MAINTAINERS: Balbir has moved
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
39
40 /*
41 * FIXME: remove all knowledge of the buffer layer from the core VM
42 */
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44
45 #include <asm/mman.h>
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_mutex (truncate_pagecache)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_mutex
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * inode_wb_list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_mutex
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_mutex
111 */
112
113 /*
114 * Delete a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
117 */
118 void __delete_from_page_cache(struct page *page)
119 {
120 struct address_space *mapping = page->mapping;
121
122 /*
123 * if we're uptodate, flush out into the cleancache, otherwise
124 * invalidate any existing cleancache entries. We can't leave
125 * stale data around in the cleancache once our page is gone
126 */
127 if (PageUptodate(page) && PageMappedToDisk(page))
128 cleancache_put_page(page);
129 else
130 cleancache_flush_page(mapping, page);
131
132 radix_tree_delete(&mapping->page_tree, page->index);
133 page->mapping = NULL;
134 mapping->nrpages--;
135 __dec_zone_page_state(page, NR_FILE_PAGES);
136 if (PageSwapBacked(page))
137 __dec_zone_page_state(page, NR_SHMEM);
138 BUG_ON(page_mapped(page));
139
140 /*
141 * Some filesystems seem to re-dirty the page even after
142 * the VM has canceled the dirty bit (eg ext3 journaling).
143 *
144 * Fix it up by doing a final dirty accounting check after
145 * having removed the page entirely.
146 */
147 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
148 dec_zone_page_state(page, NR_FILE_DIRTY);
149 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
150 }
151 }
152
153 /**
154 * delete_from_page_cache - delete page from page cache
155 * @page: the page which the kernel is trying to remove from page cache
156 *
157 * This must be called only on pages that have been verified to be in the page
158 * cache and locked. It will never put the page into the free list, the caller
159 * has a reference on the page.
160 */
161 void delete_from_page_cache(struct page *page)
162 {
163 struct address_space *mapping = page->mapping;
164 void (*freepage)(struct page *);
165
166 BUG_ON(!PageLocked(page));
167
168 freepage = mapping->a_ops->freepage;
169 spin_lock_irq(&mapping->tree_lock);
170 __delete_from_page_cache(page);
171 spin_unlock_irq(&mapping->tree_lock);
172 mem_cgroup_uncharge_cache_page(page);
173
174 if (freepage)
175 freepage(page);
176 page_cache_release(page);
177 }
178 EXPORT_SYMBOL(delete_from_page_cache);
179
180 static int sleep_on_page(void *word)
181 {
182 io_schedule();
183 return 0;
184 }
185
186 static int sleep_on_page_killable(void *word)
187 {
188 sleep_on_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
209 {
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223 }
224
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227 {
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
239 {
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251 int filemap_flush(struct address_space *mapping)
252 {
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258 * filemap_fdatawait_range - wait for writeback to complete
259 * @mapping: address space structure to wait for
260 * @start_byte: offset in bytes where the range starts
261 * @end_byte: offset in bytes where the range ends (inclusive)
262 *
263 * Walk the list of under-writeback pages of the given address space
264 * in the given range and wait for all of them.
265 */
266 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
267 loff_t end_byte)
268 {
269 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
270 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
271 struct pagevec pvec;
272 int nr_pages;
273 int ret = 0;
274
275 if (end_byte < start_byte)
276 return 0;
277
278 pagevec_init(&pvec, 0);
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (TestClearPageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307 }
308 EXPORT_SYMBOL(filemap_fdatawait_range);
309
310 /**
311 * filemap_fdatawait - wait for all under-writeback pages to complete
312 * @mapping: address space structure to wait for
313 *
314 * Walk the list of under-writeback pages of the given address space
315 * and wait for all of them.
316 */
317 int filemap_fdatawait(struct address_space *mapping)
318 {
319 loff_t i_size = i_size_read(mapping->host);
320
321 if (i_size == 0)
322 return 0;
323
324 return filemap_fdatawait_range(mapping, 0, i_size - 1);
325 }
326 EXPORT_SYMBOL(filemap_fdatawait);
327
328 int filemap_write_and_wait(struct address_space *mapping)
329 {
330 int err = 0;
331
332 if (mapping->nrpages) {
333 err = filemap_fdatawrite(mapping);
334 /*
335 * Even if the above returned error, the pages may be
336 * written partially (e.g. -ENOSPC), so we wait for it.
337 * But the -EIO is special case, it may indicate the worst
338 * thing (e.g. bug) happened, so we avoid waiting for it.
339 */
340 if (err != -EIO) {
341 int err2 = filemap_fdatawait(mapping);
342 if (!err)
343 err = err2;
344 }
345 }
346 return err;
347 }
348 EXPORT_SYMBOL(filemap_write_and_wait);
349
350 /**
351 * filemap_write_and_wait_range - write out & wait on a file range
352 * @mapping: the address_space for the pages
353 * @lstart: offset in bytes where the range starts
354 * @lend: offset in bytes where the range ends (inclusive)
355 *
356 * Write out and wait upon file offsets lstart->lend, inclusive.
357 *
358 * Note that `lend' is inclusive (describes the last byte to be written) so
359 * that this function can be used to write to the very end-of-file (end = -1).
360 */
361 int filemap_write_and_wait_range(struct address_space *mapping,
362 loff_t lstart, loff_t lend)
363 {
364 int err = 0;
365
366 if (mapping->nrpages) {
367 err = __filemap_fdatawrite_range(mapping, lstart, lend,
368 WB_SYNC_ALL);
369 /* See comment of filemap_write_and_wait() */
370 if (err != -EIO) {
371 int err2 = filemap_fdatawait_range(mapping,
372 lstart, lend);
373 if (!err)
374 err = err2;
375 }
376 }
377 return err;
378 }
379 EXPORT_SYMBOL(filemap_write_and_wait_range);
380
381 /**
382 * replace_page_cache_page - replace a pagecache page with a new one
383 * @old: page to be replaced
384 * @new: page to replace with
385 * @gfp_mask: allocation mode
386 *
387 * This function replaces a page in the pagecache with a new one. On
388 * success it acquires the pagecache reference for the new page and
389 * drops it for the old page. Both the old and new pages must be
390 * locked. This function does not add the new page to the LRU, the
391 * caller must do that.
392 *
393 * The remove + add is atomic. The only way this function can fail is
394 * memory allocation failure.
395 */
396 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
397 {
398 int error;
399 struct mem_cgroup *memcg = NULL;
400
401 VM_BUG_ON(!PageLocked(old));
402 VM_BUG_ON(!PageLocked(new));
403 VM_BUG_ON(new->mapping);
404
405 /*
406 * This is not page migration, but prepare_migration and
407 * end_migration does enough work for charge replacement.
408 *
409 * In the longer term we probably want a specialized function
410 * for moving the charge from old to new in a more efficient
411 * manner.
412 */
413 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
414 if (error)
415 return error;
416
417 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
418 if (!error) {
419 struct address_space *mapping = old->mapping;
420 void (*freepage)(struct page *);
421
422 pgoff_t offset = old->index;
423 freepage = mapping->a_ops->freepage;
424
425 page_cache_get(new);
426 new->mapping = mapping;
427 new->index = offset;
428
429 spin_lock_irq(&mapping->tree_lock);
430 __delete_from_page_cache(old);
431 error = radix_tree_insert(&mapping->page_tree, offset, new);
432 BUG_ON(error);
433 mapping->nrpages++;
434 __inc_zone_page_state(new, NR_FILE_PAGES);
435 if (PageSwapBacked(new))
436 __inc_zone_page_state(new, NR_SHMEM);
437 spin_unlock_irq(&mapping->tree_lock);
438 radix_tree_preload_end();
439 if (freepage)
440 freepage(old);
441 page_cache_release(old);
442 mem_cgroup_end_migration(memcg, old, new, true);
443 } else {
444 mem_cgroup_end_migration(memcg, old, new, false);
445 }
446
447 return error;
448 }
449 EXPORT_SYMBOL_GPL(replace_page_cache_page);
450
451 /**
452 * add_to_page_cache_locked - add a locked page to the pagecache
453 * @page: page to add
454 * @mapping: the page's address_space
455 * @offset: page index
456 * @gfp_mask: page allocation mode
457 *
458 * This function is used to add a page to the pagecache. It must be locked.
459 * This function does not add the page to the LRU. The caller must do that.
460 */
461 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
462 pgoff_t offset, gfp_t gfp_mask)
463 {
464 int error;
465
466 VM_BUG_ON(!PageLocked(page));
467
468 error = mem_cgroup_cache_charge(page, current->mm,
469 gfp_mask & GFP_RECLAIM_MASK);
470 if (error)
471 goto out;
472
473 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
474 if (error == 0) {
475 page_cache_get(page);
476 page->mapping = mapping;
477 page->index = offset;
478
479 spin_lock_irq(&mapping->tree_lock);
480 error = radix_tree_insert(&mapping->page_tree, offset, page);
481 if (likely(!error)) {
482 mapping->nrpages++;
483 __inc_zone_page_state(page, NR_FILE_PAGES);
484 if (PageSwapBacked(page))
485 __inc_zone_page_state(page, NR_SHMEM);
486 spin_unlock_irq(&mapping->tree_lock);
487 } else {
488 page->mapping = NULL;
489 spin_unlock_irq(&mapping->tree_lock);
490 mem_cgroup_uncharge_cache_page(page);
491 page_cache_release(page);
492 }
493 radix_tree_preload_end();
494 } else
495 mem_cgroup_uncharge_cache_page(page);
496 out:
497 return error;
498 }
499 EXPORT_SYMBOL(add_to_page_cache_locked);
500
501 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
502 pgoff_t offset, gfp_t gfp_mask)
503 {
504 int ret;
505
506 /*
507 * Splice_read and readahead add shmem/tmpfs pages into the page cache
508 * before shmem_readpage has a chance to mark them as SwapBacked: they
509 * need to go on the anon lru below, and mem_cgroup_cache_charge
510 * (called in add_to_page_cache) needs to know where they're going too.
