mm: fix integer as NULL pointer warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
37
38 /*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41 static DEFINE_SPINLOCK(hugetlb_lock);
42
43 static void clear_huge_page(struct page *page, unsigned long addr)
44 {
45 int i;
46
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51 }
52 }
53
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
56 {
57 int i;
58
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63 }
64 }
65
66 static void enqueue_huge_page(struct page *page)
67 {
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
72 }
73
74 static struct page *dequeue_huge_page(void)
75 {
76 int nid;
77 struct page *page = NULL;
78
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
87 }
88 }
89 return page;
90 }
91
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
94 {
95 int nid;
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 nodemask_t *nodemask;
99 struct zonelist *zonelist = huge_zonelist(vma, address,
100 htlb_alloc_mask, &mpol, &nodemask);
101 struct zone *zone;
102 struct zoneref *z;
103
104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) {
106 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108 !list_empty(&hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next,
110 struct page, lru);
111 list_del(&page->lru);
112 free_huge_pages--;
113 free_huge_pages_node[nid]--;
114 if (vma && vma->vm_flags & VM_MAYSHARE)
115 resv_huge_pages--;
116 break;
117 }
118 }
119 mpol_cond_put(mpol);
120 return page;
121 }
122
123 static void update_and_free_page(struct page *page)
124 {
125 int i;
126 nr_huge_pages--;
127 nr_huge_pages_node[page_to_nid(page)]--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback);
132 }
133 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page);
135 arch_release_hugepage(page);
136 __free_pages(page, HUGETLB_PAGE_ORDER);
137 }
138
139 static void free_huge_page(struct page *page)
140 {
141 int nid = page_to_nid(page);
142 struct address_space *mapping;
143
144 mapping = (struct address_space *) page_private(page);
145 set_page_private(page, 0);
146 BUG_ON(page_count(page));
147 INIT_LIST_HEAD(&page->lru);
148
149 spin_lock(&hugetlb_lock);
150 if (surplus_huge_pages_node[nid]) {
151 update_and_free_page(page);
152 surplus_huge_pages--;
153 surplus_huge_pages_node[nid]--;
154 } else {
155 enqueue_huge_page(page);
156 }
157 spin_unlock(&hugetlb_lock);
158 if (mapping)
159 hugetlb_put_quota(mapping, 1);
160 }
161
162 /*
163 * Increment or decrement surplus_huge_pages. Keep node-specific counters
164 * balanced by operating on them in a round-robin fashion.
165 * Returns 1 if an adjustment was made.
166 */
167 static int adjust_pool_surplus(int delta)
168 {
169 static int prev_nid;
170 int nid = prev_nid;
171 int ret = 0;
172
173 VM_BUG_ON(delta != -1 && delta != 1);
174 do {
175 nid = next_node(nid, node_online_map);
176 if (nid == MAX_NUMNODES)
177 nid = first_node(node_online_map);
178
179 /* To shrink on this node, there must be a surplus page */
180 if (delta < 0 && !surplus_huge_pages_node[nid])
181 continue;
182 /* Surplus cannot exceed the total number of pages */
183 if (delta > 0 && surplus_huge_pages_node[nid] >=
184 nr_huge_pages_node[nid])
185 continue;
186
187 surplus_huge_pages += delta;
188 surplus_huge_pages_node[nid] += delta;
189 ret = 1;
190 break;
191 } while (nid != prev_nid);
192
193 prev_nid = nid;
194 return ret;
195 }
196
197 static struct page *alloc_fresh_huge_page_node(int nid)
198 {
199 struct page *page;
200
201 page = alloc_pages_node(nid,
202 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
203 HUGETLB_PAGE_ORDER);
204 if (page) {
205 if (arch_prepare_hugepage(page)) {
206 __free_pages(page, HUGETLB_PAGE_ORDER);
207 return NULL;
208 }
209 set_compound_page_dtor(page, free_huge_page);
210 spin_lock(&hugetlb_lock);
211 nr_huge_pages++;
212 nr_huge_pages_node[nid]++;
213 spin_unlock(&hugetlb_lock);
214 put_page(page); /* free it into the hugepage allocator */
215 }
216
217 return page;
218 }
219
220 static int alloc_fresh_huge_page(void)
221 {
222 struct page *page;
223 int start_nid;
224 int next_nid;
225 int ret = 0;
226
227 start_nid = hugetlb_next_nid;
228
229 do {
230 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
231 if (page)
232 ret = 1;
233 /*
234 * Use a helper variable to find the next node and then
235 * copy it back to hugetlb_next_nid afterwards:
236 * otherwise there's a window in which a racer might
237 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
238 * But we don't need to use a spin_lock here: it really
239 * doesn't matter if occasionally a racer chooses the
240 * same nid as we do. Move nid forward in the mask even
241 * if we just successfully allocated a hugepage so that
242 * the next caller gets hugepages on the next node.
