locking: Remove atomicy checks from {READ,WRITE}_ONCE
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 if (!(vma->vm_flags & VM_MAYSHARE))
443 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449 if (vma->vm_flags & VM_NORESERVE) {
450 /*
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
458 */
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
463 }
464
465 /* Shared mappings always use reserves */
466 if (vma->vm_flags & VM_MAYSHARE)
467 return 1;
468
469 /*
470 * Only the process that called mmap() has reserves for
471 * private mappings.
472 */
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
475
476 return 0;
477 }
478
479 static void copy_gigantic_page(struct page *dst, struct page *src)
480 {
481 int i;
482 struct hstate *h = page_hstate(src);
483 struct page *dst_base = dst;
484 struct page *src_base = src;
485
486 for (i = 0; i < pages_per_huge_page(h); ) {
487 cond_resched();
488 copy_highpage(dst, src);
489
490 i++;
491 dst = mem_map_next(dst, dst_base, i);
492 src = mem_map_next(src, src_base, i);
493 }
494 }
495
496 void copy_huge_page(struct page *dst, struct page *src)
497 {
498 int i;
499 struct hstate *h = page_hstate(src);
500
501 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502 copy_gigantic_page(dst, src);
503 return;
504 }
505
506 might_sleep();
507 for (i = 0; i < pages_per_huge_page(h); i++) {
508 cond_resched();
509 copy_highpage(dst + i, src + i);
510 }
511 }
512
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
514 {
515 int nid = page_to_nid(page);
516 list_move(&page->lru, &h->hugepage_freelists[nid]);
517 h->free_huge_pages++;
518 h->free_huge_pages_node[nid]++;
519 }
520
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522 {
523 struct page *page;
524
525 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526 if (!is_migrate_isolate_page(page))
527 break;
528 /*
529 * if 'non-isolated free hugepage' not found on the list,
530 * the allocation fails.
531 */
532 if (&h->hugepage_freelists[nid] == &page->lru)
533 return NULL;
534 list_move(&page->lru, &h->hugepage_activelist);
535 set_page_refcounted(page);
536 h->free_huge_pages--;
537 h->free_huge_pages_node[nid]--;
538 return page;
539 }
540
541 static struct page *dequeue_huge_page_vma(struct hstate *h,
542 struct vm_area_struct *vma,
543 unsigned long address, int avoid_reserve,
544 long chg)
545 {
546 struct page *page = NULL;
547 struct mempolicy *mpol;
548 nodemask_t *nodemask;
549 struct zonelist *zonelist;
550 struct zone *zone;
551 struct zoneref *z;
552 unsigned int cpuset_mems_cookie;
553
554 retry_cpuset:
555 cpuset_mems_cookie = get_mems_allowed();
556 zonelist = huge_zonelist(vma, address,
557 htlb_alloc_mask, &mpol, &nodemask);
558 /*
559 * A child process with MAP_PRIVATE mappings created by their parent
560 * have no page reserves. This check ensures that reservations are
561 * not "stolen". The child may still get SIGKILLed
562 */
563 if (!vma_has_reserves(vma, chg) &&
564 h->free_huge_pages - h->resv_huge_pages == 0)
565 goto err;
566
567 /* If reserves cannot be used, ensure enough pages are in the pool */
568 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
569 goto err;
570
571 for_each_zone_zonelist_nodemask(zone, z, zonelist,
572 MAX_NR_ZONES - 1, nodemask) {
573 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
574 page = dequeue_huge_page_node(h, zone_to_nid(zone));
575 if (page) {
576 if (avoid_reserve)
577 break;
578 if (!vma_has_reserves(vma, chg))
579 break;
580
581 SetPagePrivate(page);
582 h->resv_huge_pages--;
583 break;
584 }
585 }
586 }
587
588 mpol_cond_put(mpol);
589 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
590 goto retry_cpuset;
591 return page;
592
593 err:
594 mpol_cond_put(mpol);
595 return NULL;
596 }
597
598 static void update_and_free_page(struct hstate *h, struct page *page)
599 {
600 int i;
601
602 VM_BUG_ON(h->order >= MAX_ORDER);
603
604 h->nr_huge_pages--;
605 h->nr_huge_pages_node[page_to_nid(page)]--;
606 for (i = 0; i < pages_per_huge_page(h); i++) {
607 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
608 1 << PG_referenced | 1 << PG_dirty |
609 1 << PG_active | 1 << PG_reserved |
610 1 << PG_private | 1 << PG_writeback);
611 }
612 VM_BUG_ON(hugetlb_cgroup_from_page(page));
613 set_compound_page_dtor(page, NULL);
614 set_page_refcounted(page);
615 arch_release_hugepage(page);
616 __free_pages(page, huge_page_order(h));
617 }
618
619 struct hstate *size_to_hstate(unsigned long size)
620 {
621 struct hstate *h;
622
623 for_each_hstate(h) {
624 if (huge_page_size(h) == size)
625 return h;
626 }
627 return NULL;
628 }
629
630 static void free_huge_page(struct page *page)
631 {
632 /*
633 * Can't pass hstate in here because it is called from the
634 * compound page destructor.
635 */
636 struct hstate *h = page_hstate(page);
637 int nid = page_to_nid(page);
638 struct hugepage_subpool *spool =
639 (struct hugepage_subpool *)page_private(page);
640 bool restore_reserve;
641
642 set_page_private(page, 0);
643 page->mapping = NULL;
644 BUG_ON(page_count(page));
645 BUG_ON(page_mapcount(page));
646 restore_reserve = PagePrivate(page);
647
648 spin_lock(&hugetlb_lock);
649 hugetlb_cgroup_uncharge_page(hstate_index(h),
650 pages_per_huge_page(h), page);
651 if (restore_reserve)
652 h->resv_huge_pages++;
653
654 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
655 /* remove the page from active list */
656 list_del(&page->lru);
657 update_and_free_page(h, page);
658 h->surplus_huge_pages--;
659 h->surplus_huge_pages_node[nid]--;
660 } else {
661 arch_clear_hugepage_flags(page);
662 enqueue_huge_page(h, page);
663 }
664 spin_unlock(&hugetlb_lock);
665 hugepage_subpool_put_pages(spool, 1);
666 }
667
668 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
669 {
670 INIT_LIST_HEAD(&page->lru);
671 set_compound_page_dtor(page, free_huge_page);
672 spin_lock(&hugetlb_lock);
673 set_hugetlb_cgroup(page, NULL);
674 h->nr_huge_pages++;
675 h->nr_huge_pages_node[nid]++;
676 spin_unlock(&hugetlb_lock);
677 put_page(page); /* free it into the hugepage allocator */
678 }
679
680 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
681 {
682 int i;
683 int nr_pages = 1 << order;
684 struct page *p = page + 1;
685
686 /* we rely on prep_new_huge_page to set the destructor */
687 set_compound_order(page, order);
688 __SetPageHead(page);
689 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
690 __SetPageTail(p);
691 set_page_count(p, 0);
692 p->first_page = page;
693 }
694 }
695
696 /*
697 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
698 * transparent huge pages. See the PageTransHuge() documentation for more
699 * details.
700 */
701 int PageHuge(struct page *page)
702 {
703 compound_page_dtor *dtor;
704
705 if (!PageCompound(page))
706 return 0;
707
708 page = compound_head(page);
709 dtor = get_compound_page_dtor(page);
710
711 return dtor == free_huge_page;
712 }
713 EXPORT_SYMBOL_GPL(PageHuge);
714
715 /*
716 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
717 * normal or transparent huge pages.
718 */
719 int PageHeadHuge(struct page *page_head)
720 {
721 compound_page_dtor *dtor;
722
723 if (!PageHead(page_head))
724 return 0;
725
726 dtor = get_compound_page_dtor(page_head);
727
728 return dtor == free_huge_page;
729 }
730 EXPORT_SYMBOL_GPL(PageHeadHuge);
731
732 pgoff_t __basepage_index(struct page *page)
733 {
734 struct page *page_head = compound_head(page);
735 pgoff_t index = page_index(page_head);
736 unsigned long compound_idx;
737
738 if (!PageHuge(page_head))
739 return page_index(page);
740
741 if (compound_order(page_head) >= MAX_ORDER)
742 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
743 else
744 compound_idx = page - page_head;
745
746 return (index << compound_order(page_head)) + compound_idx;
747 }
748
749 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
750 {
751 struct page *page;
752
753 if (h->order >= MAX_ORDER)
754 return NULL;
755
756 page = alloc_pages_exact_node(nid,
757 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
758 __GFP_REPEAT|__GFP_NOWARN,
759 huge_page_order(h));
760 if (page) {
761 if (arch_prepare_hugepage(page)) {
762 __free_pages(page, huge_page_order(h));
763 return NULL;
764 }
765 prep_new_huge_page(h, page, nid);
766 }
767
768 return page;
769 }
770
771 /*
772 * common helper functions for hstate_next_node_to_{alloc|free}.
773 * We may have allocated or freed a huge page based on a different
774 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
775 * be outside of *nodes_allowed. Ensure that we use an allowed
776 * node for alloc or free.
777 */
778 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
779 {
780 nid = next_node(nid, *nodes_allowed);
781 if (nid == MAX_NUMNODES)
782 nid = first_node(*nodes_allowed);
783 VM_BUG_ON(nid >= MAX_NUMNODES);
784
785 return nid;
786 }
787
788 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
789 {
790 if (!node_isset(nid, *nodes_allowed))
791 nid = next_node_allowed(nid, nodes_allowed);
792 return nid;
793 }
794
795 /*
796 * returns the previously saved node ["this node"] from which to
797 * allocate a persistent huge page for the pool and advance the
798 * next node from which to allocate, handling wrap at end of node
799 * mask.
800 */
801 static int hstate_next_node_to_alloc(struct hstate *h,
802 nodemask_t *nodes_allowed)
803 {
804 int nid;
805
806 VM_BUG_ON(!nodes_allowed);
807
808 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
809 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
810
811 return nid;
812 }
813
814 /*
815 * helper for free_pool_huge_page() - return the previously saved
816 * node ["this node"] from which to free a huge page. Advance the
817 * next node id whether or not we find a free huge page to free so
818 * that the next attempt to free addresses the next node.
819 */
820 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
821 {
822 int nid;
823
824 VM_BUG_ON(!nodes_allowed);
825
826 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
827 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
828
829 return nid;
830 }
831
832 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
833 for (nr_nodes = nodes_weight(*mask); \
834 nr_nodes > 0 && \
835 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
836 nr_nodes--)
837
838 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
839 for (nr_nodes = nodes_weight(*mask); \
840 nr_nodes > 0 && \
841 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
842 nr_nodes--)
843
844 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
845 {
846 struct page *page;
847 int nr_nodes, node;
848 int ret = 0;
849
850 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
851 page = alloc_fresh_huge_page_node(h, node);
852 if (page) {
853 ret = 1;
854 break;
855 }
856 }
857
858 if (ret)
859 count_vm_event(HTLB_BUDDY_PGALLOC);
860 else
861 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
862
863 return ret;
864 }
865
866 /*
867 * Free huge page from pool from next node to free.
868 * Attempt to keep persistent huge pages more or less
869 * balanced over allowed nodes.
870 * Called with hugetlb_lock locked.
871 */
872 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
873 bool acct_surplus)
874 {
875 int nr_nodes, node;
876 int ret = 0;
877
878 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
879 /*
880 * If we're returning unused surplus pages, only examine
881 * nodes with surplus pages.
