mm: Convert i_mmap_lock to a mutex
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58 /*
59 * Lock ordering:
60 *
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
65 *
66 * ->i_mutex
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_mutex
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
79 *
80 * ->i_mutex
81 * ->i_alloc_sem (various)
82 *
83 * inode_wb_list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * (code doesn't rely on that order, so you could switch it around)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 * ->i_mmap_mutex
110 */
111
112 /*
113 * Delete a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold the mapping's tree_lock.
116 */
117 void __delete_from_page_cache(struct page *page)
118 {
119 struct address_space *mapping = page->mapping;
120
121 radix_tree_delete(&mapping->page_tree, page->index);
122 page->mapping = NULL;
123 mapping->nrpages--;
124 __dec_zone_page_state(page, NR_FILE_PAGES);
125 if (PageSwapBacked(page))
126 __dec_zone_page_state(page, NR_SHMEM);
127 BUG_ON(page_mapped(page));
128
129 /*
130 * Some filesystems seem to re-dirty the page even after
131 * the VM has canceled the dirty bit (eg ext3 journaling).
132 *
133 * Fix it up by doing a final dirty accounting check after
134 * having removed the page entirely.
135 */
136 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
137 dec_zone_page_state(page, NR_FILE_DIRTY);
138 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 }
140 }
141
142 /**
143 * delete_from_page_cache - delete page from page cache
144 * @page: the page which the kernel is trying to remove from page cache
145 *
146 * This must be called only on pages that have been verified to be in the page
147 * cache and locked. It will never put the page into the free list, the caller
148 * has a reference on the page.
149 */
150 void delete_from_page_cache(struct page *page)
151 {
152 struct address_space *mapping = page->mapping;
153 void (*freepage)(struct page *);
154
155 BUG_ON(!PageLocked(page));
156
157 freepage = mapping->a_ops->freepage;
158 spin_lock_irq(&mapping->tree_lock);
159 __delete_from_page_cache(page);
160 spin_unlock_irq(&mapping->tree_lock);
161 mem_cgroup_uncharge_cache_page(page);
162
163 if (freepage)
164 freepage(page);
165 page_cache_release(page);
166 }
167 EXPORT_SYMBOL(delete_from_page_cache);
168
169 static int sleep_on_page(void *word)
170 {
171 io_schedule();
172 return 0;
173 }
174
175 static int sleep_on_page_killable(void *word)
176 {
177 sleep_on_page(word);
178 return fatal_signal_pending(current) ? -EINTR : 0;
179 }
180
181 /**
182 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
183 * @mapping: address space structure to write
184 * @start: offset in bytes where the range starts
185 * @end: offset in bytes where the range ends (inclusive)
186 * @sync_mode: enable synchronous operation
187 *
188 * Start writeback against all of a mapping's dirty pages that lie
189 * within the byte offsets <start, end> inclusive.
190 *
191 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
192 * opposed to a regular memory cleansing writeback. The difference between
193 * these two operations is that if a dirty page/buffer is encountered, it must
194 * be waited upon, and not just skipped over.
195 */
196 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
197 loff_t end, int sync_mode)
198 {
199 int ret;
200 struct writeback_control wbc = {
201 .sync_mode = sync_mode,
202 .nr_to_write = LONG_MAX,
203 .range_start = start,
204 .range_end = end,
205 };
206
207 if (!mapping_cap_writeback_dirty(mapping))
208 return 0;
209
210 ret = do_writepages(mapping, &wbc);
211 return ret;
212 }
213
214 static inline int __filemap_fdatawrite(struct address_space *mapping,
215 int sync_mode)
216 {
217 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
218 }
219
220 int filemap_fdatawrite(struct address_space *mapping)
221 {
222 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
223 }
224 EXPORT_SYMBOL(filemap_fdatawrite);
225
226 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
227 loff_t end)
228 {
229 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
230 }
231 EXPORT_SYMBOL(filemap_fdatawrite_range);
232
233 /**
234 * filemap_flush - mostly a non-blocking flush
235 * @mapping: target address_space
236 *
237 * This is a mostly non-blocking flush. Not suitable for data-integrity
238 * purposes - I/O may not be started against all dirty pages.
239 */
240 int filemap_flush(struct address_space *mapping)
241 {
242 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
243 }
244 EXPORT_SYMBOL(filemap_flush);
245
246 /**
247 * filemap_fdatawait_range - wait for writeback to complete
248 * @mapping: address space structure to wait for
249 * @start_byte: offset in bytes where the range starts
250 * @end_byte: offset in bytes where the range ends (inclusive)
251 *
252 * Walk the list of under-writeback pages of the given address space
253 * in the given range and wait for all of them.
254 */
255 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
256 loff_t end_byte)
257 {
258 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
259 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
260 struct pagevec pvec;
261 int nr_pages;
262 int ret = 0;
263
264 if (end_byte < start_byte)
265 return 0;
266
267 pagevec_init(&pvec, 0);
268 while ((index <= end) &&
269 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
270 PAGECACHE_TAG_WRITEBACK,
271 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
272 unsigned i;
273
274 for (i = 0; i < nr_pages; i++) {
275 struct page *page = pvec.pages[i];
276
277 /* until radix tree lookup accepts end_index */
278 if (page->index > end)
279 continue;
280
281 wait_on_page_writeback(page);
282 if (TestClearPageError(page))
283 ret = -EIO;
284 }
285 pagevec_release(&pvec);
286 cond_resched();
287 }
288
289 /* Check for outstanding write errors */
290 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
291 ret = -ENOSPC;
292 if (test_and_clear_bit(AS_EIO, &mapping->flags))
293 ret = -EIO;
294
295 return ret;
296 }
297 EXPORT_SYMBOL(filemap_fdatawait_range);
298
299 /**
300 * filemap_fdatawait - wait for all under-writeback pages to complete
301 * @mapping: address space structure to wait for
302 *
303 * Walk the list of under-writeback pages of the given address space
304 * and wait for all of them.
305 */
306 int filemap_fdatawait(struct address_space *mapping)
307 {
308 loff_t i_size = i_size_read(mapping->host);
309
310 if (i_size == 0)
311 return 0;
312
313 return filemap_fdatawait_range(mapping, 0, i_size - 1);
314 }
315 EXPORT_SYMBOL(filemap_fdatawait);
316
317 int filemap_write_and_wait(struct address_space *mapping)
318 {
319 int err = 0;
320
321 if (mapping->nrpages) {
322 err = filemap_fdatawrite(mapping);
323 /*
324 * Even if the above returned error, the pages may be
325 * written partially (e.g. -ENOSPC), so we wait for it.
326 * But the -EIO is special case, it may indicate the worst
327 * thing (e.g. bug) happened, so we avoid waiting for it.
328 */
329 if (err != -EIO) {
330 int err2 = filemap_fdatawait(mapping);
331 if (!err)
332 err = err2;
333 }
334 }
335 return err;
336 }
337 EXPORT_SYMBOL(filemap_write_and_wait);
338
339 /**
340 * filemap_write_and_wait_range - write out & wait on a file range
341 * @mapping: the address_space for the pages
342 * @lstart: offset in bytes where the range starts
343 * @lend: offset in bytes where the range ends (inclusive)
344 *
345 * Write out and wait upon file offsets lstart->lend, inclusive.
346 *
347 * Note that `lend' is inclusive (describes the last byte to be written) so
348 * that this function can be used to write to the very end-of-file (end = -1).
349 */
350 int filemap_write_and_wait_range(struct address_space *mapping,
351 loff_t lstart, loff_t lend)
352 {
353 int err = 0;
354
355 if (mapping->nrpages) {
356 err = __filemap_fdatawrite_range(mapping, lstart, lend,
357 WB_SYNC_ALL);
358 /* See comment of filemap_write_and_wait() */
359 if (err != -EIO) {
360 int err2 = filemap_fdatawait_range(mapping,
361 lstart, lend);
362 if (!err)
363 err = err2;
364 }
365 }
366 return err;
367 }
368 EXPORT_SYMBOL(filemap_write_and_wait_range);
369
370 /**
371 * replace_page_cache_page - replace a pagecache page with a new one
372 * @old: page to be replaced
373 * @new: page to replace with
374 * @gfp_mask: allocation mode
375 *
376 * This function replaces a page in the pagecache with a new one. On
377 * success it acquires the pagecache reference for the new page and
378 * drops it for the old page. Both the old and new pages must be
379 * locked. This function does not add the new page to the LRU, the
380 * caller must do that.
381 *
382 * The remove + add is atomic. The only way this function can fail is
383 * memory allocation failure.
384 */
385 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
386 {
387 int error;
388 struct mem_cgroup *memcg = NULL;
389
390 VM_BUG_ON(!PageLocked(old));
391 VM_BUG_ON(!PageLocked(new));
392 VM_BUG_ON(new->mapping);
393
394 /*
395 * This is not page migration, but prepare_migration and
396 * end_migration does enough work for charge replacement.
397 *
398 * In the longer term we probably want a specialized function
399 * for moving the charge from old to new in a more efficient
400 * manner.
