Merge branch 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (shadowp)
134 *shadowp = p;
135 }
136 __radix_tree_replace(&mapping->page_tree, node, slot, page,
137 workingset_update_node, mapping);
138 mapping->nrpages++;
139 return 0;
140 }
141
142 static void page_cache_tree_delete(struct address_space *mapping,
143 struct page *page, void *shadow)
144 {
145 int i, nr;
146
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(PageTail(page), page);
152 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153
154 for (i = 0; i < nr; i++) {
155 struct radix_tree_node *node;
156 void **slot;
157
158 __radix_tree_lookup(&mapping->page_tree, page->index + i,
159 &node, &slot);
160
161 VM_BUG_ON_PAGE(!node && nr != 1, page);
162
163 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 workingset_update_node, mapping);
166 }
167
168 if (shadow) {
169 mapping->nrexceptional += nr;
170 /*
171 * Make sure the nrexceptional update is committed before
172 * the nrpages update so that final truncate racing
173 * with reclaim does not see both counters 0 at the
174 * same time and miss a shadow entry.
175 */
176 smp_wmb();
177 }
178 mapping->nrpages -= nr;
179 }
180
181 /*
182 * Delete a page from the page cache and free it. Caller has to make
183 * sure the page is locked and that nobody else uses it - or that usage
184 * is safe. The caller must hold the mapping's tree_lock.
185 */
186 void __delete_from_page_cache(struct page *page, void *shadow)
187 {
188 struct address_space *mapping = page->mapping;
189 int nr = hpage_nr_pages(page);
190
191 trace_mm_filemap_delete_from_page_cache(page);
192 /*
193 * if we're uptodate, flush out into the cleancache, otherwise
194 * invalidate any existing cleancache entries. We can't leave
195 * stale data around in the cleancache once our page is gone
196 */
197 if (PageUptodate(page) && PageMappedToDisk(page))
198 cleancache_put_page(page);
199 else
200 cleancache_invalidate_page(mapping, page);
201
202 VM_BUG_ON_PAGE(PageTail(page), page);
203 VM_BUG_ON_PAGE(page_mapped(page), page);
204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 int mapcount;
206
207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
208 current->comm, page_to_pfn(page));
209 dump_page(page, "still mapped when deleted");
210 dump_stack();
211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212
213 mapcount = page_mapcount(page);
214 if (mapping_exiting(mapping) &&
215 page_count(page) >= mapcount + 2) {
216 /*
217 * All vmas have already been torn down, so it's
218 * a good bet that actually the page is unmapped,
219 * and we'd prefer not to leak it: if we're wrong,
220 * some other bad page check should catch it later.
221 */
222 page_mapcount_reset(page);
223 page_ref_sub(page, mapcount);
224 }
225 }
226
227 page_cache_tree_delete(mapping, page, shadow);
228
229 page->mapping = NULL;
230 /* Leave page->index set: truncation lookup relies upon it */
231
232 /* hugetlb pages do not participate in page cache accounting. */
233 if (PageHuge(page))
234 return;
235
236 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
237 if (PageSwapBacked(page)) {
238 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
239 if (PageTransHuge(page))
240 __dec_node_page_state(page, NR_SHMEM_THPS);
241 } else {
242 VM_BUG_ON_PAGE(PageTransHuge(page), page);
243 }
244
245 /*
246 * At this point page must be either written or cleaned by truncate.
247 * Dirty page here signals a bug and loss of unwritten data.
248 *
249 * This fixes dirty accounting after removing the page entirely but
250 * leaves PageDirty set: it has no effect for truncated page and
251 * anyway will be cleared before returning page into buddy allocator.
252 */
253 if (WARN_ON_ONCE(PageDirty(page)))
254 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 }
256
257 /**
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
260 *
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
264 */
265 void delete_from_page_cache(struct page *page)
266 {
267 struct address_space *mapping = page_mapping(page);
268 unsigned long flags;
269 void (*freepage)(struct page *);
270
271 BUG_ON(!PageLocked(page));
272
273 freepage = mapping->a_ops->freepage;
274
275 spin_lock_irqsave(&mapping->tree_lock, flags);
276 __delete_from_page_cache(page, NULL);
277 spin_unlock_irqrestore(&mapping->tree_lock, flags);
278
279 if (freepage)
280 freepage(page);
281
282 if (PageTransHuge(page) && !PageHuge(page)) {
283 page_ref_sub(page, HPAGE_PMD_NR);
284 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
285 } else {
286 put_page(page);
287 }
288 }
289 EXPORT_SYMBOL(delete_from_page_cache);
290
291 int filemap_check_errors(struct address_space *mapping)
292 {
293 int ret = 0;
294 /* Check for outstanding write errors */
295 if (test_bit(AS_ENOSPC, &mapping->flags) &&
296 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 ret = -ENOSPC;
298 if (test_bit(AS_EIO, &mapping->flags) &&
299 test_and_clear_bit(AS_EIO, &mapping->flags))
300 ret = -EIO;
301 return ret;
302 }
303 EXPORT_SYMBOL(filemap_check_errors);
304
305 static int filemap_check_and_keep_errors(struct address_space *mapping)
306 {
307 /* Check for outstanding write errors */
308 if (test_bit(AS_EIO, &mapping->flags))
309 return -EIO;
310 if (test_bit(AS_ENOSPC, &mapping->flags))
311 return -ENOSPC;
312 return 0;
313 }
314
315 /**
316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317 * @mapping: address space structure to write
318 * @start: offset in bytes where the range starts
319 * @end: offset in bytes where the range ends (inclusive)
320 * @sync_mode: enable synchronous operation
321 *
322 * Start writeback against all of a mapping's dirty pages that lie
323 * within the byte offsets <start, end> inclusive.
324 *
325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326 * opposed to a regular memory cleansing writeback. The difference between
327 * these two operations is that if a dirty page/buffer is encountered, it must
328 * be waited upon, and not just skipped over.
329 */
330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
331 loff_t end, int sync_mode)
332 {
333 int ret;
334 struct writeback_control wbc = {
335 .sync_mode = sync_mode,
336 .nr_to_write = LONG_MAX,
337 .range_start = start,
338 .range_end = end,
339 };
340
341 if (!mapping_cap_writeback_dirty(mapping))
342 return 0;
343
344 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
345 ret = do_writepages(mapping, &wbc);
346 wbc_detach_inode(&wbc);
347 return ret;
348 }
349
350 static inline int __filemap_fdatawrite(struct address_space *mapping,
351 int sync_mode)
352 {
353 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
354 }
355
356 int filemap_fdatawrite(struct address_space *mapping)
357 {
358 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
359 }
360 EXPORT_SYMBOL(filemap_fdatawrite);
361
362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
363 loff_t end)
364 {
365 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite_range);
368
369 /**
370 * filemap_flush - mostly a non-blocking flush
371 * @mapping: target address_space
372 *
373 * This is a mostly non-blocking flush. Not suitable for data-integrity
374 * purposes - I/O may not be started against all dirty pages.
375 */
376 int filemap_flush(struct address_space *mapping)
377 {
378 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
379 }
380 EXPORT_SYMBOL(filemap_flush);
381
382 /**
383 * filemap_range_has_page - check if a page exists in range.
384 * @mapping: address space within which to check
385 * @start_byte: offset in bytes where the range starts
386 * @end_byte: offset in bytes where the range ends (inclusive)
387 *
388 * Find at least one page in the range supplied, usually used to check if
389 * direct writing in this range will trigger a writeback.
390 */
391 bool filemap_range_has_page(struct address_space *mapping,
392 loff_t start_byte, loff_t end_byte)
393 {
394 pgoff_t index = start_byte >> PAGE_SHIFT;
395 pgoff_t end = end_byte >> PAGE_SHIFT;
396 struct page *page;
397
398 if (end_byte < start_byte)
399 return false;
400
401 if (mapping->nrpages == 0)
402 return false;
403
404 if (!find_get_pages_range(mapping, &index, end, 1, &page))
405 return false;
406 put_page(page);
407 return true;
408 }
409 EXPORT_SYMBOL(filemap_range_has_page);
410
411 static void __filemap_fdatawait_range(struct address_space *mapping,
412 loff_t start_byte, loff_t end_byte)
413 {
414 pgoff_t index = start_byte >> PAGE_SHIFT;
415 pgoff_t end = end_byte >> PAGE_SHIFT;
416 struct pagevec pvec;
417 int nr_pages;
418
419 if (end_byte < start_byte)
420 return;
421
422 pagevec_init(&pvec, 0);
423 while ((index <= end) &&
424 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
425 PAGECACHE_TAG_WRITEBACK,
426 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
427 unsigned i;
428
429 for (i = 0; i < nr_pages; i++) {
430 struct page *page = pvec.pages[i];
431
432 /* until radix tree lookup accepts end_index */
433 if (page->index > end)
434 continue;
435
436 wait_on_page_writeback(page);
437 ClearPageError(page);
438 }
439 pagevec_release(&pvec);
440 cond_resched();
441 }
442 }
443
444 /**
445 * filemap_fdatawait_range - wait for writeback to complete
446 * @mapping: address space structure to wait for
447 * @start_byte: offset in bytes where the range starts
448 * @end_byte: offset in bytes where the range ends (inclusive)
449 *
450 * Walk the list of under-writeback pages of the given address space
451 * in the given range and wait for all of them. Check error status of
452 * the address space and return it.