882 */
883 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
884 !list_empty(&h->hugepage_freelists[node])) {
885 struct page *page =
886 list_entry(h->hugepage_freelists[node].next,
887 struct page, lru);
888 list_del(&page->lru);
889 h->free_huge_pages--;
890 h->free_huge_pages_node[node]--;
891 if (acct_surplus) {
892 h->surplus_huge_pages--;
893 h->surplus_huge_pages_node[node]--;
894 }
895 update_and_free_page(h, page);
896 ret = 1;
897 break;
898 }
899 }
900
901 return ret;
902 }
903
904 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
905 {
906 struct page *page;
907 unsigned int r_nid;
908
909 if (h->order >= MAX_ORDER)
910 return NULL;
911
912 /*
913 * Assume we will successfully allocate the surplus page to
914 * prevent racing processes from causing the surplus to exceed
915 * overcommit
916 *
917 * This however introduces a different race, where a process B
918 * tries to grow the static hugepage pool while alloc_pages() is
919 * called by process A. B will only examine the per-node
920 * counters in determining if surplus huge pages can be
921 * converted to normal huge pages in adjust_pool_surplus(). A
922 * won't be able to increment the per-node counter, until the
923 * lock is dropped by B, but B doesn't drop hugetlb_lock until
924 * no more huge pages can be converted from surplus to normal
925 * state (and doesn't try to convert again). Thus, we have a
926 * case where a surplus huge page exists, the pool is grown, and
927 * the surplus huge page still exists after, even though it
928 * should just have been converted to a normal huge page. This
929 * does not leak memory, though, as the hugepage will be freed
930 * once it is out of use. It also does not allow the counters to
931 * go out of whack in adjust_pool_surplus() as we don't modify
932 * the node values until we've gotten the hugepage and only the
933 * per-node value is checked there.
934 */
935 spin_lock(&hugetlb_lock);
936 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
937 spin_unlock(&hugetlb_lock);
938 return NULL;
939 } else {
940 h->nr_huge_pages++;
941 h->surplus_huge_pages++;
942 }
943 spin_unlock(&hugetlb_lock);
944
945 if (nid == NUMA_NO_NODE)
946 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
947 __GFP_REPEAT|__GFP_NOWARN,
948 huge_page_order(h));
949 else
950 page = alloc_pages_exact_node(nid,
951 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
952 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
953
954 if (page && arch_prepare_hugepage(page)) {
955 __free_pages(page, huge_page_order(h));
956 page = NULL;
957 }
958
959 spin_lock(&hugetlb_lock);
960 if (page) {
961 INIT_LIST_HEAD(&page->lru);
962 r_nid = page_to_nid(page);
963 set_compound_page_dtor(page, free_huge_page);
964 set_hugetlb_cgroup(page, NULL);
965 /*
966 * We incremented the global counters already
967 */
968 h->nr_huge_pages_node[r_nid]++;
969 h->surplus_huge_pages_node[r_nid]++;
970 __count_vm_event(HTLB_BUDDY_PGALLOC);
971 } else {
972 h->nr_huge_pages--;
973 h->surplus_huge_pages--;
974 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
975 }
976 spin_unlock(&hugetlb_lock);
977
978 return page;
979 }
980
981 /*
982 * This allocation function is useful in the context where vma is irrelevant.
983 * E.g. soft-offlining uses this function because it only cares physical
984 * address of error page.
985 */
986 struct page *alloc_huge_page_node(struct hstate *h, int nid)
987 {
988 struct page *page = NULL;
989
990 spin_lock(&hugetlb_lock);
991 if (h->free_huge_pages - h->resv_huge_pages > 0)
992 page = dequeue_huge_page_node(h, nid);
993 spin_unlock(&hugetlb_lock);
994
995 if (!page)
996 page = alloc_buddy_huge_page(h, nid);
997
998 return page;
999 }
1000
1001 /*
1002 * Increase the hugetlb pool such that it can accommodate a reservation
1003 * of size 'delta'.
1004 */
1005 static int gather_surplus_pages(struct hstate *h, int delta)
1006 {
1007 struct list_head surplus_list;
1008 struct page *page, *tmp;
1009 int ret, i;
1010 int needed, allocated;
1011 bool alloc_ok = true;
1012
1013 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1014 if (needed <= 0) {
1015 h->resv_huge_pages += delta;
1016 return 0;
1017 }
1018
1019 allocated = 0;
1020 INIT_LIST_HEAD(&surplus_list);
1021
1022 ret = -ENOMEM;
1023 retry:
1024 spin_unlock(&hugetlb_lock);
1025 for (i = 0; i < needed; i++) {
1026 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1027 if (!page) {
1028 alloc_ok = false;
1029 break;
1030 }
1031 list_add(&page->lru, &surplus_list);
1032 }
1033 allocated += i;
1034
1035 /*
1036 * After retaking hugetlb_lock, we need to recalculate 'needed'
1037 * because either resv_huge_pages or free_huge_pages may have changed.
1038 */
1039 spin_lock(&hugetlb_lock);
1040 needed = (h->resv_huge_pages + delta) -
1041 (h->free_huge_pages + allocated);
1042 if (needed > 0) {
1043 if (alloc_ok)
1044 goto retry;
1045 /*
1046 * We were not able to allocate enough pages to
1047 * satisfy the entire reservation so we free what
1048 * we've allocated so far.
1049 */
1050 goto free;
1051 }
1052 /*
1053 * The surplus_list now contains _at_least_ the number of extra pages
1054 * needed to accommodate the reservation. Add the appropriate number
1055 * of pages to the hugetlb pool and free the extras back to the buddy
1056 * allocator. Commit the entire reservation here to prevent another
1057 * process from stealing the pages as they are added to the pool but
1058 * before they are reserved.
1059 */
1060 needed += allocated;
1061 h->resv_huge_pages += delta;
1062 ret = 0;
1063
1064 /* Free the needed pages to the hugetlb pool */
1065 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1066 if ((--needed) < 0)
1067 break;
1068 /*
1069 * This page is now managed by the hugetlb allocator and has
1070 * no users -- drop the buddy allocator's reference.
1071 */
1072 put_page_testzero(page);
1073 VM_BUG_ON(page_count(page));
1074 enqueue_huge_page(h, page);
1075 }
1076 free:
1077 spin_unlock(&hugetlb_lock);
1078
1079 /* Free unnecessary surplus pages to the buddy allocator */
1080 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1081 put_page(page);
1082 spin_lock(&hugetlb_lock);
1083
1084 return ret;
1085 }
1086
1087 /*
1088 * This routine has two main purposes:
1089 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1090 * in unused_resv_pages. This corresponds to the prior adjustments made
1091 * to the associated reservation map.
1092 * 2) Free any unused surplus pages that may have been allocated to satisfy
1093 * the reservation. As many as unused_resv_pages may be freed.
1094 *
1095 * Called with hugetlb_lock held. However, the lock could be dropped (and
1096 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1097 * we must make sure nobody else can claim pages we are in the process of
1098 * freeing. Do this by ensuring resv_huge_page always is greater than the
1099 * number of huge pages we plan to free when dropping the lock.
1100 */
1101 static void return_unused_surplus_pages(struct hstate *h,
1102 unsigned long unused_resv_pages)
1103 {
1104 unsigned long nr_pages;
1105
1106 /* Cannot return gigantic pages currently */
1107 if (h->order >= MAX_ORDER)
1108 goto out;
1109
1110 /*
1111 * Part (or even all) of the reservation could have been backed
1112 * by pre-allocated pages. Only free surplus pages.
1113 */
1114 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1115
1116 /*
1117 * We want to release as many surplus pages as possible, spread
1118 * evenly across all nodes with memory. Iterate across these nodes
1119 * until we can no longer free unreserved surplus pages. This occurs
1120 * when the nodes with surplus pages have no free pages.
1121 * free_pool_huge_page() will balance the the freed pages across the
1122 * on-line nodes with memory and will handle the hstate accounting.
1123 *
1124 * Note that we decrement resv_huge_pages as we free the pages. If
1125 * we drop the lock, resv_huge_pages will still be sufficiently large
1126 * to cover subsequent pages we may free.
1127 */
1128 while (nr_pages--) {
1129 h->resv_huge_pages--;
1130 unused_resv_pages--;
1131 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1132 goto out;
1133 cond_resched_lock(&hugetlb_lock);
1134 }
1135
1136 out:
1137 /* Fully uncommit the reservation */
1138 h->resv_huge_pages -= unused_resv_pages;
1139 }
1140
1141 /*
1142 * Determine if the huge page at addr within the vma has an associated
1143 * reservation. Where it does not we will need to logically increase
1144 * reservation and actually increase subpool usage before an allocation
1145 * can occur. Where any new reservation would be required the
1146 * reservation change is prepared, but not committed. Once the page
1147 * has been allocated from the subpool and instantiated the change should
1148 * be committed via vma_commit_reservation. No action is required on
1149 * failure.
1150 */
1151 static long vma_needs_reservation(struct hstate *h,
1152 struct vm_area_struct *vma, unsigned long addr)
1153 {
1154 struct address_space *mapping = vma->vm_file->f_mapping;
1155 struct inode *inode = mapping->host;
1156
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1159 return region_chg(&inode->i_mapping->private_list,
1160 idx, idx + 1);
1161
1162 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1163 return 1;
1164
1165 } else {
1166 long err;
1167 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1168 struct resv_map *resv = vma_resv_map(vma);
1169
1170 err = region_chg(&resv->regions, idx, idx + 1);
1171 if (err < 0)
1172 return err;
1173 return 0;
1174 }
1175 }
1176 static void vma_commit_reservation(struct hstate *h,
1177 struct vm_area_struct *vma, unsigned long addr)
1178 {
1179 struct address_space *mapping = vma->vm_file->f_mapping;
1180 struct inode *inode = mapping->host;
1181
1182 if (vma->vm_flags & VM_MAYSHARE) {
1183 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1185
1186 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1187 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1188 struct resv_map *resv = vma_resv_map(vma);
1189
1190 /* Mark this page used in the map. */
1191 region_add(&resv->regions, idx, idx + 1);
1192 }
1193 }
1194
1195 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1196 unsigned long addr, int avoid_reserve)
1197 {
1198 struct hugepage_subpool *spool = subpool_vma(vma);
1199 struct hstate *h = hstate_vma(vma);
1200 struct page *page;
1201 long chg;
1202 int ret, idx;
1203 struct hugetlb_cgroup *h_cg;
1204
1205 idx = hstate_index(h);
1206 /*
1207 * Processes that did not create the mapping will have no
1208 * reserves and will not have accounted against subpool
1209 * limit. Check that the subpool limit can be made before
1210 * satisfying the allocation MAP_NORESERVE mappings may also
1211 * need pages and subpool limit allocated allocated if no reserve
1212 * mapping overlaps.
1213 */
1214 chg = vma_needs_reservation(h, vma, addr);
1215 if (chg < 0)
1216 return ERR_PTR(-ENOMEM);
1217 if (chg || avoid_reserve)
1218 if (hugepage_subpool_get_pages(spool, 1))
1219 return ERR_PTR(-ENOSPC);
1220
1221 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1222 if (ret) {
1223 if (chg || avoid_reserve)
1224 hugepage_subpool_put_pages(spool, 1);
1225 return ERR_PTR(-ENOSPC);
1226 }
1227 spin_lock(&hugetlb_lock);
1228 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1229 if (!page) {
1230 spin_unlock(&hugetlb_lock);
1231 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1232 if (!page) {
1233 hugetlb_cgroup_uncharge_cgroup(idx,
1234 pages_per_huge_page(h),
1235 h_cg);
1236 if (chg || avoid_reserve)
1237 hugepage_subpool_put_pages(spool, 1);
1238 return ERR_PTR(-ENOSPC);
1239 }
1240 spin_lock(&hugetlb_lock);
1241 list_move(&page->lru, &h->hugepage_activelist);
1242 /* Fall through */
1243 }
1244 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1245 spin_unlock(&hugetlb_lock);
1246
1247 set_page_private(page, (unsigned long)spool);
1248
1249 vma_commit_reservation(h, vma, addr);
1250 return page;
1251 }
1252
1253 int __weak alloc_bootmem_huge_page(struct hstate *h)
1254 {
1255 struct huge_bootmem_page *m;
1256 int nr_nodes, node;
1257
1258 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1259 void *addr;
1260
1261 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1262 huge_page_size(h), huge_page_size(h), 0);
1263
1264 if (addr) {
1265 /*
1266 * Use the beginning of the huge page to store the
1267 * huge_bootmem_page struct (until gather_bootmem
1268 * puts them into the mem_map).