401 */
402 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
403 if (error)
404 return error;
405
406 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
407 if (!error) {
408 struct address_space *mapping = old->mapping;
409 void (*freepage)(struct page *);
410
411 pgoff_t offset = old->index;
412 freepage = mapping->a_ops->freepage;
413
414 page_cache_get(new);
415 new->mapping = mapping;
416 new->index = offset;
417
418 spin_lock_irq(&mapping->tree_lock);
419 __delete_from_page_cache(old);
420 error = radix_tree_insert(&mapping->page_tree, offset, new);
421 BUG_ON(error);
422 mapping->nrpages++;
423 __inc_zone_page_state(new, NR_FILE_PAGES);
424 if (PageSwapBacked(new))
425 __inc_zone_page_state(new, NR_SHMEM);
426 spin_unlock_irq(&mapping->tree_lock);
427 radix_tree_preload_end();
428 if (freepage)
429 freepage(old);
430 page_cache_release(old);
431 mem_cgroup_end_migration(memcg, old, new, true);
432 } else {
433 mem_cgroup_end_migration(memcg, old, new, false);
434 }
435
436 return error;
437 }
438 EXPORT_SYMBOL_GPL(replace_page_cache_page);
439
440 /**
441 * add_to_page_cache_locked - add a locked page to the pagecache
442 * @page: page to add
443 * @mapping: the page's address_space
444 * @offset: page index
445 * @gfp_mask: page allocation mode
446 *
447 * This function is used to add a page to the pagecache. It must be locked.
448 * This function does not add the page to the LRU. The caller must do that.
449 */
450 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
451 pgoff_t offset, gfp_t gfp_mask)
452 {
453 int error;
454
455 VM_BUG_ON(!PageLocked(page));
456
457 error = mem_cgroup_cache_charge(page, current->mm,
458 gfp_mask & GFP_RECLAIM_MASK);
459 if (error)
460 goto out;
461
462 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
463 if (error == 0) {
464 page_cache_get(page);
465 page->mapping = mapping;
466 page->index = offset;
467
468 spin_lock_irq(&mapping->tree_lock);
469 error = radix_tree_insert(&mapping->page_tree, offset, page);
470 if (likely(!error)) {
471 mapping->nrpages++;
472 __inc_zone_page_state(page, NR_FILE_PAGES);
473 if (PageSwapBacked(page))
474 __inc_zone_page_state(page, NR_SHMEM);
475 spin_unlock_irq(&mapping->tree_lock);
476 } else {
477 page->mapping = NULL;
478 spin_unlock_irq(&mapping->tree_lock);
479 mem_cgroup_uncharge_cache_page(page);
480 page_cache_release(page);
481 }
482 radix_tree_preload_end();
483 } else
484 mem_cgroup_uncharge_cache_page(page);
485 out:
486 return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache_locked);
489
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 pgoff_t offset, gfp_t gfp_mask)
492 {
493 int ret;
494
495 /*
496 * Splice_read and readahead add shmem/tmpfs pages into the page cache
497 * before shmem_readpage has a chance to mark them as SwapBacked: they
498 * need to go on the anon lru below, and mem_cgroup_cache_charge
499 * (called in add_to_page_cache) needs to know where they're going too.
500 */
501 if (mapping_cap_swap_backed(mapping))
502 SetPageSwapBacked(page);
503
504 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
505 if (ret == 0) {
506 if (page_is_file_cache(page))
507 lru_cache_add_file(page);
508 else
509 lru_cache_add_anon(page);
510 }
511 return ret;
512 }
513 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
514
515 #ifdef CONFIG_NUMA
516 struct page *__page_cache_alloc(gfp_t gfp)
517 {
518 int n;
519 struct page *page;
520
521 if (cpuset_do_page_mem_spread()) {
522 get_mems_allowed();
523 n = cpuset_mem_spread_node();
524 page = alloc_pages_exact_node(n, gfp, 0);
525 put_mems_allowed();
526 return page;
527 }
528 return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532
533 /*
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
541 * collisions.
542 */
543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545 const struct zone *zone = page_zone(page);
546
547 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549
550 static inline void wake_up_page(struct page *page, int bit)
551 {
552 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554
555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559 if (test_bit(bit_nr, &page->flags))
560 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561 TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569 if (!test_bit(bit_nr, &page->flags))
570 return 0;
571
572 return __wait_on_bit(page_waitqueue(page), &wait,
573 sleep_on_page_killable, TASK_KILLABLE);
574 }
575
576 /**
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
580 *
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
582 */
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585 wait_queue_head_t *q = page_waitqueue(page);
586 unsigned long flags;
587
588 spin_lock_irqsave(&q->lock, flags);
589 __add_wait_queue(q, waiter);
590 spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
594 /**
595 * unlock_page - unlock a locked page
596 * @page: the page
597 *
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602 *
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605 */
606 void unlock_page(struct page *page)
607 {
608 VM_BUG_ON(!PageLocked(page));
609 clear_bit_unlock(PG_locked, &page->flags);
610 smp_mb__after_clear_bit();
611 wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614
615 /**
616 * end_page_writeback - end writeback against a page
617 * @page: the page
618 */
619 void end_page_writeback(struct page *page)
620 {
621 if (TestClearPageReclaim(page))
622 rotate_reclaimable_page(page);
623
624 if (!test_clear_page_writeback(page))
625 BUG();
626
627 smp_mb__after_clear_bit();
628 wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631
632 /**
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
635 */
636 void __lock_page(struct page *page)
637 {
638 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
640 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641 TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644
645 int __lock_page_killable(struct page *page)
646 {
647 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649 return __wait_on_bit_lock(page_waitqueue(page), &wait,
650 sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655 unsigned int flags)
656 {
657 if (flags & FAULT_FLAG_ALLOW_RETRY) {
658 /*
659 * CAUTION! In this case, mmap_sem is not released
660 * even though return 0.
661 */
662 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663 return 0;
664
665 up_read(&mm->mmap_sem);
666 if (flags & FAULT_FLAG_KILLABLE)
667 wait_on_page_locked_killable(page);
668 else
669 wait_on_page_locked(page);
670 return 0;
671 } else {
672 if (flags & FAULT_FLAG_KILLABLE) {
673 int ret;
674
675 ret = __lock_page_killable(page);
676 if (ret) {
677 up_read(&mm->mmap_sem);
678 return 0;
679 }
680 } else
681 __lock_page(page);
682 return 1;
683 }
684 }
685
686 /**
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
693 */
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
695 {
696 void **pagep;
697 struct page *page;
698
699 rcu_read_lock();
700 repeat:
701 page = NULL;
702 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 if (pagep) {
704 page = radix_tree_deref_slot(pagep);
705 if (unlikely(!page))
706 goto out;
707 if (radix_tree_deref_retry(page))
708 goto repeat;
709
710 if (!page_cache_get_speculative(page))
711 goto repeat;
712
713 /*
714 * Has the page moved?
715 * This is part of the lockless pagecache protocol. See
716 * include/linux/pagemap.h for details.
717 */
718 if (unlikely(page != *pagep)) {
719 page_cache_release(page);
720 goto repeat;
721 }
722 }
723 out:
724 rcu_read_unlock();
725
726 return page;
727 }
728 EXPORT_SYMBOL(find_get_page);
729
730 /**
731 * find_lock_page - locate, pin and lock a pagecache page
732 * @mapping: the address_space to search
733 * @offset: the page index
734 *
735 * Locates the desired pagecache page, locks it, increments its reference
736 * count and returns its address.
737 *
738 * Returns zero if the page was not present. find_lock_page() may sleep.
739 */
740 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
741 {
742 struct page *page;
743
744 repeat:
745 page = find_get_page(mapping, offset);
746 if (page) {
747 lock_page(page);
748 /* Has the page been truncated? */
749 if (unlikely(page->mapping != mapping)) {
750 unlock_page(page);
751 page_cache_release(page);
752 goto repeat;
753 }
754 VM_BUG_ON(page->index != offset);
755 }
756 return page;
757 }
758 EXPORT_SYMBOL(find_lock_page);
759
760 /**
761 * find_or_create_page - locate or add a pagecache page
762 * @mapping: the page's address_space
763 * @index: the page's index into the mapping
764 * @gfp_mask: page allocation mode
765 *
766 * Locates a page in the pagecache. If the page is not present, a new page
767 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
768 * LRU list. The returned page is locked and has its reference count
769 * incremented.
770 *
771 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
772 * allocation!
773 *
774 * find_or_create_page() returns the desired page's address, or zero on
775 * memory exhaustion.
776 */
777 struct page *find_or_create_page(struct address_space *mapping,
778 pgoff_t index, gfp_t gfp_mask)
779 {
780 struct page *page;
781 int err;
782 repeat:
783 page = find_lock_page(mapping, index);
784 if (!page) {
785 page = __page_cache_alloc(gfp_mask);
786 if (!page)
787 return NULL;
788 /*
789 * We want a regular kernel memory (not highmem or DMA etc)
790 * allocation for the radix tree nodes, but we need to honour
791 * the context-specific requirements the caller has asked for.
792 * GFP_RECLAIM_MASK collects those requirements.
