Unevictable LRU Infrastructure
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43
44 #include <asm/mman.h>
45
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 mem_cgroup_uncharge_cache_page(page);
120 radix_tree_delete(&mapping->page_tree, page->index);
121 page->mapping = NULL;
122 mapping->nrpages--;
123 __dec_zone_page_state(page, NR_FILE_PAGES);
124 BUG_ON(page_mapped(page));
125
126 /*
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
129 *
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
132 */
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 }
137 }
138
139 void remove_from_page_cache(struct page *page)
140 {
141 struct address_space *mapping = page->mapping;
142
143 BUG_ON(!PageLocked(page));
144
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
148 }
149
150 static int sync_page(void *word)
151 {
152 struct address_space *mapping;
153 struct page *page;
154
155 page = container_of((unsigned long *)word, struct page, flags);
156
157 /*
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
177 */
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
184 }
185
186 static int sync_page_killable(void *word)
187 {
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
209 {
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = mapping->nrpages * 2,
214 .range_start = start,
215 .range_end = end,
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223 }
224
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227 {
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
239 {
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251 int filemap_flush(struct address_space *mapping)
252 {
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
268 {
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
273
274 if (end < start)
275 return 0;
276
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307 }
308
309 /**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
325 {
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
329
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
337 }
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343
344 /**
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
357 {
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
361
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 int err = 0;
395
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
398 /*
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
403 */
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
408 }
409 }
410 return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413
414 /**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
427 {
428 int err = 0;
429
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
440 }
441 }
442 return err;
443 }
444
445 /**
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
451 *
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
454 */
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t offset, gfp_t gfp_mask)
457 {
458 int error;
459
460 VM_BUG_ON(!PageLocked(page));
461
462 error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & ~__GFP_HIGHMEM);
464 if (error)
465 goto out;
466
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
472
473 spin_lock_irq(&mapping->tree_lock);
474 error = radix_tree_insert(&mapping->page_tree, offset, page);
475 if (likely(!error)) {
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else {
479 page->mapping = NULL;
480 mem_cgroup_uncharge_cache_page(page);
481 page_cache_release(page);
482 }
483
484 spin_unlock_irq(&mapping->tree_lock);
485 radix_tree_preload_end();
486 } else
487 mem_cgroup_uncharge_cache_page(page);
488 out:
489 return error;
490 }
491 EXPORT_SYMBOL(add_to_page_cache_locked);
492
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 pgoff_t offset, gfp_t gfp_mask)
495 {
496 int ret;
497
498 /*
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
503 */
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
506
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
513 }
514 return ret;
515 }
516
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
519 {
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
522 return alloc_pages_node(n, gfp, 0);
523 }
524 return alloc_pages(gfp, 0);
525 }
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
528
529 static int __sleep_on_page_lock(void *word)
530 {
531 io_schedule();
532 return 0;
533 }
534
535 /*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545 static wait_queue_head_t *page_waitqueue(struct page *page)
546 {
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 }
551
552 static inline void wake_up_page(struct page *page, int bit)
553 {
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 }
556
557 void wait_on_page_bit(struct page *page, int bit_nr)
558 {
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
564 }
565 EXPORT_SYMBOL(wait_on_page_bit);
566
567 /**
568 * unlock_page - unlock a locked page
569 * @page: the page
570 *
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
575 *
576 * The first mb is necessary to safely close the critical section opened by the
577 * test_and_set_bit() to lock the page; the second mb is necessary to enforce
578 * ordering between the clear_bit and the read of the waitqueue (to avoid SMP
579 * races with a parallel wait_on_page_locked()).
580 */
581 void unlock_page(struct page *page)
582 {
583 smp_mb__before_clear_bit();
584 if (!test_and_clear_bit(PG_locked, &page->flags))
585 BUG();
586 smp_mb__after_clear_bit();
587 wake_up_page(page, PG_locked);
588 }
589 EXPORT_SYMBOL(unlock_page);
590
591 /**
592 * end_page_writeback - end writeback against a page
593 * @page: the page
594 */
595 void end_page_writeback(struct page *page)
596 {
597 if (TestClearPageReclaim(page))
598 rotate_reclaimable_page(page);
599
600 if (!test_clear_page_writeback(page))
601 BUG();
602
603 smp_mb__after_clear_bit();
604 wake_up_page(page, PG_writeback);
605 }
606 EXPORT_SYMBOL(end_page_writeback);
607
608 /**
609 * __lock_page - get a lock on the page, assuming we need to sleep to get it
610 * @page: the page to lock
611 *
612 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
613 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
614 * chances are that on the second loop, the block layer's plug list is empty,
615 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
616 */
617 void __lock_page(struct page *page)
618 {
619 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
620
621 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
622 TASK_UNINTERRUPTIBLE);
623 }
624 EXPORT_SYMBOL(__lock_page);
625
626 int __lock_page_killable(struct page *page)
627 {
628 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
629
630 return __wait_on_bit_lock(page_waitqueue(page), &wait,
631 sync_page_killable, TASK_KILLABLE);
632 }
633
634 /**
635 * __lock_page_nosync - get a lock on the page, without calling sync_page()
636 * @page: the page to lock
637 *
638 * Variant of lock_page that does not require the caller to hold a reference
639 * on the page's mapping.
640 */
641 void __lock_page_nosync(struct page *page)
642 {
643 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
644 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
645 TASK_UNINTERRUPTIBLE);
646 }
647
648 /**
649 * find_get_page - find and get a page reference
650 * @mapping: the address_space to search
651 * @offset: the page index
652 *
653 * Is there a pagecache struct page at the given (mapping, offset) tuple?
654 * If yes, increment its refcount and return it; if no, return NULL.
655 */
656 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
657 {
658 void **pagep;
659 struct page *page;
660
661 rcu_read_lock();
662 repeat:
663 page = NULL;
664 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
665 if (pagep) {
666 page = radix_tree_deref_slot(pagep);
667 if (unlikely(!page || page == RADIX_TREE_RETRY))
668 goto repeat;
669
670 if (!page_cache_get_speculative(page))
671 goto repeat;
672
673 /*
674 * Has the page moved?
675 * This is part of the lockless pagecache protocol. See
676 * include/linux/pagemap.h for details.
677 */
678 if (unlikely(page != *pagep)) {
679 page_cache_release(page);
680 goto repeat;
681 }
682 }
683 rcu_read_unlock();
684
685 return page;
686 }
687 EXPORT_SYMBOL(find_get_page);
688
689 /**
690 * find_lock_page - locate, pin and lock a pagecache page
691 * @mapping: the address_space to search
692 * @offset: the page index
693 *
694 * Locates the desired pagecache page, locks it, increments its reference
695 * count and returns its address.
696 *
697 * Returns zero if the page was not present. find_lock_page() may sleep.
698 */
699 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
700 {
701 struct page *page;
702
703 repeat:
704 page = find_get_page(mapping, offset);
705 if (page) {
706 lock_page(page);
707 /* Has the page been truncated? */
708 if (unlikely(page->mapping != mapping)) {
709 unlock_page(page);
710 page_cache_release(page);
711 goto repeat;
712 }
713 VM_BUG_ON(page->index != offset);
714 }
715 return page;
716 }
717 EXPORT_SYMBOL(find_lock_page);
718
719 /**
720 * find_or_create_page - locate or add a pagecache page
721 * @mapping: the page's address_space
722 * @index: the page's index into the mapping
723 * @gfp_mask: page allocation mode
724 *
725 * Locates a page in the pagecache. If the page is not present, a new page
726 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
727 * LRU list. The returned page is locked and has its reference count
728 * incremented.
729 *
730 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
731 * allocation!
732 *
733 * find_or_create_page() returns the desired page's address, or zero on
734 * memory exhaustion.
735 */
736 struct page *find_or_create_page(struct address_space *mapping,
737 pgoff_t index, gfp_t gfp_mask)
738 {
739 struct page *page;
740 int err;
741 repeat:
742 page = find_lock_page(mapping, index);
743 if (!page) {
744 page = __page_cache_alloc(gfp_mask);
745 if (!page)
746 return NULL;
747 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
748 if (unlikely(err)) {
749 page_cache_release(page);
750 page = NULL;
751 if (err == -EEXIST)
752 goto repeat;
753 }
754 }
755 return page;
756 }
757 EXPORT_SYMBOL(find_or_create_page);
758
759 /**
760 * find_get_pages - gang pagecache lookup
761 * @mapping: The address_space to search
762 * @start: The starting page index
763 * @nr_pages: The maximum number of pages
764 * @pages: Where the resulting pages are placed
765 *
766 * find_get_pages() will search for and return a group of up to
767 * @nr_pages pages in the mapping. The pages are placed at @pages.