453 *
454 * Since the error status of the address space is cleared by this function,
455 * callers are responsible for checking the return value and handling and/or
456 * reporting the error.
457 */
458 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
459 loff_t end_byte)
460 {
461 __filemap_fdatawait_range(mapping, start_byte, end_byte);
462 return filemap_check_errors(mapping);
463 }
464 EXPORT_SYMBOL(filemap_fdatawait_range);
465
466 /**
467 * file_fdatawait_range - wait for writeback to complete
468 * @file: file pointing to address space structure to wait for
469 * @start_byte: offset in bytes where the range starts
470 * @end_byte: offset in bytes where the range ends (inclusive)
471 *
472 * Walk the list of under-writeback pages of the address space that file
473 * refers to, in the given range and wait for all of them. Check error
474 * status of the address space vs. the file->f_wb_err cursor and return it.
475 *
476 * Since the error status of the file is advanced by this function,
477 * callers are responsible for checking the return value and handling and/or
478 * reporting the error.
479 */
480 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
481 {
482 struct address_space *mapping = file->f_mapping;
483
484 __filemap_fdatawait_range(mapping, start_byte, end_byte);
485 return file_check_and_advance_wb_err(file);
486 }
487 EXPORT_SYMBOL(file_fdatawait_range);
488
489 /**
490 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
491 * @mapping: address space structure to wait for
492 *
493 * Walk the list of under-writeback pages of the given address space
494 * and wait for all of them. Unlike filemap_fdatawait(), this function
495 * does not clear error status of the address space.
496 *
497 * Use this function if callers don't handle errors themselves. Expected
498 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
499 * fsfreeze(8)
500 */
501 int filemap_fdatawait_keep_errors(struct address_space *mapping)
502 {
503 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
504 return filemap_check_and_keep_errors(mapping);
505 }
506 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
507
508 static bool mapping_needs_writeback(struct address_space *mapping)
509 {
510 return (!dax_mapping(mapping) && mapping->nrpages) ||
511 (dax_mapping(mapping) && mapping->nrexceptional);
512 }
513
514 int filemap_write_and_wait(struct address_space *mapping)
515 {
516 int err = 0;
517
518 if (mapping_needs_writeback(mapping)) {
519 err = filemap_fdatawrite(mapping);
520 /*
521 * Even if the above returned error, the pages may be
522 * written partially (e.g. -ENOSPC), so we wait for it.
523 * But the -EIO is special case, it may indicate the worst
524 * thing (e.g. bug) happened, so we avoid waiting for it.
525 */
526 if (err != -EIO) {
527 int err2 = filemap_fdatawait(mapping);
528 if (!err)
529 err = err2;
530 } else {
531 /* Clear any previously stored errors */
532 filemap_check_errors(mapping);
533 }
534 } else {
535 err = filemap_check_errors(mapping);
536 }
537 return err;
538 }
539 EXPORT_SYMBOL(filemap_write_and_wait);
540
541 /**
542 * filemap_write_and_wait_range - write out & wait on a file range
543 * @mapping: the address_space for the pages
544 * @lstart: offset in bytes where the range starts
545 * @lend: offset in bytes where the range ends (inclusive)
546 *
547 * Write out and wait upon file offsets lstart->lend, inclusive.
548 *
549 * Note that @lend is inclusive (describes the last byte to be written) so
550 * that this function can be used to write to the very end-of-file (end = -1).
551 */
552 int filemap_write_and_wait_range(struct address_space *mapping,
553 loff_t lstart, loff_t lend)
554 {
555 int err = 0;
556
557 if (mapping_needs_writeback(mapping)) {
558 err = __filemap_fdatawrite_range(mapping, lstart, lend,
559 WB_SYNC_ALL);
560 /* See comment of filemap_write_and_wait() */
561 if (err != -EIO) {
562 int err2 = filemap_fdatawait_range(mapping,
563 lstart, lend);
564 if (!err)
565 err = err2;
566 } else {
567 /* Clear any previously stored errors */
568 filemap_check_errors(mapping);
569 }
570 } else {
571 err = filemap_check_errors(mapping);
572 }
573 return err;
574 }
575 EXPORT_SYMBOL(filemap_write_and_wait_range);
576
577 void __filemap_set_wb_err(struct address_space *mapping, int err)
578 {
579 errseq_t eseq = errseq_set(&mapping->wb_err, err);
580
581 trace_filemap_set_wb_err(mapping, eseq);
582 }
583 EXPORT_SYMBOL(__filemap_set_wb_err);
584
585 /**
586 * file_check_and_advance_wb_err - report wb error (if any) that was previously
587 * and advance wb_err to current one
588 * @file: struct file on which the error is being reported
589 *
590 * When userland calls fsync (or something like nfsd does the equivalent), we
591 * want to report any writeback errors that occurred since the last fsync (or
592 * since the file was opened if there haven't been any).
593 *
594 * Grab the wb_err from the mapping. If it matches what we have in the file,
595 * then just quickly return 0. The file is all caught up.
596 *
597 * If it doesn't match, then take the mapping value, set the "seen" flag in
598 * it and try to swap it into place. If it works, or another task beat us
599 * to it with the new value, then update the f_wb_err and return the error
600 * portion. The error at this point must be reported via proper channels
601 * (a'la fsync, or NFS COMMIT operation, etc.).
602 *
603 * While we handle mapping->wb_err with atomic operations, the f_wb_err
604 * value is protected by the f_lock since we must ensure that it reflects
605 * the latest value swapped in for this file descriptor.
606 */
607 int file_check_and_advance_wb_err(struct file *file)
608 {
609 int err = 0;
610 errseq_t old = READ_ONCE(file->f_wb_err);
611 struct address_space *mapping = file->f_mapping;
612
613 /* Locklessly handle the common case where nothing has changed */
614 if (errseq_check(&mapping->wb_err, old)) {
615 /* Something changed, must use slow path */
616 spin_lock(&file->f_lock);
617 old = file->f_wb_err;
618 err = errseq_check_and_advance(&mapping->wb_err,
619 &file->f_wb_err);
620 trace_file_check_and_advance_wb_err(file, old);
621 spin_unlock(&file->f_lock);
622 }
623 return err;
624 }
625 EXPORT_SYMBOL(file_check_and_advance_wb_err);
626
627 /**
628 * file_write_and_wait_range - write out & wait on a file range
629 * @file: file pointing to address_space with pages
630 * @lstart: offset in bytes where the range starts
631 * @lend: offset in bytes where the range ends (inclusive)
632 *
633 * Write out and wait upon file offsets lstart->lend, inclusive.
634 *
635 * Note that @lend is inclusive (describes the last byte to be written) so
636 * that this function can be used to write to the very end-of-file (end = -1).
637 *
638 * After writing out and waiting on the data, we check and advance the
639 * f_wb_err cursor to the latest value, and return any errors detected there.
640 */
641 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
642 {
643 int err = 0, err2;
644 struct address_space *mapping = file->f_mapping;
645
646 if (mapping_needs_writeback(mapping)) {
647 err = __filemap_fdatawrite_range(mapping, lstart, lend,
648 WB_SYNC_ALL);
649 /* See comment of filemap_write_and_wait() */
650 if (err != -EIO)
651 __filemap_fdatawait_range(mapping, lstart, lend);
652 }
653 err2 = file_check_and_advance_wb_err(file);
654 if (!err)
655 err = err2;
656 return err;
657 }
658 EXPORT_SYMBOL(file_write_and_wait_range);
659
660 /**
661 * replace_page_cache_page - replace a pagecache page with a new one
662 * @old: page to be replaced
663 * @new: page to replace with
664 * @gfp_mask: allocation mode
665 *
666 * This function replaces a page in the pagecache with a new one. On
667 * success it acquires the pagecache reference for the new page and
668 * drops it for the old page. Both the old and new pages must be
669 * locked. This function does not add the new page to the LRU, the
670 * caller must do that.
671 *
672 * The remove + add is atomic. The only way this function can fail is
673 * memory allocation failure.