243 */
244 next_nid = next_node(hugetlb_next_nid, node_online_map);
245 if (next_nid == MAX_NUMNODES)
246 next_nid = first_node(node_online_map);
247 hugetlb_next_nid = next_nid;
248 } while (!page && hugetlb_next_nid != start_nid);
249
250 if (ret)
251 count_vm_event(HTLB_BUDDY_PGALLOC);
252 else
253 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
254
255 return ret;
256 }
257
258 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
259 unsigned long address)
260 {
261 struct page *page;
262 unsigned int nid;
263
264 /*
265 * Assume we will successfully allocate the surplus page to
266 * prevent racing processes from causing the surplus to exceed
267 * overcommit
268 *
269 * This however introduces a different race, where a process B
270 * tries to grow the static hugepage pool while alloc_pages() is
271 * called by process A. B will only examine the per-node
272 * counters in determining if surplus huge pages can be
273 * converted to normal huge pages in adjust_pool_surplus(). A
274 * won't be able to increment the per-node counter, until the
275 * lock is dropped by B, but B doesn't drop hugetlb_lock until
276 * no more huge pages can be converted from surplus to normal
277 * state (and doesn't try to convert again). Thus, we have a
278 * case where a surplus huge page exists, the pool is grown, and
279 * the surplus huge page still exists after, even though it
280 * should just have been converted to a normal huge page. This
281 * does not leak memory, though, as the hugepage will be freed
282 * once it is out of use. It also does not allow the counters to
283 * go out of whack in adjust_pool_surplus() as we don't modify
284 * the node values until we've gotten the hugepage and only the
285 * per-node value is checked there.
286 */
287 spin_lock(&hugetlb_lock);
288 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
289 spin_unlock(&hugetlb_lock);
290 return NULL;
291 } else {
292 nr_huge_pages++;
293 surplus_huge_pages++;
294 }
295 spin_unlock(&hugetlb_lock);
296
297 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
298 HUGETLB_PAGE_ORDER);
299
300 spin_lock(&hugetlb_lock);
301 if (page) {
302 /*
303 * This page is now managed by the hugetlb allocator and has
304 * no users -- drop the buddy allocator's reference.
305 */
306 put_page_testzero(page);
307 VM_BUG_ON(page_count(page));
308 nid = page_to_nid(page);
309 set_compound_page_dtor(page, free_huge_page);
310 /*
311 * We incremented the global counters already
312 */
313 nr_huge_pages_node[nid]++;
314 surplus_huge_pages_node[nid]++;
315 __count_vm_event(HTLB_BUDDY_PGALLOC);
316 } else {
317 nr_huge_pages--;
318 surplus_huge_pages--;
319 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
320 }
321 spin_unlock(&hugetlb_lock);
322
323 return page;
324 }
325
326 /*
327 * Increase the hugetlb pool such that it can accomodate a reservation
328 * of size 'delta'.
329 */
330 static int gather_surplus_pages(int delta)
331 {
332 struct list_head surplus_list;
333 struct page *page, *tmp;
334 int ret, i;
335 int needed, allocated;
336
337 needed = (resv_huge_pages + delta) - free_huge_pages;
338 if (needed <= 0) {
339 resv_huge_pages += delta;
340 return 0;
341 }
342
343 allocated = 0;
344 INIT_LIST_HEAD(&surplus_list);
345
346 ret = -ENOMEM;
347 retry:
348 spin_unlock(&hugetlb_lock);
349 for (i = 0; i < needed; i++) {
350 page = alloc_buddy_huge_page(NULL, 0);
351 if (!page) {
352 /*
353 * We were not able to allocate enough pages to
354 * satisfy the entire reservation so we free what
355 * we've allocated so far.
356 */
357 spin_lock(&hugetlb_lock);
358 needed = 0;
359 goto free;
360 }
361
362 list_add(&page->lru, &surplus_list);
363 }
364 allocated += needed;
365
366 /*
367 * After retaking hugetlb_lock, we need to recalculate 'needed'
368 * because either resv_huge_pages or free_huge_pages may have changed.
369 */
370 spin_lock(&hugetlb_lock);
371 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
372 if (needed > 0)
373 goto retry;
374
375 /*
376 * The surplus_list now contains _at_least_ the number of extra pages
377 * needed to accomodate the reservation. Add the appropriate number
378 * of pages to the hugetlb pool and free the extras back to the buddy
379 * allocator. Commit the entire reservation here to prevent another
380 * process from stealing the pages as they are added to the pool but
381 * before they are reserved.