793 */
794 err = add_to_page_cache_lru(page, mapping, index,
795 (gfp_mask & GFP_RECLAIM_MASK));
796 if (unlikely(err)) {
797 page_cache_release(page);
798 page = NULL;
799 if (err == -EEXIST)
800 goto repeat;
801 }
802 }
803 return page;
804 }
805 EXPORT_SYMBOL(find_or_create_page);
806
807 /**
808 * find_get_pages - gang pagecache lookup
809 * @mapping: The address_space to search
810 * @start: The starting page index
811 * @nr_pages: The maximum number of pages
812 * @pages: Where the resulting pages are placed
813 *
814 * find_get_pages() will search for and return a group of up to
815 * @nr_pages pages in the mapping. The pages are placed at @pages.
816 * find_get_pages() takes a reference against the returned pages.
817 *
818 * The search returns a group of mapping-contiguous pages with ascending
819 * indexes. There may be holes in the indices due to not-present pages.
820 *
821 * find_get_pages() returns the number of pages which were found.
822 */
823 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
824 unsigned int nr_pages, struct page **pages)
825 {
826 unsigned int i;
827 unsigned int ret;
828 unsigned int nr_found;
829
830 rcu_read_lock();
831 restart:
832 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
833 (void ***)pages, start, nr_pages);
834 ret = 0;
835 for (i = 0; i < nr_found; i++) {
836 struct page *page;
837 repeat:
838 page = radix_tree_deref_slot((void **)pages[i]);
839 if (unlikely(!page))
840 continue;
841
842 /*
843 * This can only trigger when the entry at index 0 moves out
844 * of or back to the root: none yet gotten, safe to restart.
845 */
846 if (radix_tree_deref_retry(page)) {
847 WARN_ON(start | i);
848 goto restart;
849 }
850
851 if (!page_cache_get_speculative(page))
852 goto repeat;
853
854 /* Has the page moved? */
855 if (unlikely(page != *((void **)pages[i]))) {
856 page_cache_release(page);
857 goto repeat;
858 }
859
860 pages[ret] = page;
861 ret++;
862 }
863
864 /*
865 * If all entries were removed before we could secure them,
866 * try again, because callers stop trying once 0 is returned.
867 */
868 if (unlikely(!ret && nr_found))
869 goto restart;
870 rcu_read_unlock();
871 return ret;
872 }
873
874 /**
875 * find_get_pages_contig - gang contiguous pagecache lookup
876 * @mapping: The address_space to search
877 * @index: The starting page index
878 * @nr_pages: The maximum number of pages
879 * @pages: Where the resulting pages are placed
880 *
881 * find_get_pages_contig() works exactly like find_get_pages(), except
882 * that the returned number of pages are guaranteed to be contiguous.
883 *
884 * find_get_pages_contig() returns the number of pages which were found.
885 */
886 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
887 unsigned int nr_pages, struct page **pages)
888 {
889 unsigned int i;
890 unsigned int ret;
891 unsigned int nr_found;
892
893 rcu_read_lock();
894 restart:
895 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
896 (void ***)pages, index, nr_pages);
897 ret = 0;
898 for (i = 0; i < nr_found; i++) {
899 struct page *page;
900 repeat:
901 page = radix_tree_deref_slot((void **)pages[i]);
902 if (unlikely(!page))
903 continue;
904
905 /*
906 * This can only trigger when the entry at index 0 moves out
907 * of or back to the root: none yet gotten, safe to restart.
908 */
909 if (radix_tree_deref_retry(page))
910 goto restart;
911
912 if (!page_cache_get_speculative(page))
913 goto repeat;
914
915 /* Has the page moved? */
916 if (unlikely(page != *((void **)pages[i]))) {
917 page_cache_release(page);
918 goto repeat;
919 }
920
921 /*
922 * must check mapping and index after taking the ref.
923 * otherwise we can get both false positives and false
924 * negatives, which is just confusing to the caller.
925 */
926 if (page->mapping == NULL || page->index != index) {
927 page_cache_release(page);
928 break;
929 }
930
931 pages[ret] = page;
932 ret++;
933 index++;
934 }
935 rcu_read_unlock();
936 return ret;
937 }
938 EXPORT_SYMBOL(find_get_pages_contig);
939
940 /**
941 * find_get_pages_tag - find and return pages that match @tag
942 * @mapping: the address_space to search
943 * @index: the starting page index
944 * @tag: the tag index
945 * @nr_pages: the maximum number of pages
946 * @pages: where the resulting pages are placed
947 *
948 * Like find_get_pages, except we only return pages which are tagged with
949 * @tag. We update @index to index the next page for the traversal.
950 */
951 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
952 int tag, unsigned int nr_pages, struct page **pages)
953 {
954 unsigned int i;
955 unsigned int ret;
956 unsigned int nr_found;
957
958 rcu_read_lock();
959 restart:
960 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
961 (void ***)pages, *index, nr_pages, tag);
962 ret = 0;
963 for (i = 0; i < nr_found; i++) {
964 struct page *page;
965 repeat:
966 page = radix_tree_deref_slot((void **)pages[i]);
967 if (unlikely(!page))
968 continue;
969
970 /*
971 * This can only trigger when the entry at index 0 moves out
972 * of or back to the root: none yet gotten, safe to restart.
973 */
974 if (radix_tree_deref_retry(page))
975 goto restart;
976
977 if (!page_cache_get_speculative(page))
978 goto repeat;
979
980 /* Has the page moved? */
981 if (unlikely(page != *((void **)pages[i]))) {
982 page_cache_release(page);
983 goto repeat;
984 }
985
986 pages[ret] = page;
987 ret++;
988 }
989
990 /*
991 * If all entries were removed before we could secure them,
992 * try again, because callers stop trying once 0 is returned.
993 */
994 if (unlikely(!ret && nr_found))
995 goto restart;
996 rcu_read_unlock();
997
998 if (ret)
999 *index = pages[ret - 1]->index + 1;
1000
1001 return ret;
1002 }
1003 EXPORT_SYMBOL(find_get_pages_tag);
1004
1005 /**
1006 * grab_cache_page_nowait - returns locked page at given index in given cache
1007 * @mapping: target address_space
1008 * @index: the page index
1009 *
1010 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1011 * This is intended for speculative data generators, where the data can
1012 * be regenerated if the page couldn't be grabbed. This routine should
1013 * be safe to call while holding the lock for another page.
1014 *
1015 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1016 * and deadlock against the caller's locked page.
1017 */
1018 struct page *
1019 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1020 {
1021 struct page *page = find_get_page(mapping, index);
1022
1023 if (page) {
1024 if (trylock_page(page))
1025 return page;
1026 page_cache_release(page);
1027 return NULL;
1028 }
1029 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1030 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1031 page_cache_release(page);
1032 page = NULL;
1033 }
1034 return page;
1035 }
1036 EXPORT_SYMBOL(grab_cache_page_nowait);
1037
1038 /*
1039 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1040 * a _large_ part of the i/o request. Imagine the worst scenario:
1041 *
1042 * ---R__________________________________________B__________
1043 * ^ reading here ^ bad block(assume 4k)
1044 *
1045 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1046 * => failing the whole request => read(R) => read(R+1) =>
1047 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1048 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1049 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1050 *
1051 * It is going insane. Fix it by quickly scaling down the readahead size.
1052 */
1053 static void shrink_readahead_size_eio(struct file *filp,
1054 struct file_ra_state *ra)
1055 {
1056 ra->ra_pages /= 4;
1057 }
1058
1059 /**
1060 * do_generic_file_read - generic file read routine
1061 * @filp: the file to read
1062 * @ppos: current file position
1063 * @desc: read_descriptor
1064 * @actor: read method
1065 *
1066 * This is a generic file read routine, and uses the
1067 * mapping->a_ops->readpage() function for the actual low-level stuff.
1068 *
1069 * This is really ugly. But the goto's actually try to clarify some
1070 * of the logic when it comes to error handling etc.
1071 */
1072 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1073 read_descriptor_t *desc, read_actor_t actor)
1074 {
1075 struct address_space *mapping = filp->f_mapping;
1076 struct inode *inode = mapping->host;
1077 struct file_ra_state *ra = &filp->f_ra;
1078 pgoff_t index;
1079 pgoff_t last_index;
1080 pgoff_t prev_index;
1081 unsigned long offset; /* offset into pagecache page */
1082 unsigned int prev_offset;
1083 int error;
1084
1085 index = *ppos >> PAGE_CACHE_SHIFT;
1086 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1087 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1088 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1089 offset = *ppos & ~PAGE_CACHE_MASK;
1090
1091 for (;;) {
1092 struct page *page;
1093 pgoff_t end_index;
1094 loff_t isize;
1095 unsigned long nr, ret;
1096
1097 cond_resched();
1098 find_page:
1099 page = find_get_page(mapping, index);
1100 if (!page) {
1101 page_cache_sync_readahead(mapping,
1102 ra, filp,
1103 index, last_index - index);
1104 page = find_get_page(mapping, index);
1105 if (unlikely(page == NULL))
1106 goto no_cached_page;
1107 }
1108 if (PageReadahead(page)) {
1109 page_cache_async_readahead(mapping,
1110 ra, filp, page,
1111 index, last_index - index);
1112 }
1113 if (!PageUptodate(page)) {
1114 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1115 !mapping->a_ops->is_partially_uptodate)
1116 goto page_not_up_to_date;
1117 if (!trylock_page(page))
1118 goto page_not_up_to_date;
1119 /* Did it get truncated before we got the lock? */
1120 if (!page->mapping)
1121 goto page_not_up_to_date_locked;
1122 if (!mapping->a_ops->is_partially_uptodate(page,
1123 desc, offset))
1124 goto page_not_up_to_date_locked;
1125 unlock_page(page);
1126 }
1127 page_ok:
1128 /*
1129 * i_size must be checked after we know the page is Uptodate.
