, upgrade page from
1208 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1209 * stable_tree_insert() will update stable_node.
1210 */
1211 set_page_stable_node(page, NULL);
1212 mark_page_accessed(page);
1213 /*
1214 * Page reclaim just frees a clean page with no dirty
1215 * ptes: make sure that the ksm page would be swapped.
1216 */
1217 if (!PageDirty(page))
1218 SetPageDirty(page);
1219 err = 0;
1220 } else if (pages_identical(page, kpage))
1221 err = replace_page(vma, page, kpage, orig_pte);
1222 }
1223
1224 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1225 munlock_vma_page(page);
1226 if (!PageMlocked(kpage)) {
1227 unlock_page(page);
1228 lock_page(kpage);
1229 mlock_vma_page(kpage);
1230 page = kpage; /* for final unlock */
1231 }
1232 }
1233
1234 out_unlock:
1235 unlock_page(page);
1236 out:
1237 return err;
1238 }
1239
1240 /*
1241 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1242 * but no new kernel page is allocated: kpage must already be a ksm page.
1243 *
1244 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1245 */
1246 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1247 struct page *page, struct page *kpage)
1248 {
1249 struct mm_struct *mm = rmap_item->mm;
1250 struct vm_area_struct *vma;
1251 int err = -EFAULT;
1252
1253 down_read(&mm->mmap_sem);
1254 vma = find_mergeable_vma(mm, rmap_item->address);
1255 if (!vma)
1256 goto out;
1257
1258 err = try_to_merge_one_page(vma, page, kpage);
1259 if (err)
1260 goto out;
1261
1262 /* Unstable nid is in union with stable anon_vma: remove first */
1263 remove_rmap_item_from_tree(rmap_item);
1264
1265 /* Must get reference to anon_vma while still holding mmap_sem */
1266 rmap_item->anon_vma = vma->anon_vma;
1267 get_anon_vma(vma->anon_vma);
1268 out:
1269 up_read(&mm->mmap_sem);
1270 return err;
1271 }
1272
1273 /*
1274 * try_to_merge_two_pages - take two identical pages and prepare them
1275 * to be merged into one page.
1276 *
1277 * This function returns the kpage if we successfully merged two identical
1278 * pages into one ksm page, NULL otherwise.
1279 *
1280 * Note that this function upgrades page to ksm page: if one of the pages
1281 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1282 */
1283 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1284 struct page *page,
1285 struct rmap_item *tree_rmap_item,
1286 struct page *tree_page)
1287 {
1288 int err;
1289
1290 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1291 if (!err) {
1292 err = try_to_merge_with_ksm_page(tree_rmap_item,
1293 tree_page, page);
1294 /*
1295 * If that fails, we have a ksm page with only one pte
1296 * pointing to it: so break it.
1297 */
1298 if (err)
1299 break_cow(rmap_item);
1300 }
1301 return err ? NULL : page;
1302 }
1303
1304 static __always_inline
1305 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1306 {
1307 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1308 /*
1309 * Check that at least one mapping still exists, otherwise
1310 * there's no much point to merge and share with this
1311 * stable_node, as the underlying tree_page of the other
1312 * sharer is going to be freed soon.
1313 */
1314 return stable_node->rmap_hlist_len &&
1315 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1316 }
1317
1318 static __always_inline
1319 bool is_page_sharing_candidate(struct stable_node *stable_node)
1320 {
1321 return __is_page_sharing_candidate(stable_node, 0);
1322 }
1323
1324 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1325 struct stable_node **_stable_node,
1326 struct rb_root *root,
1327 bool prune_stale_stable_nodes)
1328 {
1329 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1330 struct hlist_node *hlist_safe;
1331 struct page *_tree_page, *tree_page = NULL;
1332 int nr = 0;
1333 int found_rmap_hlist_len;
1334
1335 if (!prune_stale_stable_nodes ||
1336 time_before(jiffies, stable_node->chain_prune_time +
1337 msecs_to_jiffies(
1338 ksm_stable_node_chains_prune_millisecs)))
1339 prune_stale_stable_nodes = false;
1340 else
1341 stable_node->chain_prune_time = jiffies;
1342
1343 hlist_for_each_entry_safe(dup, hlist_safe,
1344 &stable_node->hlist, hlist_dup) {
1345 cond_resched();
1346 /*
1347 * We must walk all stable_node_dup to prune the stale
1348 * stable nodes during lookup.
1349 *
1350 * get_ksm_page can drop the nodes from the
1351 * stable_node->hlist if they point to freed pages
1352 * (that's why we do a _safe walk). The "dup"
1353 * stable_node parameter itself will be freed from
1354 * under us if it returns NULL.
1355 */
1356 _tree_page = get_ksm_page(dup, false);
1357 if (!_tree_page)
1358 continue;
1359 nr += 1;
1360 if (is_page_sharing_candidate(dup)) {
1361 if (!found ||
1362 dup->rmap_hlist_len > found_rmap_hlist_len) {
1363 if (found)
1364 put_page(tree_page);
1365 found = dup;
1366 found_rmap_hlist_len = found->rmap_hlist_len;
1367 tree_page = _tree_page;
1368
1369 /* skip put_page for found dup */
1370 if (!prune_stale_stable_nodes)
1371 break;
1372 continue;
1373 }
1374 }
1375 put_page(_tree_page);
1376 }
1377
1378 if (found) {
1379 /*
1380 * nr is counting all dups in the chain only if
1381 * prune_stale_stable_nodes is true, otherwise we may
1382 * break the loop at nr == 1 even if there are
1383 * multiple entries.
1384 */
1385 if (prune_stale_stable_nodes && nr == 1) {
1386 /*
1387 * If there's not just one entry it would
1388 * corrupt memory, better BUG_ON. In KSM
1389 * context with no lock held it's not even
1390 * fatal.
1391 */
1392 BUG_ON(stable_node->hlist.first->next);
1393
1394 /*
1395 * There's just one entry and it is below the
1396 * deduplication limit so drop the chain.
1397 */
1398 rb_replace_node(&stable_node->node, &found->node,
1399 root);
1400 free_stable_node(stable_node);
1401 ksm_stable_node_chains--;
1402 ksm_stable_node_dups--;
1403 /*
1404 * NOTE: the caller depends on the stable_node
1405 * to be equal to stable_node_dup if the chain
1406 * was collapsed.
1407 */
1408 *_stable_node = found;
1409 /*
1410 * Just for robustneess as stable_node is
1411 * otherwise left as a stable pointer, the
1412 * compiler shall optimize it away at build
1413 * time.
1414 */
1415 stable_node = NULL;
1416 } else if (stable_node->hlist.first != &found->hlist_dup &&
1417 __is_page_sharing_candidate(found, 1)) {
1418 /*
1419 * If the found stable_node dup can accept one
1420 * more future merge (in addition to the one
1421 * that is underway) and is not at the head of
1422 * the chain, put it there so next search will
1423 * be quicker in the !prune_stale_stable_nodes
1424 * case.
1425 *
1426 * NOTE: it would be inaccurate to use nr > 1
1427 * instead of checking the hlist.first pointer
1428 * directly, because in the
1429 * prune_stale_stable_nodes case "nr" isn't
1430 * the position of the found dup in the chain,
1431 * but the total number of dups in the chain.
1432 */
1433 hlist_del(&found->hlist_dup);
1434 hlist_add_head(&found->hlist_dup,
1435 &stable_node->hlist);
1436 }
1437 }
1438
1439 *_stable_node_dup = found;
1440 return tree_page;
1441 }
1442
1443 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1444 struct rb_root *root)
1445 {
1446 if (!is_stable_node_chain(stable_node))
1447 return stable_node;
1448 if (hlist_empty(&stable_node->hlist)) {
1449 free_stable_node_chain(stable_node, root);
1450 return NULL;
1451 }
1452 return hlist_entry(stable_node->hlist.first,
1453 typeof(*stable_node), hlist_dup);
1454 }
1455
1456 /*
1457 * Like for get_ksm_page, this function can free the *_stable_node and
1458 * *_stable_node_dup if the returned tree_page is NULL.