382 */
383 needed += allocated;
384 resv_huge_pages += delta;
385 ret = 0;
386 free:
387 /* Free the needed pages to the hugetlb pool */
388 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
389 if ((--needed) < 0)
390 break;
391 list_del(&page->lru);
392 enqueue_huge_page(page);
393 }
394
395 /* Free unnecessary surplus pages to the buddy allocator */
396 if (!list_empty(&surplus_list)) {
397 spin_unlock(&hugetlb_lock);
398 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
399 list_del(&page->lru);
400 /*
401 * The page has a reference count of zero already, so
402 * call free_huge_page directly instead of using
403 * put_page. This must be done with hugetlb_lock
404 * unlocked which is safe because free_huge_page takes
405 * hugetlb_lock before deciding how to free the page.
406 */
407 free_huge_page(page);
408 }
409 spin_lock(&hugetlb_lock);
410 }
411
412 return ret;
413 }
414
415 /*
416 * When releasing a hugetlb pool reservation, any surplus pages that were
417 * allocated to satisfy the reservation must be explicitly freed if they were
418 * never used.
419 */
420 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
421 {
422 static int nid = -1;
423 struct page *page;
424 unsigned long nr_pages;
425
426 /*
427 * We want to release as many surplus pages as possible, spread
428 * evenly across all nodes. Iterate across all nodes until we
429 * can no longer free unreserved surplus pages. This occurs when
430 * the nodes with surplus pages have no free pages.
431 */
432 unsigned long remaining_iterations = num_online_nodes();
433
434 /* Uncommit the reservation */
435 resv_huge_pages -= unused_resv_pages;
436
437 nr_pages = min(unused_resv_pages, surplus_huge_pages);
438
439 while (remaining_iterations-- && nr_pages) {
440 nid = next_node(nid, node_online_map);
441 if (nid == MAX_NUMNODES)
442 nid = first_node(node_online_map);
443
444 if (!surplus_huge_pages_node[nid])
445 continue;
446
447 if (!list_empty(&hugepage_freelists[nid])) {
448 page = list_entry(hugepage_freelists[nid].next,
449 struct page, lru);
450 list_del(&page->lru);
451 update_and_free_page(page);
452 free_huge_pages--;
453 free_huge_pages_node[nid]--;
454 surplus_huge_pages--;
455 surplus_huge_pages_node[nid]--;
456 nr_pages--;
457 remaining_iterations = num_online_nodes();
458 }
459 }
460 }
461
462
463 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
464 unsigned long addr)
465 {
466 struct page *page;
467
468 spin_lock(&hugetlb_lock);
469 page = dequeue_huge_page_vma(vma, addr);
470 spin_unlock(&hugetlb_lock);
471 return page ? page : ERR_PTR(-VM_FAULT_OOM);
472 }
473
474 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
475 unsigned long addr)
476 {
477 struct page *page = NULL;
478
479 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
480 return ERR_PTR(-VM_FAULT_SIGBUS);
481
482 spin_lock(&hugetlb_lock);
483 if (free_huge_pages > resv_huge_pages)
484 page = dequeue_huge_page_vma(vma, addr);
485 spin_unlock(&hugetlb_lock);
486 if (!page) {
487 page = alloc_buddy_huge_page(vma, addr);
488 if (!page) {
489 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
490 return ERR_PTR(-VM_FAULT_OOM);
491 }
492 }
493 return page;
494 }
495
496 static struct page *alloc_huge_page(struct vm_area_struct *vma,
497 unsigned long addr)
498 {
499 struct page *page;
500 struct address_space *mapping = vma->vm_file->f_mapping;
501
502 if (vma->vm_flags & VM_MAYSHARE)
503 page = alloc_huge_page_shared(vma, addr);
504 else
505 page = alloc_huge_page_private(vma, addr);
506
507 if (!IS_ERR(page)) {
508 set_page_refcounted(page);
509 set_page_private(page, (unsigned long) mapping);
510 }
511 return page;
512 }
513
514 static int __init hugetlb_init(void)
515 {
516 unsigned long i;
517
518 if (HPAGE_SHIFT == 0)
519 return 0;
520
521 for (i = 0; i < MAX_NUMNODES; ++i)
522 INIT_LIST_HEAD(&hugepage_freelists[i]);
523
524 hugetlb_next_nid = first_node(node_online_map);
525
526 for (i = 0; i < max_huge_pages; ++i) {
527 if (!alloc_fresh_huge_page())
528 break;
529 }
530 max_huge_pages = free_huge_pages = nr_huge_pages = i;
531 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
532 return 0;
533 }
534 module_init(hugetlb_init);
535
536 static int __init hugetlb_setup(char *s)
537 {
538 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
539 max_huge_pages = 0;
540 return 1;
541 }
542 __setup("hugepages=", hugetlb_setup);
543
544 static unsigned int cpuset_mems_nr(unsigned int *array)
545 {
546 int node;
547 unsigned int nr = 0;
548
549 for_each_node_mask(node, cpuset_current_mems_allowed)
550 nr += array[node];
551
552 return nr;
553 }
554
555 #ifdef CONFIG_SYSCTL
556 #ifdef CONFIG_HIGHMEM
557 static void try_to_free_low(unsigned long count)
558 {
559 int i;
560
561 for (i = 0; i < MAX_NUMNODES; ++i) {
562 struct page *page, *next;
563 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