768 * find_get_pages() takes a reference against the returned pages.
769 *
770 * The search returns a group of mapping-contiguous pages with ascending
771 * indexes. There may be holes in the indices due to not-present pages.
772 *
773 * find_get_pages() returns the number of pages which were found.
774 */
775 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
776 unsigned int nr_pages, struct page **pages)
777 {
778 unsigned int i;
779 unsigned int ret;
780 unsigned int nr_found;
781
782 rcu_read_lock();
783 restart:
784 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
785 (void ***)pages, start, nr_pages);
786 ret = 0;
787 for (i = 0; i < nr_found; i++) {
788 struct page *page;
789 repeat:
790 page = radix_tree_deref_slot((void **)pages[i]);
791 if (unlikely(!page))
792 continue;
793 /*
794 * this can only trigger if nr_found == 1, making livelock
795 * a non issue.
796 */
797 if (unlikely(page == RADIX_TREE_RETRY))
798 goto restart;
799
800 if (!page_cache_get_speculative(page))
801 goto repeat;
802
803 /* Has the page moved? */
804 if (unlikely(page != *((void **)pages[i]))) {
805 page_cache_release(page);
806 goto repeat;
807 }
808
809 pages[ret] = page;
810 ret++;
811 }
812 rcu_read_unlock();
813 return ret;
814 }
815
816 /**
817 * find_get_pages_contig - gang contiguous pagecache lookup
818 * @mapping: The address_space to search
819 * @index: The starting page index
820 * @nr_pages: The maximum number of pages
821 * @pages: Where the resulting pages are placed
822 *
823 * find_get_pages_contig() works exactly like find_get_pages(), except
824 * that the returned number of pages are guaranteed to be contiguous.
825 *
826 * find_get_pages_contig() returns the number of pages which were found.
827 */
828 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
829 unsigned int nr_pages, struct page **pages)
830 {
831 unsigned int i;
832 unsigned int ret;
833 unsigned int nr_found;
834
835 rcu_read_lock();
836 restart:
837 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
838 (void ***)pages, index, nr_pages);
839 ret = 0;
840 for (i = 0; i < nr_found; i++) {
841 struct page *page;
842 repeat:
843 page = radix_tree_deref_slot((void **)pages[i]);
844 if (unlikely(!page))
845 continue;
846 /*
847 * this can only trigger if nr_found == 1, making livelock
848 * a non issue.
849 */
850 if (unlikely(page == RADIX_TREE_RETRY))
851 goto restart;
852
853 if (page->mapping == NULL || page->index != index)
854 break;
855
856 if (!page_cache_get_speculative(page))
857 goto repeat;
858
859 /* Has the page moved? */
860 if (unlikely(page != *((void **)pages[i]))) {
861 page_cache_release(page);
862 goto repeat;
863 }
864
865 pages[ret] = page;
866 ret++;
867 index++;
868 }
869 rcu_read_unlock();
870 return ret;
871 }
872 EXPORT_SYMBOL(find_get_pages_contig);
873
874 /**
875 * find_get_pages_tag - find and return pages that match @tag
876 * @mapping: the address_space to search
877 * @index: the starting page index
878 * @tag: the tag index
879 * @nr_pages: the maximum number of pages
880 * @pages: where the resulting pages are placed
881 *
882 * Like find_get_pages, except we only return pages which are tagged with
883 * @tag. We update @index to index the next page for the traversal.
884 */
885 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
886 int tag, unsigned int nr_pages, struct page **pages)
887 {
888 unsigned int i;
889 unsigned int ret;
890 unsigned int nr_found;
891
892 rcu_read_lock();
893 restart:
894 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
895 (void ***)pages, *index, nr_pages, tag);
896 ret = 0;
897 for (i = 0; i < nr_found; i++) {
898 struct page *page;
899 repeat:
900 page = radix_tree_deref_slot((void **)pages[i]);
901 if (unlikely(!page))
902 continue;
903 /*
904 * this can only trigger if nr_found == 1, making livelock
905 * a non issue.
906 */
907 if (unlikely(page == RADIX_TREE_RETRY))
908 goto restart;
909
910 if (!page_cache_get_speculative(page))
911 goto repeat;
912
913 /* Has the page moved? */
914 if (unlikely(page != *((void **)pages[i]))) {
915 page_cache_release(page);
916 goto repeat;
917 }
918
919 pages[ret] = page;
920 ret++;
921 }
922 rcu_read_unlock();
923
924 if (ret)
925 *index = pages[ret - 1]->index + 1;
926
927 return ret;
928 }
929 EXPORT_SYMBOL(find_get_pages_tag);
930
931 /**
932 * grab_cache_page_nowait - returns locked page at given index in given cache
933 * @mapping: target address_space
934 * @index: the page index
935 *
936 * Same as grab_cache_page(), but do not wait if the page is unavailable.
937 * This is intended for speculative data generators, where the data can
938 * be regenerated if the page couldn't be grabbed. This routine should
939 * be safe to call while holding the lock for another page.
940 *
941 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
942 * and deadlock against the caller's locked page.
943 */
944 struct page *
945 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
946 {
947 struct page *page = find_get_page(mapping, index);
948
949 if (page) {
950 if (trylock_page(page))
951 return page;
952 page_cache_release(page);
953 return NULL;
954 }
955 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
956 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
957 page_cache_release(page);
958 page = NULL;
959 }
960 return page;
961 }
962 EXPORT_SYMBOL(grab_cache_page_nowait);
963
964 /*
965 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
966 * a _large_ part of the i/o request. Imagine the worst scenario:
967 *
968 * ---R__________________________________________B__________
969 * ^ reading here ^ bad block(assume 4k)
970 *
971 * read(R) => miss => readahead(R...B) => media error => frustrating retries
972 * => failing the whole request => read(R) => read(R+1) =>
973 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
974 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
975 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
976 *
977 * It is going insane. Fix it by quickly scaling down the readahead size.
978 */
979 static void shrink_readahead_size_eio(struct file *filp,
980 struct file_ra_state *ra)
981 {
982 if (!ra->ra_pages)
983 return;
984
985 ra->ra_pages /= 4;
986 }
987
988 /**
989 * do_generic_file_read - generic file read routine
990 * @filp: the file to read
991 * @ppos: current file position
992 * @desc: read_descriptor
993 * @actor: read method
994 *
995 * This is a generic file read routine, and uses the
996 * mapping->a_ops->readpage() function for the actual low-level stuff.
997 *
998 * This is really ugly. But the goto's actually try to clarify some
999 * of the logic when it comes to error handling etc.
1000 */
1001 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1002 read_descriptor_t *desc, read_actor_t actor)
1003 {
1004 struct address_space *mapping = filp->f_mapping;
1005 struct inode *inode = mapping->host;
1006 struct file_ra_state *ra = &filp->f_ra;
1007 pgoff_t index;
1008 pgoff_t last_index;
1009 pgoff_t prev_index;
1010 unsigned long offset; /* offset into pagecache page */
1011 unsigned int prev_offset;
1012 int error;
1013
1014 index = *ppos >> PAGE_CACHE_SHIFT;
1015 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1016 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1017 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1018 offset = *ppos & ~PAGE_CACHE_MASK;
1019
1020 for (;;) {
1021 struct page *page;
1022 pgoff_t end_index;
1023 loff_t isize;
1024 unsigned long nr, ret;
1025
1026 cond_resched();
1027 find_page:
1028 page = find_get_page(mapping, index);
1029 if (!page) {
1030 page_cache_sync_readahead(mapping,
1031 ra, filp,
1032 index, last_index - index);
1033 page = find_get_page(mapping, index);
1034 if (unlikely(page == NULL))
1035 goto no_cached_page;
1036 }
1037 if (PageReadahead(page)) {
1038 page_cache_async_readahead(mapping,
1039 ra, filp, page,
1040 index, last_index - index);
1041 }
1042 if (!PageUptodate(page)) {
1043 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1044 !mapping->a_ops->is_partially_uptodate)
1045 goto page_not_up_to_date;
1046 if (!trylock_page(page))
1047 goto page_not_up_to_date;
1048 if (!mapping->a_ops->is_partially_uptodate(page,
1049 desc, offset))
1050 goto page_not_up_to_date_locked;
1051 unlock_page(page);
1052 }
1053 page_ok:
1054 /*
1055 * i_size must be checked after we know the page is Uptodate.