1459 *
1460 * It can also free and overwrite *_stable_node with the found
1461 * stable_node_dup if the chain is collapsed (in which case
1462 * *_stable_node will be equal to *_stable_node_dup like if the chain
1463 * never existed). It's up to the caller to verify tree_page is not
1464 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1465 *
1466 * *_stable_node_dup is really a second output parameter of this
1467 * function and will be overwritten in all cases, the caller doesn't
1468 * need to initialize it.
1469 */
1470 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1471 struct stable_node **_stable_node,
1472 struct rb_root *root,
1473 bool prune_stale_stable_nodes)
1474 {
1475 struct stable_node *stable_node = *_stable_node;
1476 if (!is_stable_node_chain(stable_node)) {
1477 if (is_page_sharing_candidate(stable_node)) {
1478 *_stable_node_dup = stable_node;
1479 return get_ksm_page(stable_node, false);
1480 }
1481 /*
1482 * _stable_node_dup set to NULL means the stable_node
1483 * reached the ksm_max_page_sharing limit.
1484 */
1485 *_stable_node_dup = NULL;
1486 return NULL;
1487 }
1488 return stable_node_dup(_stable_node_dup, _stable_node, root,
1489 prune_stale_stable_nodes);
1490 }
1491
1492 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1493 struct stable_node **s_n,
1494 struct rb_root *root)
1495 {
1496 return __stable_node_chain(s_n_d, s_n, root, true);
1497 }
1498
1499 static __always_inline struct page *chain(struct stable_node **s_n_d,
1500 struct stable_node *s_n,
1501 struct rb_root *root)
1502 {
1503 struct stable_node *old_stable_node = s_n;
1504 struct page *tree_page;
1505
1506 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1507 /* not pruning dups so s_n cannot have changed */
1508 VM_BUG_ON(s_n != old_stable_node);
1509 return tree_page;
1510 }
1511
1512 /*
1513 * stable_tree_search - search for page inside the stable tree
1514 *
1515 * This function checks if there is a page inside the stable tree
1516 * with identical content to the page that we are scanning right now.
1517 *
1518 * This function returns the stable tree node of identical content if found,
1519 * NULL otherwise.
1520 */
1521 static struct page *stable_tree_search(struct page *page)
1522 {
1523 int nid;
1524 struct rb_root *root;
1525 struct rb_node **new;
1526 struct rb_node *parent;
1527 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1528 struct stable_node *page_node;
1529
1530 page_node = page_stable_node(page);
1531 if (page_node && page_node->head != &migrate_nodes) {
1532 /* ksm page forked */
1533 get_page(page);
1534 return page;
1535 }
1536
1537 nid = get_kpfn_nid(page_to_pfn(page));
1538 root = root_stable_tree + nid;
1539 again:
1540 new = &root->rb_node;
1541 parent = NULL;
1542
1543 while (*new) {
1544 struct page *tree_page;
1545 int ret;
1546
1547 cond_resched();
1548 stable_node = rb_entry(*new, struct stable_node, node);
1549 stable_node_any = NULL;
1550 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1551 /*
1552 * NOTE: stable_node may have been freed by
1553 * chain_prune() if the returned stable_node_dup is
1554 * not NULL. stable_node_dup may have been inserted in
1555 * the rbtree instead as a regular stable_node (in
1556 * order to collapse the stable_node chain if a single
1557 * stable_node dup was found in it). In such case the
1558 * stable_node is overwritten by the calleee to point
1559 * to the stable_node_dup that was collapsed in the
1560 * stable rbtree and stable_node will be equal to
1561 * stable_node_dup like if the chain never existed.
1562 */
1563 if (!stable_node_dup) {
1564 /*
1565 * Either all stable_node dups were full in
1566 * this stable_node chain, or this chain was
1567 * empty and should be rb_erased.
1568 */
1569 stable_node_any = stable_node_dup_any(stable_node,
1570 root);
1571 if (!stable_node_any) {
1572 /* rb_erase just run */
1573 goto again;
1574 }
1575 /*
1576 * Take any of the stable_node dups page of
1577 * this stable_node chain to let the tree walk
1578 * continue. All KSM pages belonging to the
1579 * stable_node dups in a stable_node chain
1580 * have the same content and they're
1581 * wrprotected at all times. Any will work
1582 * fine to continue the walk.
1583 */
1584 tree_page = get_ksm_page(stable_node_any, false);
1585 }
1586 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1587 if (!tree_page) {
1588 /*
1589 * If we walked over a stale stable_node,
1590 * get_ksm_page() will call rb_erase() and it
1591 * may rebalance the tree from under us. So
1592 * restart the search from scratch. Returning
1593 * NULL would be safe too, but we'd generate
1594 * false negative insertions just because some
1595 * stable_node was stale.
1596 */
1597 goto again;
1598 }
1599
1600 ret = memcmp_pages(page, tree_page);
1601 put_page(tree_page);
1602
1603 parent = *new;
1604 if (ret < 0)
1605 new = &parent->rb_left;
1606 else if (ret > 0)
1607 new = &parent->rb_right;
1608 else {
1609 if (page_node) {
1610 VM_BUG_ON(page_node->head != &migrate_nodes);
1611 /*
1612 * Test if the migrated page should be merged
1613 * into a stable node dup. If the mapcount is
1614 * 1 we can migrate it with another KSM page
1615 * without adding it to the chain.
1616 */
1617 if (page_mapcount(page) > 1)
1618 goto chain_append;
1619 }
1620
1621 if (!stable_node_dup) {
1622 /*
1623 * If the stable_node is a chain and
1624 * we got a payload match in memcmp
1625 * but we cannot merge the scanned
1626 * page in any of the existing
1627 * stable_node dups because they're
1628 * all full, we need to wait the
1629 * scanned page to find itself a match
1630 * in the unstable tree to create a
1631 * brand new KSM page to add later to
1632 * the dups of this stable_node.
1633 */
1634 return NULL;
1635 }
1636
1637 /*
1638 * Lock and unlock the stable_node's page (which
1639 * might already have been migrated) so that page
1640 * migration is sure to notice its raised count.
1641 * It would be more elegant to return stable_node
1642 * than kpage, but that involves more changes.
1643 */
1644 tree_page = get_ksm_page(stable_node_dup, true);
1645 if (unlikely(!tree_page))
1646 /*
1647 * The tree may have been rebalanced,
1648 * so re-evaluate parent and new.
1649 */
1650 goto again;
1651 unlock_page(tree_page);
1652
1653 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1654 NUMA(stable_node_dup->nid)) {
1655 put_page(tree_page);
1656 goto replace;
1657 }
1658 return tree_page;
1659 }
1660 }
1661
1662 if (!page_node)
1663 return NULL;
1664
1665 list_del(&page_node->list);
1666 DO_NUMA(page_node->nid = nid);
1667 rb_link_node(&page_node->node, parent, new);
1668 rb_insert_color(&page_node->node, root);
1669 out:
1670 if (is_page_sharing_candidate(page_node)) {
1671 get_page(page);
1672 return page;
1673 } else
1674 return NULL;
1675
1676 replace:
1677 /*
1678 * If stable_node was a chain and chain_prune collapsed it,
1679 * stable_node has been updated to be the new regular
1680 * stable_node. A collapse of the chain is indistinguishable
1681 * from the case there was no chain in the stable
1682 * rbtree. Otherwise stable_node is the chain and
1683 * stable_node_dup is the dup to replace.