564 if (count >= nr_huge_pages)
565 return;
566 if (PageHighMem(page))
567 continue;
568 list_del(&page->lru);
569 update_and_free_page(page);
570 free_huge_pages--;
571 free_huge_pages_node[page_to_nid(page)]--;
572 }
573 }
574 }
575 #else
576 static inline void try_to_free_low(unsigned long count)
577 {
578 }
579 #endif
580
581 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
582 static unsigned long set_max_huge_pages(unsigned long count)
583 {
584 unsigned long min_count, ret;
585
586 /*
587 * Increase the pool size
588 * First take pages out of surplus state. Then make up the
589 * remaining difference by allocating fresh huge pages.
590 *
591 * We might race with alloc_buddy_huge_page() here and be unable
592 * to convert a surplus huge page to a normal huge page. That is
593 * not critical, though, it just means the overall size of the
594 * pool might be one hugepage larger than it needs to be, but
595 * within all the constraints specified by the sysctls.
596 */
597 spin_lock(&hugetlb_lock);
598 while (surplus_huge_pages && count > persistent_huge_pages) {
599 if (!adjust_pool_surplus(-1))
600 break;
601 }
602
603 while (count > persistent_huge_pages) {
604 int ret;
605 /*
606 * If this allocation races such that we no longer need the
607 * page, free_huge_page will handle it by freeing the page
608 * and reducing the surplus.
609 */
610 spin_unlock(&hugetlb_lock);
611 ret = alloc_fresh_huge_page();
612 spin_lock(&hugetlb_lock);
613 if (!ret)
614 goto out;
615
616 }
617
618 /*
619 * Decrease the pool size
620 * First return free pages to the buddy allocator (being careful
621 * to keep enough around to satisfy reservations). Then place
622 * pages into surplus state as needed so the pool will shrink
623 * to the desired size as pages become free.
624 *
625 * By placing pages into the surplus state independent of the
626 * overcommit value, we are allowing the surplus pool size to
627 * exceed overcommit. There are few sane options here. Since
628 * alloc_buddy_huge_page() is checking the global counter,
629 * though, we'll note that we're not allowed to exceed surplus
630 * and won't grow the pool anywhere else. Not until one of the
631 * sysctls are changed, or the surplus pages go out of use.
632 */
633 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
634 min_count = max(count, min_count);
635 try_to_free_low(min_count);
636 while (min_count < persistent_huge_pages) {
637 struct page *page = dequeue_huge_page();
638 if (!page)
639 break;
640 update_and_free_page(page);
641 }
642 while (count < persistent_huge_pages) {
643 if (!adjust_pool_surplus(1))
644 break;
645 }
646 out:
647 ret = persistent_huge_pages;
648 spin_unlock(&hugetlb_lock);
649 return ret;
650 }
651
652 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
653 struct file *file, void __user *buffer,
654 size_t *length, loff_t *ppos)
655 {
656 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
657 max_huge_pages = set_max_huge_pages(max_huge_pages);
658 return 0;
659 }
660
661 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
662 struct file *file, void __user *buffer,
663 size_t *length, loff_t *ppos)
664 {
665 proc_dointvec(table, write, file, buffer, length, ppos);
666 if (hugepages_treat_as_movable)
667 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
668 else
669 htlb_alloc_mask = GFP_HIGHUSER;
670 return 0;
671 }
672
673 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
674 struct file *file, void __user *buffer,
675 size_t *length, loff_t *ppos)
676 {
677 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
678 spin_lock(&hugetlb_lock);
679 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
680 spin_unlock(&hugetlb_lock);
681 return 0;
682 }
683
684 #endif /* CONFIG_SYSCTL */
685
686 int hugetlb_report_meminfo(char *buf)
687 {
688 return sprintf(buf,
689 "HugePages_Total: %5lu\n"
690 "HugePages_Free: %5lu\n"
691 "HugePages_Rsvd: %5lu\n"
692 "HugePages_Surp: %5lu\n"
693 "Hugepagesize: %5lu kB\n",
694 nr_huge_pages,
695 free_huge_pages,
696 resv_huge_pages,
697 surplus_huge_pages,
698 HPAGE_SIZE/1024);
699 }
700
701 int hugetlb_report_node_meminfo(int nid, char *buf)
702 {
703 return sprintf(buf,
704 "Node %d HugePages_Total: %5u\n"
705 "Node %d HugePages_Free: %5u\n"
706 "Node %d HugePages_Surp: %5u\n",
707 nid, nr_huge_pages_node[nid],
708 nid, free_huge_pages_node[nid],
709 nid, surplus_huge_pages_node[nid]);
710 }
711
712 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
713 unsigned long hugetlb_total_pages(void)
714 {
715 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
716 }
717
718 /*
719 * We cannot handle pagefaults against hugetlb pages at all. They cause
720 * handle_mm_fault() to try to instantiate regular-sized pages in the
721 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
722 * this far.