511 */
512 if (mapping_cap_swap_backed(mapping))
513 SetPageSwapBacked(page);
514
515 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
516 if (ret == 0) {
517 if (page_is_file_cache(page))
518 lru_cache_add_file(page);
519 else
520 lru_cache_add_anon(page);
521 }
522 return ret;
523 }
524 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
525
526 #ifdef CONFIG_NUMA
527 struct page *__page_cache_alloc(gfp_t gfp)
528 {
529 int n;
530 struct page *page;
531
532 if (cpuset_do_page_mem_spread()) {
533 get_mems_allowed();
534 n = cpuset_mem_spread_node();
535 page = alloc_pages_exact_node(n, gfp, 0);
536 put_mems_allowed();
537 return page;
538 }
539 return alloc_pages(gfp, 0);
540 }
541 EXPORT_SYMBOL(__page_cache_alloc);
542 #endif
543
544 /*
545 * In order to wait for pages to become available there must be
546 * waitqueues associated with pages. By using a hash table of
547 * waitqueues where the bucket discipline is to maintain all
548 * waiters on the same queue and wake all when any of the pages
549 * become available, and for the woken contexts to check to be
550 * sure the appropriate page became available, this saves space
551 * at a cost of "thundering herd" phenomena during rare hash
552 * collisions.
553 */
554 static wait_queue_head_t *page_waitqueue(struct page *page)
555 {
556 const struct zone *zone = page_zone(page);
557
558 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
559 }
560
561 static inline void wake_up_page(struct page *page, int bit)
562 {
563 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
564 }
565
566 void wait_on_page_bit(struct page *page, int bit_nr)
567 {
568 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
569
570 if (test_bit(bit_nr, &page->flags))
571 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
572 TASK_UNINTERRUPTIBLE);
573 }
574 EXPORT_SYMBOL(wait_on_page_bit);
575
576 int wait_on_page_bit_killable(struct page *page, int bit_nr)
577 {
578 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
579
580 if (!test_bit(bit_nr, &page->flags))
581 return 0;
582
583 return __wait_on_bit(page_waitqueue(page), &wait,
584 sleep_on_page_killable, TASK_KILLABLE);
585 }
586
587 /**
588 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
589 * @page: Page defining the wait queue of interest
590 * @waiter: Waiter to add to the queue
591 *
592 * Add an arbitrary @waiter to the wait queue for the nominated @page.
593 */
594 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
595 {
596 wait_queue_head_t *q = page_waitqueue(page);
597 unsigned long flags;
598
599 spin_lock_irqsave(&q->lock, flags);
600 __add_wait_queue(q, waiter);
601 spin_unlock_irqrestore(&q->lock, flags);
602 }
603 EXPORT_SYMBOL_GPL(add_page_wait_queue);
604
605 /**
606 * unlock_page - unlock a locked page
607 * @page: the page
608 *
609 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
610 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
611 * mechananism between PageLocked pages and PageWriteback pages is shared.
612 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
613 *
614 * The mb is necessary to enforce ordering between the clear_bit and the read
615 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
616 */
617 void unlock_page(struct page *page)
618 {
619 VM_BUG_ON(!PageLocked(page));
620 clear_bit_unlock(PG_locked, &page->flags);
621 smp_mb__after_clear_bit();
622 wake_up_page(page, PG_locked);
623 }
624 EXPORT_SYMBOL(unlock_page);
625
626 /**
627 * end_page_writeback - end writeback against a page
628 * @page: the page
629 */
630 void end_page_writeback(struct page *page)
631 {
632 if (TestClearPageReclaim(page))
633 rotate_reclaimable_page(page);
634
635 if (!test_clear_page_writeback(page))
636 BUG();
637
638 smp_mb__after_clear_bit();
639 wake_up_page(page, PG_writeback);
640 }
641 EXPORT_SYMBOL(end_page_writeback);
642
643 /**
644 * __lock_page - get a lock on the page, assuming we need to sleep to get it
645 * @page: the page to lock
646 */
647 void __lock_page(struct page *page)
648 {
649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650
651 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
652 TASK_UNINTERRUPTIBLE);
653 }
654 EXPORT_SYMBOL(__lock_page);
655
656 int __lock_page_killable(struct page *page)
657 {
658 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
659
660 return __wait_on_bit_lock(page_waitqueue(page), &wait,
661 sleep_on_page_killable, TASK_KILLABLE);
662 }
663 EXPORT_SYMBOL_GPL(__lock_page_killable);
664
665 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
666 unsigned int flags)
667 {
668 if (flags & FAULT_FLAG_ALLOW_RETRY) {
669 /*
670 * CAUTION! In this case, mmap_sem is not released
671 * even though return 0.
672 */
673 if (flags & FAULT_FLAG_RETRY_NOWAIT)
674 return 0;
675
676 up_read(&mm->mmap_sem);
677 if (flags & FAULT_FLAG_KILLABLE)
678 wait_on_page_locked_killable(page);
679 else
680 wait_on_page_locked(page);
681 return 0;
682 } else {
683 if (flags & FAULT_FLAG_KILLABLE) {
684 int ret;
685
686 ret = __lock_page_killable(page);
687 if (ret) {
688 up_read(&mm->mmap_sem);
689 return 0;
690 }
691 } else
692 __lock_page(page);
693 return 1;
694 }
695 }
696
697 /**
698 * find_get_page - find and get a page reference
699 * @mapping: the address_space to search
700 * @offset: the page index
701 *
702 * Is there a pagecache struct page at the given (mapping, offset) tuple?
703 * If yes, increment its refcount and return it; if no, return NULL.
704 */
705 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
706 {
707 void **pagep;
708 struct page *page;
709
710 rcu_read_lock();
711 repeat:
712 page = NULL;
713 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
714 if (pagep) {
715 page = radix_tree_deref_slot(pagep);
716 if (unlikely(!page))
717 goto out;
718 if (radix_tree_deref_retry(page))
719 goto repeat;
720
721 if (!page_cache_get_speculative(page))
722 goto repeat;
723
724 /*
725 * Has the page moved?
726 * This is part of the lockless pagecache protocol. See
727 * include/linux/pagemap.h for details.
728 */
729 if (unlikely(page != *pagep)) {
730 page_cache_release(page);
731 goto repeat;
732 }
733 }
734 out:
735 rcu_read_unlock();
736
737 return page;
738 }
739 EXPORT_SYMBOL(find_get_page);
740
741 /**
742 * find_lock_page - locate, pin and lock a pagecache page
743 * @mapping: the address_space to search
744 * @offset: the page index
745 *
746 * Locates the desired pagecache page, locks it, increments its reference
747 * count and returns its address.
748 *
749 * Returns zero if the page was not present. find_lock_page() may sleep.
750 */
751 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
752 {
753 struct page *page;
754
755 repeat:
756 page = find_get_page(mapping, offset);
757 if (page) {
758 lock_page(page);
759 /* Has the page been truncated? */
760 if (unlikely(page->mapping != mapping)) {
761 unlock_page(page);
762 page_cache_release(page);
763 goto repeat;
764 }
765 VM_BUG_ON(page->index != offset);
766 }
767 return page;
768 }
769 EXPORT_SYMBOL(find_lock_page);
770
771 /**
772 * find_or_create_page - locate or add a pagecache page
773 * @mapping: the page's address_space
774 * @index: the page's index into the mapping
775 * @gfp_mask: page allocation mode
776 *
777 * Locates a page in the pagecache. If the page is not present, a new page
778 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
779 * LRU list. The returned page is locked and has its reference count
780 * incremented.
781 *
782 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
783 * allocation!
784 *
785 * find_or_create_page() returns the desired page's address, or zero on
786 * memory exhaustion.
787 */
788 struct page *find_or_create_page(struct address_space *mapping,
789 pgoff_t index, gfp_t gfp_mask)
790 {
791 struct page *page;
792 int err;
793 repeat:
794 page = find_lock_page(mapping, index);
795 if (!page) {
796 page = __page_cache_alloc(gfp_mask);
797 if (!page)
798 return NULL;
799 /*
800 * We want a regular kernel memory (not highmem or DMA etc)
801 * allocation for the radix tree nodes, but we need to honour
802 * the context-specific requirements the caller has asked for.
803 * GFP_RECLAIM_MASK collects those requirements.