1056 *
1057 * Checking i_size after the check allows us to calculate
1058 * the correct value for "nr", which means the zero-filled
1059 * part of the page is not copied back to userspace (unless
1060 * another truncate extends the file - this is desired though).
1061 */
1062
1063 isize = i_size_read(inode);
1064 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1065 if (unlikely(!isize || index > end_index)) {
1066 page_cache_release(page);
1067 goto out;
1068 }
1069
1070 /* nr is the maximum number of bytes to copy from this page */
1071 nr = PAGE_CACHE_SIZE;
1072 if (index == end_index) {
1073 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1074 if (nr <= offset) {
1075 page_cache_release(page);
1076 goto out;
1077 }
1078 }
1079 nr = nr - offset;
1080
1081 /* If users can be writing to this page using arbitrary
1082 * virtual addresses, take care about potential aliasing
1083 * before reading the page on the kernel side.
1084 */
1085 if (mapping_writably_mapped(mapping))
1086 flush_dcache_page(page);
1087
1088 /*
1089 * When a sequential read accesses a page several times,
1090 * only mark it as accessed the first time.
1091 */
1092 if (prev_index != index || offset != prev_offset)
1093 mark_page_accessed(page);
1094 prev_index = index;
1095
1096 /*
1097 * Ok, we have the page, and it's up-to-date, so
1098 * now we can copy it to user space...
1099 *
1100 * The actor routine returns how many bytes were actually used..
1101 * NOTE! This may not be the same as how much of a user buffer
1102 * we filled up (we may be padding etc), so we can only update
1103 * "pos" here (the actor routine has to update the user buffer
1104 * pointers and the remaining count).
1105 */
1106 ret = actor(desc, page, offset, nr);
1107 offset += ret;
1108 index += offset >> PAGE_CACHE_SHIFT;
1109 offset &= ~PAGE_CACHE_MASK;
1110 prev_offset = offset;
1111
1112 page_cache_release(page);
1113 if (ret == nr && desc->count)
1114 continue;
1115 goto out;
1116
1117 page_not_up_to_date:
1118 /* Get exclusive access to the page ... */
1119 error = lock_page_killable(page);
1120 if (unlikely(error))
1121 goto readpage_error;
1122
1123 page_not_up_to_date_locked:
1124 /* Did it get truncated before we got the lock? */
1125 if (!page->mapping) {
1126 unlock_page(page);
1127 page_cache_release(page);
1128 continue;
1129 }
1130
1131 /* Did somebody else fill it already? */
1132 if (PageUptodate(page)) {
1133 unlock_page(page);
1134 goto page_ok;
1135 }
1136
1137 readpage:
1138 /* Start the actual read. The read will unlock the page. */
1139 error = mapping->a_ops->readpage(filp, page);
1140
1141 if (unlikely(error)) {
1142 if (error == AOP_TRUNCATED_PAGE) {
1143 page_cache_release(page);
1144 goto find_page;
1145 }
1146 goto readpage_error;
1147 }
1148
1149 if (!PageUptodate(page)) {
1150 error = lock_page_killable(page);
1151 if (unlikely(error))
1152 goto readpage_error;
1153 if (!PageUptodate(page)) {
1154 if (page->mapping == NULL) {
1155 /*
1156 * invalidate_inode_pages got it
1157 */
1158 unlock_page(page);
1159 page_cache_release(page);
1160 goto find_page;
1161 }
1162 unlock_page(page);
1163 shrink_readahead_size_eio(filp, ra);
1164 error = -EIO;
1165 goto readpage_error;
1166 }
1167 unlock_page(page);
1168 }
1169
1170 goto page_ok;
1171
1172 readpage_error:
1173 /* UHHUH! A synchronous read error occurred. Report it */
1174 desc->error = error;
1175 page_cache_release(page);
1176 goto out;
1177
1178 no_cached_page:
1179 /*
1180 * Ok, it wasn't cached, so we need to create a new
1181 * page..
1182 */
1183 page = page_cache_alloc_cold(mapping);
1184 if (!page) {
1185 desc->error = -ENOMEM;
1186 goto out;
1187 }
1188 error = add_to_page_cache_lru(page, mapping,
1189 index, GFP_KERNEL);
1190 if (error) {
1191 page_cache_release(page);
1192 if (error == -EEXIST)
1193 goto find_page;
1194 desc->error = error;
1195 goto out;
1196 }
1197 goto readpage;
1198 }
1199
1200 out:
1201 ra->prev_pos = prev_index;
1202 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1203 ra->prev_pos |= prev_offset;
1204
1205 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1206 file_accessed(filp);
1207 }
1208
1209 int file_read_actor(read_descriptor_t *desc, struct page *page,
1210 unsigned long offset, unsigned long size)
1211 {
1212 char *kaddr;
1213 unsigned long left, count = desc->count;
1214
1215 if (size > count)
1216 size = count;
1217
1218 /*
1219 * Faults on the destination of a read are common, so do it before
1220 * taking the kmap.
1221 */
1222 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1223 kaddr = kmap_atomic(page, KM_USER0);
1224 left = __copy_to_user_inatomic(desc->arg.buf,
1225 kaddr + offset, size);
1226 kunmap_atomic(kaddr, KM_USER0);
1227 if (left == 0)
1228 goto success;
1229 }
1230
1231 /* Do it the slow way */
1232 kaddr = kmap(page);
1233 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1234 kunmap(page);
1235
1236 if (left) {
1237 size -= left;
1238 desc->error = -EFAULT;
1239 }
1240 success:
1241 desc->count = count - size;
1242 desc->written += size;
1243 desc->arg.buf += size;
1244 return size;
1245 }
1246
1247 /*
1248 * Performs necessary checks before doing a write
1249 * @iov: io vector request
1250 * @nr_segs: number of segments in the iovec
1251 * @count: number of bytes to write
1252 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1253 *
1254 * Adjust number of segments and amount of bytes to write (nr_segs should be
1255 * properly initialized first). Returns appropriate error code that caller
1256 * should return or zero in case that write should be allowed.
1257 */
1258 int generic_segment_checks(const struct iovec *iov,
1259 unsigned long *nr_segs, size_t *count, int access_flags)
1260 {
1261 unsigned long seg;
1262 size_t cnt = 0;
1263 for (seg = 0; seg < *nr_segs; seg++) {
1264 const struct iovec *iv = &iov[seg];
1265
1266 /*
1267 * If any segment has a negative length, or the cumulative
1268 * length ever wraps negative then return -EINVAL.
1269 */
1270 cnt += iv->iov_len;
1271 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1272 return -EINVAL;
1273 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1274 continue;
1275 if (seg == 0)
1276 return -EFAULT;
1277 *nr_segs = seg;
1278 cnt -= iv->iov_len; /* This segment is no good */
1279 break;
1280 }
1281 *count = cnt;
1282 return 0;
1283 }
1284 EXPORT_SYMBOL(generic_segment_checks);
1285
1286 /**
1287 * generic_file_aio_read - generic filesystem read routine
1288 * @iocb: kernel I/O control block
1289 * @iov: io vector request
1290 * @nr_segs: number of segments in the iovec
1291 * @pos: current file position
1292 *
1293 * This is the "read()" routine for all filesystems
1294 * that can use the page cache directly.