1684 */
1685 if (stable_node_dup == stable_node) {
1686 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1687 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1688 /* there is no chain */
1689 if (page_node) {
1690 VM_BUG_ON(page_node->head != &migrate_nodes);
1691 list_del(&page_node->list);
1692 DO_NUMA(page_node->nid = nid);
1693 rb_replace_node(&stable_node_dup->node,
1694 &page_node->node,
1695 root);
1696 if (is_page_sharing_candidate(page_node))
1697 get_page(page);
1698 else
1699 page = NULL;
1700 } else {
1701 rb_erase(&stable_node_dup->node, root);
1702 page = NULL;
1703 }
1704 } else {
1705 VM_BUG_ON(!is_stable_node_chain(stable_node));
1706 __stable_node_dup_del(stable_node_dup);
1707 if (page_node) {
1708 VM_BUG_ON(page_node->head != &migrate_nodes);
1709 list_del(&page_node->list);
1710 DO_NUMA(page_node->nid = nid);
1711 stable_node_chain_add_dup(page_node, stable_node);
1712 if (is_page_sharing_candidate(page_node))
1713 get_page(page);
1714 else
1715 page = NULL;
1716 } else {
1717 page = NULL;
1718 }
1719 }
1720 stable_node_dup->head = &migrate_nodes;
1721 list_add(&stable_node_dup->list, stable_node_dup->head);
1722 return page;
1723
1724 chain_append:
1725 /* stable_node_dup could be null if it reached the limit */
1726 if (!stable_node_dup)
1727 stable_node_dup = stable_node_any;
1728 /*
1729 * If stable_node was a chain and chain_prune collapsed it,
1730 * stable_node has been updated to be the new regular
1731 * stable_node. A collapse of the chain is indistinguishable
1732 * from the case there was no chain in the stable
1733 * rbtree. Otherwise stable_node is the chain and
1734 * stable_node_dup is the dup to replace.
1735 */
1736 if (stable_node_dup == stable_node) {
1737 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1738 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1739 /* chain is missing so create it */
1740 stable_node = alloc_stable_node_chain(stable_node_dup,
1741 root);
1742 if (!stable_node)
1743 return NULL;
1744 }
1745 /*
1746 * Add this stable_node dup that was
1747 * migrated to the stable_node chain
1748 * of the current nid for this page
1749 * content.
1750 */
1751 VM_BUG_ON(!is_stable_node_chain(stable_node));
1752 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1753 VM_BUG_ON(page_node->head != &migrate_nodes);
1754 list_del(&page_node->list);
1755 DO_NUMA(page_node->nid = nid);
1756 stable_node_chain_add_dup(page_node, stable_node);
1757 goto out;
1758 }
1759
1760 /*
1761 * stable_tree_insert - insert stable tree node pointing to new ksm page
1762 * into the stable tree.
1763 *
1764 * This function returns the stable tree node just allocated on success,
1765 * NULL otherwise.
1766 */
1767 static struct stable_node *stable_tree_insert(struct page *kpage)
1768 {
1769 int nid;
1770 unsigned long kpfn;
1771 struct rb_root *root;
1772 struct rb_node **new;
1773 struct rb_node *parent;
1774 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1775 bool need_chain = false;
1776
1777 kpfn = page_to_pfn(kpage);
1778 nid = get_kpfn_nid(kpfn);
1779 root = root_stable_tree + nid;
1780 again:
1781 parent = NULL;
1782 new = &root->rb_node;
1783
1784 while (*new) {
1785 struct page *tree_page;
1786 int ret;
1787
1788 cond_resched();
1789 stable_node = rb_entry(*new, struct stable_node, node);
1790 stable_node_any = NULL;
1791 tree_page = chain(&stable_node_dup, stable_node, root);
1792 if (!stable_node_dup) {
1793 /*
1794 * Either all stable_node dups were full in
1795 * this stable_node chain, or this chain was
1796 * empty and should be rb_erased.
1797 */
1798 stable_node_any = stable_node_dup_any(stable_node,
1799 root);
1800 if (!stable_node_any) {
1801 /* rb_erase just run */
1802 goto again;
1803 }
1804 /*
1805 * Take any of the stable_node dups page of
1806 * this stable_node chain to let the tree walk
1807 * continue. All KSM pages belonging to the
1808 * stable_node dups in a stable_node chain
1809 * have the same content and they're
1810 * wrprotected at all times. Any will work
1811 * fine to continue the walk.
1812 */
1813 tree_page = get_ksm_page(stable_node_any, false);
1814 }
1815 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1816 if (!tree_page) {
1817 /*
1818 * If we walked over a stale stable_node,
1819 * get_ksm_page() will call rb_erase() and it
1820 * may rebalance the tree from under us. So
1821 * restart the search from scratch. Returning
1822 * NULL would be safe too, but we'd generate
1823 * false negative insertions just because some
1824 * stable_node was stale.
1825 */
1826 goto again;
1827 }
1828
1829 ret = memcmp_pages(kpage, tree_page);
1830 put_page(tree_page);
1831
1832 parent = *new;
1833 if (ret < 0)
1834 new = &parent->rb_left;
1835 else if (ret > 0)
1836 new = &parent->rb_right;
1837 else {
1838 need_chain = true;
1839 break;
1840 }
1841 }
1842
1843 stable_node_dup = alloc_stable_node();
1844 if (!stable_node_dup)
1845 return NULL;
1846
1847 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1848 stable_node_dup->kpfn = kpfn;
1849 set_page_stable_node(kpage, stable_node_dup);
1850 stable_node_dup->rmap_hlist_len = 0;
1851 DO_NUMA(stable_node_dup->nid = nid);
1852 if (!need_chain) {
1853 rb_link_node(&stable_node_dup->node, parent, new);
1854 rb_insert_color(&stable_node_dup->node, root);
1855 } else {
1856 if (!is_stable_node_chain(stable_node)) {
1857 struct stable_node *orig = stable_node;
1858 /* chain is missing so create it */
1859 stable_node = alloc_stable_node_chain(orig, root);
1860 if (!stable_node) {
1861 free_stable_node(stable_node_dup);
1862 return NULL;
1863 }
1864 }
1865 stable_node_chain_add_dup(stable_node_dup, stable_node);
1866 }
1867
1868 return stable_node_dup;
1869 }
1870
1871 /*
1872 * unstable_tree_search_insert - search for identical page,
1873 * else insert rmap_item into the unstable tree.
1874 *
1875 * This function searches for a page in the unstable tree identical to the
1876 * page currently being scanned; and if no identical page is found in the
1877 * tree, we insert rmap_item as a new object into the unstable tree.
1878 *
1879 * This function returns pointer to rmap_item found to be identical
1880 * to the currently scanned page, NULL otherwise.
1881 *
1882 * This function does both searching and inserting, because they share
1883 * the same walking algorithm in an rbtree.
1884 */
1885 static
1886 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1887 struct page *page,
1888 struct page **tree_pagep)
1889 {
1890 struct rb_node **new;
1891 struct rb_root *root;
1892 struct rb_node *parent = NULL;
1893 int nid;
1894
1895 nid = get_kpfn_nid(page_to_pfn(page));
1896 root = root_unstable_tree + nid;
1897 new = &root->rb_node;
1898
1899 while (*new) {
1900 struct rmap_item *tree_rmap_item;
1901 struct page *tree_page;
1902 int ret;
1903
1904 cond_resched();
1905 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1906 tree_page = get_mergeable_page(tree_rmap_item);
1907 if (!tree_page)
1908 return NULL;
1909
1910 /*
1911 * Don't substitute a ksm page for a forked page.
1912 */
1913 if (page == tree_page) {
1914 put_page(tree_page);
1915 return NULL;
1916 }
1917
1918 ret = memcmp_pages(page, tree_page);
1919
1920 parent = *new;
1921 if (ret < 0) {
1922 put_page(tree_page);
1923 new = &parent->rb_left;
1924 } else if (ret > 0) {
1925 put_page(tree_page);
1926 new = &parent->rb_right;
1927 } else if (!ksm_merge_across_nodes &&
1928 page_to_nid(tree_page) != nid) {
1929 /*
1930 * If tree_page has been migrated to another NUMA node,
1931 * it will be flushed out and put in the right unstable
1932 * tree next time: only merge with it when across_nodes.