804 */
805 err = add_to_page_cache_lru(page, mapping, index,
806 (gfp_mask & GFP_RECLAIM_MASK));
807 if (unlikely(err)) {
808 page_cache_release(page);
809 page = NULL;
810 if (err == -EEXIST)
811 goto repeat;
812 }
813 }
814 return page;
815 }
816 EXPORT_SYMBOL(find_or_create_page);
817
818 /**
819 * find_get_pages - gang pagecache lookup
820 * @mapping: The address_space to search
821 * @start: The starting page index
822 * @nr_pages: The maximum number of pages
823 * @pages: Where the resulting pages are placed
824 *
825 * find_get_pages() will search for and return a group of up to
826 * @nr_pages pages in the mapping. The pages are placed at @pages.
827 * find_get_pages() takes a reference against the returned pages.
828 *
829 * The search returns a group of mapping-contiguous pages with ascending
830 * indexes. There may be holes in the indices due to not-present pages.
831 *
832 * find_get_pages() returns the number of pages which were found.
833 */
834 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
835 unsigned int nr_pages, struct page **pages)
836 {
837 unsigned int i;
838 unsigned int ret;
839 unsigned int nr_found;
840
841 rcu_read_lock();
842 restart:
843 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
844 (void ***)pages, start, nr_pages);
845 ret = 0;
846 for (i = 0; i < nr_found; i++) {
847 struct page *page;
848 repeat:
849 page = radix_tree_deref_slot((void **)pages[i]);
850 if (unlikely(!page))
851 continue;
852
853 /*
854 * This can only trigger when the entry at index 0 moves out
855 * of or back to the root: none yet gotten, safe to restart.
856 */
857 if (radix_tree_deref_retry(page)) {
858 WARN_ON(start | i);
859 goto restart;
860 }
861
862 if (!page_cache_get_speculative(page))
863 goto repeat;
864
865 /* Has the page moved? */
866 if (unlikely(page != *((void **)pages[i]))) {
867 page_cache_release(page);
868 goto repeat;
869 }
870
871 pages[ret] = page;
872 ret++;
873 }
874
875 /*
876 * If all entries were removed before we could secure them,
877 * try again, because callers stop trying once 0 is returned.
878 */
879 if (unlikely(!ret && nr_found))
880 goto restart;
881 rcu_read_unlock();
882 return ret;
883 }
884
885 /**
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping: The address_space to search
888 * @index: The starting page index
889 * @nr_pages: The maximum number of pages
890 * @pages: Where the resulting pages are placed
891 *
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
894 *
895 * find_get_pages_contig() returns the number of pages which were found.
896 */
897 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 unsigned int nr_pages, struct page **pages)
899 {
900 unsigned int i;
901 unsigned int ret;
902 unsigned int nr_found;
903
904 rcu_read_lock();
905 restart:
906 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
907 (void ***)pages, index, nr_pages);
908 ret = 0;
909 for (i = 0; i < nr_found; i++) {
910 struct page *page;
911 repeat:
912 page = radix_tree_deref_slot((void **)pages[i]);
913 if (unlikely(!page))
914 continue;
915
916 /*
917 * This can only trigger when the entry at index 0 moves out
918 * of or back to the root: none yet gotten, safe to restart.
919 */
920 if (radix_tree_deref_retry(page))
921 goto restart;
922
923 if (!page_cache_get_speculative(page))
924 goto repeat;
925
926 /* Has the page moved? */
927 if (unlikely(page != *((void **)pages[i]))) {
928 page_cache_release(page);
929 goto repeat;
930 }
931
932 /*
933 * must check mapping and index after taking the ref.
934 * otherwise we can get both false positives and false
935 * negatives, which is just confusing to the caller.
936 */
937 if (page->mapping == NULL || page->index != index) {
938 page_cache_release(page);
939 break;
940 }
941
942 pages[ret] = page;
943 ret++;
944 index++;
945 }
946 rcu_read_unlock();
947 return ret;
948 }
949 EXPORT_SYMBOL(find_get_pages_contig);
950
951 /**
952 * find_get_pages_tag - find and return pages that match @tag
953 * @mapping: the address_space to search
954 * @index: the starting page index
955 * @tag: the tag index
956 * @nr_pages: the maximum number of pages
957 * @pages: where the resulting pages are placed
958 *
959 * Like find_get_pages, except we only return pages which are tagged with
960 * @tag. We update @index to index the next page for the traversal.
961 */
962 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
963 int tag, unsigned int nr_pages, struct page **pages)
964 {
965 unsigned int i;
966 unsigned int ret;
967 unsigned int nr_found;
968
969 rcu_read_lock();
970 restart:
971 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
972 (void ***)pages, *index, nr_pages, tag);
973 ret = 0;
974 for (i = 0; i < nr_found; i++) {
975 struct page *page;
976 repeat:
977 page = radix_tree_deref_slot((void **)pages[i]);
978 if (unlikely(!page))
979 continue;
980
981 /*
982 * This can only trigger when the entry at index 0 moves out
983 * of or back to the root: none yet gotten, safe to restart.
984 */
985 if (radix_tree_deref_retry(page))
986 goto restart;
987
988 if (!page_cache_get_speculative(page))
989 goto repeat;
990
991 /* Has the page moved? */
992 if (unlikely(page != *((void **)pages[i]))) {
993 page_cache_release(page);
994 goto repeat;
995 }
996
997 pages[ret] = page;
998 ret++;
999 }
1000
1001 /*
1002 * If all entries were removed before we could secure them,
1003 * try again, because callers stop trying once 0 is returned.
1004 */
1005 if (unlikely(!ret && nr_found))
1006 goto restart;
1007 rcu_read_unlock();
1008
1009 if (ret)
1010 *index = pages[ret - 1]->index + 1;
1011
1012 return ret;
1013 }
1014 EXPORT_SYMBOL(find_get_pages_tag);
1015
1016 /**
1017 * grab_cache_page_nowait - returns locked page at given index in given cache
1018 * @mapping: target address_space
1019 * @index: the page index
1020 *
1021 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1022 * This is intended for speculative data generators, where the data can
1023 * be regenerated if the page couldn't be grabbed. This routine should
1024 * be safe to call while holding the lock for another page.
1025 *
1026 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1027 * and deadlock against the caller's locked page.
1028 */
1029 struct page *
1030 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1031 {
1032 struct page *page = find_get_page(mapping, index);
1033
1034 if (page) {
1035 if (trylock_page(page))
1036 return page;
1037 page_cache_release(page);
1038 return NULL;
1039 }
1040 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1041 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1042 page_cache_release(page);
1043 page = NULL;
1044 }
1045 return page;
1046 }
1047 EXPORT_SYMBOL(grab_cache_page_nowait);
1048
1049 /*
1050 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1051 * a _large_ part of the i/o request. Imagine the worst scenario:
1052 *
1053 * ---R__________________________________________B__________
1054 * ^ reading here ^ bad block(assume 4k)
1055 *
1056 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1057 * => failing the whole request => read(R) => read(R+1) =>
1058 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1059 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1060 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1061 *
1062 * It is going insane. Fix it by quickly scaling down the readahead size.
1063 */
1064 static void shrink_readahead_size_eio(struct file *filp,
1065 struct file_ra_state *ra)
1066 {
1067 ra->ra_pages /= 4;
1068 }
1069
1070 /**
1071 * do_generic_file_read - generic file read routine
1072 * @filp: the file to read
1073 * @ppos: current file position
1074 * @desc: read_descriptor
1075 * @actor: read method
1076 *
1077 * This is a generic file read routine, and uses the
1078 * mapping->a_ops->readpage() function for the actual low-level stuff.
1079 *
1080 * This is really ugly. But the goto's actually try to clarify some
1081 * of the logic when it comes to error handling etc.
1082 */
1083 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1084 read_descriptor_t *desc, read_actor_t actor)
1085 {
1086 struct address_space *mapping = filp->f_mapping;
1087 struct inode *inode = mapping->host;
1088 struct file_ra_state *ra = &filp->f_ra;
1089 pgoff_t index;
1090 pgoff_t last_index;
1091 pgoff_t prev_index;
1092 unsigned long offset; /* offset into pagecache page */
1093 unsigned int prev_offset;
1094 int error;
1095
1096 index = *ppos >> PAGE_CACHE_SHIFT;
1097 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1098 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1099 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1100 offset = *ppos & ~PAGE_CACHE_MASK;
1101
1102 for (;;) {
1103 struct page *page;
1104 pgoff_t end_index;
1105 loff_t isize;
1106 unsigned long nr, ret;
1107
1108 cond_resched();
1109 find_page:
1110 page = find_get_page(mapping, index);
1111 if (!page) {
1112 page_cache_sync_readahead(mapping,
1113 ra, filp,
1114 index, last_index - index);
1115 page = find_get_page(mapping, index);
1116 if (unlikely(page == NULL))
1117 goto no_cached_page;
1118 }
1119 if (PageReadahead(page)) {
1120 page_cache_async_readahead(mapping,
1121 ra, filp, page,
1122 index, last_index - index);
1123 }
1124 if (!PageUptodate(page)) {
1125 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1126 !mapping->a_ops->is_partially_uptodate)
1127 goto page_not_up_to_date;
1128 if (!trylock_page(page))
1129 goto page_not_up_to_date;
1130 /* Did it get truncated before we got the lock? */
1131 if (!page->mapping)
1132 goto page_not_up_to_date_locked;
1133 if (!mapping->a_ops->is_partially_uptodate(page,
1134 desc, offset))
1135 goto page_not_up_to_date_locked;
1136 unlock_page(page);
1137 }
1138 page_ok:
1139 /*
1140 * i_size must be checked after we know the page is Uptodate.