1130 *
1131 * Checking i_size after the check allows us to calculate
1132 * the correct value for "nr", which means the zero-filled
1133 * part of the page is not copied back to userspace (unless
1134 * another truncate extends the file - this is desired though).
1135 */
1136
1137 isize = i_size_read(inode);
1138 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1139 if (unlikely(!isize || index > end_index)) {
1140 page_cache_release(page);
1141 goto out;
1142 }
1143
1144 /* nr is the maximum number of bytes to copy from this page */
1145 nr = PAGE_CACHE_SIZE;
1146 if (index == end_index) {
1147 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1148 if (nr <= offset) {
1149 page_cache_release(page);
1150 goto out;
1151 }
1152 }
1153 nr = nr - offset;
1154
1155 /* If users can be writing to this page using arbitrary
1156 * virtual addresses, take care about potential aliasing
1157 * before reading the page on the kernel side.
1158 */
1159 if (mapping_writably_mapped(mapping))
1160 flush_dcache_page(page);
1161
1162 /*
1163 * When a sequential read accesses a page several times,
1164 * only mark it as accessed the first time.
1165 */
1166 if (prev_index != index || offset != prev_offset)
1167 mark_page_accessed(page);
1168 prev_index = index;
1169
1170 /*
1171 * Ok, we have the page, and it's up-to-date, so
1172 * now we can copy it to user space...
1173 *
1174 * The actor routine returns how many bytes were actually used..
1175 * NOTE! This may not be the same as how much of a user buffer
1176 * we filled up (we may be padding etc), so we can only update
1177 * "pos" here (the actor routine has to update the user buffer
1178 * pointers and the remaining count).
1179 */
1180 ret = actor(desc, page, offset, nr);
1181 offset += ret;
1182 index += offset >> PAGE_CACHE_SHIFT;
1183 offset &= ~PAGE_CACHE_MASK;
1184 prev_offset = offset;
1185
1186 page_cache_release(page);
1187 if (ret == nr && desc->count)
1188 continue;
1189 goto out;
1190
1191 page_not_up_to_date:
1192 /* Get exclusive access to the page ... */
1193 error = lock_page_killable(page);
1194 if (unlikely(error))
1195 goto readpage_error;
1196
1197 page_not_up_to_date_locked:
1198 /* Did it get truncated before we got the lock? */
1199 if (!page->mapping) {
1200 unlock_page(page);
1201 page_cache_release(page);
1202 continue;
1203 }
1204
1205 /* Did somebody else fill it already? */
1206 if (PageUptodate(page)) {
1207 unlock_page(page);
1208 goto page_ok;
1209 }
1210
1211 readpage:
1212 /*
1213 * A previous I/O error may have been due to temporary
1214 * failures, eg. multipath errors.
1215 * PG_error will be set again if readpage fails.
1216 */
1217 ClearPageError(page);
1218 /* Start the actual read. The read will unlock the page. */
1219 error = mapping->a_ops->readpage(filp, page);
1220
1221 if (unlikely(error)) {
1222 if (error == AOP_TRUNCATED_PAGE) {
1223 page_cache_release(page);
1224 goto find_page;
1225 }
1226 goto readpage_error;
1227 }
1228
1229 if (!PageUptodate(page)) {
1230 error = lock_page_killable(page);
1231 if (unlikely(error))
1232 goto readpage_error;
1233 if (!PageUptodate(page)) {
1234 if (page->mapping == NULL) {
1235 /*
1236 * invalidate_mapping_pages got it
1237 */
1238 unlock_page(page);
1239 page_cache_release(page);
1240 goto find_page;
1241 }
1242 unlock_page(page);
1243 shrink_readahead_size_eio(filp, ra);
1244 error = -EIO;
1245 goto readpage_error;
1246 }
1247 unlock_page(page);
1248 }
1249
1250 goto page_ok;
1251
1252 readpage_error:
1253 /* UHHUH! A synchronous read error occurred. Report it */
1254 desc->error = error;
1255 page_cache_release(page);
1256 goto out;
1257
1258 no_cached_page:
1259 /*
1260 * Ok, it wasn't cached, so we need to create a new
1261 * page..
1262 */
1263 page = page_cache_alloc_cold(mapping);
1264 if (!page) {
1265 desc->error = -ENOMEM;
1266 goto out;
1267 }
1268 error = add_to_page_cache_lru(page, mapping,
1269 index, GFP_KERNEL);
1270 if (error) {
1271 page_cache_release(page);
1272 if (error == -EEXIST)
1273 goto find_page;
1274 desc->error = error;
1275 goto out;
1276 }
1277 goto readpage;
1278 }
1279
1280 out:
1281 ra->prev_pos = prev_index;
1282 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1283 ra->prev_pos |= prev_offset;
1284
1285 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1286 file_accessed(filp);
1287 }
1288
1289 int file_read_actor(read_descriptor_t *desc, struct page *page,
1290 unsigned long offset, unsigned long size)
1291 {
1292 char *kaddr;
1293 unsigned long left, count = desc->count;
1294
1295 if (size > count)
1296 size = count;
1297
1298 /*
1299 * Faults on the destination of a read are common, so do it before
1300 * taking the kmap.
1301 */
1302 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1303 kaddr = kmap_atomic(page, KM_USER0);
1304 left = __copy_to_user_inatomic(desc->arg.buf,
1305 kaddr + offset, size);
1306 kunmap_atomic(kaddr, KM_USER0);
1307 if (left == 0)
1308 goto success;
1309 }
1310
1311 /* Do it the slow way */
1312 kaddr = kmap(page);
1313 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1314 kunmap(page);
1315
1316 if (left) {
1317 size -= left;
1318 desc->error = -EFAULT;
1319 }
1320 success:
1321 desc->count = count - size;
1322 desc->written += size;
1323 desc->arg.buf += size;
1324 return size;
1325 }
1326
1327 /*
1328 * Performs necessary checks before doing a write
1329 * @iov: io vector request
1330 * @nr_segs: number of segments in the iovec
1331 * @count: number of bytes to write
1332 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1333 *
1334 * Adjust number of segments and amount of bytes to write (nr_segs should be
1335 * properly initialized first). Returns appropriate error code that caller
1336 * should return or zero in case that write should be allowed.
1337 */
1338 int generic_segment_checks(const struct iovec *iov,
1339 unsigned long *nr_segs, size_t *count, int access_flags)
1340 {
1341 unsigned long seg;
1342 size_t cnt = 0;
1343 for (seg = 0; seg < *nr_segs; seg++) {
1344 const struct iovec *iv = &iov[seg];
1345
1346 /*
1347 * If any segment has a negative length, or the cumulative
1348 * length ever wraps negative then return -EINVAL.
1349 */
1350 cnt += iv->iov_len;
1351 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1352 return -EINVAL;
1353 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1354 continue;
1355 if (seg == 0)
1356 return -EFAULT;
1357 *nr_segs = seg;
1358 cnt -= iv->iov_len; /* This segment is no good */
1359 break;
1360 }
1361 *count = cnt;
1362 return 0;
1363 }
1364 EXPORT_SYMBOL(generic_segment_checks);
1365
1366 /**
1367 * generic_file_aio_read - generic filesystem read routine
1368 * @iocb: kernel I/O control block
1369 * @iov: io vector request
1370 * @nr_segs: number of segments in the iovec
1371 * @pos: current file position
1372 *
1373 * This is the "read()" routine for all filesystems
1374 * that can use the page cache directly.
1375 */
1376 ssize_t
1377 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1378 unsigned long nr_segs, loff_t pos)
1379 {
1380 struct file *filp = iocb->ki_filp;
1381 ssize_t retval;
1382 unsigned long seg = 0;
1383 size_t count;
1384 loff_t *ppos = &iocb->ki_pos;
1385 struct blk_plug plug;
1386
1387 count = 0;
1388 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1389 if (retval)
1390 return retval;
1391
1392 blk_start_plug(&plug);
1393
1394 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1395 if (filp->f_flags & O_DIRECT) {
1396 loff_t size;
1397 struct address_space *mapping;
1398 struct inode *inode;
1399
1400 mapping = filp->f_mapping;
1401 inode = mapping->host;
1402 if (!count)
1403 goto out; /* skip atime */
1404 size = i_size_read(inode);
1405 if (pos < size) {
1406 retval = filemap_write_and_wait_range(mapping, pos,
1407 pos + iov_length(iov, nr_segs) - 1);
1408 if (!retval) {
1409 retval = mapping->a_ops->direct_IO(READ, iocb,
1410 iov, pos, nr_segs);
1411 }
1412 if (retval > 0) {
1413 *ppos = pos + retval;
1414 count -= retval;
1415 }
1416
1417 /*
1418 * Btrfs can have a short DIO read if we encounter
1419 * compressed extents, so if there was an error, or if
1420 * we've already read everything we wanted to, or if
1421 * there was a short read because we hit EOF, go ahead
1422 * and return. Otherwise fallthrough to buffered io for
1423 * the rest of the read.