1933 */
1934 put_page(tree_page);
1935 return NULL;
1936 } else {
1937 *tree_pagep = tree_page;
1938 return tree_rmap_item;
1939 }
1940 }
1941
1942 rmap_item->address |= UNSTABLE_FLAG;
1943 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1944 DO_NUMA(rmap_item->nid = nid);
1945 rb_link_node(&rmap_item->node, parent, new);
1946 rb_insert_color(&rmap_item->node, root);
1947
1948 ksm_pages_unshared++;
1949 return NULL;
1950 }
1951
1952 /*
1953 * stable_tree_append - add another rmap_item to the linked list of
1954 * rmap_items hanging off a given node of the stable tree, all sharing
1955 * the same ksm page.
1956 */
1957 static void stable_tree_append(struct rmap_item *rmap_item,
1958 struct stable_node *stable_node,
1959 bool max_page_sharing_bypass)
1960 {
1961 /*
1962 * rmap won't find this mapping if we don't insert the
1963 * rmap_item in the right stable_node
1964 * duplicate. page_migration could break later if rmap breaks,
1965 * so we can as well crash here. We really need to check for
1966 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1967 * for other negative values as an undeflow if detected here
1968 * for the first time (and not when decreasing rmap_hlist_len)
1969 * would be sign of memory corruption in the stable_node.
1970 */
1971 BUG_ON(stable_node->rmap_hlist_len < 0);
1972
1973 stable_node->rmap_hlist_len++;
1974 if (!max_page_sharing_bypass)
1975 /* possibly non fatal but unexpected overflow, only warn */
1976 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1977 ksm_max_page_sharing);
1978
1979 rmap_item->head = stable_node;
1980 rmap_item->address |= STABLE_FLAG;
1981 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1982
1983 if (rmap_item->hlist.next)
1984 ksm_pages_sharing++;
1985 else
1986 ksm_pages_shared++;
1987 }
1988
1989 /*
1990 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1991 * if not, compare checksum to previous and if it's the same, see if page can
1992 * be inserted into the unstable tree, or merged with a page already there and
1993 * both transferred to the stable tree.
1994 *
1995 * @page: the page that we are searching identical page to.
1996 * @rmap_item: the reverse mapping into the virtual address of this page
1997 */
1998 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1999 {
2000 struct mm_struct *mm = rmap_item->mm;
2001 struct rmap_item *tree_rmap_item;
2002 struct page *tree_page = NULL;
2003 struct stable_node *stable_node;
2004 struct page *kpage;
2005 unsigned int checksum;
2006 int err;
2007 bool max_page_sharing_bypass = false;
2008
2009 stable_node = page_stable_node(page);
2010 if (stable_node) {
2011 if (stable_node->head != &migrate_nodes &&
2012 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2013 NUMA(stable_node->nid)) {
2014 stable_node_dup_del(stable_node);
2015 stable_node->head = &migrate_nodes;
2016 list_add(&stable_node->list, stable_node->head);
2017 }
2018 if (stable_node->head != &migrate_nodes &&
2019 rmap_item->head == stable_node)
2020 return;
2021 /*
2022 * If it's a KSM fork, allow it to go over the sharing limit
2023 * without warnings.
2024 */
2025 if (!is_page_sharing_candidate(stable_node))
2026 max_page_sharing_bypass = true;
2027 }
2028
2029 /* We first start with searching the page inside the stable tree */
2030 kpage = stable_tree_search(page);
2031 if (kpage == page && rmap_item->head == stable_node) {
2032 put_page(kpage);
2033 return;
2034 }
2035
2036 remove_rmap_item_from_tree(rmap_item);
2037
2038 if (kpage) {
2039 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2040 if (!err) {
2041 /*
2042 * The page was successfully merged:
2043 * add its rmap_item to the stable tree.
2044 */
2045 lock_page(kpage);
2046 stable_tree_append(rmap_item, page_stable_node(kpage),
2047 max_page_sharing_bypass);
2048 unlock_page(kpage);
2049 }
2050 put_page(kpage);
2051 return;
2052 }
2053
2054 /*
2055 * If the hash value of the page has changed from the last time
2056 * we calculated it, this page is changing frequently: therefore we
2057 * don't want to insert it in the unstable tree, and we don't want
2058 * to waste our time searching for something identical to it there.
2059 */
2060 checksum = calc_checksum(page);
2061 if (rmap_item->oldchecksum != checksum) {
2062 rmap_item->oldchecksum = checksum;
2063 return;
2064 }
2065
2066 /*
2067 * Same checksum as an empty page. We attempt to merge it with the
2068 * appropriate zero page if the user enabled this via sysfs.
2069 */
2070 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2071 struct vm_area_struct *vma;
2072
2073 down_read(&mm->mmap_sem);
2074 vma = find_mergeable_vma(mm, rmap_item->address);
2075 err = try_to_merge_one_page(vma, page,
2076 ZERO_PAGE(rmap_item->address));
2077 up_read(&mm->mmap_sem);
2078 /*
2079 * In case of failure, the page was not really empty, so we
2080 * need to continue. Otherwise we're done.
2081 */
2082 if (!err)
2083 return;
2084 }
2085 tree_rmap_item =
2086 unstable_tree_search_insert(rmap_item, page, &tree_page);
2087 if (tree_rmap_item) {
2088 bool split;
2089
2090 kpage = try_to_merge_two_pages(rmap_item, page,
2091 tree_rmap_item, tree_page);
2092 /*
2093 * If both pages we tried to merge belong to the same compound
2094 * page, then we actually ended up increasing the reference
2095 * count of the same compound page twice, and split_huge_page
2096 * failed.
2097 * Here we set a flag if that happened, and we use it later to
2098 * try split_huge_page again. Since we call put_page right
2099 * afterwards, the reference count will be correct and
2100 * split_huge_page should succeed.
2101 */
2102 split = PageTransCompound(page)
2103 && compound_head(page) == compound_head(tree_page);
2104 put_page(tree_page);
2105 if (kpage) {
2106 /*
2107 * The pages were successfully merged: insert new
2108 * node in the stable tree and add both rmap_items.
2109 */
2110 lock_page(kpage);
2111 stable_node = stable_tree_insert(kpage);
2112 if (stable_node) {
2113 stable_tree_append(tree_rmap_item, stable_node,
2114 false);
2115 stable_tree_append(rmap_item, stable_node,
2116 false);
2117 }
2118 unlock_page(kpage);
2119
2120 /*
2121 * If we fail to insert the page into the stable tree,
2122 * we will have 2 virtual addresses that are pointing
2123 * to a ksm page left outside the stable tree,
2124 * in which case we need to break_cow on both.
2125 */
2126 if (!stable_node) {
2127 break_cow(tree_rmap_item);
2128 break_cow(rmap_item);
2129 }
2130 } else if (split) {
2131 /*
2132 * We are here if we tried to merge two pages and
2133 * failed because they both belonged to the same
2134 * compound page. We will split the page now, but no
2135 * merging will take place.
2136 * We do not want to add the cost of a full lock; if
2137 * the page is locked, it is better to skip it and
2138 * perhaps try again later.