674 */
675 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
676 {
677 int error;
678
679 VM_BUG_ON_PAGE(!PageLocked(old), old);
680 VM_BUG_ON_PAGE(!PageLocked(new), new);
681 VM_BUG_ON_PAGE(new->mapping, new);
682
683 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
684 if (!error) {
685 struct address_space *mapping = old->mapping;
686 void (*freepage)(struct page *);
687 unsigned long flags;
688
689 pgoff_t offset = old->index;
690 freepage = mapping->a_ops->freepage;
691
692 get_page(new);
693 new->mapping = mapping;
694 new->index = offset;
695
696 spin_lock_irqsave(&mapping->tree_lock, flags);
697 __delete_from_page_cache(old, NULL);
698 error = page_cache_tree_insert(mapping, new, NULL);
699 BUG_ON(error);
700
701 /*
702 * hugetlb pages do not participate in page cache accounting.
703 */
704 if (!PageHuge(new))
705 __inc_node_page_state(new, NR_FILE_PAGES);
706 if (PageSwapBacked(new))
707 __inc_node_page_state(new, NR_SHMEM);
708 spin_unlock_irqrestore(&mapping->tree_lock, flags);
709 mem_cgroup_migrate(old, new);
710 radix_tree_preload_end();
711 if (freepage)
712 freepage(old);
713 put_page(old);
714 }
715
716 return error;
717 }
718 EXPORT_SYMBOL_GPL(replace_page_cache_page);
719
720 static int __add_to_page_cache_locked(struct page *page,
721 struct address_space *mapping,
722 pgoff_t offset, gfp_t gfp_mask,
723 void **shadowp)
724 {
725 int huge = PageHuge(page);
726 struct mem_cgroup *memcg;
727 int error;
728
729 VM_BUG_ON_PAGE(!PageLocked(page), page);
730 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
731
732 if (!huge) {
733 error = mem_cgroup_try_charge(page, current->mm,
734 gfp_mask, &memcg, false);
735 if (error)
736 return error;
737 }
738
739 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
740 if (error) {
741 if (!huge)
742 mem_cgroup_cancel_charge(page, memcg, false);
743 return error;
744 }
745
746 get_page(page);
747 page->mapping = mapping;
748 page->index = offset;
749
750 spin_lock_irq(&mapping->tree_lock);
751 error = page_cache_tree_insert(mapping, page, shadowp);
752 radix_tree_preload_end();
753 if (unlikely(error))
754 goto err_insert;
755
756 /* hugetlb pages do not participate in page cache accounting. */
757 if (!huge)
758 __inc_node_page_state(page, NR_FILE_PAGES);
759 spin_unlock_irq(&mapping->tree_lock);
760 if (!huge)
761 mem_cgroup_commit_charge(page, memcg, false, false);
762 trace_mm_filemap_add_to_page_cache(page);
763 return 0;
764 err_insert:
765 page->mapping = NULL;
766 /* Leave page->index set: truncation relies upon it */
767 spin_unlock_irq(&mapping->tree_lock);
768 if (!huge)
769 mem_cgroup_cancel_charge(page, memcg, false);
770 put_page(page);
771 return error;
772 }
773
774 /**
775 * add_to_page_cache_locked - add a locked page to the pagecache
776 * @page: page to add
777 * @mapping: the page's address_space
778 * @offset: page index
779 * @gfp_mask: page allocation mode
780 *
781 * This function is used to add a page to the pagecache. It must be locked.
782 * This function does not add the page to the LRU. The caller must do that.
783 */
784 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
785 pgoff_t offset, gfp_t gfp_mask)
786 {
787 return __add_to_page_cache_locked(page, mapping, offset,
788 gfp_mask, NULL);
789 }
790 EXPORT_SYMBOL(add_to_page_cache_locked);
791
792 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
793 pgoff_t offset, gfp_t gfp_mask)
794 {
795 void *shadow = NULL;
796 int ret;
797
798 __SetPageLocked(page);
799 ret = __add_to_page_cache_locked(page, mapping, offset,
800 gfp_mask, &shadow);
801 if (unlikely(ret))
802 __ClearPageLocked(page);
803 else {
804 /*
805 * The page might have been evicted from cache only
806 * recently, in which case it should be activated like
807 * any other repeatedly accessed page.
808 * The exception is pages getting rewritten; evicting other
809 * data from the working set, only to cache data that will
810 * get overwritten with something else, is a waste of memory.
811 */
812 if (!(gfp_mask & __GFP_WRITE) &&
813 shadow && workingset_refault(shadow)) {
814 SetPageActive(page);
815 workingset_activation(page);
816 } else
817 ClearPageActive(page);
818 lru_cache_add(page);
819 }
820 return ret;
821 }
822 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
823
824 #ifdef CONFIG_NUMA
825 struct page *__page_cache_alloc(gfp_t gfp)
826 {
827 int n;
828 struct page *page;
829
830 if (cpuset_do_page_mem_spread()) {
831 unsigned int cpuset_mems_cookie;
832 do {
833 cpuset_mems_cookie = read_mems_allowed_begin();
834 n = cpuset_mem_spread_node();
835 page = __alloc_pages_node(n, gfp, 0);
836 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
837
838 return page;
839 }
840 return alloc_pages(gfp, 0);
841 }
842 EXPORT_SYMBOL(__page_cache_alloc);
843 #endif
844
845 /*
846 * In order to wait for pages to become available there must be
847 * waitqueues associated with pages. By using a hash table of
848 * waitqueues where the bucket discipline is to maintain all
849 * waiters on the same queue and wake all when any of the pages
850 * become available, and for the woken contexts to check to be
851 * sure the appropriate page became available, this saves space
852 * at a cost of "thundering herd" phenomena during rare hash
853 * collisions.
854 */
855 #define PAGE_WAIT_TABLE_BITS 8
856 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
857 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
858
859 static wait_queue_head_t *page_waitqueue(struct page *page)
860 {
861 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
862 }
863
864 void __init pagecache_init(void)
865 {
866 int i;
867
868 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
869 init_waitqueue_head(&page_wait_table[i]);
870
871 page_writeback_init();
872 }
873
874 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
875 struct wait_page_key {
876 struct page *page;
877 int bit_nr;
878 int page_match;
879 };
880
881 struct wait_page_queue {
882 struct page *page;
883 int bit_nr;
884 wait_queue_entry_t wait;
885 };
886
887 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
888 {
889 struct wait_page_key *key = arg;
890 struct wait_page_queue *wait_page
891 = container_of(wait, struct wait_page_queue, wait);
892
893 if (wait_page->page != key->page)
894 return 0;
895 key->page_match = 1;
896
897 if (wait_page->bit_nr != key->bit_nr)
898 return 0;
899
900 /* Stop walking if it's locked */
901 if (test_bit(key->bit_nr, &key->page->flags))
902 return -1;
903
904 return autoremove_wake_function(wait, mode, sync, key);
905 }
906
907 static void wake_up_page_bit(struct page *page, int bit_nr)
908 {
909 wait_queue_head_t *q = page_waitqueue(page);
910 struct wait_page_key key;
911 unsigned long flags;
912 wait_queue_entry_t bookmark;
913
914 key.page = page;
915 key.bit_nr = bit_nr;
916 key.page_match = 0;
917
918 bookmark.flags = 0;
919 bookmark.private = NULL;
920 bookmark.func = NULL;
921 INIT_LIST_HEAD(&bookmark.entry);
922
923 spin_lock_irqsave(&q->lock, flags);
924 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
925
926 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
927 /*
928 * Take a breather from holding the lock,
929 * allow pages that finish wake up asynchronously
930 * to acquire the lock and remove themselves
931 * from wait queue
932 */
933 spin_unlock_irqrestore(&q->lock, flags);
934 cpu_relax();
935 spin_lock_irqsave(&q->lock, flags);
936 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
937 }
938
939 /*
940 * It is possible for other pages to have collided on the waitqueue
941 * hash, so in that case check for a page match. That prevents a long-
942 * term waiter
943 *
944 * It is still possible to miss a case here, when we woke page waiters
945 * and removed them from the waitqueue, but there are still other
946 * page waiters.
947 */
948 if (!waitqueue_active(q) || !key.page_match) {
949 ClearPageWaiters(page);
950 /*
951 * It's possible to miss clearing Waiters here, when we woke
952 * our page waiters, but the hashed waitqueue has waiters for
953 * other pages on it.
954 *
955 * That's okay, it's a rare case. The next waker will clear it.