1424 */
1425 if (retval < 0 || !count || *ppos >= size) {
1426 file_accessed(filp);
1427 goto out;
1428 }
1429 }
1430 }
1431
1432 count = retval;
1433 for (seg = 0; seg < nr_segs; seg++) {
1434 read_descriptor_t desc;
1435 loff_t offset = 0;
1436
1437 /*
1438 * If we did a short DIO read we need to skip the section of the
1439 * iov that we've already read data into.
1440 */
1441 if (count) {
1442 if (count > iov[seg].iov_len) {
1443 count -= iov[seg].iov_len;
1444 continue;
1445 }
1446 offset = count;
1447 count = 0;
1448 }
1449
1450 desc.written = 0;
1451 desc.arg.buf = iov[seg].iov_base + offset;
1452 desc.count = iov[seg].iov_len - offset;
1453 if (desc.count == 0)
1454 continue;
1455 desc.error = 0;
1456 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1457 retval += desc.written;
1458 if (desc.error) {
1459 retval = retval ?: desc.error;
1460 break;
1461 }
1462 if (desc.count > 0)
1463 break;
1464 }
1465 out:
1466 blk_finish_plug(&plug);
1467 return retval;
1468 }
1469 EXPORT_SYMBOL(generic_file_aio_read);
1470
1471 static ssize_t
1472 do_readahead(struct address_space *mapping, struct file *filp,
1473 pgoff_t index, unsigned long nr)
1474 {
1475 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1476 return -EINVAL;
1477
1478 force_page_cache_readahead(mapping, filp, index, nr);
1479 return 0;
1480 }
1481
1482 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1483 {
1484 ssize_t ret;
1485 struct file *file;
1486
1487 ret = -EBADF;
1488 file = fget(fd);
1489 if (file) {
1490 if (file->f_mode & FMODE_READ) {
1491 struct address_space *mapping = file->f_mapping;
1492 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1493 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1494 unsigned long len = end - start + 1;
1495 ret = do_readahead(mapping, file, start, len);
1496 }
1497 fput(file);
1498 }
1499 return ret;
1500 }
1501 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1502 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1503 {
1504 return SYSC_readahead((int) fd, offset, (size_t) count);
1505 }
1506 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1507 #endif
1508
1509 #ifdef CONFIG_MMU
1510 /**
1511 * page_cache_read - adds requested page to the page cache if not already there
1512 * @file: file to read
1513 * @offset: page index
1514 *
1515 * This adds the requested page to the page cache if it isn't already there,
1516 * and schedules an I/O to read in its contents from disk.
1517 */
1518 static int page_cache_read(struct file *file, pgoff_t offset)
1519 {
1520 struct address_space *mapping = file->f_mapping;
1521 struct page *page;
1522 int ret;
1523
1524 do {
1525 page = page_cache_alloc_cold(mapping);
1526 if (!page)
1527 return -ENOMEM;
1528
1529 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1530 if (ret == 0)
1531 ret = mapping->a_ops->readpage(file, page);
1532 else if (ret == -EEXIST)
1533 ret = 0; /* losing race to add is OK */
1534
1535 page_cache_release(page);
1536
1537 } while (ret == AOP_TRUNCATED_PAGE);
1538
1539 return ret;
1540 }
1541
1542 #define MMAP_LOTSAMISS (100)
1543
1544 /*
1545 * Synchronous readahead happens when we don't even find
1546 * a page in the page cache at all.
1547 */
1548 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1549 struct file_ra_state *ra,
1550 struct file *file,
1551 pgoff_t offset)
1552 {
1553 unsigned long ra_pages;
1554 struct address_space *mapping = file->f_mapping;
1555
1556 /* If we don't want any read-ahead, don't bother */
1557 if (VM_RandomReadHint(vma))
1558 return;
1559
1560 if (VM_SequentialReadHint(vma) ||
1561 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1562 page_cache_sync_readahead(mapping, ra, file, offset,
1563 ra->ra_pages);
1564 return;
1565 }
1566
1567 if (ra->mmap_miss < INT_MAX)
1568 ra->mmap_miss++;
1569
1570 /*
1571 * Do we miss much more than hit in this file? If so,
1572 * stop bothering with read-ahead. It will only hurt.
1573 */
1574 if (ra->mmap_miss > MMAP_LOTSAMISS)
1575 return;
1576
1577 /*
1578 * mmap read-around
1579 */
1580 ra_pages = max_sane_readahead(ra->ra_pages);
1581 if (ra_pages) {
1582 ra->start = max_t(long, 0, offset - ra_pages/2);
1583 ra->size = ra_pages;
1584 ra->async_size = 0;
1585 ra_submit(ra, mapping, file);
1586 }
1587 }
1588
1589 /*
1590 * Asynchronous readahead happens when we find the page and PG_readahead,
1591 * so we want to possibly extend the readahead further..
1592 */
1593 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1594 struct file_ra_state *ra,
1595 struct file *file,
1596 struct page *page,
1597 pgoff_t offset)
1598 {
1599 struct address_space *mapping = file->f_mapping;
1600
1601 /* If we don't want any read-ahead, don't bother */
1602 if (VM_RandomReadHint(vma))
1603 return;
1604 if (ra->mmap_miss > 0)
1605 ra->mmap_miss--;
1606 if (PageReadahead(page))
1607 page_cache_async_readahead(mapping, ra, file,
1608 page, offset, ra->ra_pages);
1609 }
1610
1611 /**
1612 * filemap_fault - read in file data for page fault handling
1613 * @vma: vma in which the fault was taken
1614 * @vmf: struct vm_fault containing details of the fault
1615 *
1616 * filemap_fault() is invoked via the vma operations vector for a
1617 * mapped memory region to read in file data during a page fault.
1618 *
1619 * The goto's are kind of ugly, but this streamlines the normal case of having
1620 * it in the page cache, and handles the special cases reasonably without
1621 * having a lot of duplicated code.
1622 */
1623 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1624 {
1625 int error;
1626 struct file *file = vma->vm_file;
1627 struct address_space *mapping = file->f_mapping;
1628 struct file_ra_state *ra = &file->f_ra;
1629 struct inode *inode = mapping->host;
1630 pgoff_t offset = vmf->pgoff;
1631 struct page *page;
1632 pgoff_t size;
1633 int ret = 0;
1634
1635 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1636 if (offset >= size)
1637 return VM_FAULT_SIGBUS;
1638
1639 /*
1640 * Do we have something in the page cache already?
1641 */
1642 page = find_get_page(mapping, offset);
1643 if (likely(page)) {
1644 /*
1645 * We found the page, so try async readahead before
1646 * waiting for the lock.
1647 */
1648 do_async_mmap_readahead(vma, ra, file, page, offset);
1649 } else {
1650 /* No page in the page cache at all */
1651 do_sync_mmap_readahead(vma, ra, file, offset);
1652 count_vm_event(PGMAJFAULT);
1653 ret = VM_FAULT_MAJOR;
1654 retry_find:
1655 page = find_get_page(mapping, offset);
1656 if (!page)
1657 goto no_cached_page;
1658 }
1659
1660 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1661 page_cache_release(page);
1662 return ret | VM_FAULT_RETRY;
1663 }
1664
1665 /* Did it get truncated? */
1666 if (unlikely(page->mapping != mapping)) {
1667 unlock_page(page);
1668 put_page(page);
1669 goto retry_find;
1670 }
1671 VM_BUG_ON(page->index != offset);
1672
1673 /*
1674 * We have a locked page in the page cache, now we need to check
1675 * that it's up-to-date. If not, it is going to be due to an error.
1676 */
1677 if (unlikely(!PageUptodate(page)))
1678 goto page_not_uptodate;
1679
1680 /*
1681 * Found the page and have a reference on it.
1682 * We must recheck i_size under page lock.
1683 */
1684 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1685 if (unlikely(offset >= size)) {
1686 unlock_page(page);
1687 page_cache_release(page);
1688 return VM_FAULT_SIGBUS;
1689 }
1690
1691 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1692 vmf->page = page;
1693 return ret | VM_FAULT_LOCKED;
1694
1695 no_cached_page:
1696 /*
1697 * We're only likely to ever get here if MADV_RANDOM is in
1698 * effect.
1699 */
1700 error = page_cache_read(file, offset);
1701
1702 /*
1703 * The page we want has now been added to the page cache.
1704 * In the unlikely event that someone removed it in the
1705 * meantime, we'll just come back here and read it again.
1706 */
1707 if (error >= 0)
1708 goto retry_find;
1709
1710 /*
1711 * An error return from page_cache_read can result if the
1712 * system is low on memory, or a problem occurs while trying
1713 * to schedule I/O.
1714 */
1715 if (error == -ENOMEM)
1716 return VM_FAULT_OOM;
1717 return VM_FAULT_SIGBUS;
1718
1719 page_not_uptodate:
1720 /*
1721 * Umm, take care of errors if the page isn't up-to-date.
1722 * Try to re-read it _once_. We do this synchronously,
1723 * because there really aren't any performance issues here
1724 * and we need to check for errors.