1295 */
1296 ssize_t
1297 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1298 unsigned long nr_segs, loff_t pos)
1299 {
1300 struct file *filp = iocb->ki_filp;
1301 ssize_t retval;
1302 unsigned long seg;
1303 size_t count;
1304 loff_t *ppos = &iocb->ki_pos;
1305
1306 count = 0;
1307 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1308 if (retval)
1309 return retval;
1310
1311 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1312 if (filp->f_flags & O_DIRECT) {
1313 loff_t size;
1314 struct address_space *mapping;
1315 struct inode *inode;
1316
1317 mapping = filp->f_mapping;
1318 inode = mapping->host;
1319 if (!count)
1320 goto out; /* skip atime */
1321 size = i_size_read(inode);
1322 if (pos < size) {
1323 retval = filemap_write_and_wait(mapping);
1324 if (!retval) {
1325 retval = mapping->a_ops->direct_IO(READ, iocb,
1326 iov, pos, nr_segs);
1327 }
1328 if (retval > 0)
1329 *ppos = pos + retval;
1330 if (retval) {
1331 file_accessed(filp);
1332 goto out;
1333 }
1334 }
1335 }
1336
1337 for (seg = 0; seg < nr_segs; seg++) {
1338 read_descriptor_t desc;
1339
1340 desc.written = 0;
1341 desc.arg.buf = iov[seg].iov_base;
1342 desc.count = iov[seg].iov_len;
1343 if (desc.count == 0)
1344 continue;
1345 desc.error = 0;
1346 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1347 retval += desc.written;
1348 if (desc.error) {
1349 retval = retval ?: desc.error;
1350 break;
1351 }
1352 if (desc.count > 0)
1353 break;
1354 }
1355 out:
1356 return retval;
1357 }
1358 EXPORT_SYMBOL(generic_file_aio_read);
1359
1360 static ssize_t
1361 do_readahead(struct address_space *mapping, struct file *filp,
1362 pgoff_t index, unsigned long nr)
1363 {
1364 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1365 return -EINVAL;
1366
1367 force_page_cache_readahead(mapping, filp, index,
1368 max_sane_readahead(nr));
1369 return 0;
1370 }
1371
1372 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1373 {
1374 ssize_t ret;
1375 struct file *file;
1376
1377 ret = -EBADF;
1378 file = fget(fd);
1379 if (file) {
1380 if (file->f_mode & FMODE_READ) {
1381 struct address_space *mapping = file->f_mapping;
1382 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1383 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1384 unsigned long len = end - start + 1;
1385 ret = do_readahead(mapping, file, start, len);
1386 }
1387 fput(file);
1388 }
1389 return ret;
1390 }
1391
1392 #ifdef CONFIG_MMU
1393 /**
1394 * page_cache_read - adds requested page to the page cache if not already there
1395 * @file: file to read
1396 * @offset: page index
1397 *
1398 * This adds the requested page to the page cache if it isn't already there,
1399 * and schedules an I/O to read in its contents from disk.
1400 */
1401 static int page_cache_read(struct file *file, pgoff_t offset)
1402 {
1403 struct address_space *mapping = file->f_mapping;
1404 struct page *page;
1405 int ret;
1406
1407 do {
1408 page = page_cache_alloc_cold(mapping);
1409 if (!page)
1410 return -ENOMEM;
1411
1412 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1413 if (ret == 0)
1414 ret = mapping->a_ops->readpage(file, page);
1415 else if (ret == -EEXIST)
1416 ret = 0; /* losing race to add is OK */
1417
1418 page_cache_release(page);
1419
1420 } while (ret == AOP_TRUNCATED_PAGE);
1421
1422 return ret;
1423 }
1424
1425 #define MMAP_LOTSAMISS (100)
1426
1427 /**
1428 * filemap_fault - read in file data for page fault handling
1429 * @vma: vma in which the fault was taken
1430 * @vmf: struct vm_fault containing details of the fault
1431 *
1432 * filemap_fault() is invoked via the vma operations vector for a
1433 * mapped memory region to read in file data during a page fault.
1434 *
1435 * The goto's are kind of ugly, but this streamlines the normal case of having
1436 * it in the page cache, and handles the special cases reasonably without
1437 * having a lot of duplicated code.
1438 */
1439 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1440 {
1441 int error;
1442 struct file *file = vma->vm_file;
1443 struct address_space *mapping = file->f_mapping;
1444 struct file_ra_state *ra = &file->f_ra;
1445 struct inode *inode = mapping->host;
1446 struct page *page;
1447 pgoff_t size;
1448 int did_readaround = 0;
1449 int ret = 0;
1450
1451 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1452 if (vmf->pgoff >= size)
1453 return VM_FAULT_SIGBUS;
1454
1455 /* If we don't want any read-ahead, don't bother */
1456 if (VM_RandomReadHint(vma))
1457 goto no_cached_page;
1458
1459 /*
1460 * Do we have something in the page cache already?
1461 */
1462 retry_find:
1463 page = find_lock_page(mapping, vmf->pgoff);
1464 /*
1465 * For sequential accesses, we use the generic readahead logic.
1466 */
1467 if (VM_SequentialReadHint(vma)) {
1468 if (!page) {
1469 page_cache_sync_readahead(mapping, ra, file,
1470 vmf->pgoff, 1);
1471 page = find_lock_page(mapping, vmf->pgoff);
1472 if (!page)
1473 goto no_cached_page;
1474 }
1475 if (PageReadahead(page)) {
1476 page_cache_async_readahead(mapping, ra, file, page,
1477 vmf->pgoff, 1);
1478 }
1479 }
1480
1481 if (!page) {
1482 unsigned long ra_pages;
1483
1484 ra->mmap_miss++;
1485
1486 /*
1487 * Do we miss much more than hit in this file? If so,
1488 * stop bothering with read-ahead. It will only hurt.
1489 */
1490 if (ra->mmap_miss > MMAP_LOTSAMISS)
1491 goto no_cached_page;
1492
1493 /*
1494 * To keep the pgmajfault counter straight, we need to
1495 * check did_readaround, as this is an inner loop.
1496 */
1497 if (!did_readaround) {
1498 ret = VM_FAULT_MAJOR;
1499 count_vm_event(PGMAJFAULT);
1500 }
1501 did_readaround = 1;
1502 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1503 if (ra_pages) {
1504 pgoff_t start = 0;
1505
1506 if (vmf->pgoff > ra_pages / 2)
1507 start = vmf->pgoff - ra_pages / 2;
1508 do_page_cache_readahead(mapping, file, start, ra_pages);
1509 }
1510 page = find_lock_page(mapping, vmf->pgoff);
1511 if (!page)
1512 goto no_cached_page;
1513 }
1514
1515 if (!did_readaround)
1516 ra->mmap_miss--;
1517
1518 /*
1519 * We have a locked page in the page cache, now we need to check
1520 * that it's up-to-date. If not, it is going to be due to an error.
1521 */
1522 if (unlikely(!PageUptodate(page)))
1523 goto page_not_uptodate;
1524
1525 /* Must recheck i_size under page lock */
1526 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1527 if (unlikely(vmf->pgoff >= size)) {
1528 unlock_page(page);
1529 page_cache_release(page);
1530 return VM_FAULT_SIGBUS;
1531 }
1532
1533 /*
1534 * Found the page and have a reference on it.
1535 */
1536 mark_page_accessed(page);
1537 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1538 vmf->page = page;
1539 return ret | VM_FAULT_LOCKED;
1540
1541 no_cached_page:
1542 /*
1543 * We're only likely to ever get here if MADV_RANDOM is in
1544 * effect.
1545 */
1546 error = page_cache_read(file, vmf->pgoff);
1547
1548 /*
1549 * The page we want has now been added to the page cache.
1550 * In the unlikely event that someone removed it in the
1551 * meantime, we'll just come back here and read it again.
1552 */
1553 if (error >= 0)
1554 goto retry_find;
1555
1556 /*
1557 * An error return from page_cache_read can result if the
1558 * system is low on memory, or a problem occurs while trying
1559 * to schedule I/O.
1560 */
1561 if (error == -ENOMEM)
1562 return VM_FAULT_OOM;
1563 return VM_FAULT_SIGBUS;
1564
1565 page_not_uptodate:
1566 /* IO error path */
1567 if (!did_readaround) {
1568 ret = VM_FAULT_MAJOR;
1569 count_vm_event(PGMAJFAULT);
1570 }
1571
1572 /*
1573 * Umm, take care of errors if the page isn't up-to-date.
1574 * Try to re-read it _once_. We do this synchronously,
1575 * because there really aren't any performance issues here
1576 * and we need to check for errors.
1577 */
1578 ClearPageError(page);
1579 error = mapping->a_ops->readpage(file, page);
1580 if (!error) {
1581 wait_on_page_locked(page);
1582 if (!PageUptodate(page))
1583 error = -EIO;
1584 }
1585 page_cache_release(page);
1586
1587 if (!error || error == AOP_TRUNCATED_PAGE)
1588 goto retry_find;
1589
1590 /* Things didn't work out. Return zero to tell the mm layer so. */
1591 shrink_readahead_size_eio(file, ra);
1592 return VM_FAULT_SIGBUS;
1593 }
1594 EXPORT_SYMBOL(filemap_fault);
1595
1596 struct vm_operations_struct generic_file_vm_ops = {
1597 .fault = filemap_fault,
1598 };
1599
1600 /* This is used for a general mmap of a disk file */
1601
1602 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1603 {
1604 struct address_space *mapping = file->f_mapping;
1605
1606 if (!mapping->a_ops->readpage)
1607 return -ENOEXEC;
1608 file_accessed(file);
1609 vma->vm_ops = &generic_file_vm_ops;
1610 vma->vm_flags |= VM_CAN_NONLINEAR;
1611 return 0;
1612 }
1613
1614 /*
1615 * This is for filesystems which do not implement ->writepage.