956 */
957 }
958 spin_unlock_irqrestore(&q->lock, flags);
959 }
960
961 static void wake_up_page(struct page *page, int bit)
962 {
963 if (!PageWaiters(page))
964 return;
965 wake_up_page_bit(page, bit);
966 }
967
968 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
969 struct page *page, int bit_nr, int state, bool lock)
970 {
971 struct wait_page_queue wait_page;
972 wait_queue_entry_t *wait = &wait_page.wait;
973 int ret = 0;
974
975 init_wait(wait);
976 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
977 wait->func = wake_page_function;
978 wait_page.page = page;
979 wait_page.bit_nr = bit_nr;
980
981 for (;;) {
982 spin_lock_irq(&q->lock);
983
984 if (likely(list_empty(&wait->entry))) {
985 __add_wait_queue_entry_tail(q, wait);
986 SetPageWaiters(page);
987 }
988
989 set_current_state(state);
990
991 spin_unlock_irq(&q->lock);
992
993 if (likely(test_bit(bit_nr, &page->flags))) {
994 io_schedule();
995 }
996
997 if (lock) {
998 if (!test_and_set_bit_lock(bit_nr, &page->flags))
999 break;
1000 } else {
1001 if (!test_bit(bit_nr, &page->flags))
1002 break;
1003 }
1004
1005 if (unlikely(signal_pending_state(state, current))) {
1006 ret = -EINTR;
1007 break;
1008 }
1009 }
1010
1011 finish_wait(q, wait);
1012
1013 /*
1014 * A signal could leave PageWaiters set. Clearing it here if
1015 * !waitqueue_active would be possible (by open-coding finish_wait),
1016 * but still fail to catch it in the case of wait hash collision. We
1017 * already can fail to clear wait hash collision cases, so don't
1018 * bother with signals either.
1019 */
1020
1021 return ret;
1022 }
1023
1024 void wait_on_page_bit(struct page *page, int bit_nr)
1025 {
1026 wait_queue_head_t *q = page_waitqueue(page);
1027 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1028 }
1029 EXPORT_SYMBOL(wait_on_page_bit);
1030
1031 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1032 {
1033 wait_queue_head_t *q = page_waitqueue(page);
1034 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1035 }
1036
1037 /**
1038 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1039 * @page: Page defining the wait queue of interest
1040 * @waiter: Waiter to add to the queue
1041 *
1042 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1043 */
1044 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1045 {
1046 wait_queue_head_t *q = page_waitqueue(page);
1047 unsigned long flags;
1048
1049 spin_lock_irqsave(&q->lock, flags);
1050 __add_wait_queue_entry_tail(q, waiter);
1051 SetPageWaiters(page);
1052 spin_unlock_irqrestore(&q->lock, flags);
1053 }
1054 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1055
1056 #ifndef clear_bit_unlock_is_negative_byte
1057
1058 /*
1059 * PG_waiters is the high bit in the same byte as PG_lock.
1060 *
1061 * On x86 (and on many other architectures), we can clear PG_lock and
1062 * test the sign bit at the same time. But if the architecture does
1063 * not support that special operation, we just do this all by hand
1064 * instead.
1065 *
1066 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1067 * being cleared, but a memory barrier should be unneccssary since it is
1068 * in the same byte as PG_locked.
1069 */
1070 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1071 {
1072 clear_bit_unlock(nr, mem);
1073 /* smp_mb__after_atomic(); */
1074 return test_bit(PG_waiters, mem);
1075 }
1076
1077 #endif
1078
1079 /**
1080 * unlock_page - unlock a locked page
1081 * @page: the page
1082 *
1083 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1084 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1085 * mechanism between PageLocked pages and PageWriteback pages is shared.
1086 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1087 *
1088 * Note that this depends on PG_waiters being the sign bit in the byte
1089 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1090 * clear the PG_locked bit and test PG_waiters at the same time fairly
1091 * portably (architectures that do LL/SC can test any bit, while x86 can
1092 * test the sign bit).
1093 */
1094 void unlock_page(struct page *page)
1095 {
1096 BUILD_BUG_ON(PG_waiters != 7);
1097 page = compound_head(page);
1098 VM_BUG_ON_PAGE(!PageLocked(page), page);
1099 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1100 wake_up_page_bit(page, PG_locked);
1101 }
1102 EXPORT_SYMBOL(unlock_page);
1103
1104 /**
1105 * end_page_writeback - end writeback against a page
1106 * @page: the page
1107 */
1108 void end_page_writeback(struct page *page)
1109 {
1110 /*
1111 * TestClearPageReclaim could be used here but it is an atomic
1112 * operation and overkill in this particular case. Failing to
1113 * shuffle a page marked for immediate reclaim is too mild to
1114 * justify taking an atomic operation penalty at the end of
1115 * ever page writeback.
1116 */
1117 if (PageReclaim(page)) {
1118 ClearPageReclaim(page);
1119 rotate_reclaimable_page(page);
1120 }
1121
1122 if (!test_clear_page_writeback(page))
1123 BUG();
1124
1125 smp_mb__after_atomic();
1126 wake_up_page(page, PG_writeback);
1127 }
1128 EXPORT_SYMBOL(end_page_writeback);
1129
1130 /*
1131 * After completing I/O on a page, call this routine to update the page
1132 * flags appropriately
1133 */
1134 void page_endio(struct page *page, bool is_write, int err)
1135 {
1136 if (!is_write) {
1137 if (!err) {
1138 SetPageUptodate(page);
1139 } else {
1140 ClearPageUptodate(page);
1141 SetPageError(page);
1142 }
1143 unlock_page(page);
1144 } else {
1145 if (err) {
1146 struct address_space *mapping;
1147
1148 SetPageError(page);
1149 mapping = page_mapping(page);
1150 if (mapping)
1151 mapping_set_error(mapping, err);
1152 }
1153 end_page_writeback(page);
1154 }
1155 }
1156 EXPORT_SYMBOL_GPL(page_endio);
1157
1158 /**
1159 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1160 * @__page: the page to lock
1161 */
1162 void __lock_page(struct page *__page)
1163 {
1164 struct page *page = compound_head(__page);
1165 wait_queue_head_t *q = page_waitqueue(page);
1166 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1167 }
1168 EXPORT_SYMBOL(__lock_page);
1169
1170 int __lock_page_killable(struct page *__page)
1171 {
1172 struct page *page = compound_head(__page);
1173 wait_queue_head_t *q = page_waitqueue(page);
1174 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1175 }
1176 EXPORT_SYMBOL_GPL(__lock_page_killable);
1177
1178 /*
1179 * Return values:
1180 * 1 - page is locked; mmap_sem is still held.
1181 * 0 - page is not locked.
1182 * mmap_sem has been released (up_read()), unless flags had both
1183 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1184 * which case mmap_sem is still held.
1185 *
1186 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1187 * with the page locked and the mmap_sem unperturbed.
1188 */
1189 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1190 unsigned int flags)
1191 {
1192 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1193 /*
1194 * CAUTION! In this case, mmap_sem is not released
1195 * even though return 0.
1196 */
1197 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1198 return 0;
1199
1200 up_read(&mm->mmap_sem);
1201 if (flags & FAULT_FLAG_KILLABLE)
1202 wait_on_page_locked_killable(page);
1203 else
1204 wait_on_page_locked(page);
1205 return 0;
1206 } else {
1207 if (flags & FAULT_FLAG_KILLABLE) {
1208 int ret;
1209
1210 ret = __lock_page_killable(page);
1211 if (ret) {
1212 up_read(&mm->mmap_sem);
1213 return 0;
1214 }
1215 } else
1216 __lock_page(page);
1217 return 1;
1218 }
1219 }
1220
1221 /**
1222 * page_cache_next_hole - find the next hole (not-present entry)
1223 * @mapping: mapping
1224 * @index: index
1225 * @max_scan: maximum range to search
1226 *
1227 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1228 * lowest indexed hole.
1229 *
1230 * Returns: the index of the hole if found, otherwise returns an index
1231 * outside of the set specified (in which case 'return - index >=
1232 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1233 * be returned.
1234 *
1235 * page_cache_next_hole may be called under rcu_read_lock. However,
1236 * like radix_tree_gang_lookup, this will not atomically search a
1237 * snapshot of the tree at a single point in time. For example, if a
1238 * hole is created at index 5, then subsequently a hole is created at
1239 * index 10, page_cache_next_hole covering both indexes may return 10
1240 * if called under rcu_read_lock.
1241 */
1242 pgoff_t page_cache_next_hole(struct address_space *mapping,
1243 pgoff_t index, unsigned long max_scan)
1244 {
1245 unsigned long i;
1246
1247 for (i = 0; i < max_scan; i++) {
1248 struct page *page;
1249
1250 page = radix_tree_lookup(&mapping->page_tree, index);
1251 if (!page || radix_tree_exceptional_entry(page))
1252 break;
1253 index++;
1254 if (index == 0)
1255 break;
1256 }
1257
1258 return index;
1259 }
1260 EXPORT_SYMBOL(page_cache_next_hole);
1261
1262 /**
1263 * page_cache_prev_hole - find the prev hole (not-present entry)
1264 * @mapping: mapping
1265 * @index: index
1266 * @max_scan: maximum range to search
1267 *
1268 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1269 * the first hole.