2139 */
2140 if (!trylock_page(page))
2141 return;
2142 split_huge_page(page);
2143 unlock_page(page);
2144 }
2145 }
2146 }
2147
2148 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2149 struct rmap_item **rmap_list,
2150 unsigned long addr)
2151 {
2152 struct rmap_item *rmap_item;
2153
2154 while (*rmap_list) {
2155 rmap_item = *rmap_list;
2156 if ((rmap_item->address & PAGE_MASK) == addr)
2157 return rmap_item;
2158 if (rmap_item->address > addr)
2159 break;
2160 *rmap_list = rmap_item->rmap_list;
2161 remove_rmap_item_from_tree(rmap_item);
2162 free_rmap_item(rmap_item);
2163 }
2164
2165 rmap_item = alloc_rmap_item();
2166 if (rmap_item) {
2167 /* It has already been zeroed */
2168 rmap_item->mm = mm_slot->mm;
2169 rmap_item->address = addr;
2170 rmap_item->rmap_list = *rmap_list;
2171 *rmap_list = rmap_item;
2172 }
2173 return rmap_item;
2174 }
2175
2176 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2177 {
2178 struct mm_struct *mm;
2179 struct mm_slot *slot;
2180 struct vm_area_struct *vma;
2181 struct rmap_item *rmap_item;
2182 int nid;
2183
2184 if (list_empty(&ksm_mm_head.mm_list))
2185 return NULL;
2186
2187 slot = ksm_scan.mm_slot;
2188 if (slot == &ksm_mm_head) {
2189 /*
2190 * A number of pages can hang around indefinitely on per-cpu
2191 * pagevecs, raised page count preventing write_protect_page
2192 * from merging them. Though it doesn't really matter much,
2193 * it is puzzling to see some stuck in pages_volatile until
2194 * other activity jostles them out, and they also prevented
2195 * LTP's KSM test from succeeding deterministically; so drain
2196 * them here (here rather than on entry to ksm_do_scan(),
2197 * so we don't IPI too often when pages_to_scan is set low).
2198 */
2199 lru_add_drain_all();
2200
2201 /*
2202 * Whereas stale stable_nodes on the stable_tree itself
2203 * get pruned in the regular course of stable_tree_search(),
2204 * those moved out to the migrate_nodes list can accumulate:
2205 * so prune them once before each full scan.
2206 */
2207 if (!ksm_merge_across_nodes) {
2208 struct stable_node *stable_node, *next;
2209 struct page *page;
2210
2211 list_for_each_entry_safe(stable_node, next,
2212 &migrate_nodes, list) {
2213 page = get_ksm_page(stable_node, false);
2214 if (page)
2215 put_page(page);
2216 cond_resched();
2217 }
2218 }
2219
2220 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2221 root_unstable_tree[nid] = RB_ROOT;
2222
2223 spin_lock(&ksm_mmlist_lock);
2224 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2225 ksm_scan.mm_slot = slot;
2226 spin_unlock(&ksm_mmlist_lock);
2227 /*
2228 * Although we tested list_empty() above, a racing __ksm_exit
2229 * of the last mm on the list may have removed it since then.
2230 */
2231 if (slot == &ksm_mm_head)
2232 return NULL;
2233 next_mm:
2234 ksm_scan.address = 0;
2235 ksm_scan.rmap_list = &slot->rmap_list;
2236 }
2237
2238 mm = slot->mm;
2239 down_read(&mm->mmap_sem);
2240 if (ksm_test_exit(mm))
2241 vma = NULL;
2242 else
2243 vma = find_vma(mm, ksm_scan.address);
2244
2245 for (; vma; vma = vma->vm_next) {
2246 if (!(vma->vm_flags & VM_MERGEABLE))
2247 continue;
2248 if (ksm_scan.address < vma->vm_start)
2249 ksm_scan.address = vma->vm_start;
2250 if (!vma->anon_vma)
2251 ksm_scan.address = vma->vm_end;
2252
2253 while (ksm_scan.address < vma->vm_end) {
2254 if (ksm_test_exit(mm))
2255 break;
2256 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2257 if (IS_ERR_OR_NULL(*page)) {
2258 ksm_scan.address += PAGE_SIZE;
2259 cond_resched();
2260 continue;
2261 }
2262 if (PageAnon(*page)) {
2263 flush_anon_page(vma, *page, ksm_scan.address);
2264 flush_dcache_page(*page);
2265 rmap_item = get_next_rmap_item(slot,
2266 ksm_scan.rmap_list, ksm_scan.address);
2267 if (rmap_item) {
2268 ksm_scan.rmap_list =
2269 &rmap_item->rmap_list;
2270 ksm_scan.address += PAGE_SIZE;
2271 } else
2272 put_page(*page);
2273 up_read(&mm->mmap_sem);
2274 return rmap_item;
2275 }
2276 put_page(*page);
2277 ksm_scan.address += PAGE_SIZE;
2278 cond_resched();
2279 }
2280 }
2281
2282 if (ksm_test_exit(mm)) {
2283 ksm_scan.address = 0;
2284 ksm_scan.rmap_list = &slot->rmap_list;
2285 }
2286 /*
2287 * Nuke all the rmap_items that are above this current rmap:
2288 * because there were no VM_MERGEABLE vmas with such addresses.
2289 */
2290 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2291
2292 spin_lock(&ksm_mmlist_lock);
2293 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2294 struct mm_slot, mm_list);
2295 if (ksm_scan.address == 0) {
2296 /*
2297 * We've completed a full scan of all vmas, holding mmap_sem
2298 * throughout, and found no VM_MERGEABLE: so do the same as
2299 * __ksm_exit does to remove this mm from all our lists now.
2300 * This applies either when cleaning up after __ksm_exit
2301 * (but beware: we can reach here even before __ksm_exit),
2302 * or when all VM_MERGEABLE areas have been unmapped (and
2303 * mmap_sem then protects against race with MADV_MERGEABLE).
2304 */
2305 hash_del(&slot->link);
2306 list_del(&slot->mm_list);
2307 spin_unlock(&ksm_mmlist_lock);
2308
2309 free_mm_slot(slot);
2310 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2311 up_read(&mm->mmap_sem);
2312 mmdrop(mm);
2313 } else {
2314 up_read(&mm->mmap_sem);
2315 /*
2316 * up_read(&mm->mmap_sem) first because after
2317 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2318 * already have been freed under us by __ksm_exit()
2319 * because the "mm_slot" is still hashed and
2320 * ksm_scan.mm_slot doesn't point to it anymore.
2321 */
2322 spin_unlock(&ksm_mmlist_lock);
2323 }
2324
2325 /* Repeat until we've completed scanning the whole list */
2326 slot = ksm_scan.mm_slot;
2327 if (slot != &ksm_mm_head)
2328 goto next_mm;
2329
2330 ksm_scan.seqnr++;
2331 return NULL;
2332 }
2333
2334 /**
2335 * ksm_do_scan - the ksm scanner main worker function.
2336 * @scan_npages - number of pages we want to scan before we return.
2337 */
2338 static void ksm_do_scan(unsigned int scan_npages)
2339 {
2340 struct rmap_item *rmap_item;
2341 struct page *uninitialized_var(page);
2342
2343 while (scan_npages-- && likely(!freezing(current))) {
2344 cond_resched();
2345 rmap_item = scan_get_next_rmap_item(&page);
2346 if (!rmap_item)
2347 return;
2348 cmp_and_merge_page(page, rmap_item);
2349 put_page(page);
2350 }
2351 }
2352
2353 static int ksmd_should_run(void)
2354 {
2355 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2356 }
2357
2358 static int ksm_scan_thread(void *nothing)
2359 {
2360 set_freezable();
2361 set_user_nice(current, 5);
2362
2363 while (!kthread_should_stop()) {
2364 mutex_lock(&ksm_thread_mutex);
2365 wait_while_offlining();
2366 if (ksmd_should_run())
2367 ksm_do_scan(ksm_thread_pages_to_scan);
2368 mutex_unlock(&ksm_thread_mutex);
2369
2370 try_to_freeze();
2371
2372 if (ksmd_should_run()) {
2373 schedule_timeout_interruptible(
2374 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2375 } else {
2376 wait_event_freezable(ksm_thread_wait,
2377 ksmd_should_run() || kthread_should_stop());
2378 }
2379 }
2380 return 0;
2381 }
2382
2383 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2384 unsigned long end, int advice, unsigned long *vm_flags)
2385 {
2386 struct mm_struct *mm = vma->vm_mm;
2387 int err;
2388
2389 switch (advice) {
2390 case MADV_MERGEABLE:
2391 /*
2392 * Be somewhat over-protective for now!