1141 *
1142 * Checking i_size after the check allows us to calculate
1143 * the correct value for "nr", which means the zero-filled
1144 * part of the page is not copied back to userspace (unless
1145 * another truncate extends the file - this is desired though).
1146 */
1147
1148 isize = i_size_read(inode);
1149 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1150 if (unlikely(!isize || index > end_index)) {
1151 page_cache_release(page);
1152 goto out;
1153 }
1154
1155 /* nr is the maximum number of bytes to copy from this page */
1156 nr = PAGE_CACHE_SIZE;
1157 if (index == end_index) {
1158 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1159 if (nr <= offset) {
1160 page_cache_release(page);
1161 goto out;
1162 }
1163 }
1164 nr = nr - offset;
1165
1166 /* If users can be writing to this page using arbitrary
1167 * virtual addresses, take care about potential aliasing
1168 * before reading the page on the kernel side.
1169 */
1170 if (mapping_writably_mapped(mapping))
1171 flush_dcache_page(page);
1172
1173 /*
1174 * When a sequential read accesses a page several times,
1175 * only mark it as accessed the first time.
1176 */
1177 if (prev_index != index || offset != prev_offset)
1178 mark_page_accessed(page);
1179 prev_index = index;
1180
1181 /*
1182 * Ok, we have the page, and it's up-to-date, so
1183 * now we can copy it to user space...
1184 *
1185 * The actor routine returns how many bytes were actually used..
1186 * NOTE! This may not be the same as how much of a user buffer
1187 * we filled up (we may be padding etc), so we can only update
1188 * "pos" here (the actor routine has to update the user buffer
1189 * pointers and the remaining count).
1190 */
1191 ret = actor(desc, page, offset, nr);
1192 offset += ret;
1193 index += offset >> PAGE_CACHE_SHIFT;
1194 offset &= ~PAGE_CACHE_MASK;
1195 prev_offset = offset;
1196
1197 page_cache_release(page);
1198 if (ret == nr && desc->count)
1199 continue;
1200 goto out;
1201
1202 page_not_up_to_date:
1203 /* Get exclusive access to the page ... */
1204 error = lock_page_killable(page);
1205 if (unlikely(error))
1206 goto readpage_error;
1207
1208 page_not_up_to_date_locked:
1209 /* Did it get truncated before we got the lock? */
1210 if (!page->mapping) {
1211 unlock_page(page);
1212 page_cache_release(page);
1213 continue;
1214 }
1215
1216 /* Did somebody else fill it already? */
1217 if (PageUptodate(page)) {
1218 unlock_page(page);
1219 goto page_ok;
1220 }
1221
1222 readpage:
1223 /*
1224 * A previous I/O error may have been due to temporary
1225 * failures, eg. multipath errors.
1226 * PG_error will be set again if readpage fails.
1227 */
1228 ClearPageError(page);
1229 /* Start the actual read. The read will unlock the page. */
1230 error = mapping->a_ops->readpage(filp, page);
1231
1232 if (unlikely(error)) {
1233 if (error == AOP_TRUNCATED_PAGE) {
1234 page_cache_release(page);
1235 goto find_page;
1236 }
1237 goto readpage_error;
1238 }
1239
1240 if (!PageUptodate(page)) {
1241 error = lock_page_killable(page);
1242 if (unlikely(error))
1243 goto readpage_error;
1244 if (!PageUptodate(page)) {
1245 if (page->mapping == NULL) {
1246 /*
1247 * invalidate_mapping_pages got it
1248 */
1249 unlock_page(page);
1250 page_cache_release(page);
1251 goto find_page;
1252 }
1253 unlock_page(page);
1254 shrink_readahead_size_eio(filp, ra);
1255 error = -EIO;
1256 goto readpage_error;
1257 }
1258 unlock_page(page);
1259 }
1260
1261 goto page_ok;
1262
1263 readpage_error:
1264 /* UHHUH! A synchronous read error occurred. Report it */
1265 desc->error = error;
1266 page_cache_release(page);
1267 goto out;
1268
1269 no_cached_page:
1270 /*
1271 * Ok, it wasn't cached, so we need to create a new
1272 * page..
1273 */
1274 page = page_cache_alloc_cold(mapping);
1275 if (!page) {
1276 desc->error = -ENOMEM;
1277 goto out;
1278 }
1279 error = add_to_page_cache_lru(page, mapping,
1280 index, GFP_KERNEL);
1281 if (error) {
1282 page_cache_release(page);
1283 if (error == -EEXIST)
1284 goto find_page;
1285 desc->error = error;
1286 goto out;
1287 }
1288 goto readpage;
1289 }
1290
1291 out:
1292 ra->prev_pos = prev_index;
1293 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1294 ra->prev_pos |= prev_offset;
1295
1296 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1297 file_accessed(filp);
1298 }
1299
1300 int file_read_actor(read_descriptor_t *desc, struct page *page,
1301 unsigned long offset, unsigned long size)
1302 {
1303 char *kaddr;
1304 unsigned long left, count = desc->count;
1305
1306 if (size > count)
1307 size = count;
1308
1309 /*
1310 * Faults on the destination of a read are common, so do it before
1311 * taking the kmap.
1312 */
1313 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1314 kaddr = kmap_atomic(page, KM_USER0);
1315 left = __copy_to_user_inatomic(desc->arg.buf,
1316 kaddr + offset, size);
1317 kunmap_atomic(kaddr, KM_USER0);
1318 if (left == 0)
1319 goto success;
1320 }
1321
1322 /* Do it the slow way */
1323 kaddr = kmap(page);
1324 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1325 kunmap(page);
1326
1327 if (left) {
1328 size -= left;
1329 desc->error = -EFAULT;
1330 }
1331 success:
1332 desc->count = count - size;
1333 desc->written += size;
1334 desc->arg.buf += size;
1335 return size;
1336 }
1337
1338 /*
1339 * Performs necessary checks before doing a write
1340 * @iov: io vector request
1341 * @nr_segs: number of segments in the iovec
1342 * @count: number of bytes to write
1343 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1344 *
1345 * Adjust number of segments and amount of bytes to write (nr_segs should be
1346 * properly initialized first). Returns appropriate error code that caller
1347 * should return or zero in case that write should be allowed.
1348 */
1349 int generic_segment_checks(const struct iovec *iov,
1350 unsigned long *nr_segs, size_t *count, int access_flags)
1351 {
1352 unsigned long seg;
1353 size_t cnt = 0;
1354 for (seg = 0; seg < *nr_segs; seg++) {
1355 const struct iovec *iv = &iov[seg];
1356
1357 /*
1358 * If any segment has a negative length, or the cumulative
1359 * length ever wraps negative then return -EINVAL.
1360 */
1361 cnt += iv->iov_len;
1362 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1363 return -EINVAL;
1364 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1365 continue;
1366 if (seg == 0)
1367 return -EFAULT;
1368 *nr_segs = seg;
1369 cnt -= iv->iov_len; /* This segment is no good */
1370 break;
1371 }
1372 *count = cnt;
1373 return 0;
1374 }
1375 EXPORT_SYMBOL(generic_segment_checks);
1376
1377 /**
1378 * generic_file_aio_read - generic filesystem read routine
1379 * @iocb: kernel I/O control block
1380 * @iov: io vector request
1381 * @nr_segs: number of segments in the iovec
1382 * @pos: current file position
1383 *
1384 * This is the "read()" routine for all filesystems
1385 * that can use the page cache directly.
1386 */
1387 ssize_t
1388 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1389 unsigned long nr_segs, loff_t pos)
1390 {
1391 struct file *filp = iocb->ki_filp;
1392 ssize_t retval;
1393 unsigned long seg = 0;
1394 size_t count;
1395 loff_t *ppos = &iocb->ki_pos;
1396 struct blk_plug plug;
1397
1398 count = 0;
1399 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1400 if (retval)
1401 return retval;
1402
1403 blk_start_plug(&plug);
1404
1405 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1406 if (filp->f_flags & O_DIRECT) {
1407 loff_t size;
1408 struct address_space *mapping;
1409 struct inode *inode;
1410
1411 mapping = filp->f_mapping;
1412 inode = mapping->host;
1413 if (!count)
1414 goto out; /* skip atime */
1415 size = i_size_read(inode);
1416 if (pos < size) {
1417 retval = filemap_write_and_wait_range(mapping, pos,
1418 pos + iov_length(iov, nr_segs) - 1);
1419 if (!retval) {
1420 retval = mapping->a_ops->direct_IO(READ, iocb,
1421 iov, pos, nr_segs);
1422 }
1423 if (retval > 0) {
1424 *ppos = pos + retval;
1425 count -= retval;
1426 }
1427
1428 /*
1429 * Btrfs can have a short DIO read if we encounter
1430 * compressed extents, so if there was an error, or if
1431 * we've already read everything we wanted to, or if
1432 * there was a short read because we hit EOF, go ahead
1433 * and return. Otherwise fallthrough to buffered io for
1434 * the rest of the read.