1270 *
1271 * Returns: the index of the hole if found, otherwise returns an index
1272 * outside of the set specified (in which case 'index - return >=
1273 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1274 * will be returned.
1275 *
1276 * page_cache_prev_hole may be called under rcu_read_lock. However,
1277 * like radix_tree_gang_lookup, this will not atomically search a
1278 * snapshot of the tree at a single point in time. For example, if a
1279 * hole is created at index 10, then subsequently a hole is created at
1280 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1281 * called under rcu_read_lock.
1282 */
1283 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1284 pgoff_t index, unsigned long max_scan)
1285 {
1286 unsigned long i;
1287
1288 for (i = 0; i < max_scan; i++) {
1289 struct page *page;
1290
1291 page = radix_tree_lookup(&mapping->page_tree, index);
1292 if (!page || radix_tree_exceptional_entry(page))
1293 break;
1294 index--;
1295 if (index == ULONG_MAX)
1296 break;
1297 }
1298
1299 return index;
1300 }
1301 EXPORT_SYMBOL(page_cache_prev_hole);
1302
1303 /**
1304 * find_get_entry - find and get a page cache entry
1305 * @mapping: the address_space to search
1306 * @offset: the page cache index
1307 *
1308 * Looks up the page cache slot at @mapping & @offset. If there is a
1309 * page cache page, it is returned with an increased refcount.
1310 *
1311 * If the slot holds a shadow entry of a previously evicted page, or a
1312 * swap entry from shmem/tmpfs, it is returned.
1313 *
1314 * Otherwise, %NULL is returned.
1315 */
1316 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1317 {
1318 void **pagep;
1319 struct page *head, *page;
1320
1321 rcu_read_lock();
1322 repeat:
1323 page = NULL;
1324 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1325 if (pagep) {
1326 page = radix_tree_deref_slot(pagep);
1327 if (unlikely(!page))
1328 goto out;
1329 if (radix_tree_exception(page)) {
1330 if (radix_tree_deref_retry(page))
1331 goto repeat;
1332 /*
1333 * A shadow entry of a recently evicted page,
1334 * or a swap entry from shmem/tmpfs. Return
1335 * it without attempting to raise page count.
1336 */
1337 goto out;
1338 }
1339
1340 head = compound_head(page);
1341 if (!page_cache_get_speculative(head))
1342 goto repeat;
1343
1344 /* The page was split under us? */
1345 if (compound_head(page) != head) {
1346 put_page(head);
1347 goto repeat;
1348 }
1349
1350 /*
1351 * Has the page moved?
1352 * This is part of the lockless pagecache protocol. See
1353 * include/linux/pagemap.h for details.
1354 */
1355 if (unlikely(page != *pagep)) {
1356 put_page(head);
1357 goto repeat;
1358 }
1359 }
1360 out:
1361 rcu_read_unlock();
1362
1363 return page;
1364 }
1365 EXPORT_SYMBOL(find_get_entry);
1366
1367 /**
1368 * find_lock_entry - locate, pin and lock a page cache entry
1369 * @mapping: the address_space to search
1370 * @offset: the page cache index
1371 *
1372 * Looks up the page cache slot at @mapping & @offset. If there is a
1373 * page cache page, it is returned locked and with an increased
1374 * refcount.
1375 *
1376 * If the slot holds a shadow entry of a previously evicted page, or a
1377 * swap entry from shmem/tmpfs, it is returned.
1378 *
1379 * Otherwise, %NULL is returned.
1380 *
1381 * find_lock_entry() may sleep.
1382 */
1383 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1384 {
1385 struct page *page;
1386
1387 repeat:
1388 page = find_get_entry(mapping, offset);
1389 if (page && !radix_tree_exception(page)) {
1390 lock_page(page);
1391 /* Has the page been truncated? */
1392 if (unlikely(page_mapping(page) != mapping)) {
1393 unlock_page(page);
1394 put_page(page);
1395 goto repeat;
1396 }
1397 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1398 }
1399 return page;
1400 }
1401 EXPORT_SYMBOL(find_lock_entry);
1402
1403 /**
1404 * pagecache_get_page - find and get a page reference
1405 * @mapping: the address_space to search
1406 * @offset: the page index
1407 * @fgp_flags: PCG flags
1408 * @gfp_mask: gfp mask to use for the page cache data page allocation
1409 *
1410 * Looks up the page cache slot at @mapping & @offset.
1411 *
1412 * PCG flags modify how the page is returned.
1413 *
1414 * @fgp_flags can be:
1415 *
1416 * - FGP_ACCESSED: the page will be marked accessed
1417 * - FGP_LOCK: Page is return locked
1418 * - FGP_CREAT: If page is not present then a new page is allocated using
1419 * @gfp_mask and added to the page cache and the VM's LRU
1420 * list. The page is returned locked and with an increased
1421 * refcount. Otherwise, NULL is returned.
1422 *
1423 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1424 * if the GFP flags specified for FGP_CREAT are atomic.
1425 *
1426 * If there is a page cache page, it is returned with an increased refcount.
1427 */
1428 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1429 int fgp_flags, gfp_t gfp_mask)
1430 {
1431 struct page *page;
1432
1433 repeat:
1434 page = find_get_entry(mapping, offset);
1435 if (radix_tree_exceptional_entry(page))
1436 page = NULL;
1437 if (!page)
1438 goto no_page;
1439
1440 if (fgp_flags & FGP_LOCK) {
1441 if (fgp_flags & FGP_NOWAIT) {
1442 if (!trylock_page(page)) {
1443 put_page(page);
1444 return NULL;
1445 }
1446 } else {
1447 lock_page(page);
1448 }
1449
1450 /* Has the page been truncated? */
1451 if (unlikely(page->mapping != mapping)) {
1452 unlock_page(page);
1453 put_page(page);
1454 goto repeat;
1455 }
1456 VM_BUG_ON_PAGE(page->index != offset, page);
1457 }
1458
1459 if (page && (fgp_flags & FGP_ACCESSED))
1460 mark_page_accessed(page);
1461
1462 no_page:
1463 if (!page && (fgp_flags & FGP_CREAT)) {
1464 int err;
1465 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1466 gfp_mask |= __GFP_WRITE;
1467 if (fgp_flags & FGP_NOFS)
1468 gfp_mask &= ~__GFP_FS;
1469
1470 page = __page_cache_alloc(gfp_mask);
1471 if (!page)
1472 return NULL;
1473
1474 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1475 fgp_flags |= FGP_LOCK;
1476
1477 /* Init accessed so avoid atomic mark_page_accessed later */
1478 if (fgp_flags & FGP_ACCESSED)
1479 __SetPageReferenced(page);
1480
1481 err = add_to_page_cache_lru(page, mapping, offset,
1482 gfp_mask & GFP_RECLAIM_MASK);
1483 if (unlikely(err)) {
1484 put_page(page);
1485 page = NULL;
1486 if (err == -EEXIST)
1487 goto repeat;
1488 }
1489 }
1490
1491 return page;
1492 }
1493 EXPORT_SYMBOL(pagecache_get_page);
1494
1495 /**
1496 * find_get_entries - gang pagecache lookup
1497 * @mapping: The address_space to search
1498 * @start: The starting page cache index
1499 * @nr_entries: The maximum number of entries
1500 * @entries: Where the resulting entries are placed
1501 * @indices: The cache indices corresponding to the entries in @entries
1502 *
1503 * find_get_entries() will search for and return a group of up to
1504 * @nr_entries entries in the mapping. The entries are placed at
1505 * @entries. find_get_entries() takes a reference against any actual
1506 * pages it returns.
1507 *
1508 * The search returns a group of mapping-contiguous page cache entries
1509 * with ascending indexes. There may be holes in the indices due to
1510 * not-present pages.
1511 *
1512 * Any shadow entries of evicted pages, or swap entries from
1513 * shmem/tmpfs, are included in the returned array.
1514 *
1515 * find_get_entries() returns the number of pages and shadow entries
1516 * which were found.
1517 */
1518 unsigned find_get_entries(struct address_space *mapping,
1519 pgoff_t start, unsigned int nr_entries,
1520 struct page **entries, pgoff_t *indices)
1521 {
1522 void **slot;
1523 unsigned int ret = 0;
1524 struct radix_tree_iter iter;
1525
1526 if (!nr_entries)
1527 return 0;
1528
1529 rcu_read_lock();
1530 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1531 struct page *head, *page;
1532 repeat:
1533 page = radix_tree_deref_slot(slot);
1534 if (unlikely(!page))
1535 continue;
1536 if (radix_tree_exception(page)) {
1537 if (radix_tree_deref_retry(page)) {
1538 slot = radix_tree_iter_retry(&iter);
1539 continue;
1540 }
1541 /*
1542 * A shadow entry of a recently evicted page, a swap
1543 * entry from shmem/tmpfs or a DAX entry. Return it
1544 * without attempting to raise page count.