1269 */
1270 m = addr;
1271 goto found;
1272 }
1273 }
1274 return 0;
1275
1276 found:
1277 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1278 /* Put them into a private list first because mem_map is not up yet */
1279 list_add(&m->list, &huge_boot_pages);
1280 m->hstate = h;
1281 return 1;
1282 }
1283
1284 static void prep_compound_huge_page(struct page *page, int order)
1285 {
1286 if (unlikely(order > (MAX_ORDER - 1)))
1287 prep_compound_gigantic_page(page, order);
1288 else
1289 prep_compound_page(page, order);
1290 }
1291
1292 /* Put bootmem huge pages into the standard lists after mem_map is up */
1293 static void __init gather_bootmem_prealloc(void)
1294 {
1295 struct huge_bootmem_page *m;
1296
1297 list_for_each_entry(m, &huge_boot_pages, list) {
1298 struct hstate *h = m->hstate;
1299 struct page *page;
1300
1301 #ifdef CONFIG_HIGHMEM
1302 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1303 free_bootmem_late((unsigned long)m,
1304 sizeof(struct huge_bootmem_page));
1305 #else
1306 page = virt_to_page(m);
1307 #endif
1308 __ClearPageReserved(page);
1309 WARN_ON(page_count(page) != 1);
1310 prep_compound_huge_page(page, h->order);
1311 prep_new_huge_page(h, page, page_to_nid(page));
1312 /*
1313 * If we had gigantic hugepages allocated at boot time, we need
1314 * to restore the 'stolen' pages to totalram_pages in order to
1315 * fix confusing memory reports from free(1) and another
1316 * side-effects, like CommitLimit going negative.
1317 */
1318 if (h->order > (MAX_ORDER - 1))
1319 totalram_pages += 1 << h->order;
1320 }
1321 }
1322
1323 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1324 {
1325 unsigned long i;
1326
1327 for (i = 0; i < h->max_huge_pages; ++i) {
1328 if (h->order >= MAX_ORDER) {
1329 if (!alloc_bootmem_huge_page(h))
1330 break;
1331 } else if (!alloc_fresh_huge_page(h,
1332 &node_states[N_MEMORY]))
1333 break;
1334 }
1335 h->max_huge_pages = i;
1336 }
1337
1338 static void __init hugetlb_init_hstates(void)
1339 {
1340 struct hstate *h;
1341
1342 for_each_hstate(h) {
1343 /* oversize hugepages were init'ed in early boot */
1344 if (h->order < MAX_ORDER)
1345 hugetlb_hstate_alloc_pages(h);
1346 }
1347 }
1348
1349 static char * __init memfmt(char *buf, unsigned long n)
1350 {
1351 if (n >= (1UL << 30))
1352 sprintf(buf, "%lu GB", n >> 30);
1353 else if (n >= (1UL << 20))
1354 sprintf(buf, "%lu MB", n >> 20);
1355 else
1356 sprintf(buf, "%lu KB", n >> 10);
1357 return buf;
1358 }
1359
1360 static void __init report_hugepages(void)
1361 {
1362 struct hstate *h;
1363
1364 for_each_hstate(h) {
1365 char buf[32];
1366 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1367 memfmt(buf, huge_page_size(h)),
1368 h->free_huge_pages);
1369 }
1370 }
1371
1372 #ifdef CONFIG_HIGHMEM
1373 static void try_to_free_low(struct hstate *h, unsigned long count,
1374 nodemask_t *nodes_allowed)
1375 {
1376 int i;
1377
1378 if (h->order >= MAX_ORDER)
1379 return;
1380
1381 for_each_node_mask(i, *nodes_allowed) {
1382 struct page *page, *next;
1383 struct list_head *freel = &h->hugepage_freelists[i];
1384 list_for_each_entry_safe(page, next, freel, lru) {
1385 if (count >= h->nr_huge_pages)
1386 return;
1387 if (PageHighMem(page))
1388 continue;
1389 list_del(&page->lru);
1390 update_and_free_page(h, page);
1391 h->free_huge_pages--;
1392 h->free_huge_pages_node[page_to_nid(page)]--;
1393 }
1394 }
1395 }
1396 #else
1397 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1398 nodemask_t *nodes_allowed)
1399 {
1400 }
1401 #endif
1402
1403 /*
1404 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1405 * balanced by operating on them in a round-robin fashion.
1406 * Returns 1 if an adjustment was made.
1407 */
1408 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1409 int delta)
1410 {
1411 int nr_nodes, node;
1412
1413 VM_BUG_ON(delta != -1 && delta != 1);
1414
1415 if (delta < 0) {
1416 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1417 if (h->surplus_huge_pages_node[node])
1418 goto found;
1419 }
1420 } else {
1421 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1422 if (h->surplus_huge_pages_node[node] <
1423 h->nr_huge_pages_node[node])
1424 goto found;
1425 }
1426 }
1427 return 0;
1428
1429 found:
1430 h->surplus_huge_pages += delta;
1431 h->surplus_huge_pages_node[node] += delta;
1432 return 1;
1433 }
1434
1435 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1436 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1437 nodemask_t *nodes_allowed)
1438 {
1439 unsigned long min_count, ret;
1440
1441 if (h->order >= MAX_ORDER)
1442 return h->max_huge_pages;
1443
1444 /*
1445 * Increase the pool size
1446 * First take pages out of surplus state. Then make up the
1447 * remaining difference by allocating fresh huge pages.
1448 *
1449 * We might race with alloc_buddy_huge_page() here and be unable
1450 * to convert a surplus huge page to a normal huge page. That is
1451 * not critical, though, it just means the overall size of the
1452 * pool might be one hugepage larger than it needs to be, but
1453 * within all the constraints specified by the sysctls.
1454 */
1455 spin_lock(&hugetlb_lock);
1456 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1457 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1458 break;
1459 }
1460
1461 while (count > persistent_huge_pages(h)) {
1462 /*
1463 * If this allocation races such that we no longer need the
1464 * page, free_huge_page will handle it by freeing the page
1465 * and reducing the surplus.
1466 */
1467 spin_unlock(&hugetlb_lock);
1468 ret = alloc_fresh_huge_page(h, nodes_allowed);
1469 spin_lock(&hugetlb_lock);
1470 if (!ret)
1471 goto out;
1472
1473 /* Bail for signals. Probably ctrl-c from user */
1474 if (signal_pending(current))
1475 goto out;
1476 }
1477
1478 /*
1479 * Decrease the pool size
1480 * First return free pages to the buddy allocator (being careful
1481 * to keep enough around to satisfy reservations). Then place
1482 * pages into surplus state as needed so the pool will shrink
1483 * to the desired size as pages become free.
1484 *
1485 * By placing pages into the surplus state independent of the
1486 * overcommit value, we are allowing the surplus pool size to
1487 * exceed overcommit. There are few sane options here. Since
1488 * alloc_buddy_huge_page() is checking the global counter,
1489 * though, we'll note that we're not allowed to exceed surplus
1490 * and won't grow the pool anywhere else. Not until one of the
1491 * sysctls are changed, or the surplus pages go out of use.
1492 */
1493 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1494 min_count = max(count, min_count);
1495 try_to_free_low(h, min_count, nodes_allowed);
1496 while (min_count < persistent_huge_pages(h)) {
1497 if (!free_pool_huge_page(h, nodes_allowed, 0))
1498 break;
1499 cond_resched_lock(&hugetlb_lock);
1500 }
1501 while (count < persistent_huge_pages(h)) {
1502 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1503 break;
1504 }
1505 out:
1506 ret = persistent_huge_pages(h);
1507 spin_unlock(&hugetlb_lock);
1508 return ret;
1509 }
1510
1511 #define HSTATE_ATTR_RO(_name) \
1512 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1513
1514 #define HSTATE_ATTR(_name) \
1515 static struct kobj_attribute _name##_attr = \
1516 __ATTR(_name, 0644, _name##_show, _name##_store)
1517
1518 static struct kobject *hugepages_kobj;
1519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1520
1521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1522
1523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1524 {
1525 int i;
1526
1527 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1528 if (hstate_kobjs[i] == kobj) {
1529 if (nidp)
1530 *nidp = NUMA_NO_NODE;
1531 return &hstates[i];
1532 }
1533
1534 return kobj_to_node_hstate(kobj, nidp);
1535 }
1536
1537 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1538 struct kobj_attribute *attr, char *buf)
1539 {
1540 struct hstate *h;
1541 unsigned long nr_huge_pages;
1542 int nid;
1543
1544 h = kobj_to_hstate(kobj, &nid);
1545 if (nid == NUMA_NO_NODE)
1546 nr_huge_pages = h->nr_huge_pages;
1547 else
1548 nr_huge_pages = h->nr_huge_pages_node[nid];
1549
1550 return sprintf(buf, "%lu\n", nr_huge_pages);
1551 }
1552
1553 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1554 struct kobject *kobj, struct kobj_attribute *attr,
1555 const char *buf, size_t len)
1556 {
1557 int err;
1558 int nid;
1559 unsigned long count;
1560 struct hstate *h;
1561 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1562
1563 err = strict_strtoul(buf, 10, &count);
1564 if (err)
1565 goto out;
1566
1567 h = kobj_to_hstate(kobj, &nid);
1568 if (h->order >= MAX_ORDER) {
1569 err = -EINVAL;
1570 goto out;
1571 }
1572
1573 if (nid == NUMA_NO_NODE) {
1574 /*
1575 * global hstate attribute
1576 */
1577 if (!(obey_mempolicy &&
1578 init_nodemask_of_mempolicy(nodes_allowed))) {
1579 NODEMASK_FREE(nodes_allowed);
1580 nodes_allowed = &node_states[N_MEMORY];
1581 }
1582 } else if (nodes_allowed) {
1583 /*
1584 * per node hstate attribute: adjust count to global,
1585 * but restrict alloc/free to the specified node.
1586 */
1587 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1588 init_nodemask_of_node(nodes_allowed, nid);
1589 } else
1590 nodes_allowed = &node_states[N_MEMORY];
1591
1592 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1593
1594 if (nodes_allowed != &node_states[N_MEMORY])
1595 NODEMASK_FREE(nodes_allowed);
1596
1597 return len;
1598 out:
1599 NODEMASK_FREE(nodes_allowed);
1600 return err;
1601 }
1602
1603 static ssize_t nr_hugepages_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1605 {
1606 return nr_hugepages_show_common(kobj, attr, buf);
1607 }
1608
1609 static ssize_t nr_hugepages_store(struct kobject *kobj,
1610 struct kobj_attribute *attr, const char *buf, size_t len)
1611 {
1612 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1613 }
1614 HSTATE_ATTR(nr_hugepages);
1615
1616 #ifdef CONFIG_NUMA
1617
1618 /*
1619 * hstate attribute for optionally mempolicy-based constraint on persistent
1620 * huge page alloc/free.