2393 */
2394 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2395 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2396 VM_HUGETLB | VM_MIXEDMAP))
2397 return 0; /* just ignore the advice */
2398
2399 #ifdef VM_SAO
2400 if (*vm_flags & VM_SAO)
2401 return 0;
2402 #endif
2403
2404 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2405 err = __ksm_enter(mm);
2406 if (err)
2407 return err;
2408 }
2409
2410 *vm_flags |= VM_MERGEABLE;
2411 break;
2412
2413 case MADV_UNMERGEABLE:
2414 if (!(*vm_flags & VM_MERGEABLE))
2415 return 0; /* just ignore the advice */
2416
2417 if (vma->anon_vma) {
2418 err = unmerge_ksm_pages(vma, start, end);
2419 if (err)
2420 return err;
2421 }
2422
2423 *vm_flags &= ~VM_MERGEABLE;
2424 break;
2425 }
2426
2427 return 0;
2428 }
2429
2430 int __ksm_enter(struct mm_struct *mm)
2431 {
2432 struct mm_slot *mm_slot;
2433 int needs_wakeup;
2434
2435 mm_slot = alloc_mm_slot();
2436 if (!mm_slot)
2437 return -ENOMEM;
2438
2439 /* Check ksm_run too? Would need tighter locking */
2440 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2441
2442 spin_lock(&ksm_mmlist_lock);
2443 insert_to_mm_slots_hash(mm, mm_slot);
2444 /*
2445 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2446 * insert just behind the scanning cursor, to let the area settle
2447 * down a little; when fork is followed by immediate exec, we don't
2448 * want ksmd to waste time setting up and tearing down an rmap_list.
2449 *
2450 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2451 * scanning cursor, otherwise KSM pages in newly forked mms will be
2452 * missed: then we might as well insert at the end of the list.
2453 */
2454 if (ksm_run & KSM_RUN_UNMERGE)
2455 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2456 else
2457 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2458 spin_unlock(&ksm_mmlist_lock);
2459
2460 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2461 mmgrab(mm);
2462
2463 if (needs_wakeup)
2464 wake_up_interruptible(&ksm_thread_wait);
2465
2466 return 0;
2467 }
2468
2469 void __ksm_exit(struct mm_struct *mm)
2470 {
2471 struct mm_slot *mm_slot;
2472 int easy_to_free = 0;
2473
2474 /*
2475 * This process is exiting: if it's straightforward (as is the
2476 * case when ksmd was never running), free mm_slot immediately.
2477 * But if it's at the cursor or has rmap_items linked to it, use
2478 * mmap_sem to synchronize with any break_cows before pagetables
2479 * are freed, and leave the mm_slot on the list for ksmd to free.
2480 * Beware: ksm may already have noticed it exiting and freed the slot.
2481 */
2482
2483 spin_lock(&ksm_mmlist_lock);
2484 mm_slot = get_mm_slot(mm);
2485 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2486 if (!mm_slot->rmap_list) {
2487 hash_del(&mm_slot->link);
2488 list_del(&mm_slot->mm_list);
2489 easy_to_free = 1;
2490 } else {
2491 list_move(&mm_slot->mm_list,
2492 &ksm_scan.mm_slot->mm_list);
2493 }
2494 }
2495 spin_unlock(&ksm_mmlist_lock);
2496
2497 if (easy_to_free) {
2498 free_mm_slot(mm_slot);
2499 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2500 mmdrop(mm);
2501 } else if (mm_slot) {
2502 down_write(&mm->mmap_sem);
2503 up_write(&mm->mmap_sem);
2504 }
2505 }
2506
2507 struct page *ksm_might_need_to_copy(struct page *page,
2508 struct vm_area_struct *vma, unsigned long address)
2509 {
2510 struct anon_vma *anon_vma = page_anon_vma(page);
2511 struct page *new_page;
2512
2513 if (PageKsm(page)) {
2514 if (page_stable_node(page) &&
2515 !(ksm_run & KSM_RUN_UNMERGE))
2516 return page; /* no need to copy it */
2517 } else if (!anon_vma) {
2518 return page; /* no need to copy it */
2519 } else if (anon_vma->root == vma->anon_vma->root &&
2520 page->index == linear_page_index(vma, address)) {
2521 return page; /* still no need to copy it */
2522 }
2523 if (!PageUptodate(page))
2524 return page; /* let do_swap_page report the error */
2525
2526 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2527 if (new_page) {
2528 copy_user_highpage(new_page, page, address, vma);
2529
2530 SetPageDirty(new_page);
2531 __SetPageUptodate(new_page);
2532 __SetPageLocked(new_page);
2533 }
2534
2535 return new_page;
2536 }
2537
2538 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2539 {
2540 struct stable_node *stable_node;
2541 struct rmap_item *rmap_item;
2542 int search_new_forks = 0;
2543
2544 VM_BUG_ON_PAGE(!PageKsm(page), page);
2545
2546 /*
2547 * Rely on the page lock to protect against concurrent modifications
2548 * to that page's node of the stable tree.
2549 */
2550 VM_BUG_ON_PAGE(!PageLocked(page), page);
2551
2552 stable_node = page_stable_node(page);
2553 if (!stable_node)
2554 return;
2555 again:
2556 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2557 struct anon_vma *anon_vma = rmap_item->anon_vma;
2558 struct anon_vma_chain *vmac;
2559 struct vm_area_struct *vma;
2560
2561 cond_resched();
2562 anon_vma_lock_read(anon_vma);
2563 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2564 0, ULONG_MAX) {
2565 cond_resched();
2566 vma = vmac->vma;
2567 if (rmap_item->address < vma->vm_start ||
2568 rmap_item->address >= vma->vm_end)
2569 continue;
2570 /*
2571 * Initially we examine only the vma which covers this
2572 * rmap_item; but later, if there is still work to do,
2573 * we examine covering vmas in other mms: in case they
2574 * were forked from the original since ksmd passed.
2575 */
2576 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2577 continue;
2578
2579 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2580 continue;
2581
2582 if (!rwc->rmap_one(page, vma,
2583 rmap_item->address, rwc->arg)) {
2584 anon_vma_unlock_read(anon_vma);
2585 return;
2586 }
2587 if (rwc->done && rwc->done(page)) {
2588 anon_vma_unlock_read(anon_vma);
2589 return;
2590 }
2591 }
2592 anon_vma_unlock_read(anon_vma);
2593 }
2594 if (!search_new_forks++)
2595 goto again;
2596 }
2597
2598 #ifdef CONFIG_MIGRATION
2599 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2600 {
2601 struct stable_node *stable_node;
2602
2603 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2604 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2605 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2606
2607 stable_node = page_stable_node(newpage);
2608 if (stable_node) {
2609 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2610 stable_node->kpfn = page_to_pfn(newpage);
2611 /*
2612 * newpage->mapping was set in advance; now we need smp_wmb()
2613 * to make sure that the new stable_node->kpfn is visible
2614 * to get_ksm_page() before it can see that oldpage->mapping
2615 * has gone stale (or that PageSwapCache has been cleared).