1545 */
1546 goto export;
1547 }
1548
1549 head = compound_head(page);
1550 if (!page_cache_get_speculative(head))
1551 goto repeat;
1552
1553 /* The page was split under us? */
1554 if (compound_head(page) != head) {
1555 put_page(head);
1556 goto repeat;
1557 }
1558
1559 /* Has the page moved? */
1560 if (unlikely(page != *slot)) {
1561 put_page(head);
1562 goto repeat;
1563 }
1564 export:
1565 indices[ret] = iter.index;
1566 entries[ret] = page;
1567 if (++ret == nr_entries)
1568 break;
1569 }
1570 rcu_read_unlock();
1571 return ret;
1572 }
1573
1574 /**
1575 * find_get_pages_range - gang pagecache lookup
1576 * @mapping: The address_space to search
1577 * @start: The starting page index
1578 * @end: The final page index (inclusive)
1579 * @nr_pages: The maximum number of pages
1580 * @pages: Where the resulting pages are placed
1581 *
1582 * find_get_pages_range() will search for and return a group of up to @nr_pages
1583 * pages in the mapping starting at index @start and up to index @end
1584 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1585 * a reference against the returned pages.
1586 *
1587 * The search returns a group of mapping-contiguous pages with ascending
1588 * indexes. There may be holes in the indices due to not-present pages.
1589 * We also update @start to index the next page for the traversal.
1590 *
1591 * find_get_pages_range() returns the number of pages which were found. If this
1592 * number is smaller than @nr_pages, the end of specified range has been
1593 * reached.
1594 */
1595 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1596 pgoff_t end, unsigned int nr_pages,
1597 struct page **pages)
1598 {
1599 struct radix_tree_iter iter;
1600 void **slot;
1601 unsigned ret = 0;
1602
1603 if (unlikely(!nr_pages))
1604 return 0;
1605
1606 rcu_read_lock();
1607 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1608 struct page *head, *page;
1609
1610 if (iter.index > end)
1611 break;
1612 repeat:
1613 page = radix_tree_deref_slot(slot);
1614 if (unlikely(!page))
1615 continue;
1616
1617 if (radix_tree_exception(page)) {
1618 if (radix_tree_deref_retry(page)) {
1619 slot = radix_tree_iter_retry(&iter);
1620 continue;
1621 }
1622 /*
1623 * A shadow entry of a recently evicted page,
1624 * or a swap entry from shmem/tmpfs. Skip
1625 * over it.
1626 */
1627 continue;
1628 }
1629
1630 head = compound_head(page);
1631 if (!page_cache_get_speculative(head))
1632 goto repeat;
1633
1634 /* The page was split under us? */
1635 if (compound_head(page) != head) {
1636 put_page(head);
1637 goto repeat;
1638 }
1639
1640 /* Has the page moved? */
1641 if (unlikely(page != *slot)) {
1642 put_page(head);
1643 goto repeat;
1644 }
1645
1646 pages[ret] = page;
1647 if (++ret == nr_pages) {
1648 *start = pages[ret - 1]->index + 1;
1649 goto out;
1650 }
1651 }
1652
1653 /*
1654 * We come here when there is no page beyond @end. We take care to not
1655 * overflow the index @start as it confuses some of the callers. This
1656 * breaks the iteration when there is page at index -1 but that is
1657 * already broken anyway.
1658 */
1659 if (end == (pgoff_t)-1)
1660 *start = (pgoff_t)-1;
1661 else
1662 *start = end + 1;
1663 out:
1664 rcu_read_unlock();
1665
1666 return ret;
1667 }
1668
1669 /**
1670 * find_get_pages_contig - gang contiguous pagecache lookup
1671 * @mapping: The address_space to search
1672 * @index: The starting page index
1673 * @nr_pages: The maximum number of pages
1674 * @pages: Where the resulting pages are placed
1675 *
1676 * find_get_pages_contig() works exactly like find_get_pages(), except
1677 * that the returned number of pages are guaranteed to be contiguous.
1678 *
1679 * find_get_pages_contig() returns the number of pages which were found.
1680 */
1681 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1682 unsigned int nr_pages, struct page **pages)
1683 {
1684 struct radix_tree_iter iter;
1685 void **slot;
1686 unsigned int ret = 0;
1687
1688 if (unlikely(!nr_pages))
1689 return 0;
1690
1691 rcu_read_lock();
1692 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1693 struct page *head, *page;
1694 repeat:
1695 page = radix_tree_deref_slot(slot);
1696 /* The hole, there no reason to continue */
1697 if (unlikely(!page))
1698 break;
1699
1700 if (radix_tree_exception(page)) {
1701 if (radix_tree_deref_retry(page)) {
1702 slot = radix_tree_iter_retry(&iter);
1703 continue;
1704 }
1705 /*
1706 * A shadow entry of a recently evicted page,
1707 * or a swap entry from shmem/tmpfs. Stop
1708 * looking for contiguous pages.
1709 */
1710 break;
1711 }
1712
1713 head = compound_head(page);
1714 if (!page_cache_get_speculative(head))
1715 goto repeat;
1716
1717 /* The page was split under us? */
1718 if (compound_head(page) != head) {
1719 put_page(head);
1720 goto repeat;
1721 }
1722
1723 /* Has the page moved? */
1724 if (unlikely(page != *slot)) {
1725 put_page(head);
1726 goto repeat;
1727 }
1728
1729 /*
1730 * must check mapping and index after taking the ref.
1731 * otherwise we can get both false positives and false
1732 * negatives, which is just confusing to the caller.
1733 */
1734 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1735 put_page(page);
1736 break;
1737 }
1738
1739 pages[ret] = page;
1740 if (++ret == nr_pages)
1741 break;
1742 }
1743 rcu_read_unlock();
1744 return ret;
1745 }
1746 EXPORT_SYMBOL(find_get_pages_contig);
1747
1748 /**
1749 * find_get_pages_tag - find and return pages that match @tag
1750 * @mapping: the address_space to search
1751 * @index: the starting page index
1752 * @tag: the tag index
1753 * @nr_pages: the maximum number of pages
1754 * @pages: where the resulting pages are placed
1755 *
1756 * Like find_get_pages, except we only return pages which are tagged with
1757 * @tag. We update @index to index the next page for the traversal.
1758 */
1759 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1760 int tag, unsigned int nr_pages, struct page **pages)
1761 {
1762 struct radix_tree_iter iter;
1763 void **slot;
1764 unsigned ret = 0;
1765
1766 if (unlikely(!nr_pages))
1767 return 0;
1768
1769 rcu_read_lock();
1770 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1771 &iter, *index, tag) {
1772 struct page *head, *page;
1773 repeat:
1774 page = radix_tree_deref_slot(slot);
1775 if (unlikely(!page))
1776 continue;
1777
1778 if (radix_tree_exception(page)) {
1779 if (radix_tree_deref_retry(page)) {
1780 slot = radix_tree_iter_retry(&iter);
1781 continue;
1782 }
1783 /*
1784 * A shadow entry of a recently evicted page.
1785 *
1786 * Those entries should never be tagged, but
1787 * this tree walk is lockless and the tags are
1788 * looked up in bulk, one radix tree node at a
1789 * time, so there is a sizable window for page
1790 * reclaim to evict a page we saw tagged.
1791 *
1792 * Skip over it.
1793 */
1794 continue;
1795 }
1796
1797 head = compound_head(page);
1798 if (!page_cache_get_speculative(head))
1799 goto repeat;
1800
1801 /* The page was split under us? */
1802 if (compound_head(page) != head) {
1803 put_page(head);
1804 goto repeat;
1805 }
1806
1807 /* Has the page moved? */
1808 if (unlikely(page != *slot)) {
1809 put_page(head);
1810 goto repeat;
1811 }
1812
1813 pages[ret] = page;
1814 if (++ret == nr_pages)
1815 break;
1816 }
1817
1818 rcu_read_unlock();
1819
1820 if (ret)
1821 *index = pages[ret - 1]->index + 1;
1822
1823 return ret;
1824 }
1825 EXPORT_SYMBOL(find_get_pages_tag);
1826
1827 /**
1828 * find_get_entries_tag - find and return entries that match @tag
1829 * @mapping: the address_space to search
1830 * @start: the starting page cache index
1831 * @tag: the tag index
1832 * @nr_entries: the maximum number of entries
1833 * @entries: where the resulting entries are placed
1834 * @indices: the cache indices corresponding to the entries in @entries
1835 *
1836 * Like find_get_entries, except we only return entries which are tagged with
1837 * @tag.