1621 */
1622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1623 struct kobj_attribute *attr, char *buf)
1624 {
1625 return nr_hugepages_show_common(kobj, attr, buf);
1626 }
1627
1628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1629 struct kobj_attribute *attr, const char *buf, size_t len)
1630 {
1631 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1632 }
1633 HSTATE_ATTR(nr_hugepages_mempolicy);
1634 #endif
1635
1636
1637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1638 struct kobj_attribute *attr, char *buf)
1639 {
1640 struct hstate *h = kobj_to_hstate(kobj, NULL);
1641 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1642 }
1643
1644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1645 struct kobj_attribute *attr, const char *buf, size_t count)
1646 {
1647 int err;
1648 unsigned long input;
1649 struct hstate *h = kobj_to_hstate(kobj, NULL);
1650
1651 if (h->order >= MAX_ORDER)
1652 return -EINVAL;
1653
1654 err = strict_strtoul(buf, 10, &input);
1655 if (err)
1656 return err;
1657
1658 spin_lock(&hugetlb_lock);
1659 h->nr_overcommit_huge_pages = input;
1660 spin_unlock(&hugetlb_lock);
1661
1662 return count;
1663 }
1664 HSTATE_ATTR(nr_overcommit_hugepages);
1665
1666 static ssize_t free_hugepages_show(struct kobject *kobj,
1667 struct kobj_attribute *attr, char *buf)
1668 {
1669 struct hstate *h;
1670 unsigned long free_huge_pages;
1671 int nid;
1672
1673 h = kobj_to_hstate(kobj, &nid);
1674 if (nid == NUMA_NO_NODE)
1675 free_huge_pages = h->free_huge_pages;
1676 else
1677 free_huge_pages = h->free_huge_pages_node[nid];
1678
1679 return sprintf(buf, "%lu\n", free_huge_pages);
1680 }
1681 HSTATE_ATTR_RO(free_hugepages);
1682
1683 static ssize_t resv_hugepages_show(struct kobject *kobj,
1684 struct kobj_attribute *attr, char *buf)
1685 {
1686 struct hstate *h = kobj_to_hstate(kobj, NULL);
1687 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1688 }
1689 HSTATE_ATTR_RO(resv_hugepages);
1690
1691 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1692 struct kobj_attribute *attr, char *buf)
1693 {
1694 struct hstate *h;
1695 unsigned long surplus_huge_pages;
1696 int nid;
1697
1698 h = kobj_to_hstate(kobj, &nid);
1699 if (nid == NUMA_NO_NODE)
1700 surplus_huge_pages = h->surplus_huge_pages;
1701 else
1702 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1703
1704 return sprintf(buf, "%lu\n", surplus_huge_pages);
1705 }
1706 HSTATE_ATTR_RO(surplus_hugepages);
1707
1708 static struct attribute *hstate_attrs[] = {
1709 &nr_hugepages_attr.attr,
1710 &nr_overcommit_hugepages_attr.attr,
1711 &free_hugepages_attr.attr,
1712 &resv_hugepages_attr.attr,
1713 &surplus_hugepages_attr.attr,
1714 #ifdef CONFIG_NUMA
1715 &nr_hugepages_mempolicy_attr.attr,
1716 #endif
1717 NULL,
1718 };
1719
1720 static struct attribute_group hstate_attr_group = {
1721 .attrs = hstate_attrs,
1722 };
1723
1724 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1725 struct kobject **hstate_kobjs,
1726 struct attribute_group *hstate_attr_group)
1727 {
1728 int retval;
1729 int hi = hstate_index(h);
1730
1731 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1732 if (!hstate_kobjs[hi])
1733 return -ENOMEM;
1734
1735 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1736 if (retval)
1737 kobject_put(hstate_kobjs[hi]);
1738
1739 return retval;
1740 }
1741
1742 static void __init hugetlb_sysfs_init(void)
1743 {
1744 struct hstate *h;
1745 int err;
1746
1747 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1748 if (!hugepages_kobj)
1749 return;
1750
1751 for_each_hstate(h) {
1752 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1753 hstate_kobjs, &hstate_attr_group);
1754 if (err)
1755 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1756 }
1757 }
1758
1759 #ifdef CONFIG_NUMA
1760
1761 /*
1762 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1763 * with node devices in node_devices[] using a parallel array. The array
1764 * index of a node device or _hstate == node id.
1765 * This is here to avoid any static dependency of the node device driver, in
1766 * the base kernel, on the hugetlb module.
1767 */
1768 struct node_hstate {
1769 struct kobject *hugepages_kobj;
1770 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1771 };
1772 struct node_hstate node_hstates[MAX_NUMNODES];
1773
1774 /*
1775 * A subset of global hstate attributes for node devices
1776 */
1777 static struct attribute *per_node_hstate_attrs[] = {
1778 &nr_hugepages_attr.attr,
1779 &free_hugepages_attr.attr,
1780 &surplus_hugepages_attr.attr,
1781 NULL,
1782 };
1783
1784 static struct attribute_group per_node_hstate_attr_group = {
1785 .attrs = per_node_hstate_attrs,
1786 };
1787
1788 /*
1789 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1790 * Returns node id via non-NULL nidp.
1791 */
1792 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1793 {
1794 int nid;
1795
1796 for (nid = 0; nid < nr_node_ids; nid++) {
1797 struct node_hstate *nhs = &node_hstates[nid];
1798 int i;
1799 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1800 if (nhs->hstate_kobjs[i] == kobj) {
1801 if (nidp)
1802 *nidp = nid;
1803 return &hstates[i];
1804 }
1805 }
1806
1807 BUG();
1808 return NULL;
1809 }
1810
1811 /*
1812 * Unregister hstate attributes from a single node device.
1813 * No-op if no hstate attributes attached.
1814 */
1815 static void hugetlb_unregister_node(struct node *node)
1816 {
1817 struct hstate *h;
1818 struct node_hstate *nhs = &node_hstates[node->dev.id];
1819
1820 if (!nhs->hugepages_kobj)
1821 return; /* no hstate attributes */
1822
1823 for_each_hstate(h) {
1824 int idx = hstate_index(h);
1825 if (nhs->hstate_kobjs[idx]) {
1826 kobject_put(nhs->hstate_kobjs[idx]);
1827 nhs->hstate_kobjs[idx] = NULL;
1828 }
1829 }
1830
1831 kobject_put(nhs->hugepages_kobj);
1832 nhs->hugepages_kobj = NULL;
1833 }
1834
1835 /*
1836 * hugetlb module exit: unregister hstate attributes from node devices
1837 * that have them.
1838 */
1839 static void hugetlb_unregister_all_nodes(void)
1840 {
1841 int nid;
1842
1843 /*
1844 * disable node device registrations.
1845 */
1846 register_hugetlbfs_with_node(NULL, NULL);
1847
1848 /*
1849 * remove hstate attributes from any nodes that have them.
1850 */
1851 for (nid = 0; nid < nr_node_ids; nid++)
1852 hugetlb_unregister_node(node_devices[nid]);
1853 }
1854
1855 /*
1856 * Register hstate attributes for a single node device.
1857 * No-op if attributes already registered.
1858 */
1859 static void hugetlb_register_node(struct node *node)
1860 {
1861 struct hstate *h;
1862 struct node_hstate *nhs = &node_hstates[node->dev.id];
1863 int err;
1864
1865 if (nhs->hugepages_kobj)
1866 return; /* already allocated */
1867
1868 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1869 &node->dev.kobj);
1870 if (!nhs->hugepages_kobj)
1871 return;
1872
1873 for_each_hstate(h) {
1874 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1875 nhs->hstate_kobjs,
1876 &per_node_hstate_attr_group);
1877 if (err) {
1878 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1879 h->name, node->dev.id);
1880 hugetlb_unregister_node(node);
1881 break;
1882 }
1883 }
1884 }
1885
1886 /*
1887 * hugetlb init time: register hstate attributes for all registered node
1888 * devices of nodes that have memory. All on-line nodes should have
1889 * registered their associated device by this time.
1890 */
1891 static void hugetlb_register_all_nodes(void)
1892 {
1893 int nid;
1894
1895 for_each_node_state(nid, N_MEMORY) {
1896 struct node *node = node_devices[nid];
1897 if (node->dev.id == nid)
1898 hugetlb_register_node(node);
1899 }
1900
1901 /*
1902 * Let the node device driver know we're here so it can
1903 * [un]register hstate attributes on node hotplug.
1904 */
1905 register_hugetlbfs_with_node(hugetlb_register_node,
1906 hugetlb_unregister_node);
1907 }
1908 #else /* !CONFIG_NUMA */
1909
1910 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1911 {
1912 BUG();
1913 if (nidp)
1914 *nidp = -1;
1915 return NULL;
1916 }
1917
1918 static void hugetlb_unregister_all_nodes(void) { }
1919
1920 static void hugetlb_register_all_nodes(void) { }
1921
1922 #endif
1923
1924 static void __exit hugetlb_exit(void)
1925 {
1926 struct hstate *h;
1927
1928 hugetlb_unregister_all_nodes();
1929
1930 for_each_hstate(h) {
1931 kobject_put(hstate_kobjs[hstate_index(h)]);
1932 }
1933
1934 kobject_put(hugepages_kobj);
1935 }
1936 module_exit(hugetlb_exit);
1937
1938 static int __init hugetlb_init(void)
1939 {
1940 /* Some platform decide whether they support huge pages at boot
1941 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1942 * there is no such support
1943 */
1944 if (HPAGE_SHIFT == 0)
1945 return 0;
1946
1947 if (!size_to_hstate(default_hstate_size)) {
1948 default_hstate_size = HPAGE_SIZE;
1949 if (!size_to_hstate(default_hstate_size))
1950 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1951 }
1952 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1953 if (default_hstate_max_huge_pages)
1954 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1955
1956 hugetlb_init_hstates();
1957 gather_bootmem_prealloc();
1958 report_hugepages();
1959
1960 hugetlb_sysfs_init();
1961 hugetlb_register_all_nodes();
1962 hugetlb_cgroup_file_init();
1963
1964 return 0;
1965 }
1966 module_init(hugetlb_init);
1967
1968 /* Should be called on processing a hugepagesz=... option */
1969 void __init hugetlb_add_hstate(unsigned order)
1970 {
1971 struct hstate *h;
1972 unsigned long i;
1973
1974 if (size_to_hstate(PAGE_SIZE << order)) {
1975 pr_warning("hugepagesz= specified twice, ignoring\n");
1976 return;
1977 }
1978 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1979 BUG_ON(order == 0);
1980 h = &hstates[hugetlb_max_hstate++];
1981 h->order = order;
1982 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1983 h->nr_huge_pages = 0;
1984 h->free_huge_pages = 0;
1985 for (i = 0; i < MAX_NUMNODES; ++i)
1986 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1987 INIT_LIST_HEAD(&h->hugepage_activelist);
1988 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1989 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1990 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1991 huge_page_size(h)/1024);
1992
1993 parsed_hstate = h;
1994 }
1995
1996 static int __init hugetlb_nrpages_setup(char *s)
1997 {
1998 unsigned long *mhp;
1999 static unsigned long *last_mhp;
2000
2001 /*
2002 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2003 * so this hugepages= parameter goes to the "default hstate".
2004 */
2005 if (!hugetlb_max_hstate)
2006 mhp = &default_hstate_max_huge_pages;
2007 else
2008 mhp = &parsed_hstate->max_huge_pages;
2009
2010 if (mhp == last_mhp) {
2011 pr_warning("hugepages= specified twice without "
2012 "interleaving hugepagesz=, ignoring\n");
2013 return 1;
2014 }
2015
2016 if (sscanf(s, "%lu", mhp) <= 0)
2017 *mhp = 0;
2018
2019 /*
2020 * Global state is always initialized later in hugetlb_init.
2021 * But we need to allocate >= MAX_ORDER hstates here early to still
2022 * use the bootmem allocator.