723 */
724 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
725 {
726 BUG();
727 return 0;
728 }
729
730 struct vm_operations_struct hugetlb_vm_ops = {
731 .fault = hugetlb_vm_op_fault,
732 };
733
734 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
735 int writable)
736 {
737 pte_t entry;
738
739 if (writable) {
740 entry =
741 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
742 } else {
743 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
744 }
745 entry = pte_mkyoung(entry);
746 entry = pte_mkhuge(entry);
747
748 return entry;
749 }
750
751 static void set_huge_ptep_writable(struct vm_area_struct *vma,
752 unsigned long address, pte_t *ptep)
753 {
754 pte_t entry;
755
756 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
757 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
758 update_mmu_cache(vma, address, entry);
759 }
760 }
761
762
763 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
764 struct vm_area_struct *vma)
765 {
766 pte_t *src_pte, *dst_pte, entry;
767 struct page *ptepage;
768 unsigned long addr;
769 int cow;
770
771 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
772
773 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
774 src_pte = huge_pte_offset(src, addr);
775 if (!src_pte)
776 continue;
777 dst_pte = huge_pte_alloc(dst, addr);
778 if (!dst_pte)
779 goto nomem;
780
781 /* If the pagetables are shared don't copy or take references */
782 if (dst_pte == src_pte)
783 continue;
784
785 spin_lock(&dst->page_table_lock);
786 spin_lock(&src->page_table_lock);
787 if (!huge_pte_none(huge_ptep_get(src_pte))) {
788 if (cow)
789 huge_ptep_set_wrprotect(src, addr, src_pte);
790 entry = huge_ptep_get(src_pte);
791 ptepage = pte_page(entry);
792 get_page(ptepage);
793 set_huge_pte_at(dst, addr, dst_pte, entry);
794 }
795 spin_unlock(&src->page_table_lock);
796 spin_unlock(&dst->page_table_lock);
797 }
798 return 0;
799
800 nomem:
801 return -ENOMEM;
802 }
803
804 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
805 unsigned long end)
806 {
807 struct mm_struct *mm = vma->vm_mm;
808 unsigned long address;
809 pte_t *ptep;
810 pte_t pte;
811 struct page *page;
812 struct page *tmp;
813 /*
814 * A page gathering list, protected by per file i_mmap_lock. The
815 * lock is used to avoid list corruption from multiple unmapping
816 * of the same page since we are using page->lru.
817 */
818 LIST_HEAD(page_list);
819
820 WARN_ON(!is_vm_hugetlb_page(vma));
821 BUG_ON(start & ~HPAGE_MASK);
822 BUG_ON(end & ~HPAGE_MASK);
823
824 spin_lock(&mm->page_table_lock);
825 for (address = start; address < end; address += HPAGE_SIZE) {
826 ptep = huge_pte_offset(mm, address);
827 if (!ptep)
828 continue;
829
830 if (huge_pmd_unshare(mm, &address, ptep))
831 continue;
832
833 pte = huge_ptep_get_and_clear(mm, address, ptep);
834 if (huge_pte_none(pte))
835 continue;
836
837 page = pte_page(pte);
838 if (pte_dirty(pte))
839 set_page_dirty(page);
840 list_add(&page->lru, &page_list);
841 }
842 spin_unlock(&mm->page_table_lock);
843 flush_tlb_range(vma, start, end);
844 list_for_each_entry_safe(page, tmp, &page_list, lru) {
845 list_del(&page->lru);
846 put_page(page);
847 }
848 }
849
850 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
851 unsigned long end)
852 {
853 /*
854 * It is undesirable to test vma->vm_file as it should be non-null
855 * for valid hugetlb area. However, vm_file will be NULL in the error
856 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
857 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
858 * to clean up. Since no pte has actually been setup, it is safe to
859 * do nothing in this case.