1725 */
1726 ClearPageError(page);
1727 error = mapping->a_ops->readpage(file, page);
1728 if (!error) {
1729 wait_on_page_locked(page);
1730 if (!PageUptodate(page))
1731 error = -EIO;
1732 }
1733 page_cache_release(page);
1734
1735 if (!error || error == AOP_TRUNCATED_PAGE)
1736 goto retry_find;
1737
1738 /* Things didn't work out. Return zero to tell the mm layer so. */
1739 shrink_readahead_size_eio(file, ra);
1740 return VM_FAULT_SIGBUS;
1741 }
1742 EXPORT_SYMBOL(filemap_fault);
1743
1744 const struct vm_operations_struct generic_file_vm_ops = {
1745 .fault = filemap_fault,
1746 };
1747
1748 /* This is used for a general mmap of a disk file */
1749
1750 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1751 {
1752 struct address_space *mapping = file->f_mapping;
1753
1754 if (!mapping->a_ops->readpage)
1755 return -ENOEXEC;
1756 file_accessed(file);
1757 vma->vm_ops = &generic_file_vm_ops;
1758 vma->vm_flags |= VM_CAN_NONLINEAR;
1759 return 0;
1760 }
1761
1762 /*
1763 * This is for filesystems which do not implement ->writepage.
1764 */
1765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1766 {
1767 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1768 return -EINVAL;
1769 return generic_file_mmap(file, vma);
1770 }
1771 #else
1772 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773 {
1774 return -ENOSYS;
1775 }
1776 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1777 {
1778 return -ENOSYS;
1779 }
1780 #endif /* CONFIG_MMU */
1781
1782 EXPORT_SYMBOL(generic_file_mmap);
1783 EXPORT_SYMBOL(generic_file_readonly_mmap);
1784
1785 static struct page *__read_cache_page(struct address_space *mapping,
1786 pgoff_t index,
1787 int (*filler)(void *,struct page*),
1788 void *data,
1789 gfp_t gfp)
1790 {
1791 struct page *page;
1792 int err;
1793 repeat:
1794 page = find_get_page(mapping, index);
1795 if (!page) {
1796 page = __page_cache_alloc(gfp | __GFP_COLD);
1797 if (!page)
1798 return ERR_PTR(-ENOMEM);
1799 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1800 if (unlikely(err)) {
1801 page_cache_release(page);
1802 if (err == -EEXIST)
1803 goto repeat;
1804 /* Presumably ENOMEM for radix tree node */
1805 return ERR_PTR(err);
1806 }
1807 err = filler(data, page);
1808 if (err < 0) {
1809 page_cache_release(page);
1810 page = ERR_PTR(err);
1811 }
1812 }
1813 return page;
1814 }
1815
1816 static struct page *do_read_cache_page(struct address_space *mapping,
1817 pgoff_t index,
1818 int (*filler)(void *,struct page*),
1819 void *data,
1820 gfp_t gfp)
1821
1822 {
1823 struct page *page;
1824 int err;
1825
1826 retry:
1827 page = __read_cache_page(mapping, index, filler, data, gfp);
1828 if (IS_ERR(page))
1829 return page;
1830 if (PageUptodate(page))
1831 goto out;
1832
1833 lock_page(page);
1834 if (!page->mapping) {
1835 unlock_page(page);
1836 page_cache_release(page);
1837 goto retry;
1838 }
1839 if (PageUptodate(page)) {
1840 unlock_page(page);
1841 goto out;
1842 }
1843 err = filler(data, page);
1844 if (err < 0) {
1845 page_cache_release(page);
1846 return ERR_PTR(err);
1847 }
1848 out:
1849 mark_page_accessed(page);
1850 return page;
1851 }
1852
1853 /**
1854 * read_cache_page_async - read into page cache, fill it if needed
1855 * @mapping: the page's address_space
1856 * @index: the page index
1857 * @filler: function to perform the read
1858 * @data: destination for read data
1859 *
1860 * Same as read_cache_page, but don't wait for page to become unlocked
1861 * after submitting it to the filler.
1862 *
1863 * Read into the page cache. If a page already exists, and PageUptodate() is
1864 * not set, try to fill the page but don't wait for it to become unlocked.
1865 *
1866 * If the page does not get brought uptodate, return -EIO.
1867 */
1868 struct page *read_cache_page_async(struct address_space *mapping,
1869 pgoff_t index,
1870 int (*filler)(void *,struct page*),
1871 void *data)
1872 {
1873 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1874 }
1875 EXPORT_SYMBOL(read_cache_page_async);
1876
1877 static struct page *wait_on_page_read(struct page *page)
1878 {
1879 if (!IS_ERR(page)) {
1880 wait_on_page_locked(page);
1881 if (!PageUptodate(page)) {
1882 page_cache_release(page);
1883 page = ERR_PTR(-EIO);
1884 }
1885 }
1886 return page;
1887 }
1888
1889 /**
1890 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1891 * @mapping: the page's address_space
1892 * @index: the page index
1893 * @gfp: the page allocator flags to use if allocating
1894 *
1895 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1896 * any new page allocations done using the specified allocation flags. Note
1897 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1898 * expect to do this atomically or anything like that - but you can pass in
1899 * other page requirements.
1900 *
1901 * If the page does not get brought uptodate, return -EIO.
1902 */
1903 struct page *read_cache_page_gfp(struct address_space *mapping,
1904 pgoff_t index,
1905 gfp_t gfp)
1906 {
1907 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1908
1909 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1910 }
1911 EXPORT_SYMBOL(read_cache_page_gfp);
1912
1913 /**
1914 * read_cache_page - read into page cache, fill it if needed
1915 * @mapping: the page's address_space
1916 * @index: the page index
1917 * @filler: function to perform the read
1918 * @data: destination for read data
1919 *
1920 * Read into the page cache. If a page already exists, and PageUptodate() is
1921 * not set, try to fill the page then wait for it to become unlocked.
1922 *
1923 * If the page does not get brought uptodate, return -EIO.
1924 */
1925 struct page *read_cache_page(struct address_space *mapping,
1926 pgoff_t index,
1927 int (*filler)(void *,struct page*),
1928 void *data)
1929 {
1930 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1931 }
1932 EXPORT_SYMBOL(read_cache_page);
1933
1934 /*
1935 * The logic we want is
1936 *
1937 * if suid or (sgid and xgrp)
1938 * remove privs
1939 */
1940 int should_remove_suid(struct dentry *dentry)
1941 {
1942 mode_t mode = dentry->d_inode->i_mode;
1943 int kill = 0;
1944
1945 /* suid always must be killed */
1946 if (unlikely(mode & S_ISUID))
1947 kill = ATTR_KILL_SUID;
1948
1949 /*
1950 * sgid without any exec bits is just a mandatory locking mark; leave
1951 * it alone. If some exec bits are set, it's a real sgid; kill it.
1952 */
1953 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1954 kill |= ATTR_KILL_SGID;
1955
1956 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1957 return kill;
1958
1959 return 0;
1960 }
1961 EXPORT_SYMBOL(should_remove_suid);
1962
1963 static int __remove_suid(struct dentry *dentry, int kill)
1964 {
1965 struct iattr newattrs;
1966
1967 newattrs.ia_valid = ATTR_FORCE | kill;
1968 return notify_change(dentry, &newattrs);
1969 }
1970
1971 int file_remove_suid(struct file *file)
1972 {
1973 struct dentry *dentry = file->f_path.dentry;
1974 int killsuid = should_remove_suid(dentry);
1975 int killpriv = security_inode_need_killpriv(dentry);
1976 int error = 0;
1977
1978 if (killpriv < 0)
1979 return killpriv;
1980 if (killpriv)
1981 error = security_inode_killpriv(dentry);
1982 if (!error && killsuid)
1983 error = __remove_suid(dentry, killsuid);
1984
1985 return error;
1986 }
1987 EXPORT_SYMBOL(file_remove_suid);
1988
1989 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1990 const struct iovec *iov, size_t base, size_t bytes)
1991 {
1992 size_t copied = 0, left = 0;
1993
1994 while (bytes) {
1995 char __user *buf = iov->iov_base + base;
1996 int copy = min(bytes, iov->iov_len - base);
1997
1998 base = 0;
1999 left = __copy_from_user_inatomic(vaddr, buf, copy);
2000 copied += copy;
2001 bytes -= copy;
2002 vaddr += copy;
2003 iov++;
2004
2005 if (unlikely(left))
2006 break;
2007 }
2008 return copied - left;
2009 }
2010
2011 /*
2012 * Copy as much as we can into the page and return the number of bytes which
2013 * were successfully copied. If a fault is encountered then return the number of
2014 * bytes which were copied.
2015 */
2016 size_t iov_iter_copy_from_user_atomic(struct page *page,
2017 struct iov_iter *i, unsigned long offset, size_t bytes)
2018 {
2019 char *kaddr;
2020 size_t copied;
2021
2022 BUG_ON(!in_atomic());
2023 kaddr = kmap_atomic(page, KM_USER0);
2024 if (likely(i->nr_segs == 1)) {
2025 int left;
2026 char __user *buf = i->iov->iov_base + i->iov_offset;
2027 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2028 copied = bytes - left;
2029 } else {
2030 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2031 i->iov, i->iov_offset, bytes);
2032 }
2033 kunmap_atomic(kaddr, KM_USER0);
2034
2035 return copied;
2036 }
2037 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2038
2039 /*
2040 * This has the same sideeffects and return value as
2041 * iov_iter_copy_from_user_atomic().