1435 */
1436 if (retval < 0 || !count || *ppos >= size) {
1437 file_accessed(filp);
1438 goto out;
1439 }
1440 }
1441 }
1442
1443 count = retval;
1444 for (seg = 0; seg < nr_segs; seg++) {
1445 read_descriptor_t desc;
1446 loff_t offset = 0;
1447
1448 /*
1449 * If we did a short DIO read we need to skip the section of the
1450 * iov that we've already read data into.
1451 */
1452 if (count) {
1453 if (count > iov[seg].iov_len) {
1454 count -= iov[seg].iov_len;
1455 continue;
1456 }
1457 offset = count;
1458 count = 0;
1459 }
1460
1461 desc.written = 0;
1462 desc.arg.buf = iov[seg].iov_base + offset;
1463 desc.count = iov[seg].iov_len - offset;
1464 if (desc.count == 0)
1465 continue;
1466 desc.error = 0;
1467 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468 retval += desc.written;
1469 if (desc.error) {
1470 retval = retval ?: desc.error;
1471 break;
1472 }
1473 if (desc.count > 0)
1474 break;
1475 }
1476 out:
1477 blk_finish_plug(&plug);
1478 return retval;
1479 }
1480 EXPORT_SYMBOL(generic_file_aio_read);
1481
1482 static ssize_t
1483 do_readahead(struct address_space *mapping, struct file *filp,
1484 pgoff_t index, unsigned long nr)
1485 {
1486 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1487 return -EINVAL;
1488
1489 force_page_cache_readahead(mapping, filp, index, nr);
1490 return 0;
1491 }
1492
1493 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1494 {
1495 ssize_t ret;
1496 struct file *file;
1497
1498 ret = -EBADF;
1499 file = fget(fd);
1500 if (file) {
1501 if (file->f_mode & FMODE_READ) {
1502 struct address_space *mapping = file->f_mapping;
1503 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1504 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1505 unsigned long len = end - start + 1;
1506 ret = do_readahead(mapping, file, start, len);
1507 }
1508 fput(file);
1509 }
1510 return ret;
1511 }
1512 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1513 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1514 {
1515 return SYSC_readahead((int) fd, offset, (size_t) count);
1516 }
1517 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1518 #endif
1519
1520 #ifdef CONFIG_MMU
1521 /**
1522 * page_cache_read - adds requested page to the page cache if not already there
1523 * @file: file to read
1524 * @offset: page index
1525 *
1526 * This adds the requested page to the page cache if it isn't already there,
1527 * and schedules an I/O to read in its contents from disk.
1528 */
1529 static int page_cache_read(struct file *file, pgoff_t offset)
1530 {
1531 struct address_space *mapping = file->f_mapping;
1532 struct page *page;
1533 int ret;
1534
1535 do {
1536 page = page_cache_alloc_cold(mapping);
1537 if (!page)
1538 return -ENOMEM;
1539
1540 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1541 if (ret == 0)
1542 ret = mapping->a_ops->readpage(file, page);
1543 else if (ret == -EEXIST)
1544 ret = 0; /* losing race to add is OK */
1545
1546 page_cache_release(page);
1547
1548 } while (ret == AOP_TRUNCATED_PAGE);
1549
1550 return ret;
1551 }
1552
1553 #define MMAP_LOTSAMISS (100)
1554
1555 /*
1556 * Synchronous readahead happens when we don't even find
1557 * a page in the page cache at all.
1558 */
1559 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1560 struct file_ra_state *ra,
1561 struct file *file,
1562 pgoff_t offset)
1563 {
1564 unsigned long ra_pages;
1565 struct address_space *mapping = file->f_mapping;
1566
1567 /* If we don't want any read-ahead, don't bother */
1568 if (VM_RandomReadHint(vma))
1569 return;
1570 if (!ra->ra_pages)
1571 return;
1572
1573 if (VM_SequentialReadHint(vma)) {
1574 page_cache_sync_readahead(mapping, ra, file, offset,
1575 ra->ra_pages);
1576 return;
1577 }
1578
1579 /* Avoid banging the cache line if not needed */
1580 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1581 ra->mmap_miss++;
1582
1583 /*
1584 * Do we miss much more than hit in this file? If so,
1585 * stop bothering with read-ahead. It will only hurt.
1586 */
1587 if (ra->mmap_miss > MMAP_LOTSAMISS)
1588 return;
1589
1590 /*
1591 * mmap read-around
1592 */
1593 ra_pages = max_sane_readahead(ra->ra_pages);
1594 ra->start = max_t(long, 0, offset - ra_pages / 2);
1595 ra->size = ra_pages;
1596 ra->async_size = ra_pages / 4;
1597 ra_submit(ra, mapping, file);
1598 }
1599
1600 /*
1601 * Asynchronous readahead happens when we find the page and PG_readahead,
1602 * so we want to possibly extend the readahead further..
1603 */
1604 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1605 struct file_ra_state *ra,
1606 struct file *file,
1607 struct page *page,
1608 pgoff_t offset)
1609 {
1610 struct address_space *mapping = file->f_mapping;
1611
1612 /* If we don't want any read-ahead, don't bother */
1613 if (VM_RandomReadHint(vma))
1614 return;
1615 if (ra->mmap_miss > 0)
1616 ra->mmap_miss--;
1617 if (PageReadahead(page))
1618 page_cache_async_readahead(mapping, ra, file,
1619 page, offset, ra->ra_pages);
1620 }
1621
1622 /**
1623 * filemap_fault - read in file data for page fault handling
1624 * @vma: vma in which the fault was taken
1625 * @vmf: struct vm_fault containing details of the fault
1626 *
1627 * filemap_fault() is invoked via the vma operations vector for a
1628 * mapped memory region to read in file data during a page fault.
1629 *
1630 * The goto's are kind of ugly, but this streamlines the normal case of having
1631 * it in the page cache, and handles the special cases reasonably without
1632 * having a lot of duplicated code.
1633 */
1634 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1635 {
1636 int error;
1637 struct file *file = vma->vm_file;
1638 struct address_space *mapping = file->f_mapping;
1639 struct file_ra_state *ra = &file->f_ra;
1640 struct inode *inode = mapping->host;
1641 pgoff_t offset = vmf->pgoff;
1642 struct page *page;
1643 pgoff_t size;
1644 int ret = 0;
1645
1646 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1647 if (offset >= size)
1648 return VM_FAULT_SIGBUS;
1649
1650 /*
1651 * Do we have something in the page cache already?
1652 */
1653 page = find_get_page(mapping, offset);
1654 if (likely(page)) {
1655 /*
1656 * We found the page, so try async readahead before
1657 * waiting for the lock.
1658 */
1659 do_async_mmap_readahead(vma, ra, file, page, offset);
1660 } else {
1661 /* No page in the page cache at all */
1662 do_sync_mmap_readahead(vma, ra, file, offset);
1663 count_vm_event(PGMAJFAULT);
1664 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1665 ret = VM_FAULT_MAJOR;
1666 retry_find:
1667 page = find_get_page(mapping, offset);
1668 if (!page)
1669 goto no_cached_page;
1670 }
1671
1672 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1673 page_cache_release(page);
1674 return ret | VM_FAULT_RETRY;
1675 }
1676
1677 /* Did it get truncated? */
1678 if (unlikely(page->mapping != mapping)) {
1679 unlock_page(page);
1680 put_page(page);
1681 goto retry_find;
1682 }
1683 VM_BUG_ON(page->index != offset);
1684
1685 /*
1686 * We have a locked page in the page cache, now we need to check
1687 * that it's up-to-date. If not, it is going to be due to an error.
1688 */
1689 if (unlikely(!PageUptodate(page)))
1690 goto page_not_uptodate;
1691
1692 /*
1693 * Found the page and have a reference on it.
1694 * We must recheck i_size under page lock.
1695 */
1696 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1697 if (unlikely(offset >= size)) {
1698 unlock_page(page);
1699 page_cache_release(page);
1700 return VM_FAULT_SIGBUS;
1701 }
1702
1703 vmf->page = page;
1704 return ret | VM_FAULT_LOCKED;
1705
1706 no_cached_page:
1707 /*
1708 * We're only likely to ever get here if MADV_RANDOM is in
1709 * effect.
1710 */
1711 error = page_cache_read(file, offset);
1712
1713 /*
1714 * The page we want has now been added to the page cache.
1715 * In the unlikely event that someone removed it in the
1716 * meantime, we'll just come back here and read it again.
1717 */
1718 if (error >= 0)
1719 goto retry_find;
1720
1721 /*
1722 * An error return from page_cache_read can result if the
1723 * system is low on memory, or a problem occurs while trying
1724 * to schedule I/O.
1725 */
1726 if (error == -ENOMEM)
1727 return VM_FAULT_OOM;
1728 return VM_FAULT_SIGBUS;
1729
1730 page_not_uptodate:
1731 /*
1732 * Umm, take care of errors if the page isn't up-to-date.
1733 * Try to re-read it _once_. We do this synchronously,
1734 * because there really aren't any performance issues here
1735 * and we need to check for errors.