2616 */
2617 smp_wmb();
2618 set_page_stable_node(oldpage, NULL);
2619 }
2620 }
2621 #endif /* CONFIG_MIGRATION */
2622
2623 #ifdef CONFIG_MEMORY_HOTREMOVE
2624 static void wait_while_offlining(void)
2625 {
2626 while (ksm_run & KSM_RUN_OFFLINE) {
2627 mutex_unlock(&ksm_thread_mutex);
2628 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2629 TASK_UNINTERRUPTIBLE);
2630 mutex_lock(&ksm_thread_mutex);
2631 }
2632 }
2633
2634 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2635 unsigned long start_pfn,
2636 unsigned long end_pfn)
2637 {
2638 if (stable_node->kpfn >= start_pfn &&
2639 stable_node->kpfn < end_pfn) {
2640 /*
2641 * Don't get_ksm_page, page has already gone:
2642 * which is why we keep kpfn instead of page*
2643 */
2644 remove_node_from_stable_tree(stable_node);
2645 return true;
2646 }
2647 return false;
2648 }
2649
2650 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2651 unsigned long start_pfn,
2652 unsigned long end_pfn,
2653 struct rb_root *root)
2654 {
2655 struct stable_node *dup;
2656 struct hlist_node *hlist_safe;
2657
2658 if (!is_stable_node_chain(stable_node)) {
2659 VM_BUG_ON(is_stable_node_dup(stable_node));
2660 return stable_node_dup_remove_range(stable_node, start_pfn,
2661 end_pfn);
2662 }
2663
2664 hlist_for_each_entry_safe(dup, hlist_safe,
2665 &stable_node->hlist, hlist_dup) {
2666 VM_BUG_ON(!is_stable_node_dup(dup));
2667 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2668 }
2669 if (hlist_empty(&stable_node->hlist)) {
2670 free_stable_node_chain(stable_node, root);
2671 return true; /* notify caller that tree was rebalanced */
2672 } else
2673 return false;
2674 }
2675
2676 static void ksm_check_stable_tree(unsigned long start_pfn,
2677 unsigned long end_pfn)
2678 {
2679 struct stable_node *stable_node, *next;
2680 struct rb_node *node;
2681 int nid;
2682
2683 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2684 node = rb_first(root_stable_tree + nid);
2685 while (node) {
2686 stable_node = rb_entry(node, struct stable_node, node);
2687 if (stable_node_chain_remove_range(stable_node,
2688 start_pfn, end_pfn,
2689 root_stable_tree +
2690 nid))
2691 node = rb_first(root_stable_tree + nid);
2692 else
2693 node = rb_next(node);
2694 cond_resched();
2695 }
2696 }
2697 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2698 if (stable_node->kpfn >= start_pfn &&
2699 stable_node->kpfn < end_pfn)
2700 remove_node_from_stable_tree(stable_node);
2701 cond_resched();
2702 }
2703 }
2704
2705 static int ksm_memory_callback(struct notifier_block *self,
2706 unsigned long action, void *arg)
2707 {
2708 struct memory_notify *mn = arg;
2709
2710 switch (action) {
2711 case MEM_GOING_OFFLINE:
2712 /*
2713 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2714 * and remove_all_stable_nodes() while memory is going offline:
2715 * it is unsafe for them to touch the stable tree at this time.
2716 * But unmerge_ksm_pages(), rmap lookups and other entry points
2717 * which do not need the ksm_thread_mutex are all safe.
2718 */
2719 mutex_lock(&ksm_thread_mutex);
2720 ksm_run |= KSM_RUN_OFFLINE;
2721 mutex_unlock(&ksm_thread_mutex);
2722 break;
2723
2724 case MEM_OFFLINE:
2725 /*
2726 * Most of the work is done by page migration; but there might
2727 * be a few stable_nodes left over, still pointing to struct
2728 * pages which have been offlined: prune those from the tree,
2729 * otherwise get_ksm_page() might later try to access a
2730 * non-existent struct page.
2731 */
2732 ksm_check_stable_tree(mn->start_pfn,
2733 mn->start_pfn + mn->nr_pages);
2734 /* fallthrough */
2735
2736 case MEM_CANCEL_OFFLINE:
2737 mutex_lock(&ksm_thread_mutex);
2738 ksm_run &= ~KSM_RUN_OFFLINE;
2739 mutex_unlock(&ksm_thread_mutex);
2740
2741 smp_mb(); /* wake_up_bit advises this */
2742 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2743 break;
2744 }
2745 return NOTIFY_OK;
2746 }
2747 #else
2748 static void wait_while_offlining(void)
2749 {
2750 }
2751 #endif /* CONFIG_MEMORY_HOTREMOVE */
2752
2753 #ifdef CONFIG_SYSFS
2754 /*
2755 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2756 */
2757
2758 #define KSM_ATTR_RO(_name) \
2759 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2760 #define KSM_ATTR(_name) \
2761 static struct kobj_attribute _name##_attr = \
2762 __ATTR(_name, 0644, _name##_show, _name##_store)
2763
2764 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2765 struct kobj_attribute *attr, char *buf)
2766 {
2767 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2768 }
2769
2770 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2771 struct kobj_attribute *attr,
2772 const char *buf, size_t count)
2773 {
2774 unsigned long msecs;
2775 int err;
2776
2777 err = kstrtoul(buf, 10, &msecs);
2778 if (err || msecs > UINT_MAX)
2779 return -EINVAL;
2780
2781 ksm_thread_sleep_millisecs = msecs;
2782
2783 return count;
2784 }
2785 KSM_ATTR(sleep_millisecs);
2786
2787 static ssize_t pages_to_scan_show(struct kobject *kobj,
2788 struct kobj_attribute *attr, char *buf)
2789 {
2790 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2791 }
2792
2793 static ssize_t pages_to_scan_store(struct kobject *kobj,
2794 struct kobj_attribute *attr,
2795 const char *buf, size_t count)
2796 {
2797 int err;
2798 unsigned long nr_pages;
2799
2800 err = kstrtoul(buf, 10, &nr_pages);
2801 if (err || nr_pages > UINT_MAX)
2802 return -EINVAL;
2803
2804 ksm_thread_pages_to_scan = nr_pages;
2805
2806 return count;
2807 }
2808 KSM_ATTR(pages_to_scan);
2809
2810 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2811 char *buf)
2812 {
2813 return sprintf(buf, "%lu\n", ksm_run);
2814 }
2815
2816 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2817 const char *buf, size_t count)
2818 {
2819 int err;
2820 unsigned long flags;
2821
2822 err = kstrtoul(buf, 10, &flags);
2823 if (err || flags > UINT_MAX)
2824 return -EINVAL;
2825 if (flags > KSM_RUN_UNMERGE)
2826 return -EINVAL;
2827
2828 /*
2829 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2830 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2831 * breaking COW to free the pages_shared (but leaves mm_slots
2832 * on the list for when ksmd may be set running again).
2833 */
2834
2835 mutex_lock(&ksm_thread_mutex);
2836 wait_while_offlining();
2837 if (ksm_run != flags) {
2838 ksm_run = flags;
2839 if (flags & KSM_RUN_UNMERGE) {
2840 set_current_oom_origin();
2841 err = unmerge_and_remove_all_rmap_items();
2842 clear_current_oom_origin();
2843 if (err) {
2844 ksm_run = KSM_RUN_STOP;
2845 count = err;
2846 }
2847 }
2848 }
2849 mutex_unlock(&ksm_thread_mutex);
2850
2851 if (flags & KSM_RUN_MERGE)
2852 wake_up_interruptible(&ksm_thread_wait);
2853
2854 return count;
2855 }
2856 KSM_ATTR(run);
2857
2858 #ifdef CONFIG_NUMA
2859 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2860 struct kobj_attribute *attr, char *buf)
2861 {
2862 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2863 }
2864
2865 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2866 struct kobj_attribute *attr,
2867 const char *buf, size_t count)
2868 {
2869 int err;
2870 unsigned long knob;
2871
2872 err = kstrtoul(buf, 10, &knob);
2873 if (err)
2874 return err;
2875 if (knob > 1)
2876 return -EINVAL;
2877
2878 mutex_lock(&ksm_thread_mutex);
2879 wait_while_offlining();
2880 if (ksm_merge_across_nodes != knob) {
2881 if (ksm_pages_shared || remove_all_stable_nodes())
2882 err = -EBUSY;
2883 else if (root_stable_tree == one_stable_tree) {
2884 struct rb_root *buf;
2885 /*
2886 * This is the first time that we switch away from the
2887 * default of merging across nodes: must now allocate
2888 * a buffer to hold as many roots as may be needed.