2023 */
2024 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2025 hugetlb_hstate_alloc_pages(parsed_hstate);
2026
2027 last_mhp = mhp;
2028
2029 return 1;
2030 }
2031 __setup("hugepages=", hugetlb_nrpages_setup);
2032
2033 static int __init hugetlb_default_setup(char *s)
2034 {
2035 default_hstate_size = memparse(s, &s);
2036 return 1;
2037 }
2038 __setup("default_hugepagesz=", hugetlb_default_setup);
2039
2040 static unsigned int cpuset_mems_nr(unsigned int *array)
2041 {
2042 int node;
2043 unsigned int nr = 0;
2044
2045 for_each_node_mask(node, cpuset_current_mems_allowed)
2046 nr += array[node];
2047
2048 return nr;
2049 }
2050
2051 #ifdef CONFIG_SYSCTL
2052 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2053 struct ctl_table *table, int write,
2054 void __user *buffer, size_t *length, loff_t *ppos)
2055 {
2056 struct hstate *h = &default_hstate;
2057 unsigned long tmp;
2058 int ret;
2059
2060 tmp = h->max_huge_pages;
2061
2062 if (write && h->order >= MAX_ORDER)
2063 return -EINVAL;
2064
2065 table->data = &tmp;
2066 table->maxlen = sizeof(unsigned long);
2067 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2068 if (ret)
2069 goto out;
2070
2071 if (write) {
2072 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2073 GFP_KERNEL | __GFP_NORETRY);
2074 if (!(obey_mempolicy &&
2075 init_nodemask_of_mempolicy(nodes_allowed))) {
2076 NODEMASK_FREE(nodes_allowed);
2077 nodes_allowed = &node_states[N_MEMORY];
2078 }
2079 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2080
2081 if (nodes_allowed != &node_states[N_MEMORY])
2082 NODEMASK_FREE(nodes_allowed);
2083 }
2084 out:
2085 return ret;
2086 }
2087
2088 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2089 void __user *buffer, size_t *length, loff_t *ppos)
2090 {
2091
2092 return hugetlb_sysctl_handler_common(false, table, write,
2093 buffer, length, ppos);
2094 }
2095
2096 #ifdef CONFIG_NUMA
2097 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2098 void __user *buffer, size_t *length, loff_t *ppos)
2099 {
2100 return hugetlb_sysctl_handler_common(true, table, write,
2101 buffer, length, ppos);
2102 }
2103 #endif /* CONFIG_NUMA */
2104
2105 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2106 void __user *buffer,
2107 size_t *length, loff_t *ppos)
2108 {
2109 proc_dointvec(table, write, buffer, length, ppos);
2110 if (hugepages_treat_as_movable)
2111 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2112 else
2113 htlb_alloc_mask = GFP_HIGHUSER;
2114 return 0;
2115 }
2116
2117 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2118 void __user *buffer,
2119 size_t *length, loff_t *ppos)
2120 {
2121 struct hstate *h = &default_hstate;
2122 unsigned long tmp;
2123 int ret;
2124
2125 tmp = h->nr_overcommit_huge_pages;
2126
2127 if (write && h->order >= MAX_ORDER)
2128 return -EINVAL;
2129
2130 table->data = &tmp;
2131 table->maxlen = sizeof(unsigned long);
2132 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2133 if (ret)
2134 goto out;
2135
2136 if (write) {
2137 spin_lock(&hugetlb_lock);
2138 h->nr_overcommit_huge_pages = tmp;
2139 spin_unlock(&hugetlb_lock);
2140 }
2141 out:
2142 return ret;
2143 }
2144
2145 #endif /* CONFIG_SYSCTL */
2146
2147 void hugetlb_report_meminfo(struct seq_file *m)
2148 {
2149 struct hstate *h = &default_hstate;
2150 seq_printf(m,
2151 "HugePages_Total: %5lu\n"
2152 "HugePages_Free: %5lu\n"
2153 "HugePages_Rsvd: %5lu\n"
2154 "HugePages_Surp: %5lu\n"
2155 "Hugepagesize: %8lu kB\n",
2156 h->nr_huge_pages,
2157 h->free_huge_pages,
2158 h->resv_huge_pages,
2159 h->surplus_huge_pages,
2160 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2161 }
2162
2163 int hugetlb_report_node_meminfo(int nid, char *buf)
2164 {
2165 struct hstate *h = &default_hstate;
2166 return sprintf(buf,
2167 "Node %d HugePages_Total: %5u\n"
2168 "Node %d HugePages_Free: %5u\n"
2169 "Node %d HugePages_Surp: %5u\n",
2170 nid, h->nr_huge_pages_node[nid],
2171 nid, h->free_huge_pages_node[nid],
2172 nid, h->surplus_huge_pages_node[nid]);
2173 }
2174
2175 void hugetlb_show_meminfo(void)
2176 {
2177 struct hstate *h;
2178 int nid;
2179
2180 for_each_node_state(nid, N_MEMORY)
2181 for_each_hstate(h)
2182 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2183 nid,
2184 h->nr_huge_pages_node[nid],
2185 h->free_huge_pages_node[nid],
2186 h->surplus_huge_pages_node[nid],
2187 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2188 }
2189
2190 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2191 unsigned long hugetlb_total_pages(void)
2192 {
2193 struct hstate *h;
2194 unsigned long nr_total_pages = 0;
2195
2196 for_each_hstate(h)
2197 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2198 return nr_total_pages;
2199 }
2200
2201 static int hugetlb_acct_memory(struct hstate *h, long delta)
2202 {
2203 int ret = -ENOMEM;
2204
2205 spin_lock(&hugetlb_lock);
2206 /*
2207 * When cpuset is configured, it breaks the strict hugetlb page
2208 * reservation as the accounting is done on a global variable. Such
2209 * reservation is completely rubbish in the presence of cpuset because
2210 * the reservation is not checked against page availability for the
2211 * current cpuset. Application can still potentially OOM'ed by kernel
2212 * with lack of free htlb page in cpuset that the task is in.
2213 * Attempt to enforce strict accounting with cpuset is almost
2214 * impossible (or too ugly) because cpuset is too fluid that
2215 * task or memory node can be dynamically moved between cpusets.
2216 *
2217 * The change of semantics for shared hugetlb mapping with cpuset is
2218 * undesirable. However, in order to preserve some of the semantics,
2219 * we fall back to check against current free page availability as
2220 * a best attempt and hopefully to minimize the impact of changing
2221 * semantics that cpuset has.
2222 */
2223 if (delta > 0) {
2224 if (gather_surplus_pages(h, delta) < 0)
2225 goto out;
2226
2227 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2228 return_unused_surplus_pages(h, delta);
2229 goto out;
2230 }
2231 }
2232
2233 ret = 0;
2234 if (delta < 0)
2235 return_unused_surplus_pages(h, (unsigned long) -delta);
2236
2237 out:
2238 spin_unlock(&hugetlb_lock);
2239 return ret;
2240 }
2241
2242 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2243 {
2244 struct resv_map *resv = vma_resv_map(vma);
2245
2246 /*
2247 * This new VMA should share its siblings reservation map if present.
2248 * The VMA will only ever have a valid reservation map pointer where
2249 * it is being copied for another still existing VMA. As that VMA
2250 * has a reference to the reservation map it cannot disappear until
2251 * after this open call completes. It is therefore safe to take a
2252 * new reference here without additional locking.
2253 */
2254 if (resv)
2255 kref_get(&resv->refs);
2256 }
2257
2258 static void resv_map_put(struct vm_area_struct *vma)
2259 {
2260 struct resv_map *resv = vma_resv_map(vma);
2261
2262 if (!resv)
2263 return;
2264 kref_put(&resv->refs, resv_map_release);
2265 }
2266
2267 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2268 {
2269 struct hstate *h = hstate_vma(vma);
2270 struct resv_map *resv = vma_resv_map(vma);
2271 struct hugepage_subpool *spool = subpool_vma(vma);
2272 unsigned long reserve;
2273 unsigned long start;
2274 unsigned long end;
2275
2276 if (resv) {
2277 start = vma_hugecache_offset(h, vma, vma->vm_start);
2278 end = vma_hugecache_offset(h, vma, vma->vm_end);
2279
2280 reserve = (end - start) -
2281 region_count(&resv->regions, start, end);
2282
2283 resv_map_put(vma);
2284
2285 if (reserve) {
2286 hugetlb_acct_memory(h, -reserve);
2287 hugepage_subpool_put_pages(spool, reserve);
2288 }
2289 }
2290 }
2291
2292 /*
2293 * We cannot handle pagefaults against hugetlb pages at all. They cause
2294 * handle_mm_fault() to try to instantiate regular-sized pages in the
2295 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2296 * this far.
2297 */
2298 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2299 {
2300 BUG();
2301 return 0;
2302 }
2303
2304 const struct vm_operations_struct hugetlb_vm_ops = {
2305 .fault = hugetlb_vm_op_fault,
2306 .open = hugetlb_vm_op_open,
2307 .close = hugetlb_vm_op_close,
2308 };
2309
2310 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2311 int writable)
2312 {
2313 pte_t entry;
2314
2315 if (writable) {
2316 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2317 vma->vm_page_prot)));
2318 } else {
2319 entry = huge_pte_wrprotect(mk_huge_pte(page,
2320 vma->vm_page_prot));
2321 }
2322 entry = pte_mkyoung(entry);
2323 entry = pte_mkhuge(entry);
2324 entry = arch_make_huge_pte(entry, vma, page, writable);
2325
2326 return entry;
2327 }
2328
2329 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2330 unsigned long address, pte_t *ptep)
2331 {
2332 pte_t entry;
2333
2334 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2335 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2336 update_mmu_cache(vma, address, ptep);
2337 }
2338
2339 static int is_hugetlb_entry_migration(pte_t pte)
2340 {
2341 swp_entry_t swp;
2342
2343 if (huge_pte_none(pte) || pte_present(pte))
2344 return 0;
2345 swp = pte_to_swp_entry(pte);
2346 if (non_swap_entry(swp) && is_migration_entry(swp))
2347 return 1;
2348 else
2349 return 0;
2350 }
2351
2352 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2353 {
2354 swp_entry_t swp;
2355
2356 if (huge_pte_none(pte) || pte_present(pte))
2357 return 0;
2358 swp = pte_to_swp_entry(pte);
2359 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2360 return 1;
2361 else
2362 return 0;
2363 }
2364
2365 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2366 struct vm_area_struct *vma)
2367 {
2368 pte_t *src_pte, *dst_pte, entry;
2369 struct page *ptepage;
2370 unsigned long addr;
2371 int cow;
2372 struct hstate *h = hstate_vma(vma);
2373 unsigned long sz = huge_page_size(h);
2374 unsigned long mmun_start; /* For mmu_notifiers */
2375 unsigned long mmun_end; /* For mmu_notifiers */
2376 int ret = 0;
2377
2378 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2379
2380 mmun_start = vma->vm_start;
2381 mmun_end = vma->vm_end;
2382 if (cow)
2383 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2384
2385 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2386 src_pte = huge_pte_offset(src, addr);
2387 if (!src_pte)
2388 continue;
2389 dst_pte = huge_pte_alloc(dst, addr, sz);
2390 if (!dst_pte) {
2391 ret = -ENOMEM;
2392 break;
2393 }
2394
2395 /* If the pagetables are shared don't copy or take references */
2396 if (dst_pte == src_pte)
2397 continue;
2398
2399 spin_lock(&dst->page_table_lock);
2400 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2401 entry = huge_ptep_get(src_pte);
2402 if (huge_pte_none(entry)) { /* skip none entry */
2403 ;
2404 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2405 is_hugetlb_entry_hwpoisoned(entry))) {
2406 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2407
2408 if (is_write_migration_entry(swp_entry) && cow) {
2409 /*
2410 * COW mappings require pages in both
2411 * parent and child to be set to read.