1616 */
1617 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1618 {
1619 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1620 return -EINVAL;
1621 return generic_file_mmap(file, vma);
1622 }
1623 #else
1624 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1625 {
1626 return -ENOSYS;
1627 }
1628 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1629 {
1630 return -ENOSYS;
1631 }
1632 #endif /* CONFIG_MMU */
1633
1634 EXPORT_SYMBOL(generic_file_mmap);
1635 EXPORT_SYMBOL(generic_file_readonly_mmap);
1636
1637 static struct page *__read_cache_page(struct address_space *mapping,
1638 pgoff_t index,
1639 int (*filler)(void *,struct page*),
1640 void *data)
1641 {
1642 struct page *page;
1643 int err;
1644 repeat:
1645 page = find_get_page(mapping, index);
1646 if (!page) {
1647 page = page_cache_alloc_cold(mapping);
1648 if (!page)
1649 return ERR_PTR(-ENOMEM);
1650 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1651 if (unlikely(err)) {
1652 page_cache_release(page);
1653 if (err == -EEXIST)
1654 goto repeat;
1655 /* Presumably ENOMEM for radix tree node */
1656 return ERR_PTR(err);
1657 }
1658 err = filler(data, page);
1659 if (err < 0) {
1660 page_cache_release(page);
1661 page = ERR_PTR(err);
1662 }
1663 }
1664 return page;
1665 }
1666
1667 /**
1668 * read_cache_page_async - read into page cache, fill it if needed
1669 * @mapping: the page's address_space
1670 * @index: the page index
1671 * @filler: function to perform the read
1672 * @data: destination for read data
1673 *
1674 * Same as read_cache_page, but don't wait for page to become unlocked
1675 * after submitting it to the filler.
1676 *
1677 * Read into the page cache. If a page already exists, and PageUptodate() is
1678 * not set, try to fill the page but don't wait for it to become unlocked.
1679 *
1680 * If the page does not get brought uptodate, return -EIO.
1681 */
1682 struct page *read_cache_page_async(struct address_space *mapping,
1683 pgoff_t index,
1684 int (*filler)(void *,struct page*),
1685 void *data)
1686 {
1687 struct page *page;
1688 int err;
1689
1690 retry:
1691 page = __read_cache_page(mapping, index, filler, data);
1692 if (IS_ERR(page))
1693 return page;
1694 if (PageUptodate(page))
1695 goto out;
1696
1697 lock_page(page);
1698 if (!page->mapping) {
1699 unlock_page(page);
1700 page_cache_release(page);
1701 goto retry;
1702 }
1703 if (PageUptodate(page)) {
1704 unlock_page(page);
1705 goto out;
1706 }
1707 err = filler(data, page);
1708 if (err < 0) {
1709 page_cache_release(page);
1710 return ERR_PTR(err);
1711 }
1712 out:
1713 mark_page_accessed(page);
1714 return page;
1715 }
1716 EXPORT_SYMBOL(read_cache_page_async);
1717
1718 /**
1719 * read_cache_page - read into page cache, fill it if needed
1720 * @mapping: the page's address_space
1721 * @index: the page index
1722 * @filler: function to perform the read
1723 * @data: destination for read data
1724 *
1725 * Read into the page cache. If a page already exists, and PageUptodate() is
1726 * not set, try to fill the page then wait for it to become unlocked.
1727 *
1728 * If the page does not get brought uptodate, return -EIO.
1729 */
1730 struct page *read_cache_page(struct address_space *mapping,
1731 pgoff_t index,
1732 int (*filler)(void *,struct page*),
1733 void *data)
1734 {
1735 struct page *page;
1736
1737 page = read_cache_page_async(mapping, index, filler, data);
1738 if (IS_ERR(page))
1739 goto out;
1740 wait_on_page_locked(page);
1741 if (!PageUptodate(page)) {
1742 page_cache_release(page);
1743 page = ERR_PTR(-EIO);
1744 }
1745 out:
1746 return page;
1747 }
1748 EXPORT_SYMBOL(read_cache_page);
1749
1750 /*
1751 * The logic we want is
1752 *
1753 * if suid or (sgid and xgrp)
1754 * remove privs
1755 */
1756 int should_remove_suid(struct dentry *dentry)
1757 {
1758 mode_t mode = dentry->d_inode->i_mode;
1759 int kill = 0;
1760
1761 /* suid always must be killed */
1762 if (unlikely(mode & S_ISUID))
1763 kill = ATTR_KILL_SUID;
1764
1765 /*
1766 * sgid without any exec bits is just a mandatory locking mark; leave
1767 * it alone. If some exec bits are set, it's a real sgid; kill it.
1768 */
1769 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1770 kill |= ATTR_KILL_SGID;
1771
1772 if (unlikely(kill && !capable(CAP_FSETID)))
1773 return kill;
1774
1775 return 0;
1776 }
1777 EXPORT_SYMBOL(should_remove_suid);
1778
1779 static int __remove_suid(struct dentry *dentry, int kill)
1780 {
1781 struct iattr newattrs;
1782
1783 newattrs.ia_valid = ATTR_FORCE | kill;
1784 return notify_change(dentry, &newattrs);
1785 }
1786
1787 int file_remove_suid(struct file *file)
1788 {
1789 struct dentry *dentry = file->f_path.dentry;
1790 int killsuid = should_remove_suid(dentry);
1791 int killpriv = security_inode_need_killpriv(dentry);
1792 int error = 0;
1793
1794 if (killpriv < 0)
1795 return killpriv;
1796 if (killpriv)
1797 error = security_inode_killpriv(dentry);
1798 if (!error && killsuid)
1799 error = __remove_suid(dentry, killsuid);
1800
1801 return error;
1802 }
1803 EXPORT_SYMBOL(file_remove_suid);
1804
1805 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1806 const struct iovec *iov, size_t base, size_t bytes)
1807 {
1808 size_t copied = 0, left = 0;
1809
1810 while (bytes) {
1811 char __user *buf = iov->iov_base + base;
1812 int copy = min(bytes, iov->iov_len - base);
1813
1814 base = 0;
1815 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1816 copied += copy;
1817 bytes -= copy;
1818 vaddr += copy;
1819 iov++;
1820
1821 if (unlikely(left))
1822 break;
1823 }
1824 return copied - left;
1825 }
1826
1827 /*
1828 * Copy as much as we can into the page and return the number of bytes which
1829 * were sucessfully copied. If a fault is encountered then return the number of
1830 * bytes which were copied.
1831 */
1832 size_t iov_iter_copy_from_user_atomic(struct page *page,
1833 struct iov_iter *i, unsigned long offset, size_t bytes)
1834 {
1835 char *kaddr;
1836 size_t copied;
1837
1838 BUG_ON(!in_atomic());
1839 kaddr = kmap_atomic(page, KM_USER0);
1840 if (likely(i->nr_segs == 1)) {
1841 int left;
1842 char __user *buf = i->iov->iov_base + i->iov_offset;
1843 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1844 buf, bytes);
1845 copied = bytes - left;
1846 } else {
1847 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1848 i->iov, i->iov_offset, bytes);
1849 }
1850 kunmap_atomic(kaddr, KM_USER0);
1851
1852 return copied;
1853 }
1854 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1855
1856 /*
1857 * This has the same sideeffects and return value as
1858 * iov_iter_copy_from_user_atomic().
1859 * The difference is that it attempts to resolve faults.
1860 * Page must not be locked.
1861 */
1862 size_t iov_iter_copy_from_user(struct page *page,
1863 struct iov_iter *i, unsigned long offset, size_t bytes)
1864 {
1865 char *kaddr;
1866 size_t copied;
1867
1868 kaddr = kmap(page);
1869 if (likely(i->nr_segs == 1)) {
1870 int left;
1871 char __user *buf = i->iov->iov_base + i->iov_offset;
1872 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1873 copied = bytes - left;
1874 } else {
1875 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1876 i->iov, i->iov_offset, bytes);
1877 }
1878 kunmap(page);
1879 return copied;
1880 }
1881 EXPORT_SYMBOL(iov_iter_copy_from_user);
1882
1883 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1884 {
1885 BUG_ON(i->count < bytes);
1886
1887 if (likely(i->nr_segs == 1)) {
1888 i->iov_offset += bytes;
1889 i->count -= bytes;
1890 } else {
1891 const struct iovec *iov = i->iov;
1892 size_t base = i->iov_offset;
1893
1894 /*
1895 * The !iov->iov_len check ensures we skip over unlikely
1896 * zero-length segments (without overruning the iovec).