2889 * Allocate stable and unstable together:
2890 * MAXSMP NODES_SHIFT 10 will use 16kB.
2891 */
2892 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2893 GFP_KERNEL);
2894 /* Let us assume that RB_ROOT is NULL is zero */
2895 if (!buf)
2896 err = -ENOMEM;
2897 else {
2898 root_stable_tree = buf;
2899 root_unstable_tree = buf + nr_node_ids;
2900 /* Stable tree is empty but not the unstable */
2901 root_unstable_tree[0] = one_unstable_tree[0];
2902 }
2903 }
2904 if (!err) {
2905 ksm_merge_across_nodes = knob;
2906 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2907 }
2908 }
2909 mutex_unlock(&ksm_thread_mutex);
2910
2911 return err ? err : count;
2912 }
2913 KSM_ATTR(merge_across_nodes);
2914 #endif
2915
2916 static ssize_t use_zero_pages_show(struct kobject *kobj,
2917 struct kobj_attribute *attr, char *buf)
2918 {
2919 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2920 }
2921 static ssize_t use_zero_pages_store(struct kobject *kobj,
2922 struct kobj_attribute *attr,
2923 const char *buf, size_t count)
2924 {
2925 int err;
2926 bool value;
2927
2928 err = kstrtobool(buf, &value);
2929 if (err)
2930 return -EINVAL;
2931
2932 ksm_use_zero_pages = value;
2933
2934 return count;
2935 }
2936 KSM_ATTR(use_zero_pages);
2937
2938 static ssize_t max_page_sharing_show(struct kobject *kobj,
2939 struct kobj_attribute *attr, char *buf)
2940 {
2941 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2942 }
2943
2944 static ssize_t max_page_sharing_store(struct kobject *kobj,
2945 struct kobj_attribute *attr,
2946 const char *buf, size_t count)
2947 {
2948 int err;
2949 int knob;
2950
2951 err = kstrtoint(buf, 10, &knob);
2952 if (err)
2953 return err;
2954 /*
2955 * When a KSM page is created it is shared by 2 mappings. This
2956 * being a signed comparison, it implicitly verifies it's not
2957 * negative.
2958 */
2959 if (knob < 2)
2960 return -EINVAL;
2961
2962 if (READ_ONCE(ksm_max_page_sharing) == knob)
2963 return count;
2964
2965 mutex_lock(&ksm_thread_mutex);
2966 wait_while_offlining();
2967 if (ksm_max_page_sharing != knob) {
2968 if (ksm_pages_shared || remove_all_stable_nodes())
2969 err = -EBUSY;
2970 else
2971 ksm_max_page_sharing = knob;
2972 }
2973 mutex_unlock(&ksm_thread_mutex);
2974
2975 return err ? err : count;
2976 }
2977 KSM_ATTR(max_page_sharing);
2978
2979 static ssize_t pages_shared_show(struct kobject *kobj,
2980 struct kobj_attribute *attr, char *buf)
2981 {
2982 return sprintf(buf, "%lu\n", ksm_pages_shared);
2983 }
2984 KSM_ATTR_RO(pages_shared);
2985
2986 static ssize_t pages_sharing_show(struct kobject *kobj,
2987 struct kobj_attribute *attr, char *buf)
2988 {
2989 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2990 }
2991 KSM_ATTR_RO(pages_sharing);
2992
2993 static ssize_t pages_unshared_show(struct kobject *kobj,
2994 struct kobj_attribute *attr, char *buf)
2995 {
2996 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2997 }
2998 KSM_ATTR_RO(pages_unshared);
2999
3000 static ssize_t pages_volatile_show(struct kobject *kobj,
3001 struct kobj_attribute *attr, char *buf)
3002 {
3003 long ksm_pages_volatile;
3004
3005 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3006 - ksm_pages_sharing - ksm_pages_unshared;
3007 /*
3008 * It was not worth any locking to calculate that statistic,
3009 * but it might therefore sometimes be negative: conceal that.
3010 */
3011 if (ksm_pages_volatile < 0)
3012 ksm_pages_volatile = 0;
3013 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3014 }
3015 KSM_ATTR_RO(pages_volatile);
3016
3017 static ssize_t stable_node_dups_show(struct kobject *kobj,
3018 struct kobj_attribute *attr, char *buf)
3019 {
3020 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3021 }
3022 KSM_ATTR_RO(stable_node_dups);
3023
3024 static ssize_t stable_node_chains_show(struct kobject *kobj,
3025 struct kobj_attribute *attr, char *buf)
3026 {
3027 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3028 }
3029 KSM_ATTR_RO(stable_node_chains);
3030
3031 static ssize_t
3032 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3033 struct kobj_attribute *attr,
3034 char *buf)
3035 {
3036 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3037 }
3038
3039 static ssize_t
3040 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3041 struct kobj_attribute *attr,
3042 const char *buf, size_t count)
3043 {
3044 unsigned long msecs;
3045 int err;
3046
3047 err = kstrtoul(buf, 10, &msecs);
3048 if (err || msecs > UINT_MAX)
3049 return -EINVAL;
3050
3051 ksm_stable_node_chains_prune_millisecs = msecs;
3052
3053 return count;
3054 }
3055 KSM_ATTR(stable_node_chains_prune_millisecs);
3056
3057 static ssize_t full_scans_show(struct kobject *kobj,
3058 struct kobj_attribute *attr, char *buf)
3059 {
3060 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3061 }
3062 KSM_ATTR_RO(full_scans);
3063
3064 static struct attribute *ksm_attrs[] = {
3065 &sleep_millisecs_attr.attr,
3066 &pages_to_scan_attr.attr,
3067 &run_attr.attr,
3068 &pages_shared_attr.attr,
3069 &pages_sharing_attr.attr,
3070 &pages_unshared_attr.attr,
3071 &pages_volatile_attr.attr,
3072 &full_scans_attr.attr,
3073 #ifdef CONFIG_NUMA
3074 &merge_across_nodes_attr.attr,
3075 #endif
3076 &max_page_sharing_attr.attr,
3077 &stable_node_chains_attr.attr,
3078 &stable_node_dups_attr.attr,
3079 &stable_node_chains_prune_millisecs_attr.attr,
3080 &use_zero_pages_attr.attr,
3081 NULL,
3082 };
3083
3084 static const struct attribute_group ksm_attr_group = {
3085 .attrs = ksm_attrs,
3086 .name = "ksm",
3087 };
3088 #endif /* CONFIG_SYSFS */
3089
3090 static int __init ksm_init(void)
3091 {
3092 struct task_struct *ksm_thread;
3093 int err;
3094
3095 /* The correct value depends on page size and endianness */
3096 zero_checksum = calc_checksum(ZERO_PAGE(0));
3097 /* Default to false for backwards compatibility */
3098 ksm_use_zero_pages = false;
3099
3100 err = ksm_slab_init();
3101 if (err)
3102 goto out;
3103
3104 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3105 if (IS_ERR(ksm_thread)) {
3106 pr_err("ksm: creating kthread failed\n");
3107 err = PTR_ERR(ksm_thread);
3108 goto out_free;
3109 }
3110
3111 #ifdef CONFIG_SYSFS
3112 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3113 if (err) {
3114 pr_err("ksm: register sysfs failed\n");
3115 kthread_stop(ksm_thread);
3116 goto out_free;
3117 }
3118 #else
3119 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3120
3121 #endif /* CONFIG_SYSFS */
3122
3123 #ifdef CONFIG_MEMORY_HOTREMOVE
3124 /* There is no significance to this priority 100 */
3125 hotplug_memory_notifier(ksm_memory_callback, 100);
3126 #endif
3127 return 0;
3128
3129 out_free:
3130 ksm_slab_free();
3131 out:
3132 return err;
3133 }
3134 subsys_initcall(ksm_init);