2042 * The difference is that it attempts to resolve faults.
2043 * Page must not be locked.
2044 */
2045 size_t iov_iter_copy_from_user(struct page *page,
2046 struct iov_iter *i, unsigned long offset, size_t bytes)
2047 {
2048 char *kaddr;
2049 size_t copied;
2050
2051 kaddr = kmap(page);
2052 if (likely(i->nr_segs == 1)) {
2053 int left;
2054 char __user *buf = i->iov->iov_base + i->iov_offset;
2055 left = __copy_from_user(kaddr + offset, buf, bytes);
2056 copied = bytes - left;
2057 } else {
2058 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2059 i->iov, i->iov_offset, bytes);
2060 }
2061 kunmap(page);
2062 return copied;
2063 }
2064 EXPORT_SYMBOL(iov_iter_copy_from_user);
2065
2066 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2067 {
2068 BUG_ON(i->count < bytes);
2069
2070 if (likely(i->nr_segs == 1)) {
2071 i->iov_offset += bytes;
2072 i->count -= bytes;
2073 } else {
2074 const struct iovec *iov = i->iov;
2075 size_t base = i->iov_offset;
2076
2077 /*
2078 * The !iov->iov_len check ensures we skip over unlikely
2079 * zero-length segments (without overruning the iovec).
2080 */
2081 while (bytes || unlikely(i->count && !iov->iov_len)) {
2082 int copy;
2083
2084 copy = min(bytes, iov->iov_len - base);
2085 BUG_ON(!i->count || i->count < copy);
2086 i->count -= copy;
2087 bytes -= copy;
2088 base += copy;
2089 if (iov->iov_len == base) {
2090 iov++;
2091 base = 0;
2092 }
2093 }
2094 i->iov = iov;
2095 i->iov_offset = base;
2096 }
2097 }
2098 EXPORT_SYMBOL(iov_iter_advance);
2099
2100 /*
2101 * Fault in the first iovec of the given iov_iter, to a maximum length
2102 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2103 * accessed (ie. because it is an invalid address).
2104 *
2105 * writev-intensive code may want this to prefault several iovecs -- that
2106 * would be possible (callers must not rely on the fact that _only_ the
2107 * first iovec will be faulted with the current implementation).
2108 */
2109 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2110 {
2111 char __user *buf = i->iov->iov_base + i->iov_offset;
2112 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2113 return fault_in_pages_readable(buf, bytes);
2114 }
2115 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2116
2117 /*
2118 * Return the count of just the current iov_iter segment.
2119 */
2120 size_t iov_iter_single_seg_count(struct iov_iter *i)
2121 {
2122 const struct iovec *iov = i->iov;
2123 if (i->nr_segs == 1)
2124 return i->count;
2125 else
2126 return min(i->count, iov->iov_len - i->iov_offset);
2127 }
2128 EXPORT_SYMBOL(iov_iter_single_seg_count);
2129
2130 /*
2131 * Performs necessary checks before doing a write
2132 *
2133 * Can adjust writing position or amount of bytes to write.
2134 * Returns appropriate error code that caller should return or
2135 * zero in case that write should be allowed.
2136 */
2137 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2138 {
2139 struct inode *inode = file->f_mapping->host;
2140 unsigned long limit = rlimit(RLIMIT_FSIZE);
2141
2142 if (unlikely(*pos < 0))
2143 return -EINVAL;
2144
2145 if (!isblk) {
2146 /* FIXME: this is for backwards compatibility with 2.4 */
2147 if (file->f_flags & O_APPEND)
2148 *pos = i_size_read(inode);
2149
2150 if (limit != RLIM_INFINITY) {
2151 if (*pos >= limit) {
2152 send_sig(SIGXFSZ, current, 0);
2153 return -EFBIG;
2154 }
2155 if (*count > limit - (typeof(limit))*pos) {
2156 *count = limit - (typeof(limit))*pos;
2157 }
2158 }
2159 }
2160
2161 /*
2162 * LFS rule
2163 */
2164 if (unlikely(*pos + *count > MAX_NON_LFS &&
2165 !(file->f_flags & O_LARGEFILE))) {
2166 if (*pos >= MAX_NON_LFS) {
2167 return -EFBIG;
2168 }
2169 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2170 *count = MAX_NON_LFS - (unsigned long)*pos;
2171 }
2172 }
2173
2174 /*
2175 * Are we about to exceed the fs block limit ?
2176 *
2177 * If we have written data it becomes a short write. If we have
2178 * exceeded without writing data we send a signal and return EFBIG.
2179 * Linus frestrict idea will clean these up nicely..
2180 */
2181 if (likely(!isblk)) {
2182 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2183 if (*count || *pos > inode->i_sb->s_maxbytes) {
2184 return -EFBIG;
2185 }
2186 /* zero-length writes at ->s_maxbytes are OK */
2187 }
2188
2189 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2190 *count = inode->i_sb->s_maxbytes - *pos;
2191 } else {
2192 #ifdef CONFIG_BLOCK
2193 loff_t isize;
2194 if (bdev_read_only(I_BDEV(inode)))
2195 return -EPERM;
2196 isize = i_size_read(inode);
2197 if (*pos >= isize) {
2198 if (*count || *pos > isize)
2199 return -ENOSPC;
2200 }
2201
2202 if (*pos + *count > isize)
2203 *count = isize - *pos;
2204 #else
2205 return -EPERM;
2206 #endif
2207 }
2208 return 0;
2209 }
2210 EXPORT_SYMBOL(generic_write_checks);
2211
2212 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2213 loff_t pos, unsigned len, unsigned flags,
2214 struct page **pagep, void **fsdata)
2215 {
2216 const struct address_space_operations *aops = mapping->a_ops;
2217
2218 return aops->write_begin(file, mapping, pos, len, flags,
2219 pagep, fsdata);
2220 }
2221 EXPORT_SYMBOL(pagecache_write_begin);
2222
2223 int pagecache_write_end(struct file *file, struct address_space *mapping,
2224 loff_t pos, unsigned len, unsigned copied,
2225 struct page *page, void *fsdata)
2226 {
2227 const struct address_space_operations *aops = mapping->a_ops;
2228
2229 mark_page_accessed(page);
2230 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2231 }
2232 EXPORT_SYMBOL(pagecache_write_end);
2233
2234 ssize_t
2235 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2236 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2237 size_t count, size_t ocount)
2238 {
2239 struct file *file = iocb->ki_filp;
2240 struct address_space *mapping = file->f_mapping;
2241 struct inode *inode = mapping->host;
2242 ssize_t written;
2243 size_t write_len;
2244 pgoff_t end;
2245
2246 if (count != ocount)
2247 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2248
2249 write_len = iov_length(iov, *nr_segs);
2250 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2251
2252 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2253 if (written)
2254 goto out;
2255
2256 /*
2257 * After a write we want buffered reads to be sure to go to disk to get
2258 * the new data. We invalidate clean cached page from the region we're
2259 * about to write. We do this *before* the write so that we can return
2260 * without clobbering -EIOCBQUEUED from ->direct_IO().
2261 */
2262 if (mapping->nrpages) {
2263 written = invalidate_inode_pages2_range(mapping,
2264 pos >> PAGE_CACHE_SHIFT, end);
2265 /*
2266 * If a page can not be invalidated, return 0 to fall back
2267 * to buffered write.
2268 */
2269 if (written) {
2270 if (written == -EBUSY)
2271 return 0;
2272 goto out;
2273 }
2274 }
2275
2276 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2277
2278 /*
2279 * Finally, try again to invalidate clean pages which might have been
2280 * cached by non-direct readahead, or faulted in by get_user_pages()
2281 * if the source of the write was an mmap'ed region of the file
2282 * we're writing. Either one is a pretty crazy thing to do,
2283 * so we don't support it 100%. If this invalidation
2284 * fails, tough, the write still worked...
2285 */
2286 if (mapping->nrpages) {
2287 invalidate_inode_pages2_range(mapping,
2288 pos >> PAGE_CACHE_SHIFT, end);
2289 }
2290
2291 if (written > 0) {
2292 pos += written;
2293 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2294 i_size_write(inode, pos);
2295 mark_inode_dirty(inode);
2296 }
2297 *ppos = pos;
2298 }
2299 out:
2300 return written;
2301 }
2302 EXPORT_SYMBOL(generic_file_direct_write);
2303
2304 /*
2305 * Find or create a page at the given pagecache position. Return the locked
2306 * page. This function is specifically for buffered writes.
2307 */
2308 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2309 pgoff_t index, unsigned flags)
2310 {
2311 int status;
2312 struct page *page;
2313 gfp_t gfp_notmask = 0;
2314 if (flags & AOP_FLAG_NOFS)
2315 gfp_notmask = __GFP_FS;
2316 repeat:
2317 page = find_lock_page(mapping, index);
2318 if (page)
2319 return page;
2320
2321 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2322 if (!page)
2323 return NULL;
2324 status = add_to_page_cache_lru(page, mapping, index,
2325 GFP_KERNEL & ~gfp_notmask);
2326 if (unlikely(status)) {
2327 page_cache_release(page);
2328 if (status == -EEXIST)
2329 goto repeat;
2330 return NULL;
2331 }
2332 return page;
2333 }
2334 EXPORT_SYMBOL(grab_cache_page_write_begin);
2335
2336 static ssize_t generic_perform_write(struct file *file,
2337 struct iov_iter *i, loff_t pos)
2338 {
2339 struct address_space *mapping = file->f_mapping;
2340 const struct address_space_operations *a_ops = mapping->a_ops;
2341 long status = 0;
2342 ssize_t written = 0;
2343 unsigned int flags = 0;
2344
2345 /*
2346 * Copies from kernel address space cannot fail (NFSD is a big user).