860 */
861 if (vma->vm_file) {
862 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
863 __unmap_hugepage_range(vma, start, end);
864 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
865 }
866 }
867
868 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
869 unsigned long address, pte_t *ptep, pte_t pte)
870 {
871 struct page *old_page, *new_page;
872 int avoidcopy;
873
874 old_page = pte_page(pte);
875
876 /* If no-one else is actually using this page, avoid the copy
877 * and just make the page writable */
878 avoidcopy = (page_count(old_page) == 1);
879 if (avoidcopy) {
880 set_huge_ptep_writable(vma, address, ptep);
881 return 0;
882 }
883
884 page_cache_get(old_page);
885 new_page = alloc_huge_page(vma, address);
886
887 if (IS_ERR(new_page)) {
888 page_cache_release(old_page);
889 return -PTR_ERR(new_page);
890 }
891
892 spin_unlock(&mm->page_table_lock);
893 copy_huge_page(new_page, old_page, address, vma);
894 __SetPageUptodate(new_page);
895 spin_lock(&mm->page_table_lock);
896
897 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
898 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
899 /* Break COW */
900 huge_ptep_clear_flush(vma, address, ptep);
901 set_huge_pte_at(mm, address, ptep,
902 make_huge_pte(vma, new_page, 1));
903 /* Make the old page be freed below */
904 new_page = old_page;
905 }
906 page_cache_release(new_page);
907 page_cache_release(old_page);
908 return 0;
909 }
910
911 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
912 unsigned long address, pte_t *ptep, int write_access)
913 {
914 int ret = VM_FAULT_SIGBUS;
915 unsigned long idx;
916 unsigned long size;
917 struct page *page;
918 struct address_space *mapping;
919 pte_t new_pte;
920
921 mapping = vma->vm_file->f_mapping;
922 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
923 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
924
925 /*
926 * Use page lock to guard against racing truncation
927 * before we get page_table_lock.
928 */
929 retry:
930 page = find_lock_page(mapping, idx);
931 if (!page) {
932 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
933 if (idx >= size)
934 goto out;
935 page = alloc_huge_page(vma, address);
936 if (IS_ERR(page)) {
937 ret = -PTR_ERR(page);
938 goto out;
939 }
940 clear_huge_page(page, address);
941 __SetPageUptodate(page);
942
943 if (vma->vm_flags & VM_SHARED) {
944 int err;
945 struct inode *inode = mapping->host;
946
947 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
948 if (err) {
949 put_page(page);
950 if (err == -EEXIST)
951 goto retry;
952 goto out;
953 }
954
955 spin_lock(&inode->i_lock);
956 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
957 spin_unlock(&inode->i_lock);
958 } else
959 lock_page(page);
960 }
961
962 spin_lock(&mm->page_table_lock);
963 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
964 if (idx >= size)
965 goto backout;
966
967 ret = 0;
968 if (!huge_pte_none(huge_ptep_get(ptep)))
969 goto backout;
970
971 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
972 && (vma->vm_flags & VM_SHARED)));
973 set_huge_pte_at(mm, address, ptep, new_pte);
974
975 if (write_access && !(vma->vm_flags & VM_SHARED)) {
976 /* Optimization, do the COW without a second fault */
977 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
978 }
979
980 spin_unlock(&mm->page_table_lock);
981 unlock_page(page);
982 out:
983 return ret;
984
985 backout:
986 spin_unlock(&mm->page_table_lock);
987 unlock_page(page);
988 put_page(page);
989 goto out;
990 }
991
992 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
993 unsigned long address, int write_access)
994 {
995 pte_t *ptep;
996 pte_t entry;
997 int ret;
998 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
999
1000 ptep = huge_pte_alloc(mm, address);
1001 if (!ptep)
1002 return VM_FAULT_OOM;
1003
1004 /*
1005 * Serialize hugepage allocation and instantiation, so that we don't
1006 * get spurious allocation failures if two CPUs race to instantiate
1007 * the same page in the page cache.