1736 */
1737 ClearPageError(page);
1738 error = mapping->a_ops->readpage(file, page);
1739 if (!error) {
1740 wait_on_page_locked(page);
1741 if (!PageUptodate(page))
1742 error = -EIO;
1743 }
1744 page_cache_release(page);
1745
1746 if (!error || error == AOP_TRUNCATED_PAGE)
1747 goto retry_find;
1748
1749 /* Things didn't work out. Return zero to tell the mm layer so. */
1750 shrink_readahead_size_eio(file, ra);
1751 return VM_FAULT_SIGBUS;
1752 }
1753 EXPORT_SYMBOL(filemap_fault);
1754
1755 const struct vm_operations_struct generic_file_vm_ops = {
1756 .fault = filemap_fault,
1757 };
1758
1759 /* This is used for a general mmap of a disk file */
1760
1761 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1762 {
1763 struct address_space *mapping = file->f_mapping;
1764
1765 if (!mapping->a_ops->readpage)
1766 return -ENOEXEC;
1767 file_accessed(file);
1768 vma->vm_ops = &generic_file_vm_ops;
1769 vma->vm_flags |= VM_CAN_NONLINEAR;
1770 return 0;
1771 }
1772
1773 /*
1774 * This is for filesystems which do not implement ->writepage.
1775 */
1776 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1777 {
1778 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1779 return -EINVAL;
1780 return generic_file_mmap(file, vma);
1781 }
1782 #else
1783 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1784 {
1785 return -ENOSYS;
1786 }
1787 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1788 {
1789 return -ENOSYS;
1790 }
1791 #endif /* CONFIG_MMU */
1792
1793 EXPORT_SYMBOL(generic_file_mmap);
1794 EXPORT_SYMBOL(generic_file_readonly_mmap);
1795
1796 static struct page *__read_cache_page(struct address_space *mapping,
1797 pgoff_t index,
1798 int (*filler)(void *,struct page*),
1799 void *data,
1800 gfp_t gfp)
1801 {
1802 struct page *page;
1803 int err;
1804 repeat:
1805 page = find_get_page(mapping, index);
1806 if (!page) {
1807 page = __page_cache_alloc(gfp | __GFP_COLD);
1808 if (!page)
1809 return ERR_PTR(-ENOMEM);
1810 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1811 if (unlikely(err)) {
1812 page_cache_release(page);
1813 if (err == -EEXIST)
1814 goto repeat;
1815 /* Presumably ENOMEM for radix tree node */
1816 return ERR_PTR(err);
1817 }
1818 err = filler(data, page);
1819 if (err < 0) {
1820 page_cache_release(page);
1821 page = ERR_PTR(err);
1822 }
1823 }
1824 return page;
1825 }
1826
1827 static struct page *do_read_cache_page(struct address_space *mapping,
1828 pgoff_t index,
1829 int (*filler)(void *,struct page*),
1830 void *data,
1831 gfp_t gfp)
1832
1833 {
1834 struct page *page;
1835 int err;
1836
1837 retry:
1838 page = __read_cache_page(mapping, index, filler, data, gfp);
1839 if (IS_ERR(page))
1840 return page;
1841 if (PageUptodate(page))
1842 goto out;
1843
1844 lock_page(page);
1845 if (!page->mapping) {
1846 unlock_page(page);
1847 page_cache_release(page);
1848 goto retry;
1849 }
1850 if (PageUptodate(page)) {
1851 unlock_page(page);
1852 goto out;
1853 }
1854 err = filler(data, page);
1855 if (err < 0) {
1856 page_cache_release(page);
1857 return ERR_PTR(err);
1858 }
1859 out:
1860 mark_page_accessed(page);
1861 return page;
1862 }
1863
1864 /**
1865 * read_cache_page_async - read into page cache, fill it if needed
1866 * @mapping: the page's address_space
1867 * @index: the page index
1868 * @filler: function to perform the read
1869 * @data: destination for read data
1870 *
1871 * Same as read_cache_page, but don't wait for page to become unlocked
1872 * after submitting it to the filler.
1873 *
1874 * Read into the page cache. If a page already exists, and PageUptodate() is
1875 * not set, try to fill the page but don't wait for it to become unlocked.
1876 *
1877 * If the page does not get brought uptodate, return -EIO.
1878 */
1879 struct page *read_cache_page_async(struct address_space *mapping,
1880 pgoff_t index,
1881 int (*filler)(void *,struct page*),
1882 void *data)
1883 {
1884 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1885 }
1886 EXPORT_SYMBOL(read_cache_page_async);
1887
1888 static struct page *wait_on_page_read(struct page *page)
1889 {
1890 if (!IS_ERR(page)) {
1891 wait_on_page_locked(page);
1892 if (!PageUptodate(page)) {
1893 page_cache_release(page);
1894 page = ERR_PTR(-EIO);
1895 }
1896 }
1897 return page;
1898 }
1899
1900 /**
1901 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1902 * @mapping: the page's address_space
1903 * @index: the page index
1904 * @gfp: the page allocator flags to use if allocating
1905 *
1906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1907 * any new page allocations done using the specified allocation flags. Note
1908 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1909 * expect to do this atomically or anything like that - but you can pass in
1910 * other page requirements.
1911 *
1912 * If the page does not get brought uptodate, return -EIO.
1913 */
1914 struct page *read_cache_page_gfp(struct address_space *mapping,
1915 pgoff_t index,
1916 gfp_t gfp)
1917 {
1918 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1919
1920 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1921 }
1922 EXPORT_SYMBOL(read_cache_page_gfp);
1923
1924 /**
1925 * read_cache_page - read into page cache, fill it if needed
1926 * @mapping: the page's address_space
1927 * @index: the page index
1928 * @filler: function to perform the read
1929 * @data: destination for read data
1930 *
1931 * Read into the page cache. If a page already exists, and PageUptodate() is
1932 * not set, try to fill the page then wait for it to become unlocked.
1933 *
1934 * If the page does not get brought uptodate, return -EIO.
1935 */
1936 struct page *read_cache_page(struct address_space *mapping,
1937 pgoff_t index,
1938 int (*filler)(void *,struct page*),
1939 void *data)
1940 {
1941 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1942 }
1943 EXPORT_SYMBOL(read_cache_page);
1944
1945 /*
1946 * The logic we want is
1947 *
1948 * if suid or (sgid and xgrp)
1949 * remove privs
1950 */
1951 int should_remove_suid(struct dentry *dentry)
1952 {
1953 mode_t mode = dentry->d_inode->i_mode;
1954 int kill = 0;
1955
1956 /* suid always must be killed */
1957 if (unlikely(mode & S_ISUID))
1958 kill = ATTR_KILL_SUID;
1959
1960 /*
1961 * sgid without any exec bits is just a mandatory locking mark; leave
1962 * it alone. If some exec bits are set, it's a real sgid; kill it.
1963 */
1964 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1965 kill |= ATTR_KILL_SGID;
1966
1967 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1968 return kill;
1969
1970 return 0;
1971 }
1972 EXPORT_SYMBOL(should_remove_suid);
1973
1974 static int __remove_suid(struct dentry *dentry, int kill)
1975 {
1976 struct iattr newattrs;
1977
1978 newattrs.ia_valid = ATTR_FORCE | kill;
1979 return notify_change(dentry, &newattrs);
1980 }
1981
1982 int file_remove_suid(struct file *file)
1983 {
1984 struct dentry *dentry = file->f_path.dentry;
1985 struct inode *inode = dentry->d_inode;
1986 int killsuid;
1987 int killpriv;
1988 int error = 0;
1989
1990 /* Fast path for nothing security related */
1991 if (IS_NOSEC(inode))
1992 return 0;
1993
1994 killsuid = should_remove_suid(dentry);
1995 killpriv = security_inode_need_killpriv(dentry);
1996
1997 if (killpriv < 0)
1998 return killpriv;
1999 if (killpriv)
2000 error = security_inode_killpriv(dentry);
2001 if (!error && killsuid)
2002 error = __remove_suid(dentry, killsuid);
2003 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2004 inode->i_flags |= S_NOSEC;
2005
2006 return error;
2007 }
2008 EXPORT_SYMBOL(file_remove_suid);
2009
2010 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2011 const struct iovec *iov, size_t base, size_t bytes)
2012 {
2013 size_t copied = 0, left = 0;
2014
2015 while (bytes) {
2016 char __user *buf = iov->iov_base + base;
2017 int copy = min(bytes, iov->iov_len - base);
2018
2019 base = 0;
2020 left = __copy_from_user_inatomic(vaddr, buf, copy);
2021 copied += copy;
2022 bytes -= copy;
2023 vaddr += copy;
2024 iov++;
2025
2026 if (unlikely(left))
2027 break;
2028 }
2029 return copied - left;
2030 }
2031
2032 /*
2033 * Copy as much as we can into the page and return the number of bytes which
2034 * were successfully copied. If a fault is encountered then return the number of
2035 * bytes which were copied.
2036 */
2037 size_t iov_iter_copy_from_user_atomic(struct page *page,
2038 struct iov_iter *i, unsigned long offset, size_t bytes)
2039 {
2040 char *kaddr;
2041 size_t copied;
2042
2043 BUG_ON(!in_atomic());
2044 kaddr = kmap_atomic(page, KM_USER0);
2045 if (likely(i->nr_segs == 1)) {
2046 int left;
2047 char __user *buf = i->iov->iov_base + i->iov_offset;
2048 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2049 copied = bytes - left;
2050 } else {
2051 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2052 i->iov, i->iov_offset, bytes);
2053 }
2054 kunmap_atomic(kaddr, KM_USER0);
2055
2056 return copied;
2057 }
2058 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2059
2060 /*
2061 * This has the same sideeffects and return value as
2062 * iov_iter_copy_from_user_atomic().