2347 */
2348 if (segment_eq(get_fs(), KERNEL_DS))
2349 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2350
2351 do {
2352 struct page *page;
2353 unsigned long offset; /* Offset into pagecache page */
2354 unsigned long bytes; /* Bytes to write to page */
2355 size_t copied; /* Bytes copied from user */
2356 void *fsdata;
2357
2358 offset = (pos & (PAGE_CACHE_SIZE - 1));
2359 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2360 iov_iter_count(i));
2361
2362 again:
2363
2364 /*
2365 * Bring in the user page that we will copy from _first_.
2366 * Otherwise there's a nasty deadlock on copying from the
2367 * same page as we're writing to, without it being marked
2368 * up-to-date.
2369 *
2370 * Not only is this an optimisation, but it is also required
2371 * to check that the address is actually valid, when atomic
2372 * usercopies are used, below.
2373 */
2374 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2375 status = -EFAULT;
2376 break;
2377 }
2378
2379 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2380 &page, &fsdata);
2381 if (unlikely(status))
2382 break;
2383
2384 if (mapping_writably_mapped(mapping))
2385 flush_dcache_page(page);
2386
2387 pagefault_disable();
2388 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2389 pagefault_enable();
2390 flush_dcache_page(page);
2391
2392 mark_page_accessed(page);
2393 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2394 page, fsdata);
2395 if (unlikely(status < 0))
2396 break;
2397 copied = status;
2398
2399 cond_resched();
2400
2401 iov_iter_advance(i, copied);
2402 if (unlikely(copied == 0)) {
2403 /*
2404 * If we were unable to copy any data at all, we must
2405 * fall back to a single segment length write.
2406 *
2407 * If we didn't fallback here, we could livelock
2408 * because not all segments in the iov can be copied at
2409 * once without a pagefault.
2410 */
2411 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2412 iov_iter_single_seg_count(i));
2413 goto again;
2414 }
2415 pos += copied;
2416 written += copied;
2417
2418 balance_dirty_pages_ratelimited(mapping);
2419
2420 } while (iov_iter_count(i));
2421
2422 return written ? written : status;
2423 }
2424
2425 ssize_t
2426 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2427 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2428 size_t count, ssize_t written)
2429 {
2430 struct file *file = iocb->ki_filp;
2431 ssize_t status;
2432 struct iov_iter i;
2433
2434 iov_iter_init(&i, iov, nr_segs, count, written);
2435 status = generic_perform_write(file, &i, pos);
2436
2437 if (likely(status >= 0)) {
2438 written += status;
2439 *ppos = pos + status;
2440 }
2441
2442 return written ? written : status;
2443 }
2444 EXPORT_SYMBOL(generic_file_buffered_write);
2445
2446 /**
2447 * __generic_file_aio_write - write data to a file
2448 * @iocb: IO state structure (file, offset, etc.)
2449 * @iov: vector with data to write
2450 * @nr_segs: number of segments in the vector
2451 * @ppos: position where to write
2452 *
2453 * This function does all the work needed for actually writing data to a
2454 * file. It does all basic checks, removes SUID from the file, updates
2455 * modification times and calls proper subroutines depending on whether we
2456 * do direct IO or a standard buffered write.
2457 *
2458 * It expects i_mutex to be grabbed unless we work on a block device or similar
2459 * object which does not need locking at all.
2460 *
2461 * This function does *not* take care of syncing data in case of O_SYNC write.
2462 * A caller has to handle it. This is mainly due to the fact that we want to
2463 * avoid syncing under i_mutex.
2464 */
2465 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2466 unsigned long nr_segs, loff_t *ppos)
2467 {
2468 struct file *file = iocb->ki_filp;
2469 struct address_space * mapping = file->f_mapping;
2470 size_t ocount; /* original count */
2471 size_t count; /* after file limit checks */
2472 struct inode *inode = mapping->host;
2473 loff_t pos;
2474 ssize_t written;
2475 ssize_t err;
2476
2477 ocount = 0;
2478 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2479 if (err)
2480 return err;
2481
2482 count = ocount;
2483 pos = *ppos;
2484
2485 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2486
2487 /* We can write back this queue in page reclaim */
2488 current->backing_dev_info = mapping->backing_dev_info;
2489 written = 0;
2490
2491 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2492 if (err)
2493 goto out;
2494
2495 if (count == 0)
2496 goto out;
2497
2498 err = file_remove_suid(file);
2499 if (err)
2500 goto out;
2501
2502 file_update_time(file);
2503
2504 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2505 if (unlikely(file->f_flags & O_DIRECT)) {
2506 loff_t endbyte;
2507 ssize_t written_buffered;
2508
2509 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2510 ppos, count, ocount);
2511 if (written < 0 || written == count)
2512 goto out;
2513 /*
2514 * direct-io write to a hole: fall through to buffered I/O
2515 * for completing the rest of the request.
2516 */
2517 pos += written;
2518 count -= written;
2519 written_buffered = generic_file_buffered_write(iocb, iov,
2520 nr_segs, pos, ppos, count,
2521 written);
2522 /*
2523 * If generic_file_buffered_write() retuned a synchronous error
2524 * then we want to return the number of bytes which were
2525 * direct-written, or the error code if that was zero. Note
2526 * that this differs from normal direct-io semantics, which
2527 * will return -EFOO even if some bytes were written.
2528 */
2529 if (written_buffered < 0) {
2530 err = written_buffered;
2531 goto out;
2532 }
2533
2534 /*
2535 * We need to ensure that the page cache pages are written to
2536 * disk and invalidated to preserve the expected O_DIRECT
2537 * semantics.
2538 */
2539 endbyte = pos + written_buffered - written - 1;
2540 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2541 if (err == 0) {
2542 written = written_buffered;
2543 invalidate_mapping_pages(mapping,
2544 pos >> PAGE_CACHE_SHIFT,
2545 endbyte >> PAGE_CACHE_SHIFT);
2546 } else {
2547 /*
2548 * We don't know how much we wrote, so just return
2549 * the number of bytes which were direct-written
2550 */
2551 }
2552 } else {
2553 written = generic_file_buffered_write(iocb, iov, nr_segs,
2554 pos, ppos, count, written);
2555 }
2556 out:
2557 current->backing_dev_info = NULL;
2558 return written ? written : err;
2559 }
2560 EXPORT_SYMBOL(__generic_file_aio_write);
2561
2562 /**
2563 * generic_file_aio_write - write data to a file
2564 * @iocb: IO state structure
2565 * @iov: vector with data to write
2566 * @nr_segs: number of segments in the vector
2567 * @pos: position in file where to write
2568 *
2569 * This is a wrapper around __generic_file_aio_write() to be used by most
2570 * filesystems. It takes care of syncing the file in case of O_SYNC file
2571 * and acquires i_mutex as needed.
2572 */
2573 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2574 unsigned long nr_segs, loff_t pos)
2575 {
2576 struct file *file = iocb->ki_filp;
2577 struct inode *inode = file->f_mapping->host;
2578 struct blk_plug plug;
2579 ssize_t ret;
2580
2581 BUG_ON(iocb->ki_pos != pos);
2582
2583 mutex_lock(&inode->i_mutex);
2584 blk_start_plug(&plug);
2585 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2586 mutex_unlock(&inode->i_mutex);
2587
2588 if (ret > 0 || ret == -EIOCBQUEUED) {
2589 ssize_t err;
2590
2591 err = generic_write_sync(file, pos, ret);
2592 if (err < 0 && ret > 0)
2593 ret = err;
2594 }
2595 blk_finish_plug(&plug);
2596 return ret;
2597 }
2598 EXPORT_SYMBOL(generic_file_aio_write);
2599
2600 /**
2601 * try_to_release_page() - release old fs-specific metadata on a page
2602 *
2603 * @page: the page which the kernel is trying to free
2604 * @gfp_mask: memory allocation flags (and I/O mode)
2605 *
2606 * The address_space is to try to release any data against the page
2607 * (presumably at page->private). If the release was successful, return `1'.
2608 * Otherwise return zero.
2609 *
2610 * This may also be called if PG_fscache is set on a page, indicating that the
2611 * page is known to the local caching routines.
2612 *
2613 * The @gfp_mask argument specifies whether I/O may be performed to release
2614 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2615 *
2616 */
2617 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2618 {
2619 struct address_space * const mapping = page->mapping;
2620
2621 BUG_ON(!PageLocked(page));
2622 if (PageWriteback(page))
2623 return 0;
2624
2625 if (mapping && mapping->a_ops->releasepage)
2626 return mapping->a_ops->releasepage(page, gfp_mask);
2627 return try_to_free_buffers(page);
2628 }
2629
2630 EXPORT_SYMBOL(try_to_release_page);