1008 */
1009 mutex_lock(&hugetlb_instantiation_mutex);
1010 entry = huge_ptep_get(ptep);
1011 if (huge_pte_none(entry)) {
1012 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1013 mutex_unlock(&hugetlb_instantiation_mutex);
1014 return ret;
1015 }
1016
1017 ret = 0;
1018
1019 spin_lock(&mm->page_table_lock);
1020 /* Check for a racing update before calling hugetlb_cow */
1021 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1022 if (write_access && !pte_write(entry))
1023 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1024 spin_unlock(&mm->page_table_lock);
1025 mutex_unlock(&hugetlb_instantiation_mutex);
1026
1027 return ret;
1028 }
1029
1030 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1031 struct page **pages, struct vm_area_struct **vmas,
1032 unsigned long *position, int *length, int i,
1033 int write)
1034 {
1035 unsigned long pfn_offset;
1036 unsigned long vaddr = *position;
1037 int remainder = *length;
1038
1039 spin_lock(&mm->page_table_lock);
1040 while (vaddr < vma->vm_end && remainder) {
1041 pte_t *pte;
1042 struct page *page;
1043
1044 /*
1045 * Some archs (sparc64, sh*) have multiple pte_ts to
1046 * each hugepage. We have to make * sure we get the
1047 * first, for the page indexing below to work.
1048 */
1049 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1050
1051 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1052 (write && !pte_write(huge_ptep_get(pte)))) {
1053 int ret;
1054
1055 spin_unlock(&mm->page_table_lock);
1056 ret = hugetlb_fault(mm, vma, vaddr, write);
1057 spin_lock(&mm->page_table_lock);
1058 if (!(ret & VM_FAULT_ERROR))
1059 continue;
1060
1061 remainder = 0;
1062 if (!i)
1063 i = -EFAULT;
1064 break;
1065 }
1066
1067 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1068 page = pte_page(huge_ptep_get(pte));
1069 same_page:
1070 if (pages) {
1071 get_page(page);
1072 pages[i] = page + pfn_offset;
1073 }
1074
1075 if (vmas)
1076 vmas[i] = vma;
1077
1078 vaddr += PAGE_SIZE;
1079 ++pfn_offset;
1080 --remainder;
1081 ++i;
1082 if (vaddr < vma->vm_end && remainder &&
1083 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1084 /*
1085 * We use pfn_offset to avoid touching the pageframes
1086 * of this compound page.
1087 */
1088 goto same_page;
1089 }
1090 }
1091 spin_unlock(&mm->page_table_lock);
1092 *length = remainder;
1093 *position = vaddr;
1094
1095 return i;
1096 }
1097
1098 void hugetlb_change_protection(struct vm_area_struct *vma,
1099 unsigned long address, unsigned long end, pgprot_t newprot)
1100 {
1101 struct mm_struct *mm = vma->vm_mm;
1102 unsigned long start = address;
1103 pte_t *ptep;
1104 pte_t pte;
1105
1106 BUG_ON(address >= end);
1107 flush_cache_range(vma, address, end);
1108
1109 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1110 spin_lock(&mm->page_table_lock);
1111 for (; address < end; address += HPAGE_SIZE) {
1112 ptep = huge_pte_offset(mm, address);
1113 if (!ptep)
1114 continue;
1115 if (huge_pmd_unshare(mm, &address, ptep))
1116 continue;
1117 if (!huge_pte_none(huge_ptep_get(ptep))) {
1118 pte = huge_ptep_get_and_clear(mm, address, ptep);
1119 pte = pte_mkhuge(pte_modify(pte, newprot));
1120 set_huge_pte_at(mm, address, ptep, pte);
1121 }
1122 }
1123 spin_unlock(&mm->page_table_lock);
1124 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1125
1126 flush_tlb_range(vma, start, end);
1127 }
1128
1129 struct file_region {
1130 struct list_head link;
1131 long from;
1132 long to;
1133 };
1134
1135 static long region_add(struct list_head *head, long f, long t)
1136 {
1137 struct file_region *rg, *nrg, *trg;
1138
1139 /* Locate the region we are either in or before. */
1140 list_for_each_entry(rg, head, link)
1141 if (f <= rg->to)
1142 break;
1143
1144 /* Round our left edge to the current segment if it encloses us. */
1145 if (f > rg->from)
1146 f = rg->from;
1147
1148 /* Check for and consume any regions we now overlap with. */
1149 nrg = rg;
1150 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1151 if (&rg->link == head)
1152 break;
1153 if (rg->from > t)
1154 break;
1155
1156 /* If this area reaches higher then extend our area to
1157 * include it completely. If this is not the first area
1158 * which we intend to reuse, free it. */
1159 if (rg->to > t)
1160 t = rg->to;
1161 if (rg != nrg) {
1162 list_del(&rg->link);
1163 kfree(rg);
1164 }
1165 }
1166 nrg->from = f;
1167 nrg->to = t;
1168 return 0;
1169 }
1170
1171 static long region_chg(struct list_head *head, long f, long t)
1172 {
1173 struct file_region *rg, *nrg;
1174 long chg = 0;
1175
1176 /* Locate the region we are before or in. */
1177 list_for_each_entry(rg, head, link)
1178 if (f <= rg->to)
1179 break;
1180
1181 /* If we are below the current region then a new region is required.