2412 */
2413 make_migration_entry_read(&swp_entry);
2414 entry = swp_entry_to_pte(swp_entry);
2415 set_huge_pte_at(src, addr, src_pte, entry);
2416 }
2417 set_huge_pte_at(dst, addr, dst_pte, entry);
2418 } else {
2419 if (cow)
2420 huge_ptep_set_wrprotect(src, addr, src_pte);
2421 entry = huge_ptep_get(src_pte);
2422 ptepage = pte_page(entry);
2423 get_page(ptepage);
2424 page_dup_rmap(ptepage);
2425 set_huge_pte_at(dst, addr, dst_pte, entry);
2426 }
2427 spin_unlock(&src->page_table_lock);
2428 spin_unlock(&dst->page_table_lock);
2429 }
2430
2431 if (cow)
2432 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2433
2434 return ret;
2435 }
2436
2437 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2438 unsigned long start, unsigned long end,
2439 struct page *ref_page)
2440 {
2441 int force_flush = 0;
2442 struct mm_struct *mm = vma->vm_mm;
2443 unsigned long address;
2444 pte_t *ptep;
2445 pte_t pte;
2446 struct page *page;
2447 struct hstate *h = hstate_vma(vma);
2448 unsigned long sz = huge_page_size(h);
2449 const unsigned long mmun_start = start; /* For mmu_notifiers */
2450 const unsigned long mmun_end = end; /* For mmu_notifiers */
2451
2452 WARN_ON(!is_vm_hugetlb_page(vma));
2453 BUG_ON(start & ~huge_page_mask(h));
2454 BUG_ON(end & ~huge_page_mask(h));
2455
2456 tlb_start_vma(tlb, vma);
2457 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2458 again:
2459 spin_lock(&mm->page_table_lock);
2460 for (address = start; address < end; address += sz) {
2461 ptep = huge_pte_offset(mm, address);
2462 if (!ptep)
2463 continue;
2464
2465 if (huge_pmd_unshare(mm, &address, ptep))
2466 continue;
2467
2468 pte = huge_ptep_get(ptep);
2469 if (huge_pte_none(pte))
2470 continue;
2471
2472 /*
2473 * Migrating hugepage or HWPoisoned hugepage is already
2474 * unmapped and its refcount is dropped, so just clear pte here.
2475 */
2476 if (unlikely(!pte_present(pte))) {
2477 huge_pte_clear(mm, address, ptep);
2478 continue;
2479 }
2480
2481 page = pte_page(pte);
2482 /*
2483 * If a reference page is supplied, it is because a specific
2484 * page is being unmapped, not a range. Ensure the page we
2485 * are about to unmap is the actual page of interest.
2486 */
2487 if (ref_page) {
2488 if (page != ref_page)
2489 continue;
2490
2491 /*
2492 * Mark the VMA as having unmapped its page so that
2493 * future faults in this VMA will fail rather than
2494 * looking like data was lost
2495 */
2496 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2497 }
2498
2499 pte = huge_ptep_get_and_clear(mm, address, ptep);
2500 tlb_remove_tlb_entry(tlb, ptep, address);
2501 if (huge_pte_dirty(pte))
2502 set_page_dirty(page);
2503
2504 page_remove_rmap(page);
2505 force_flush = !__tlb_remove_page(tlb, page);
2506 if (force_flush)
2507 break;
2508 /* Bail out after unmapping reference page if supplied */
2509 if (ref_page)
2510 break;
2511 }
2512 spin_unlock(&mm->page_table_lock);
2513 /*
2514 * mmu_gather ran out of room to batch pages, we break out of
2515 * the PTE lock to avoid doing the potential expensive TLB invalidate
2516 * and page-free while holding it.
2517 */
2518 if (force_flush) {
2519 force_flush = 0;
2520 tlb_flush_mmu(tlb);
2521 if (address < end && !ref_page)
2522 goto again;
2523 }
2524 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2525 tlb_end_vma(tlb, vma);
2526 }
2527
2528 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2529 struct vm_area_struct *vma, unsigned long start,
2530 unsigned long end, struct page *ref_page)
2531 {
2532 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2533
2534 /*
2535 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2536 * test will fail on a vma being torn down, and not grab a page table
2537 * on its way out. We're lucky that the flag has such an appropriate
2538 * name, and can in fact be safely cleared here. We could clear it
2539 * before the __unmap_hugepage_range above, but all that's necessary
2540 * is to clear it before releasing the i_mmap_mutex. This works
2541 * because in the context this is called, the VMA is about to be
2542 * destroyed and the i_mmap_mutex is held.
2543 */
2544 vma->vm_flags &= ~VM_MAYSHARE;
2545 }
2546
2547 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2548 unsigned long end, struct page *ref_page)
2549 {
2550 struct mm_struct *mm;
2551 struct mmu_gather tlb;
2552
2553 mm = vma->vm_mm;
2554
2555 tlb_gather_mmu(&tlb, mm, start, end);
2556 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2557 tlb_finish_mmu(&tlb, start, end);
2558 }
2559
2560 /*
2561 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2562 * mappping it owns the reserve page for. The intention is to unmap the page
2563 * from other VMAs and let the children be SIGKILLed if they are faulting the
2564 * same region.
2565 */
2566 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2567 struct page *page, unsigned long address)
2568 {
2569 struct hstate *h = hstate_vma(vma);
2570 struct vm_area_struct *iter_vma;
2571 struct address_space *mapping;
2572 pgoff_t pgoff;
2573
2574 /*
2575 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2576 * from page cache lookup which is in HPAGE_SIZE units.
2577 */
2578 address = address & huge_page_mask(h);
2579 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2580 vma->vm_pgoff;
2581 mapping = file_inode(vma->vm_file)->i_mapping;
2582
2583 /*
2584 * Take the mapping lock for the duration of the table walk. As
2585 * this mapping should be shared between all the VMAs,
2586 * __unmap_hugepage_range() is called as the lock is already held
2587 */
2588 mutex_lock(&mapping->i_mmap_mutex);
2589 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2590 /* Do not unmap the current VMA */
2591 if (iter_vma == vma)
2592 continue;
2593
2594 /*
2595 * Shared VMAs have their own reserves and do not affect
2596 * MAP_PRIVATE accounting but it is possible that a shared
2597 * VMA is using the same page so check and skip such VMAs.
2598 */
2599 if (iter_vma->vm_flags & VM_MAYSHARE)
2600 continue;
2601
2602 /*
2603 * Unmap the page from other VMAs without their own reserves.
2604 * They get marked to be SIGKILLed if they fault in these
2605 * areas. This is because a future no-page fault on this VMA
2606 * could insert a zeroed page instead of the data existing
2607 * from the time of fork. This would look like data corruption
2608 */
2609 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2610 unmap_hugepage_range(iter_vma, address,
2611 address + huge_page_size(h), page);
2612 }
2613 mutex_unlock(&mapping->i_mmap_mutex);
2614
2615 return 1;
2616 }
2617
2618 /*
2619 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2620 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2621 * cannot race with other handlers or page migration.
2622 * Keep the pte_same checks anyway to make transition from the mutex easier.
2623 */
2624 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2625 unsigned long address, pte_t *ptep, pte_t pte,
2626 struct page *pagecache_page)
2627 {
2628 struct hstate *h = hstate_vma(vma);
2629 struct page *old_page, *new_page;
2630 int outside_reserve = 0;
2631 unsigned long mmun_start; /* For mmu_notifiers */
2632 unsigned long mmun_end; /* For mmu_notifiers */
2633
2634 old_page = pte_page(pte);
2635
2636 retry_avoidcopy:
2637 /* If no-one else is actually using this page, avoid the copy
2638 * and just make the page writable */
2639 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2640 page_move_anon_rmap(old_page, vma, address);
2641 set_huge_ptep_writable(vma, address, ptep);
2642 return 0;
2643 }
2644
2645 /*
2646 * If the process that created a MAP_PRIVATE mapping is about to
2647 * perform a COW due to a shared page count, attempt to satisfy
2648 * the allocation without using the existing reserves. The pagecache
2649 * page is used to determine if the reserve at this address was
2650 * consumed or not. If reserves were used, a partial faulted mapping
2651 * at the time of fork() could consume its reserves on COW instead
2652 * of the full address range.
2653 */
2654 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2655 old_page != pagecache_page)
2656 outside_reserve = 1;
2657
2658 page_cache_get(old_page);
2659
2660 /* Drop page_table_lock as buddy allocator may be called */
2661 spin_unlock(&mm->page_table_lock);
2662 new_page = alloc_huge_page(vma, address, outside_reserve);
2663
2664 if (IS_ERR(new_page)) {
2665 long err = PTR_ERR(new_page);
2666 page_cache_release(old_page);
2667
2668 /*
2669 * If a process owning a MAP_PRIVATE mapping fails to COW,
2670 * it is due to references held by a child and an insufficient
2671 * huge page pool. To guarantee the original mappers
2672 * reliability, unmap the page from child processes. The child
2673 * may get SIGKILLed if it later faults.
2674 */
2675 if (outside_reserve) {
2676 BUG_ON(huge_pte_none(pte));
2677 if (unmap_ref_private(mm, vma, old_page, address)) {
2678 BUG_ON(huge_pte_none(pte));
2679 spin_lock(&mm->page_table_lock);
2680 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2681 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2682 goto retry_avoidcopy;
2683 /*
2684 * race occurs while re-acquiring page_table_lock, and
2685 * our job is done.
2686 */
2687 return 0;
2688 }
2689 WARN_ON_ONCE(1);
2690 }
2691
2692 /* Caller expects lock to be held */
2693 spin_lock(&mm->page_table_lock);
2694 if (err == -ENOMEM)
2695 return VM_FAULT_OOM;
2696 else
2697 return VM_FAULT_SIGBUS;
2698 }
2699
2700 /*
2701 * When the original hugepage is shared one, it does not have
2702 * anon_vma prepared.
2703 */
2704 if (unlikely(anon_vma_prepare(vma))) {
2705 page_cache_release(new_page);
2706 page_cache_release(old_page);
2707 /* Caller expects lock to be held */
2708 spin_lock(&mm->page_table_lock);
2709 return VM_FAULT_OOM;
2710 }
2711
2712 copy_user_huge_page(new_page, old_page, address, vma,
2713 pages_per_huge_page(h));
2714 __SetPageUptodate(new_page);
2715
2716 mmun_start = address & huge_page_mask(h);
2717 mmun_end = mmun_start + huge_page_size(h);
2718 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2719 /*
2720 * Retake the page_table_lock to check for racing updates
2721 * before the page tables are altered
2722 */
2723 spin_lock(&mm->page_table_lock);
2724 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2725 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2726 ClearPagePrivate(new_page);
2727
2728 /* Break COW */
2729 huge_ptep_clear_flush(vma, address, ptep);
2730 set_huge_pte_at(mm, address, ptep,
2731 make_huge_pte(vma, new_page, 1));
2732 page_remove_rmap(old_page);
2733 hugepage_add_new_anon_rmap(new_page, vma, address);
2734 /* Make the old page be freed below */
2735 new_page = old_page;
2736 }
2737 spin_unlock(&mm->page_table_lock);
2738 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2739 page_cache_release(new_page);
2740 page_cache_release(old_page);
2741
2742 /* Caller expects lock to be held */
2743 spin_lock(&mm->page_table_lock);
2744 return 0;
2745 }
2746
2747 /* Return the pagecache page at a given address within a VMA */
2748 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2749 struct vm_area_struct *vma, unsigned long address)
2750 {
2751 struct address_space *mapping;
2752 pgoff_t idx;
2753
2754 mapping = vma->vm_file->f_mapping;
2755 idx = vma_hugecache_offset(h, vma, address);
2756
2757 return find_lock_page(mapping, idx);
2758 }
2759
2760 /*
2761 * Return whether there is a pagecache page to back given address within VMA.