1838 */
1839 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1840 int tag, unsigned int nr_entries,
1841 struct page **entries, pgoff_t *indices)
1842 {
1843 void **slot;
1844 unsigned int ret = 0;
1845 struct radix_tree_iter iter;
1846
1847 if (!nr_entries)
1848 return 0;
1849
1850 rcu_read_lock();
1851 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1852 &iter, start, tag) {
1853 struct page *head, *page;
1854 repeat:
1855 page = radix_tree_deref_slot(slot);
1856 if (unlikely(!page))
1857 continue;
1858 if (radix_tree_exception(page)) {
1859 if (radix_tree_deref_retry(page)) {
1860 slot = radix_tree_iter_retry(&iter);
1861 continue;
1862 }
1863
1864 /*
1865 * A shadow entry of a recently evicted page, a swap
1866 * entry from shmem/tmpfs or a DAX entry. Return it
1867 * without attempting to raise page count.
1868 */
1869 goto export;
1870 }
1871
1872 head = compound_head(page);
1873 if (!page_cache_get_speculative(head))
1874 goto repeat;
1875
1876 /* The page was split under us? */
1877 if (compound_head(page) != head) {
1878 put_page(head);
1879 goto repeat;
1880 }
1881
1882 /* Has the page moved? */
1883 if (unlikely(page != *slot)) {
1884 put_page(head);
1885 goto repeat;
1886 }
1887 export:
1888 indices[ret] = iter.index;
1889 entries[ret] = page;
1890 if (++ret == nr_entries)
1891 break;
1892 }
1893 rcu_read_unlock();
1894 return ret;
1895 }
1896 EXPORT_SYMBOL(find_get_entries_tag);
1897
1898 /*
1899 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1900 * a _large_ part of the i/o request. Imagine the worst scenario:
1901 *
1902 * ---R__________________________________________B__________
1903 * ^ reading here ^ bad block(assume 4k)
1904 *
1905 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1906 * => failing the whole request => read(R) => read(R+1) =>
1907 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1908 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1909 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1910 *
1911 * It is going insane. Fix it by quickly scaling down the readahead size.
1912 */
1913 static void shrink_readahead_size_eio(struct file *filp,
1914 struct file_ra_state *ra)
1915 {
1916 ra->ra_pages /= 4;
1917 }
1918
1919 /**
1920 * generic_file_buffered_read - generic file read routine
1921 * @iocb: the iocb to read
1922 * @iter: data destination
1923 * @written: already copied
1924 *
1925 * This is a generic file read routine, and uses the
1926 * mapping->a_ops->readpage() function for the actual low-level stuff.
1927 *
1928 * This is really ugly. But the goto's actually try to clarify some
1929 * of the logic when it comes to error handling etc.
1930 */
1931 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1932 struct iov_iter *iter, ssize_t written)
1933 {
1934 struct file *filp = iocb->ki_filp;
1935 struct address_space *mapping = filp->f_mapping;
1936 struct inode *inode = mapping->host;
1937 struct file_ra_state *ra = &filp->f_ra;
1938 loff_t *ppos = &iocb->ki_pos;
1939 pgoff_t index;
1940 pgoff_t last_index;
1941 pgoff_t prev_index;
1942 unsigned long offset; /* offset into pagecache page */
1943 unsigned int prev_offset;
1944 int error = 0;
1945
1946 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1947 return 0;
1948 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1949
1950 index = *ppos >> PAGE_SHIFT;
1951 prev_index = ra->prev_pos >> PAGE_SHIFT;
1952 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1953 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1954 offset = *ppos & ~PAGE_MASK;
1955
1956 for (;;) {
1957 struct page *page;
1958 pgoff_t end_index;
1959 loff_t isize;
1960 unsigned long nr, ret;
1961
1962 cond_resched();
1963 find_page:
1964 if (fatal_signal_pending(current)) {
1965 error = -EINTR;
1966 goto out;
1967 }
1968
1969 page = find_get_page(mapping, index);
1970 if (!page) {
1971 if (iocb->ki_flags & IOCB_NOWAIT)
1972 goto would_block;
1973 page_cache_sync_readahead(mapping,
1974 ra, filp,
1975 index, last_index - index);
1976 page = find_get_page(mapping, index);
1977 if (unlikely(page == NULL))
1978 goto no_cached_page;
1979 }
1980 if (PageReadahead(page)) {
1981 page_cache_async_readahead(mapping,
1982 ra, filp, page,
1983 index, last_index - index);
1984 }
1985 if (!PageUptodate(page)) {
1986 if (iocb->ki_flags & IOCB_NOWAIT) {
1987 put_page(page);
1988 goto would_block;
1989 }
1990
1991 /*
1992 * See comment in do_read_cache_page on why
1993 * wait_on_page_locked is used to avoid unnecessarily
1994 * serialisations and why it's safe.
1995 */
1996 error = wait_on_page_locked_killable(page);
1997 if (unlikely(error))
1998 goto readpage_error;
1999 if (PageUptodate(page))
2000 goto page_ok;
2001
2002 if (inode->i_blkbits == PAGE_SHIFT ||
2003 !mapping->a_ops->is_partially_uptodate)
2004 goto page_not_up_to_date;
2005 /* pipes can't handle partially uptodate pages */
2006 if (unlikely(iter->type & ITER_PIPE))
2007 goto page_not_up_to_date;
2008 if (!trylock_page(page))
2009 goto page_not_up_to_date;
2010 /* Did it get truncated before we got the lock? */
2011 if (!page->mapping)
2012 goto page_not_up_to_date_locked;
2013 if (!mapping->a_ops->is_partially_uptodate(page,
2014 offset, iter->count))
2015 goto page_not_up_to_date_locked;
2016 unlock_page(page);
2017 }
2018 page_ok:
2019 /*
2020 * i_size must be checked after we know the page is Uptodate.
2021 *
2022 * Checking i_size after the check allows us to calculate
2023 * the correct value for "nr", which means the zero-filled
2024 * part of the page is not copied back to userspace (unless
2025 * another truncate extends the file - this is desired though).
2026 */
2027
2028 isize = i_size_read(inode);
2029 end_index = (isize - 1) >> PAGE_SHIFT;
2030 if (unlikely(!isize || index > end_index)) {
2031 put_page(page);
2032 goto out;
2033 }
2034
2035 /* nr is the maximum number of bytes to copy from this page */
2036 nr = PAGE_SIZE;
2037 if (index == end_index) {
2038 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2039 if (nr <= offset) {
2040 put_page(page);
2041 goto out;
2042 }
2043 }
2044 nr = nr - offset;
2045
2046 /* If users can be writing to this page using arbitrary
2047 * virtual addresses, take care about potential aliasing
2048 * before reading the page on the kernel side.
2049 */
2050 if (mapping_writably_mapped(mapping))
2051 flush_dcache_page(page);
2052
2053 /*
2054 * When a sequential read accesses a page several times,
2055 * only mark it as accessed the first time.
2056 */
2057 if (prev_index != index || offset != prev_offset)
2058 mark_page_accessed(page);
2059 prev_index = index;
2060
2061 /*
2062 * Ok, we have the page, and it's up-to-date, so
2063 * now we can copy it to user space...
2064 */
2065
2066 ret = copy_page_to_iter(page, offset, nr, iter);
2067 offset += ret;
2068 index += offset >> PAGE_SHIFT;
2069 offset &= ~PAGE_MASK;
2070 prev_offset = offset;
2071
2072 put_page(page);
2073 written += ret;
2074 if (!iov_iter_count(iter))
2075 goto out;
2076 if (ret < nr) {
2077 error = -EFAULT;
2078 goto out;
2079 }
2080 continue;
2081
2082 page_not_up_to_date:
2083 /* Get exclusive access to the page ... */
2084 error = lock_page_killable(page);
2085 if (unlikely(error))
2086 goto readpage_error;
2087
2088 page_not_up_to_date_locked:
2089 /* Did it get truncated before we got the lock? */
2090 if (!page->mapping) {
2091 unlock_page(page);
2092 put_page(page);
2093 continue;
2094 }
2095
2096 /* Did somebody else fill it already? */
2097 if (PageUptodate(page)) {
2098 unlock_page(page);
2099 goto page_ok;
2100 }
2101
2102 readpage:
2103 /*
2104 * A previous I/O error may have been due to temporary
2105 * failures, eg. multipath errors.
2106 * PG_error will be set again if readpage fails.