1897 */
1898 while (bytes || unlikely(i->count && !iov->iov_len)) {
1899 int copy;
1900
1901 copy = min(bytes, iov->iov_len - base);
1902 BUG_ON(!i->count || i->count < copy);
1903 i->count -= copy;
1904 bytes -= copy;
1905 base += copy;
1906 if (iov->iov_len == base) {
1907 iov++;
1908 base = 0;
1909 }
1910 }
1911 i->iov = iov;
1912 i->iov_offset = base;
1913 }
1914 }
1915 EXPORT_SYMBOL(iov_iter_advance);
1916
1917 /*
1918 * Fault in the first iovec of the given iov_iter, to a maximum length
1919 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1920 * accessed (ie. because it is an invalid address).
1921 *
1922 * writev-intensive code may want this to prefault several iovecs -- that
1923 * would be possible (callers must not rely on the fact that _only_ the
1924 * first iovec will be faulted with the current implementation).
1925 */
1926 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1927 {
1928 char __user *buf = i->iov->iov_base + i->iov_offset;
1929 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1930 return fault_in_pages_readable(buf, bytes);
1931 }
1932 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1933
1934 /*
1935 * Return the count of just the current iov_iter segment.
1936 */
1937 size_t iov_iter_single_seg_count(struct iov_iter *i)
1938 {
1939 const struct iovec *iov = i->iov;
1940 if (i->nr_segs == 1)
1941 return i->count;
1942 else
1943 return min(i->count, iov->iov_len - i->iov_offset);
1944 }
1945 EXPORT_SYMBOL(iov_iter_single_seg_count);
1946
1947 /*
1948 * Performs necessary checks before doing a write
1949 *
1950 * Can adjust writing position or amount of bytes to write.
1951 * Returns appropriate error code that caller should return or
1952 * zero in case that write should be allowed.
1953 */
1954 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1955 {
1956 struct inode *inode = file->f_mapping->host;
1957 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1958
1959 if (unlikely(*pos < 0))
1960 return -EINVAL;
1961
1962 if (!isblk) {
1963 /* FIXME: this is for backwards compatibility with 2.4 */
1964 if (file->f_flags & O_APPEND)
1965 *pos = i_size_read(inode);
1966
1967 if (limit != RLIM_INFINITY) {
1968 if (*pos >= limit) {
1969 send_sig(SIGXFSZ, current, 0);
1970 return -EFBIG;
1971 }
1972 if (*count > limit - (typeof(limit))*pos) {
1973 *count = limit - (typeof(limit))*pos;
1974 }
1975 }
1976 }
1977
1978 /*
1979 * LFS rule
1980 */
1981 if (unlikely(*pos + *count > MAX_NON_LFS &&
1982 !(file->f_flags & O_LARGEFILE))) {
1983 if (*pos >= MAX_NON_LFS) {
1984 return -EFBIG;
1985 }
1986 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1987 *count = MAX_NON_LFS - (unsigned long)*pos;
1988 }
1989 }
1990
1991 /*
1992 * Are we about to exceed the fs block limit ?
1993 *
1994 * If we have written data it becomes a short write. If we have
1995 * exceeded without writing data we send a signal and return EFBIG.
1996 * Linus frestrict idea will clean these up nicely..
1997 */
1998 if (likely(!isblk)) {
1999 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2000 if (*count || *pos > inode->i_sb->s_maxbytes) {
2001 return -EFBIG;
2002 }
2003 /* zero-length writes at ->s_maxbytes are OK */
2004 }
2005
2006 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2007 *count = inode->i_sb->s_maxbytes - *pos;
2008 } else {
2009 #ifdef CONFIG_BLOCK
2010 loff_t isize;
2011 if (bdev_read_only(I_BDEV(inode)))
2012 return -EPERM;
2013 isize = i_size_read(inode);
2014 if (*pos >= isize) {
2015 if (*count || *pos > isize)
2016 return -ENOSPC;
2017 }
2018
2019 if (*pos + *count > isize)
2020 *count = isize - *pos;
2021 #else
2022 return -EPERM;
2023 #endif
2024 }
2025 return 0;
2026 }
2027 EXPORT_SYMBOL(generic_write_checks);
2028
2029 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2030 loff_t pos, unsigned len, unsigned flags,
2031 struct page **pagep, void **fsdata)
2032 {
2033 const struct address_space_operations *aops = mapping->a_ops;
2034
2035 if (aops->write_begin) {
2036 return aops->write_begin(file, mapping, pos, len, flags,
2037 pagep, fsdata);
2038 } else {
2039 int ret;
2040 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2041 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2042 struct inode *inode = mapping->host;
2043 struct page *page;
2044 again:
2045 page = __grab_cache_page(mapping, index);
2046 *pagep = page;
2047 if (!page)
2048 return -ENOMEM;
2049
2050 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
2051 /*
2052 * There is no way to resolve a short write situation
2053 * for a !Uptodate page (except by double copying in
2054 * the caller done by generic_perform_write_2copy).
2055 *
2056 * Instead, we have to bring it uptodate here.
2057 */
2058 ret = aops->readpage(file, page);
2059 page_cache_release(page);
2060 if (ret) {
2061 if (ret == AOP_TRUNCATED_PAGE)
2062 goto again;
2063 return ret;
2064 }
2065 goto again;
2066 }
2067
2068 ret = aops->prepare_write(file, page, offset, offset+len);
2069 if (ret) {
2070 unlock_page(page);
2071 page_cache_release(page);
2072 if (pos + len > inode->i_size)
2073 vmtruncate(inode, inode->i_size);
2074 }
2075 return ret;
2076 }
2077 }
2078 EXPORT_SYMBOL(pagecache_write_begin);
2079
2080 int pagecache_write_end(struct file *file, struct address_space *mapping,
2081 loff_t pos, unsigned len, unsigned copied,
2082 struct page *page, void *fsdata)
2083 {
2084 const struct address_space_operations *aops = mapping->a_ops;
2085 int ret;
2086
2087 if (aops->write_end) {
2088 mark_page_accessed(page);
2089 ret = aops->write_end(file, mapping, pos, len, copied,
2090 page, fsdata);
2091 } else {
2092 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2093 struct inode *inode = mapping->host;
2094
2095 flush_dcache_page(page);
2096 ret = aops->commit_write(file, page, offset, offset+len);
2097 unlock_page(page);
2098 mark_page_accessed(page);
2099 page_cache_release(page);
2100
2101 if (ret < 0) {
2102 if (pos + len > inode->i_size)
2103 vmtruncate(inode, inode->i_size);
2104 } else if (ret > 0)
2105 ret = min_t(size_t, copied, ret);
2106 else
2107 ret = copied;
2108 }
2109
2110 return ret;
2111 }
2112 EXPORT_SYMBOL(pagecache_write_end);
2113
2114 ssize_t
2115 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2116 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2117 size_t count, size_t ocount)
2118 {
2119 struct file *file = iocb->ki_filp;
2120 struct address_space *mapping = file->f_mapping;
2121 struct inode *inode = mapping->host;
2122 ssize_t written;
2123 size_t write_len;
2124 pgoff_t end;
2125
2126 if (count != ocount)
2127 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2128
2129 /*
2130 * Unmap all mmappings of the file up-front.
2131 *
2132 * This will cause any pte dirty bits to be propagated into the
2133 * pageframes for the subsequent filemap_write_and_wait().
2134 */
2135 write_len = iov_length(iov, *nr_segs);
2136 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2137 if (mapping_mapped(mapping))
2138 unmap_mapping_range(mapping, pos, write_len, 0);
2139
2140 written = filemap_write_and_wait(mapping);
2141 if (written)
2142 goto out;
2143
2144 /*
2145 * After a write we want buffered reads to be sure to go to disk to get
2146 * the new data. We invalidate clean cached page from the region we're
2147 * about to write. We do this *before* the write so that we can return
2148 * without clobbering -EIOCBQUEUED from ->direct_IO().
2149 */
2150 if (mapping->nrpages) {
2151 written = invalidate_inode_pages2_range(mapping,
2152 pos >> PAGE_CACHE_SHIFT, end);
2153 /*
2154 * If a page can not be invalidated, return 0 to fall back
2155 * to buffered write.