1182 * Subtle, allocate a new region at the position but make it zero
1183 * size such that we can guarantee to record the reservation. */
1184 if (&rg->link == head || t < rg->from) {
1185 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1186 if (!nrg)
1187 return -ENOMEM;
1188 nrg->from = f;
1189 nrg->to = f;
1190 INIT_LIST_HEAD(&nrg->link);
1191 list_add(&nrg->link, rg->link.prev);
1192
1193 return t - f;
1194 }
1195
1196 /* Round our left edge to the current segment if it encloses us. */
1197 if (f > rg->from)
1198 f = rg->from;
1199 chg = t - f;
1200
1201 /* Check for and consume any regions we now overlap with. */
1202 list_for_each_entry(rg, rg->link.prev, link) {
1203 if (&rg->link == head)
1204 break;
1205 if (rg->from > t)
1206 return chg;
1207
1208 /* We overlap with this area, if it extends futher than
1209 * us then we must extend ourselves. Account for its
1210 * existing reservation. */
1211 if (rg->to > t) {
1212 chg += rg->to - t;
1213 t = rg->to;
1214 }
1215 chg -= rg->to - rg->from;
1216 }
1217 return chg;
1218 }
1219
1220 static long region_truncate(struct list_head *head, long end)
1221 {
1222 struct file_region *rg, *trg;
1223 long chg = 0;
1224
1225 /* Locate the region we are either in or before. */
1226 list_for_each_entry(rg, head, link)
1227 if (end <= rg->to)
1228 break;
1229 if (&rg->link == head)
1230 return 0;
1231
1232 /* If we are in the middle of a region then adjust it. */
1233 if (end > rg->from) {
1234 chg = rg->to - end;
1235 rg->to = end;
1236 rg = list_entry(rg->link.next, typeof(*rg), link);
1237 }
1238
1239 /* Drop any remaining regions. */
1240 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1241 if (&rg->link == head)
1242 break;
1243 chg += rg->to - rg->from;
1244 list_del(&rg->link);
1245 kfree(rg);
1246 }
1247 return chg;
1248 }
1249
1250 static int hugetlb_acct_memory(long delta)
1251 {
1252 int ret = -ENOMEM;
1253
1254 spin_lock(&hugetlb_lock);
1255 /*
1256 * When cpuset is configured, it breaks the strict hugetlb page
1257 * reservation as the accounting is done on a global variable. Such
1258 * reservation is completely rubbish in the presence of cpuset because
1259 * the reservation is not checked against page availability for the
1260 * current cpuset. Application can still potentially OOM'ed by kernel
1261 * with lack of free htlb page in cpuset that the task is in.
1262 * Attempt to enforce strict accounting with cpuset is almost
1263 * impossible (or too ugly) because cpuset is too fluid that
1264 * task or memory node can be dynamically moved between cpusets.
1265 *
1266 * The change of semantics for shared hugetlb mapping with cpuset is
1267 * undesirable. However, in order to preserve some of the semantics,
1268 * we fall back to check against current free page availability as
1269 * a best attempt and hopefully to minimize the impact of changing
1270 * semantics that cpuset has.
1271 */
1272 if (delta > 0) {
1273 if (gather_surplus_pages(delta) < 0)
1274 goto out;
1275
1276 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1277 return_unused_surplus_pages(delta);
1278 goto out;
1279 }
1280 }
1281
1282 ret = 0;
1283 if (delta < 0)
1284 return_unused_surplus_pages((unsigned long) -delta);
1285
1286 out:
1287 spin_unlock(&hugetlb_lock);
1288 return ret;
1289 }
1290
1291 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1292 {
1293 long ret, chg;
1294
1295 chg = region_chg(&inode->i_mapping->private_list, from, to);
1296 if (chg < 0)
1297 return chg;
1298
1299 if (hugetlb_get_quota(inode->i_mapping, chg))
1300 return -ENOSPC;
1301 ret = hugetlb_acct_memory(chg);
1302 if (ret < 0) {
1303 hugetlb_put_quota(inode->i_mapping, chg);
1304 return ret;
1305 }
1306 region_add(&inode->i_mapping->private_list, from, to);
1307 return 0;
1308 }
1309
1310 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1311 {
1312 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1313
1314 spin_lock(&inode->i_lock);
1315 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1316 spin_unlock(&inode->i_lock);
1317
1318 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1319 hugetlb_acct_memory(-(chg - freed));
1320 }