2063 * The difference is that it attempts to resolve faults.
2064 * Page must not be locked.
2065 */
2066 size_t iov_iter_copy_from_user(struct page *page,
2067 struct iov_iter *i, unsigned long offset, size_t bytes)
2068 {
2069 char *kaddr;
2070 size_t copied;
2071
2072 kaddr = kmap(page);
2073 if (likely(i->nr_segs == 1)) {
2074 int left;
2075 char __user *buf = i->iov->iov_base + i->iov_offset;
2076 left = __copy_from_user(kaddr + offset, buf, bytes);
2077 copied = bytes - left;
2078 } else {
2079 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2080 i->iov, i->iov_offset, bytes);
2081 }
2082 kunmap(page);
2083 return copied;
2084 }
2085 EXPORT_SYMBOL(iov_iter_copy_from_user);
2086
2087 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2088 {
2089 BUG_ON(i->count < bytes);
2090
2091 if (likely(i->nr_segs == 1)) {
2092 i->iov_offset += bytes;
2093 i->count -= bytes;
2094 } else {
2095 const struct iovec *iov = i->iov;
2096 size_t base = i->iov_offset;
2097
2098 /*
2099 * The !iov->iov_len check ensures we skip over unlikely
2100 * zero-length segments (without overruning the iovec).
2101 */
2102 while (bytes || unlikely(i->count && !iov->iov_len)) {
2103 int copy;
2104
2105 copy = min(bytes, iov->iov_len - base);
2106 BUG_ON(!i->count || i->count < copy);
2107 i->count -= copy;
2108 bytes -= copy;
2109 base += copy;
2110 if (iov->iov_len == base) {
2111 iov++;
2112 base = 0;
2113 }
2114 }
2115 i->iov = iov;
2116 i->iov_offset = base;
2117 }
2118 }
2119 EXPORT_SYMBOL(iov_iter_advance);
2120
2121 /*
2122 * Fault in the first iovec of the given iov_iter, to a maximum length
2123 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2124 * accessed (ie. because it is an invalid address).
2125 *
2126 * writev-intensive code may want this to prefault several iovecs -- that
2127 * would be possible (callers must not rely on the fact that _only_ the
2128 * first iovec will be faulted with the current implementation).
2129 */
2130 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2131 {
2132 char __user *buf = i->iov->iov_base + i->iov_offset;
2133 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2134 return fault_in_pages_readable(buf, bytes);
2135 }
2136 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2137
2138 /*
2139 * Return the count of just the current iov_iter segment.
2140 */
2141 size_t iov_iter_single_seg_count(struct iov_iter *i)
2142 {
2143 const struct iovec *iov = i->iov;
2144 if (i->nr_segs == 1)
2145 return i->count;
2146 else
2147 return min(i->count, iov->iov_len - i->iov_offset);
2148 }
2149 EXPORT_SYMBOL(iov_iter_single_seg_count);
2150
2151 /*
2152 * Performs necessary checks before doing a write
2153 *
2154 * Can adjust writing position or amount of bytes to write.
2155 * Returns appropriate error code that caller should return or
2156 * zero in case that write should be allowed.
2157 */
2158 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2159 {
2160 struct inode *inode = file->f_mapping->host;
2161 unsigned long limit = rlimit(RLIMIT_FSIZE);
2162
2163 if (unlikely(*pos < 0))
2164 return -EINVAL;
2165
2166 if (!isblk) {
2167 /* FIXME: this is for backwards compatibility with 2.4 */
2168 if (file->f_flags & O_APPEND)
2169 *pos = i_size_read(inode);
2170
2171 if (limit != RLIM_INFINITY) {
2172 if (*pos >= limit) {
2173 send_sig(SIGXFSZ, current, 0);
2174 return -EFBIG;
2175 }
2176 if (*count > limit - (typeof(limit))*pos) {
2177 *count = limit - (typeof(limit))*pos;
2178 }
2179 }
2180 }
2181
2182 /*
2183 * LFS rule
2184 */
2185 if (unlikely(*pos + *count > MAX_NON_LFS &&
2186 !(file->f_flags & O_LARGEFILE))) {
2187 if (*pos >= MAX_NON_LFS) {
2188 return -EFBIG;
2189 }
2190 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2191 *count = MAX_NON_LFS - (unsigned long)*pos;
2192 }
2193 }
2194
2195 /*
2196 * Are we about to exceed the fs block limit ?
2197 *
2198 * If we have written data it becomes a short write. If we have
2199 * exceeded without writing data we send a signal and return EFBIG.
2200 * Linus frestrict idea will clean these up nicely..
2201 */
2202 if (likely(!isblk)) {
2203 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2204 if (*count || *pos > inode->i_sb->s_maxbytes) {
2205 return -EFBIG;
2206 }
2207 /* zero-length writes at ->s_maxbytes are OK */
2208 }
2209
2210 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2211 *count = inode->i_sb->s_maxbytes - *pos;
2212 } else {
2213 #ifdef CONFIG_BLOCK
2214 loff_t isize;
2215 if (bdev_read_only(I_BDEV(inode)))
2216 return -EPERM;
2217 isize = i_size_read(inode);
2218 if (*pos >= isize) {
2219 if (*count || *pos > isize)
2220 return -ENOSPC;
2221 }
2222
2223 if (*pos + *count > isize)
2224 *count = isize - *pos;
2225 #else
2226 return -EPERM;
2227 #endif
2228 }
2229 return 0;
2230 }
2231 EXPORT_SYMBOL(generic_write_checks);
2232
2233 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2234 loff_t pos, unsigned len, unsigned flags,
2235 struct page **pagep, void **fsdata)
2236 {
2237 const struct address_space_operations *aops = mapping->a_ops;
2238
2239 return aops->write_begin(file, mapping, pos, len, flags,
2240 pagep, fsdata);
2241 }
2242 EXPORT_SYMBOL(pagecache_write_begin);
2243
2244 int pagecache_write_end(struct file *file, struct address_space *mapping,
2245 loff_t pos, unsigned len, unsigned copied,
2246 struct page *page, void *fsdata)
2247 {
2248 const struct address_space_operations *aops = mapping->a_ops;
2249
2250 mark_page_accessed(page);
2251 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2252 }
2253 EXPORT_SYMBOL(pagecache_write_end);
2254
2255 ssize_t
2256 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2257 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2258 size_t count, size_t ocount)
2259 {
2260 struct file *file = iocb->ki_filp;
2261 struct address_space *mapping = file->f_mapping;
2262 struct inode *inode = mapping->host;
2263 ssize_t written;
2264 size_t write_len;
2265 pgoff_t end;
2266
2267 if (count != ocount)
2268 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2269
2270 write_len = iov_length(iov, *nr_segs);
2271 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2272
2273 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2274 if (written)
2275 goto out;
2276
2277 /*
2278 * After a write we want buffered reads to be sure to go to disk to get
2279 * the new data. We invalidate clean cached page from the region we're
2280 * about to write. We do this *before* the write so that we can return
2281 * without clobbering -EIOCBQUEUED from ->direct_IO().
2282 */
2283 if (mapping->nrpages) {
2284 written = invalidate_inode_pages2_range(mapping,
2285 pos >> PAGE_CACHE_SHIFT, end);
2286 /*
2287 * If a page can not be invalidated, return 0 to fall back
2288 * to buffered write.
2289 */
2290 if (written) {
2291 if (written == -EBUSY)
2292 return 0;
2293 goto out;
2294 }
2295 }
2296
2297 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2298
2299 /*
2300 * Finally, try again to invalidate clean pages which might have been
2301 * cached by non-direct readahead, or faulted in by get_user_pages()
2302 * if the source of the write was an mmap'ed region of the file
2303 * we're writing. Either one is a pretty crazy thing to do,
2304 * so we don't support it 100%. If this invalidation
2305 * fails, tough, the write still worked...
2306 */
2307 if (mapping->nrpages) {
2308 invalidate_inode_pages2_range(mapping,
2309 pos >> PAGE_CACHE_SHIFT, end);
2310 }
2311
2312 if (written > 0) {
2313 pos += written;
2314 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2315 i_size_write(inode, pos);
2316 mark_inode_dirty(inode);
2317 }
2318 *ppos = pos;
2319 }
2320 out:
2321 return written;
2322 }
2323 EXPORT_SYMBOL(generic_file_direct_write);
2324
2325 /*
2326 * Find or create a page at the given pagecache position. Return the locked
2327 * page. This function is specifically for buffered writes.
2328 */
2329 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2330 pgoff_t index, unsigned flags)
2331 {
2332 int status;
2333 struct page *page;
2334 gfp_t gfp_notmask = 0;
2335 if (flags & AOP_FLAG_NOFS)
2336 gfp_notmask = __GFP_FS;
2337 repeat:
2338 page = find_lock_page(mapping, index);
2339 if (page)
2340 goto found;
2341
2342 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2343 if (!page)
2344 return NULL;
2345 status = add_to_page_cache_lru(page, mapping, index,
2346 GFP_KERNEL & ~gfp_notmask);
2347 if (unlikely(status)) {
2348 page_cache_release(page);
2349 if (status == -EEXIST)
2350 goto repeat;
2351 return NULL;
2352 }
2353 found:
2354 wait_on_page_writeback(page);
2355 return page;
2356 }
2357 EXPORT_SYMBOL(grab_cache_page_write_begin);
2358
2359 static ssize_t generic_perform_write(struct file *file,
2360 struct iov_iter *i, loff_t pos)
2361 {
2362 struct address_space *mapping = file->f_mapping;
2363 const struct address_space_operations *a_ops = mapping->a_ops;
2364 long status = 0;
2365 ssize_t written = 0;
2366 unsigned int flags = 0;
2367
2368 /*
2369 * Copies from kernel address space cannot fail (NFSD is a big user).