2156 */
2157 if (written) {
2158 if (written == -EBUSY)
2159 return 0;
2160 goto out;
2161 }
2162 }
2163
2164 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2165
2166 /*
2167 * Finally, try again to invalidate clean pages which might have been
2168 * cached by non-direct readahead, or faulted in by get_user_pages()
2169 * if the source of the write was an mmap'ed region of the file
2170 * we're writing. Either one is a pretty crazy thing to do,
2171 * so we don't support it 100%. If this invalidation
2172 * fails, tough, the write still worked...
2173 */
2174 if (mapping->nrpages) {
2175 invalidate_inode_pages2_range(mapping,
2176 pos >> PAGE_CACHE_SHIFT, end);
2177 }
2178
2179 if (written > 0) {
2180 loff_t end = pos + written;
2181 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2182 i_size_write(inode, end);
2183 mark_inode_dirty(inode);
2184 }
2185 *ppos = end;
2186 }
2187
2188 /*
2189 * Sync the fs metadata but not the minor inode changes and
2190 * of course not the data as we did direct DMA for the IO.
2191 * i_mutex is held, which protects generic_osync_inode() from
2192 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2193 */
2194 out:
2195 if ((written >= 0 || written == -EIOCBQUEUED) &&
2196 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2197 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2198 if (err < 0)
2199 written = err;
2200 }
2201 return written;
2202 }
2203 EXPORT_SYMBOL(generic_file_direct_write);
2204
2205 /*
2206 * Find or create a page at the given pagecache position. Return the locked
2207 * page. This function is specifically for buffered writes.
2208 */
2209 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2210 {
2211 int status;
2212 struct page *page;
2213 repeat:
2214 page = find_lock_page(mapping, index);
2215 if (likely(page))
2216 return page;
2217
2218 page = page_cache_alloc(mapping);
2219 if (!page)
2220 return NULL;
2221 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2222 if (unlikely(status)) {
2223 page_cache_release(page);
2224 if (status == -EEXIST)
2225 goto repeat;
2226 return NULL;
2227 }
2228 return page;
2229 }
2230 EXPORT_SYMBOL(__grab_cache_page);
2231
2232 static ssize_t generic_perform_write_2copy(struct file *file,
2233 struct iov_iter *i, loff_t pos)
2234 {
2235 struct address_space *mapping = file->f_mapping;
2236 const struct address_space_operations *a_ops = mapping->a_ops;
2237 struct inode *inode = mapping->host;
2238 long status = 0;
2239 ssize_t written = 0;
2240
2241 do {
2242 struct page *src_page;
2243 struct page *page;
2244 pgoff_t index; /* Pagecache index for current page */
2245 unsigned long offset; /* Offset into pagecache page */
2246 unsigned long bytes; /* Bytes to write to page */
2247 size_t copied; /* Bytes copied from user */
2248
2249 offset = (pos & (PAGE_CACHE_SIZE - 1));
2250 index = pos >> PAGE_CACHE_SHIFT;
2251 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252 iov_iter_count(i));
2253
2254 /*
2255 * a non-NULL src_page indicates that we're doing the
2256 * copy via get_user_pages and kmap.
2257 */
2258 src_page = NULL;
2259
2260 /*
2261 * Bring in the user page that we will copy from _first_.
2262 * Otherwise there's a nasty deadlock on copying from the
2263 * same page as we're writing to, without it being marked
2264 * up-to-date.
2265 *
2266 * Not only is this an optimisation, but it is also required
2267 * to check that the address is actually valid, when atomic
2268 * usercopies are used, below.
2269 */
2270 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2271 status = -EFAULT;
2272 break;
2273 }
2274
2275 page = __grab_cache_page(mapping, index);
2276 if (!page) {
2277 status = -ENOMEM;
2278 break;
2279 }
2280
2281 /*
2282 * non-uptodate pages cannot cope with short copies, and we
2283 * cannot take a pagefault with the destination page locked.
2284 * So pin the source page to copy it.
2285 */
2286 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2287 unlock_page(page);
2288
2289 src_page = alloc_page(GFP_KERNEL);
2290 if (!src_page) {
2291 page_cache_release(page);
2292 status = -ENOMEM;
2293 break;
2294 }
2295
2296 /*
2297 * Cannot get_user_pages with a page locked for the
2298 * same reason as we can't take a page fault with a
2299 * page locked (as explained below).
2300 */
2301 copied = iov_iter_copy_from_user(src_page, i,
2302 offset, bytes);
2303 if (unlikely(copied == 0)) {
2304 status = -EFAULT;
2305 page_cache_release(page);
2306 page_cache_release(src_page);
2307 break;
2308 }
2309 bytes = copied;
2310
2311 lock_page(page);
2312 /*
2313 * Can't handle the page going uptodate here, because
2314 * that means we would use non-atomic usercopies, which
2315 * zero out the tail of the page, which can cause
2316 * zeroes to become transiently visible. We could just
2317 * use a non-zeroing copy, but the APIs aren't too
2318 * consistent.
2319 */
2320 if (unlikely(!page->mapping || PageUptodate(page))) {
2321 unlock_page(page);
2322 page_cache_release(page);
2323 page_cache_release(src_page);
2324 continue;
2325 }
2326 }
2327
2328 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2329 if (unlikely(status))
2330 goto fs_write_aop_error;
2331
2332 if (!src_page) {
2333 /*
2334 * Must not enter the pagefault handler here, because
2335 * we hold the page lock, so we might recursively
2336 * deadlock on the same lock, or get an ABBA deadlock
2337 * against a different lock, or against the mmap_sem
2338 * (which nests outside the page lock). So increment
2339 * preempt count, and use _atomic usercopies.
2340 *
2341 * The page is uptodate so we are OK to encounter a
2342 * short copy: if unmodified parts of the page are
2343 * marked dirty and written out to disk, it doesn't
2344 * really matter.
2345 */
2346 pagefault_disable();
2347 copied = iov_iter_copy_from_user_atomic(page, i,
2348 offset, bytes);
2349 pagefault_enable();
2350 } else {
2351 void *src, *dst;
2352 src = kmap_atomic(src_page, KM_USER0);
2353 dst = kmap_atomic(page, KM_USER1);
2354 memcpy(dst + offset, src + offset, bytes);
2355 kunmap_atomic(dst, KM_USER1);
2356 kunmap_atomic(src, KM_USER0);
2357 copied = bytes;
2358 }
2359 flush_dcache_page(page);
2360
2361 status = a_ops->commit_write(file, page, offset, offset+bytes);
2362 if (unlikely(status < 0))
2363 goto fs_write_aop_error;
2364 if (unlikely(status > 0)) /* filesystem did partial write */
2365 copied = min_t(size_t, copied, status);
2366
2367 unlock_page(page);
2368 mark_page_accessed(page);
2369 page_cache_release(page);
2370 if (src_page)
2371 page_cache_release(src_page);
2372
2373 iov_iter_advance(i, copied);
2374 pos += copied;
2375 written += copied;
2376
2377 balance_dirty_pages_ratelimited(mapping);
2378 cond_resched();
2379 continue;
2380
2381 fs_write_aop_error:
2382 unlock_page(page);
2383 page_cache_release(page);
2384 if (src_page)
2385 page_cache_release(src_page);
2386
2387 /*
2388 * prepare_write() may have instantiated a few blocks
2389 * outside i_size. Trim these off again. Don't need
2390 * i_size_read because we hold i_mutex.
2391 */
2392 if (pos + bytes > inode->i_size)
2393 vmtruncate(inode, inode->i_size);
2394 break;
2395 } while (iov_iter_count(i));
2396
2397 return written ? written : status;
2398 }
2399
2400 static ssize_t generic_perform_write(struct file *file,
2401 struct iov_iter *i, loff_t pos)
2402 {
2403 struct address_space *mapping = file->f_mapping;
2404 const struct address_space_operations *a_ops = mapping->a_ops;
2405 long status = 0;
2406 ssize_t written = 0;
2407 unsigned int flags = 0;
2408
2409 /*
2410 * Copies from kernel address space cannot fail (NFSD is a big user).
2411 */
2412 if (segment_eq(get_fs(), KERNEL_DS))
2413 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2414
2415 do {
2416 struct page *page;
2417 pgoff_t index; /* Pagecache index for current page */
2418 unsigned long offset; /* Offset into pagecache page */
2419 unsigned long bytes; /* Bytes to write to page */
2420 size_t copied; /* Bytes copied from user */
2421 void *fsdata;
2422
2423 offset = (pos & (PAGE_CACHE_SIZE - 1));
2424 index = pos >> PAGE_CACHE_SHIFT;
2425 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2426 iov_iter_count(i));
2427
2428 again:
2429
2430 /*
2431 * Bring in the user page that we will copy from _first_.