2762 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2763 */
2764 static bool hugetlbfs_pagecache_present(struct hstate *h,
2765 struct vm_area_struct *vma, unsigned long address)
2766 {
2767 struct address_space *mapping;
2768 pgoff_t idx;
2769 struct page *page;
2770
2771 mapping = vma->vm_file->f_mapping;
2772 idx = vma_hugecache_offset(h, vma, address);
2773
2774 page = find_get_page(mapping, idx);
2775 if (page)
2776 put_page(page);
2777 return page != NULL;
2778 }
2779
2780 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2781 unsigned long address, pte_t *ptep, unsigned int flags)
2782 {
2783 struct hstate *h = hstate_vma(vma);
2784 int ret = VM_FAULT_SIGBUS;
2785 int anon_rmap = 0;
2786 pgoff_t idx;
2787 unsigned long size;
2788 struct page *page;
2789 struct address_space *mapping;
2790 pte_t new_pte;
2791
2792 /*
2793 * Currently, we are forced to kill the process in the event the
2794 * original mapper has unmapped pages from the child due to a failed
2795 * COW. Warn that such a situation has occurred as it may not be obvious
2796 */
2797 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2798 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2799 current->pid);
2800 return ret;
2801 }
2802
2803 mapping = vma->vm_file->f_mapping;
2804 idx = vma_hugecache_offset(h, vma, address);
2805
2806 /*
2807 * Use page lock to guard against racing truncation
2808 * before we get page_table_lock.
2809 */
2810 retry:
2811 page = find_lock_page(mapping, idx);
2812 if (!page) {
2813 size = i_size_read(mapping->host) >> huge_page_shift(h);
2814 if (idx >= size)
2815 goto out;
2816 page = alloc_huge_page(vma, address, 0);
2817 if (IS_ERR(page)) {
2818 ret = PTR_ERR(page);
2819 if (ret == -ENOMEM)
2820 ret = VM_FAULT_OOM;
2821 else
2822 ret = VM_FAULT_SIGBUS;
2823 goto out;
2824 }
2825 clear_huge_page(page, address, pages_per_huge_page(h));
2826 __SetPageUptodate(page);
2827
2828 if (vma->vm_flags & VM_MAYSHARE) {
2829 int err;
2830 struct inode *inode = mapping->host;
2831
2832 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2833 if (err) {
2834 put_page(page);
2835 if (err == -EEXIST)
2836 goto retry;
2837 goto out;
2838 }
2839 ClearPagePrivate(page);
2840
2841 spin_lock(&inode->i_lock);
2842 inode->i_blocks += blocks_per_huge_page(h);
2843 spin_unlock(&inode->i_lock);
2844 } else {
2845 lock_page(page);
2846 if (unlikely(anon_vma_prepare(vma))) {
2847 ret = VM_FAULT_OOM;
2848 goto backout_unlocked;
2849 }
2850 anon_rmap = 1;
2851 }
2852 } else {
2853 /*
2854 * If memory error occurs between mmap() and fault, some process
2855 * don't have hwpoisoned swap entry for errored virtual address.
2856 * So we need to block hugepage fault by PG_hwpoison bit check.
2857 */
2858 if (unlikely(PageHWPoison(page))) {
2859 ret = VM_FAULT_HWPOISON |
2860 VM_FAULT_SET_HINDEX(hstate_index(h));
2861 goto backout_unlocked;
2862 }
2863 }
2864
2865 /*
2866 * If we are going to COW a private mapping later, we examine the
2867 * pending reservations for this page now. This will ensure that
2868 * any allocations necessary to record that reservation occur outside
2869 * the spinlock.
2870 */
2871 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2872 if (vma_needs_reservation(h, vma, address) < 0) {
2873 ret = VM_FAULT_OOM;
2874 goto backout_unlocked;
2875 }
2876
2877 spin_lock(&mm->page_table_lock);
2878 size = i_size_read(mapping->host) >> huge_page_shift(h);
2879 if (idx >= size)
2880 goto backout;
2881
2882 ret = 0;
2883 if (!huge_pte_none(huge_ptep_get(ptep)))
2884 goto backout;
2885
2886 if (anon_rmap) {
2887 ClearPagePrivate(page);
2888 hugepage_add_new_anon_rmap(page, vma, address);
2889 }
2890 else
2891 page_dup_rmap(page);
2892 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2893 && (vma->vm_flags & VM_SHARED)));
2894 set_huge_pte_at(mm, address, ptep, new_pte);
2895
2896 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2897 /* Optimization, do the COW without a second fault */
2898 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2899 }
2900
2901 spin_unlock(&mm->page_table_lock);
2902 unlock_page(page);
2903 out:
2904 return ret;
2905
2906 backout:
2907 spin_unlock(&mm->page_table_lock);
2908 backout_unlocked:
2909 unlock_page(page);
2910 put_page(page);
2911 goto out;
2912 }
2913
2914 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2915 unsigned long address, unsigned int flags)
2916 {
2917 pte_t *ptep;
2918 pte_t entry;
2919 int ret;
2920 struct page *page = NULL;
2921 struct page *pagecache_page = NULL;
2922 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2923 struct hstate *h = hstate_vma(vma);
2924
2925 address &= huge_page_mask(h);
2926
2927 ptep = huge_pte_offset(mm, address);
2928 if (ptep) {
2929 entry = huge_ptep_get(ptep);
2930 if (unlikely(is_hugetlb_entry_migration(entry))) {
2931 migration_entry_wait_huge(mm, ptep);
2932 return 0;
2933 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2934 return VM_FAULT_HWPOISON_LARGE |
2935 VM_FAULT_SET_HINDEX(hstate_index(h));
2936 }
2937
2938 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2939 if (!ptep)
2940 return VM_FAULT_OOM;
2941
2942 /*
2943 * Serialize hugepage allocation and instantiation, so that we don't
2944 * get spurious allocation failures if two CPUs race to instantiate
2945 * the same page in the page cache.
2946 */
2947 mutex_lock(&hugetlb_instantiation_mutex);
2948 entry = huge_ptep_get(ptep);
2949 if (huge_pte_none(entry)) {
2950 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2951 goto out_mutex;
2952 }
2953
2954 ret = 0;
2955
2956 /*
2957 * If we are going to COW the mapping later, we examine the pending
2958 * reservations for this page now. This will ensure that any
2959 * allocations necessary to record that reservation occur outside the
2960 * spinlock. For private mappings, we also lookup the pagecache
2961 * page now as it is used to determine if a reservation has been
2962 * consumed.
2963 */
2964 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2965 if (vma_needs_reservation(h, vma, address) < 0) {
2966 ret = VM_FAULT_OOM;
2967 goto out_mutex;
2968 }
2969
2970 if (!(vma->vm_flags & VM_MAYSHARE))
2971 pagecache_page = hugetlbfs_pagecache_page(h,
2972 vma, address);
2973 }
2974
2975 /*
2976 * hugetlb_cow() requires page locks of pte_page(entry) and
2977 * pagecache_page, so here we need take the former one
2978 * when page != pagecache_page or !pagecache_page.
2979 * Note that locking order is always pagecache_page -> page,
2980 * so no worry about deadlock.
2981 */
2982 page = pte_page(entry);
2983 get_page(page);
2984 if (page != pagecache_page)
2985 lock_page(page);
2986
2987 spin_lock(&mm->page_table_lock);
2988 /* Check for a racing update before calling hugetlb_cow */
2989 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2990 goto out_page_table_lock;
2991
2992
2993 if (flags & FAULT_FLAG_WRITE) {
2994 if (!huge_pte_write(entry)) {
2995 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2996 pagecache_page);
2997 goto out_page_table_lock;
2998 }
2999 entry = huge_pte_mkdirty(entry);
3000 }
3001 entry = pte_mkyoung(entry);
3002 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3003 flags & FAULT_FLAG_WRITE))
3004 update_mmu_cache(vma, address, ptep);
3005
3006 out_page_table_lock:
3007 spin_unlock(&mm->page_table_lock);
3008
3009 if (pagecache_page) {
3010 unlock_page(pagecache_page);
3011 put_page(pagecache_page);
3012 }
3013 if (page != pagecache_page)
3014 unlock_page(page);
3015 put_page(page);
3016
3017 out_mutex:
3018 mutex_unlock(&hugetlb_instantiation_mutex);
3019
3020 return ret;
3021 }
3022
3023 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3024 struct page **pages, struct vm_area_struct **vmas,
3025 unsigned long *position, unsigned long *nr_pages,
3026 long i, unsigned int flags)
3027 {
3028 unsigned long pfn_offset;
3029 unsigned long vaddr = *position;
3030 unsigned long remainder = *nr_pages;
3031 struct hstate *h = hstate_vma(vma);
3032
3033 spin_lock(&mm->page_table_lock);
3034 while (vaddr < vma->vm_end && remainder) {
3035 pte_t *pte;
3036 int absent;
3037 struct page *page;
3038
3039 /*
3040 * Some archs (sparc64, sh*) have multiple pte_ts to
3041 * each hugepage. We have to make sure we get the
3042 * first, for the page indexing below to work.
3043 */
3044 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3045 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3046
3047 /*
3048 * When coredumping, it suits get_dump_page if we just return
3049 * an error where there's an empty slot with no huge pagecache
3050 * to back it. This way, we avoid allocating a hugepage, and
3051 * the sparse dumpfile avoids allocating disk blocks, but its
3052 * huge holes still show up with zeroes where they need to be.
3053 */
3054 if (absent && (flags & FOLL_DUMP) &&
3055 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3056 remainder = 0;
3057 break;
3058 }
3059
3060 /*
3061 * We need call hugetlb_fault for both hugepages under migration
3062 * (in which case hugetlb_fault waits for the migration,) and
3063 * hwpoisoned hugepages (in which case we need to prevent the
3064 * caller from accessing to them.) In order to do this, we use
3065 * here is_swap_pte instead of is_hugetlb_entry_migration and
3066 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3067 * both cases, and because we can't follow correct pages
3068 * directly from any kind of swap entries.
3069 */
3070 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3071 ((flags & FOLL_WRITE) &&
3072 !huge_pte_write(huge_ptep_get(pte)))) {
3073 int ret;
3074
3075 spin_unlock(&mm->page_table_lock);
3076 ret = hugetlb_fault(mm, vma, vaddr,
3077 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3078 spin_lock(&mm->page_table_lock);
3079 if (!(ret & VM_FAULT_ERROR))
3080 continue;
3081
3082 remainder = 0;
3083 break;
3084 }
3085
3086 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3087 page = pte_page(huge_ptep_get(pte));
3088 same_page:
3089 if (pages) {
3090 pages[i] = mem_map_offset(page, pfn_offset);
3091 get_page(pages[i]);
3092 }
3093
3094 if (vmas)
3095 vmas[i] = vma;
3096
3097 vaddr += PAGE_SIZE;
3098 ++pfn_offset;
3099 --remainder;
3100 ++i;
3101 if (vaddr < vma->vm_end && remainder &&
3102 pfn_offset < pages_per_huge_page(h)) {
3103 /*
3104 * We use pfn_offset to avoid touching the pageframes
3105 * of this compound page.