2370 */
2371 if (segment_eq(get_fs(), KERNEL_DS))
2372 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2373
2374 do {
2375 struct page *page;
2376 unsigned long offset; /* Offset into pagecache page */
2377 unsigned long bytes; /* Bytes to write to page */
2378 size_t copied; /* Bytes copied from user */
2379 void *fsdata;
2380
2381 offset = (pos & (PAGE_CACHE_SIZE - 1));
2382 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2383 iov_iter_count(i));
2384
2385 again:
2386
2387 /*
2388 * Bring in the user page that we will copy from _first_.
2389 * Otherwise there's a nasty deadlock on copying from the
2390 * same page as we're writing to, without it being marked
2391 * up-to-date.
2392 *
2393 * Not only is this an optimisation, but it is also required
2394 * to check that the address is actually valid, when atomic
2395 * usercopies are used, below.
2396 */
2397 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2398 status = -EFAULT;
2399 break;
2400 }
2401
2402 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2403 &page, &fsdata);
2404 if (unlikely(status))
2405 break;
2406
2407 if (mapping_writably_mapped(mapping))
2408 flush_dcache_page(page);
2409
2410 pagefault_disable();
2411 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2412 pagefault_enable();
2413 flush_dcache_page(page);
2414
2415 mark_page_accessed(page);
2416 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2417 page, fsdata);
2418 if (unlikely(status < 0))
2419 break;
2420 copied = status;
2421
2422 cond_resched();
2423
2424 iov_iter_advance(i, copied);
2425 if (unlikely(copied == 0)) {
2426 /*
2427 * If we were unable to copy any data at all, we must
2428 * fall back to a single segment length write.
2429 *
2430 * If we didn't fallback here, we could livelock
2431 * because not all segments in the iov can be copied at
2432 * once without a pagefault.
2433 */
2434 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2435 iov_iter_single_seg_count(i));
2436 goto again;
2437 }
2438 pos += copied;
2439 written += copied;
2440
2441 balance_dirty_pages_ratelimited(mapping);
2442
2443 } while (iov_iter_count(i));
2444
2445 return written ? written : status;
2446 }
2447
2448 ssize_t
2449 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2450 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2451 size_t count, ssize_t written)
2452 {
2453 struct file *file = iocb->ki_filp;
2454 ssize_t status;
2455 struct iov_iter i;
2456
2457 iov_iter_init(&i, iov, nr_segs, count, written);
2458 status = generic_perform_write(file, &i, pos);
2459
2460 if (likely(status >= 0)) {
2461 written += status;
2462 *ppos = pos + status;
2463 }
2464
2465 return written ? written : status;
2466 }
2467 EXPORT_SYMBOL(generic_file_buffered_write);
2468
2469 /**
2470 * __generic_file_aio_write - write data to a file
2471 * @iocb: IO state structure (file, offset, etc.)
2472 * @iov: vector with data to write
2473 * @nr_segs: number of segments in the vector
2474 * @ppos: position where to write
2475 *
2476 * This function does all the work needed for actually writing data to a
2477 * file. It does all basic checks, removes SUID from the file, updates
2478 * modification times and calls proper subroutines depending on whether we
2479 * do direct IO or a standard buffered write.
2480 *
2481 * It expects i_mutex to be grabbed unless we work on a block device or similar
2482 * object which does not need locking at all.
2483 *
2484 * This function does *not* take care of syncing data in case of O_SYNC write.
2485 * A caller has to handle it. This is mainly due to the fact that we want to
2486 * avoid syncing under i_mutex.
2487 */
2488 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2489 unsigned long nr_segs, loff_t *ppos)
2490 {
2491 struct file *file = iocb->ki_filp;
2492 struct address_space * mapping = file->f_mapping;
2493 size_t ocount; /* original count */
2494 size_t count; /* after file limit checks */
2495 struct inode *inode = mapping->host;
2496 loff_t pos;
2497 ssize_t written;
2498 ssize_t err;
2499
2500 ocount = 0;
2501 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2502 if (err)
2503 return err;
2504
2505 count = ocount;
2506 pos = *ppos;
2507
2508 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2509
2510 /* We can write back this queue in page reclaim */
2511 current->backing_dev_info = mapping->backing_dev_info;
2512 written = 0;
2513
2514 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2515 if (err)
2516 goto out;
2517
2518 if (count == 0)
2519 goto out;
2520
2521 err = file_remove_suid(file);
2522 if (err)
2523 goto out;
2524
2525 file_update_time(file);
2526
2527 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2528 if (unlikely(file->f_flags & O_DIRECT)) {
2529 loff_t endbyte;
2530 ssize_t written_buffered;
2531
2532 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2533 ppos, count, ocount);
2534 if (written < 0 || written == count)
2535 goto out;
2536 /*
2537 * direct-io write to a hole: fall through to buffered I/O
2538 * for completing the rest of the request.
2539 */
2540 pos += written;
2541 count -= written;
2542 written_buffered = generic_file_buffered_write(iocb, iov,
2543 nr_segs, pos, ppos, count,
2544 written);
2545 /*
2546 * If generic_file_buffered_write() retuned a synchronous error
2547 * then we want to return the number of bytes which were
2548 * direct-written, or the error code if that was zero. Note
2549 * that this differs from normal direct-io semantics, which
2550 * will return -EFOO even if some bytes were written.
2551 */
2552 if (written_buffered < 0) {
2553 err = written_buffered;
2554 goto out;
2555 }
2556
2557 /*
2558 * We need to ensure that the page cache pages are written to
2559 * disk and invalidated to preserve the expected O_DIRECT
2560 * semantics.
2561 */
2562 endbyte = pos + written_buffered - written - 1;
2563 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2564 if (err == 0) {
2565 written = written_buffered;
2566 invalidate_mapping_pages(mapping,
2567 pos >> PAGE_CACHE_SHIFT,
2568 endbyte >> PAGE_CACHE_SHIFT);
2569 } else {
2570 /*
2571 * We don't know how much we wrote, so just return
2572 * the number of bytes which were direct-written
2573 */
2574 }
2575 } else {
2576 written = generic_file_buffered_write(iocb, iov, nr_segs,
2577 pos, ppos, count, written);
2578 }
2579 out:
2580 current->backing_dev_info = NULL;
2581 return written ? written : err;
2582 }
2583 EXPORT_SYMBOL(__generic_file_aio_write);
2584
2585 /**
2586 * generic_file_aio_write - write data to a file
2587 * @iocb: IO state structure
2588 * @iov: vector with data to write
2589 * @nr_segs: number of segments in the vector
2590 * @pos: position in file where to write
2591 *
2592 * This is a wrapper around __generic_file_aio_write() to be used by most
2593 * filesystems. It takes care of syncing the file in case of O_SYNC file
2594 * and acquires i_mutex as needed.
2595 */
2596 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2597 unsigned long nr_segs, loff_t pos)
2598 {
2599 struct file *file = iocb->ki_filp;
2600 struct inode *inode = file->f_mapping->host;
2601 struct blk_plug plug;
2602 ssize_t ret;
2603
2604 BUG_ON(iocb->ki_pos != pos);
2605
2606 mutex_lock(&inode->i_mutex);
2607 blk_start_plug(&plug);
2608 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2609 mutex_unlock(&inode->i_mutex);
2610
2611 if (ret > 0 || ret == -EIOCBQUEUED) {
2612 ssize_t err;
2613
2614 err = generic_write_sync(file, pos, ret);
2615 if (err < 0 && ret > 0)
2616 ret = err;
2617 }
2618 blk_finish_plug(&plug);
2619 return ret;
2620 }
2621 EXPORT_SYMBOL(generic_file_aio_write);
2622
2623 /**
2624 * try_to_release_page() - release old fs-specific metadata on a page
2625 *
2626 * @page: the page which the kernel is trying to free
2627 * @gfp_mask: memory allocation flags (and I/O mode)
2628 *
2629 * The address_space is to try to release any data against the page
2630 * (presumably at page->private). If the release was successful, return `1'.
2631 * Otherwise return zero.
2632 *
2633 * This may also be called if PG_fscache is set on a page, indicating that the
2634 * page is known to the local caching routines.
2635 *
2636 * The @gfp_mask argument specifies whether I/O may be performed to release
2637 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2638 *
2639 */
2640 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2641 {
2642 struct address_space * const mapping = page->mapping;
2643
2644 BUG_ON(!PageLocked(page));
2645 if (PageWriteback(page))
2646 return 0;
2647
2648 if (mapping && mapping->a_ops->releasepage)
2649 return mapping->a_ops->releasepage(page, gfp_mask);
2650 return try_to_free_buffers(page);
2651 }
2652
2653 EXPORT_SYMBOL(try_to_release_page);