2432 * Otherwise there's a nasty deadlock on copying from the
2433 * same page as we're writing to, without it being marked
2434 * up-to-date.
2435 *
2436 * Not only is this an optimisation, but it is also required
2437 * to check that the address is actually valid, when atomic
2438 * usercopies are used, below.
2439 */
2440 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2441 status = -EFAULT;
2442 break;
2443 }
2444
2445 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2446 &page, &fsdata);
2447 if (unlikely(status))
2448 break;
2449
2450 pagefault_disable();
2451 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2452 pagefault_enable();
2453 flush_dcache_page(page);
2454
2455 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2456 page, fsdata);
2457 if (unlikely(status < 0))
2458 break;
2459 copied = status;
2460
2461 cond_resched();
2462
2463 iov_iter_advance(i, copied);
2464 if (unlikely(copied == 0)) {
2465 /*
2466 * If we were unable to copy any data at all, we must
2467 * fall back to a single segment length write.
2468 *
2469 * If we didn't fallback here, we could livelock
2470 * because not all segments in the iov can be copied at
2471 * once without a pagefault.
2472 */
2473 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2474 iov_iter_single_seg_count(i));
2475 goto again;
2476 }
2477 pos += copied;
2478 written += copied;
2479
2480 balance_dirty_pages_ratelimited(mapping);
2481
2482 } while (iov_iter_count(i));
2483
2484 return written ? written : status;
2485 }
2486
2487 ssize_t
2488 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2489 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2490 size_t count, ssize_t written)
2491 {
2492 struct file *file = iocb->ki_filp;
2493 struct address_space *mapping = file->f_mapping;
2494 const struct address_space_operations *a_ops = mapping->a_ops;
2495 struct inode *inode = mapping->host;
2496 ssize_t status;
2497 struct iov_iter i;
2498
2499 iov_iter_init(&i, iov, nr_segs, count, written);
2500 if (a_ops->write_begin)
2501 status = generic_perform_write(file, &i, pos);
2502 else
2503 status = generic_perform_write_2copy(file, &i, pos);
2504
2505 if (likely(status >= 0)) {
2506 written += status;
2507 *ppos = pos + status;
2508
2509 /*
2510 * For now, when the user asks for O_SYNC, we'll actually give
2511 * O_DSYNC
2512 */
2513 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2514 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2515 status = generic_osync_inode(inode, mapping,
2516 OSYNC_METADATA|OSYNC_DATA);
2517 }
2518 }
2519
2520 /*
2521 * If we get here for O_DIRECT writes then we must have fallen through
2522 * to buffered writes (block instantiation inside i_size). So we sync
2523 * the file data here, to try to honour O_DIRECT expectations.
2524 */
2525 if (unlikely(file->f_flags & O_DIRECT) && written)
2526 status = filemap_write_and_wait(mapping);
2527
2528 return written ? written : status;
2529 }
2530 EXPORT_SYMBOL(generic_file_buffered_write);
2531
2532 static ssize_t
2533 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2534 unsigned long nr_segs, loff_t *ppos)
2535 {
2536 struct file *file = iocb->ki_filp;
2537 struct address_space * mapping = file->f_mapping;
2538 size_t ocount; /* original count */
2539 size_t count; /* after file limit checks */
2540 struct inode *inode = mapping->host;
2541 loff_t pos;
2542 ssize_t written;
2543 ssize_t err;
2544
2545 ocount = 0;
2546 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2547 if (err)
2548 return err;
2549
2550 count = ocount;
2551 pos = *ppos;
2552
2553 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2554
2555 /* We can write back this queue in page reclaim */
2556 current->backing_dev_info = mapping->backing_dev_info;
2557 written = 0;
2558
2559 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2560 if (err)
2561 goto out;
2562
2563 if (count == 0)
2564 goto out;
2565
2566 err = file_remove_suid(file);
2567 if (err)
2568 goto out;
2569
2570 file_update_time(file);
2571
2572 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2573 if (unlikely(file->f_flags & O_DIRECT)) {
2574 loff_t endbyte;
2575 ssize_t written_buffered;
2576
2577 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2578 ppos, count, ocount);
2579 if (written < 0 || written == count)
2580 goto out;
2581 /*
2582 * direct-io write to a hole: fall through to buffered I/O
2583 * for completing the rest of the request.
2584 */
2585 pos += written;
2586 count -= written;
2587 written_buffered = generic_file_buffered_write(iocb, iov,
2588 nr_segs, pos, ppos, count,
2589 written);
2590 /*
2591 * If generic_file_buffered_write() retuned a synchronous error
2592 * then we want to return the number of bytes which were
2593 * direct-written, or the error code if that was zero. Note
2594 * that this differs from normal direct-io semantics, which
2595 * will return -EFOO even if some bytes were written.
2596 */
2597 if (written_buffered < 0) {
2598 err = written_buffered;
2599 goto out;
2600 }
2601
2602 /*
2603 * We need to ensure that the page cache pages are written to
2604 * disk and invalidated to preserve the expected O_DIRECT
2605 * semantics.
2606 */
2607 endbyte = pos + written_buffered - written - 1;
2608 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2609 SYNC_FILE_RANGE_WAIT_BEFORE|
2610 SYNC_FILE_RANGE_WRITE|
2611 SYNC_FILE_RANGE_WAIT_AFTER);
2612 if (err == 0) {
2613 written = written_buffered;
2614 invalidate_mapping_pages(mapping,
2615 pos >> PAGE_CACHE_SHIFT,
2616 endbyte >> PAGE_CACHE_SHIFT);
2617 } else {
2618 /*
2619 * We don't know how much we wrote, so just return
2620 * the number of bytes which were direct-written
2621 */
2622 }
2623 } else {
2624 written = generic_file_buffered_write(iocb, iov, nr_segs,
2625 pos, ppos, count, written);
2626 }
2627 out:
2628 current->backing_dev_info = NULL;
2629 return written ? written : err;
2630 }
2631
2632 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2633 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2634 {
2635 struct file *file = iocb->ki_filp;
2636 struct address_space *mapping = file->f_mapping;
2637 struct inode *inode = mapping->host;
2638 ssize_t ret;
2639
2640 BUG_ON(iocb->ki_pos != pos);
2641
2642 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2643 &iocb->ki_pos);
2644
2645 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2646 ssize_t err;
2647
2648 err = sync_page_range_nolock(inode, mapping, pos, ret);
2649 if (err < 0)
2650 ret = err;
2651 }
2652 return ret;
2653 }
2654 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2655
2656 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2657 unsigned long nr_segs, loff_t pos)
2658 {
2659 struct file *file = iocb->ki_filp;
2660 struct address_space *mapping = file->f_mapping;
2661 struct inode *inode = mapping->host;
2662 ssize_t ret;
2663
2664 BUG_ON(iocb->ki_pos != pos);
2665
2666 mutex_lock(&inode->i_mutex);
2667 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2668 &iocb->ki_pos);
2669 mutex_unlock(&inode->i_mutex);
2670
2671 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2672 ssize_t err;
2673
2674 err = sync_page_range(inode, mapping, pos, ret);
2675 if (err < 0)
2676 ret = err;
2677 }
2678 return ret;
2679 }
2680 EXPORT_SYMBOL(generic_file_aio_write);
2681
2682 /**
2683 * try_to_release_page() - release old fs-specific metadata on a page
2684 *
2685 * @page: the page which the kernel is trying to free
2686 * @gfp_mask: memory allocation flags (and I/O mode)
2687 *
2688 * The address_space is to try to release any data against the page
2689 * (presumably at page->private). If the release was successful, return `1'.
2690 * Otherwise return zero.
2691 *
2692 * The @gfp_mask argument specifies whether I/O may be performed to release
2693 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2694 *
2695 */
2696 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2697 {
2698 struct address_space * const mapping = page->mapping;
2699
2700 BUG_ON(!PageLocked(page));
2701 if (PageWriteback(page))
2702 return 0;
2703
2704 if (mapping && mapping->a_ops->releasepage)
2705 return mapping->a_ops->releasepage(page, gfp_mask);
2706 return try_to_free_buffers(page);
2707 }
2708
2709 EXPORT_SYMBOL(try_to_release_page);