3106 */
3107 goto same_page;
3108 }
3109 }
3110 spin_unlock(&mm->page_table_lock);
3111 *nr_pages = remainder;
3112 *position = vaddr;
3113
3114 return i ? i : -EFAULT;
3115 }
3116
3117 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3118 unsigned long address, unsigned long end, pgprot_t newprot)
3119 {
3120 struct mm_struct *mm = vma->vm_mm;
3121 unsigned long start = address;
3122 pte_t *ptep;
3123 pte_t pte;
3124 struct hstate *h = hstate_vma(vma);
3125 unsigned long pages = 0;
3126
3127 BUG_ON(address >= end);
3128 flush_cache_range(vma, address, end);
3129
3130 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3131 spin_lock(&mm->page_table_lock);
3132 for (; address < end; address += huge_page_size(h)) {
3133 ptep = huge_pte_offset(mm, address);
3134 if (!ptep)
3135 continue;
3136 if (huge_pmd_unshare(mm, &address, ptep)) {
3137 pages++;
3138 continue;
3139 }
3140 if (!huge_pte_none(huge_ptep_get(ptep))) {
3141 pte = huge_ptep_get_and_clear(mm, address, ptep);
3142 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3143 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3144 set_huge_pte_at(mm, address, ptep, pte);
3145 pages++;
3146 }
3147 }
3148 spin_unlock(&mm->page_table_lock);
3149 /*
3150 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3151 * may have cleared our pud entry and done put_page on the page table:
3152 * once we release i_mmap_mutex, another task can do the final put_page
3153 * and that page table be reused and filled with junk.
3154 */
3155 flush_tlb_range(vma, start, end);
3156 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3157
3158 return pages << h->order;
3159 }
3160
3161 int hugetlb_reserve_pages(struct inode *inode,
3162 long from, long to,
3163 struct vm_area_struct *vma,
3164 vm_flags_t vm_flags)
3165 {
3166 long ret, chg;
3167 struct hstate *h = hstate_inode(inode);
3168 struct hugepage_subpool *spool = subpool_inode(inode);
3169
3170 /*
3171 * Only apply hugepage reservation if asked. At fault time, an
3172 * attempt will be made for VM_NORESERVE to allocate a page
3173 * without using reserves
3174 */
3175 if (vm_flags & VM_NORESERVE)
3176 return 0;
3177
3178 /*
3179 * Shared mappings base their reservation on the number of pages that
3180 * are already allocated on behalf of the file. Private mappings need
3181 * to reserve the full area even if read-only as mprotect() may be
3182 * called to make the mapping read-write. Assume !vma is a shm mapping
3183 */
3184 if (!vma || vma->vm_flags & VM_MAYSHARE)
3185 chg = region_chg(&inode->i_mapping->private_list, from, to);
3186 else {
3187 struct resv_map *resv_map = resv_map_alloc();
3188 if (!resv_map)
3189 return -ENOMEM;
3190
3191 chg = to - from;
3192
3193 set_vma_resv_map(vma, resv_map);
3194 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3195 }
3196
3197 if (chg < 0) {
3198 ret = chg;
3199 goto out_err;
3200 }
3201
3202 /* There must be enough pages in the subpool for the mapping */
3203 if (hugepage_subpool_get_pages(spool, chg)) {
3204 ret = -ENOSPC;
3205 goto out_err;
3206 }
3207
3208 /*
3209 * Check enough hugepages are available for the reservation.
3210 * Hand the pages back to the subpool if there are not
3211 */
3212 ret = hugetlb_acct_memory(h, chg);
3213 if (ret < 0) {
3214 hugepage_subpool_put_pages(spool, chg);
3215 goto out_err;
3216 }
3217
3218 /*
3219 * Account for the reservations made. Shared mappings record regions
3220 * that have reservations as they are shared by multiple VMAs.
3221 * When the last VMA disappears, the region map says how much
3222 * the reservation was and the page cache tells how much of
3223 * the reservation was consumed. Private mappings are per-VMA and
3224 * only the consumed reservations are tracked. When the VMA
3225 * disappears, the original reservation is the VMA size and the
3226 * consumed reservations are stored in the map. Hence, nothing
3227 * else has to be done for private mappings here
3228 */
3229 if (!vma || vma->vm_flags & VM_MAYSHARE)
3230 region_add(&inode->i_mapping->private_list, from, to);
3231 return 0;
3232 out_err:
3233 if (vma)
3234 resv_map_put(vma);
3235 return ret;
3236 }
3237
3238 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3239 {
3240 struct hstate *h = hstate_inode(inode);
3241 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3242 struct hugepage_subpool *spool = subpool_inode(inode);
3243
3244 spin_lock(&inode->i_lock);
3245 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3246 spin_unlock(&inode->i_lock);
3247
3248 hugepage_subpool_put_pages(spool, (chg - freed));
3249 hugetlb_acct_memory(h, -(chg - freed));
3250 }
3251
3252 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3253 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3254 struct vm_area_struct *vma,
3255 unsigned long addr, pgoff_t idx)
3256 {
3257 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3258 svma->vm_start;
3259 unsigned long sbase = saddr & PUD_MASK;
3260 unsigned long s_end = sbase + PUD_SIZE;
3261
3262 /* Allow segments to share if only one is marked locked */
3263 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3264 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3265
3266 /*
3267 * match the virtual addresses, permission and the alignment of the
3268 * page table page.
3269 */
3270 if (pmd_index(addr) != pmd_index(saddr) ||
3271 vm_flags != svm_flags ||
3272 sbase < svma->vm_start || svma->vm_end < s_end)
3273 return 0;
3274
3275 return saddr;
3276 }
3277
3278 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3279 {
3280 unsigned long base = addr & PUD_MASK;
3281 unsigned long end = base + PUD_SIZE;
3282
3283 /*
3284 * check on proper vm_flags and page table alignment
3285 */
3286 if (vma->vm_flags & VM_MAYSHARE &&
3287 vma->vm_start <= base && end <= vma->vm_end)
3288 return 1;
3289 return 0;
3290 }
3291
3292 /*
3293 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3294 * and returns the corresponding pte. While this is not necessary for the
3295 * !shared pmd case because we can allocate the pmd later as well, it makes the
3296 * code much cleaner. pmd allocation is essential for the shared case because
3297 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3298 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3299 * bad pmd for sharing.
3300 */
3301 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3302 {
3303 struct vm_area_struct *vma = find_vma(mm, addr);
3304 struct address_space *mapping = vma->vm_file->f_mapping;
3305 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3306 vma->vm_pgoff;
3307 struct vm_area_struct *svma;
3308 unsigned long saddr;
3309 pte_t *spte = NULL;
3310 pte_t *pte;
3311
3312 if (!vma_shareable(vma, addr))
3313 return (pte_t *)pmd_alloc(mm, pud, addr);
3314
3315 mutex_lock(&mapping->i_mmap_mutex);
3316 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3317 if (svma == vma)
3318 continue;
3319
3320 saddr = page_table_shareable(svma, vma, addr, idx);
3321 if (saddr) {
3322 spte = huge_pte_offset(svma->vm_mm, saddr);
3323 if (spte) {
3324 get_page(virt_to_page(spte));
3325 break;
3326 }
3327 }
3328 }
3329
3330 if (!spte)
3331 goto out;
3332
3333 spin_lock(&mm->page_table_lock);
3334 if (pud_none(*pud))
3335 pud_populate(mm, pud,
3336 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3337 else
3338 put_page(virt_to_page(spte));
3339 spin_unlock(&mm->page_table_lock);
3340 out:
3341 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3342 mutex_unlock(&mapping->i_mmap_mutex);
3343 return pte;
3344 }
3345
3346 /*
3347 * unmap huge page backed by shared pte.
3348 *
3349 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3350 * indicated by page_count > 1, unmap is achieved by clearing pud and
3351 * decrementing the ref count. If count == 1, the pte page is not shared.
3352 *
3353 * called with vma->vm_mm->page_table_lock held.
3354 *
3355 * returns: 1 successfully unmapped a shared pte page
3356 * 0 the underlying pte page is not shared, or it is the last user
3357 */
3358 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3359 {
3360 pgd_t *pgd = pgd_offset(mm, *addr);
3361 pud_t *pud = pud_offset(pgd, *addr);
3362
3363 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3364 if (page_count(virt_to_page(ptep)) == 1)
3365 return 0;
3366
3367 pud_clear(pud);
3368 put_page(virt_to_page(ptep));
3369 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3370 return 1;
3371 }
3372 #define want_pmd_share() (1)
3373 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3374 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3375 {
3376 return NULL;
3377 }
3378 #define want_pmd_share() (0)
3379 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3380
3381 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3382 pte_t *huge_pte_alloc(struct mm_struct *mm,
3383 unsigned long addr, unsigned long sz)
3384 {
3385 pgd_t *pgd;
3386 pud_t *pud;
3387 pte_t *pte = NULL;
3388
3389 pgd = pgd_offset(mm, addr);
3390 pud = pud_alloc(mm, pgd, addr);
3391 if (pud) {
3392 if (sz == PUD_SIZE) {
3393 pte = (pte_t *)pud;
3394 } else {
3395 BUG_ON(sz != PMD_SIZE);
3396 if (want_pmd_share() && pud_none(*pud))
3397 pte = huge_pmd_share(mm, addr, pud);
3398 else
3399 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3400 }
3401 }
3402 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3403
3404 return pte;
3405 }
3406
3407 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3408 {
3409 pgd_t *pgd;
3410 pud_t *pud;
3411 pmd_t *pmd = NULL;
3412
3413 pgd = pgd_offset(mm, addr);
3414 if (pgd_present(*pgd)) {
3415 pud = pud_offset(pgd, addr);
3416 if (pud_present(*pud)) {
3417 if (pud_huge(*pud))
3418 return (pte_t *)pud;
3419 pmd = pmd_offset(pud, addr);
3420 }
3421 }
3422 return (pte_t *) pmd;
3423 }
3424
3425 struct page *
3426 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3427 pmd_t *pmd, int write)
3428 {
3429 struct page *page;
3430
3431 page = pte_page(*(pte_t *)pmd);
3432 if (page)
3433 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3434 return page;
3435 }
3436
3437 struct page *
3438 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3439 pud_t *pud, int write)
3440 {
3441 struct page *page;
3442
3443 page = pte_page(*(pte_t *)pud);
3444 if (page)
3445 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3446 return page;
3447 }
3448
3449 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3450
3451 /* Can be overriden by architectures */
3452 __attribute__((weak)) struct page *
3453 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3454 pud_t *pud, int write)
3455 {
3456 BUG();
3457 return NULL;
3458 }
3459
3460 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3461
3462 #ifdef CONFIG_MEMORY_FAILURE
3463
3464 /* Should be called in hugetlb_lock */
3465 static int is_hugepage_on_freelist(struct page *hpage)
3466 {
3467 struct page *page;
3468 struct page *tmp;
3469 struct hstate *h = page_hstate(hpage);
3470 int nid = page_to_nid(hpage);
3471
3472 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3473 if (page == hpage)
3474 return 1;
3475 return 0;
3476 }
3477
3478 /*
3479 * This function is called from memory failure code.
3480 * Assume the caller holds page lock of the head page.
3481 */
3482 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3483 {
3484 struct hstate *h = page_hstate(hpage);
3485 int nid = page_to_nid(hpage);
3486 int ret = -EBUSY;
3487
3488 spin_lock(&hugetlb_lock);
3489 if (is_hugepage_on_freelist(hpage)) {
3490 /*
3491 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3492 * but dangling hpage->lru can trigger list-debug warnings
3493 * (this happens when we call unpoison_memory() on it),
3494 * so let it point to itself with list_del_init().
3495 */
3496 list_del_init(&hpage->lru);
3497 set_page_refcounted(hpage);
3498 h->free_huge_pages--;
3499 h->free_huge_pages_node[nid]--;
3500 ret = 0;
3501 }
3502 spin_unlock(&hugetlb_lock);
3503 return ret;
3504 }
3505 #endif