2107 */
2108 ClearPageError(page);
2109 /* Start the actual read. The read will unlock the page. */
2110 error = mapping->a_ops->readpage(filp, page);
2111
2112 if (unlikely(error)) {
2113 if (error == AOP_TRUNCATED_PAGE) {
2114 put_page(page);
2115 error = 0;
2116 goto find_page;
2117 }
2118 goto readpage_error;
2119 }
2120
2121 if (!PageUptodate(page)) {
2122 error = lock_page_killable(page);
2123 if (unlikely(error))
2124 goto readpage_error;
2125 if (!PageUptodate(page)) {
2126 if (page->mapping == NULL) {
2127 /*
2128 * invalidate_mapping_pages got it
2129 */
2130 unlock_page(page);
2131 put_page(page);
2132 goto find_page;
2133 }
2134 unlock_page(page);
2135 shrink_readahead_size_eio(filp, ra);
2136 error = -EIO;
2137 goto readpage_error;
2138 }
2139 unlock_page(page);
2140 }
2141
2142 goto page_ok;
2143
2144 readpage_error:
2145 /* UHHUH! A synchronous read error occurred. Report it */
2146 put_page(page);
2147 goto out;
2148
2149 no_cached_page:
2150 /*
2151 * Ok, it wasn't cached, so we need to create a new
2152 * page..
2153 */
2154 page = page_cache_alloc_cold(mapping);
2155 if (!page) {
2156 error = -ENOMEM;
2157 goto out;
2158 }
2159 error = add_to_page_cache_lru(page, mapping, index,
2160 mapping_gfp_constraint(mapping, GFP_KERNEL));
2161 if (error) {
2162 put_page(page);
2163 if (error == -EEXIST) {
2164 error = 0;
2165 goto find_page;
2166 }
2167 goto out;
2168 }
2169 goto readpage;
2170 }
2171
2172 would_block:
2173 error = -EAGAIN;
2174 out:
2175 ra->prev_pos = prev_index;
2176 ra->prev_pos <<= PAGE_SHIFT;
2177 ra->prev_pos |= prev_offset;
2178
2179 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2180 file_accessed(filp);
2181 return written ? written : error;
2182 }
2183
2184 /**
2185 * generic_file_read_iter - generic filesystem read routine
2186 * @iocb: kernel I/O control block
2187 * @iter: destination for the data read
2188 *
2189 * This is the "read_iter()" routine for all filesystems
2190 * that can use the page cache directly.
2191 */
2192 ssize_t
2193 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2194 {
2195 size_t count = iov_iter_count(iter);
2196 ssize_t retval = 0;
2197
2198 if (!count)
2199 goto out; /* skip atime */
2200
2201 if (iocb->ki_flags & IOCB_DIRECT) {
2202 struct file *file = iocb->ki_filp;
2203 struct address_space *mapping = file->f_mapping;
2204 struct inode *inode = mapping->host;
2205 loff_t size;
2206
2207 size = i_size_read(inode);
2208 if (iocb->ki_flags & IOCB_NOWAIT) {
2209 if (filemap_range_has_page(mapping, iocb->ki_pos,
2210 iocb->ki_pos + count - 1))
2211 return -EAGAIN;
2212 } else {
2213 retval = filemap_write_and_wait_range(mapping,
2214 iocb->ki_pos,
2215 iocb->ki_pos + count - 1);
2216 if (retval < 0)
2217 goto out;
2218 }
2219
2220 file_accessed(file);
2221
2222 retval = mapping->a_ops->direct_IO(iocb, iter);
2223 if (retval >= 0) {
2224 iocb->ki_pos += retval;
2225 count -= retval;
2226 }
2227 iov_iter_revert(iter, count - iov_iter_count(iter));
2228
2229 /*
2230 * Btrfs can have a short DIO read if we encounter
2231 * compressed extents, so if there was an error, or if
2232 * we've already read everything we wanted to, or if
2233 * there was a short read because we hit EOF, go ahead
2234 * and return. Otherwise fallthrough to buffered io for
2235 * the rest of the read. Buffered reads will not work for
2236 * DAX files, so don't bother trying.
2237 */
2238 if (retval < 0 || !count || iocb->ki_pos >= size ||
2239 IS_DAX(inode))
2240 goto out;
2241 }
2242
2243 retval = generic_file_buffered_read(iocb, iter, retval);
2244 out:
2245 return retval;
2246 }
2247 EXPORT_SYMBOL(generic_file_read_iter);
2248
2249 #ifdef CONFIG_MMU
2250 /**
2251 * page_cache_read - adds requested page to the page cache if not already there
2252 * @file: file to read
2253 * @offset: page index
2254 * @gfp_mask: memory allocation flags
2255 *
2256 * This adds the requested page to the page cache if it isn't already there,
2257 * and schedules an I/O to read in its contents from disk.
2258 */
2259 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2260 {
2261 struct address_space *mapping = file->f_mapping;
2262 struct page *page;
2263 int ret;
2264
2265 do {
2266 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2267 if (!page)
2268 return -ENOMEM;
2269
2270 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2271 if (ret == 0)
2272 ret = mapping->a_ops->readpage(file, page);
2273 else if (ret == -EEXIST)
2274 ret = 0; /* losing race to add is OK */
2275
2276 put_page(page);
2277
2278 } while (ret == AOP_TRUNCATED_PAGE);
2279
2280 return ret;
2281 }
2282
2283 #define MMAP_LOTSAMISS (100)
2284
2285 /*
2286 * Synchronous readahead happens when we don't even find
2287 * a page in the page cache at all.
2288 */
2289 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2290 struct file_ra_state *ra,
2291 struct file *file,
2292 pgoff_t offset)
2293 {
2294 struct address_space *mapping = file->f_mapping;
2295
2296 /* If we don't want any read-ahead, don't bother */
2297 if (vma->vm_flags & VM_RAND_READ)
2298 return;
2299 if (!ra->ra_pages)
2300 return;
2301
2302 if (vma->vm_flags & VM_SEQ_READ) {
2303 page_cache_sync_readahead(mapping, ra, file, offset,
2304 ra->ra_pages);
2305 return;
2306 }
2307
2308 /* Avoid banging the cache line if not needed */
2309 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2310 ra->mmap_miss++;
2311
2312 /*
2313 * Do we miss much more than hit in this file? If so,
2314 * stop bothering with read-ahead. It will only hurt.
2315 */
2316 if (ra->mmap_miss > MMAP_LOTSAMISS)
2317 return;
2318
2319 /*
2320 * mmap read-around
2321 */
2322 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2323 ra->size = ra->ra_pages;
2324 ra->async_size = ra->ra_pages / 4;
2325 ra_submit(ra, mapping, file);
2326 }
2327
2328 /*
2329 * Asynchronous readahead happens when we find the page and PG_readahead,
2330 * so we want to possibly extend the readahead further..
2331 */
2332 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2333 struct file_ra_state *ra,
2334 struct file *file,
2335 struct page *page,
2336 pgoff_t offset)
2337 {
2338 struct address_space *mapping = file->f_mapping;
2339
2340 /* If we don't want any read-ahead, don't bother */
2341 if (vma->vm_flags & VM_RAND_READ)
2342 return;
2343 if (ra->mmap_miss > 0)
2344 ra->mmap_miss--;
2345 if (PageReadahead(page))
2346 page_cache_async_readahead(mapping, ra, file,
2347 page, offset, ra->ra_pages);
2348 }
2349
2350 /**
2351 * filemap_fault - read in file data for page fault handling
2352 * @vmf: struct vm_fault containing details of the fault
2353 *
2354 * filemap_fault() is invoked via the vma operations vector for a
2355 * mapped memory region to read in file data during a page fault.
2356 *
2357 * The goto's are kind of ugly, but this streamlines the normal case of having
2358 * it in the page cache, and handles the special cases reasonably without
2359 * having a lot of duplicated code.
2360 *
2361 * vma->vm_mm->mmap_sem must be held on entry.
2362 *
2363 * If our return value has VM_FAULT_RETRY set, it's because
2364 * lock_page_or_retry() returned 0.
2365 * The mmap_sem has usually been released in this case.
2366 * See __lock_page_or_retry() for the exception.
2367 *
2368 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2369 * has not been released.
2370 *
2371 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2372 */
2373 int filemap_fault(struct vm_fault *vmf)
2374 {
2375 int error;
2376 struct file *file = vmf->vma->vm_file;
2377 struct address_space *mapping = file->f_mapping;
2378 struct file_ra_state *ra = &file->f_ra;
2379 struct inode *inode = mapping->host;
2380 pgoff_t offset = vmf->pgoff;
2381 pgoff_t max_off;
2382 struct page *page;
2383 int ret = 0;
2384
2385 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2386 if (unlikely(offset >= max_off))
2387 return VM_FAULT_SIGBUS;
2388
2389 /*
2390 * Do we have something in the page cache already?
2391 */
2392 page = find_get_page(mapping, offset);
2393 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2394 /*
2395 * We found the page, so try async readahead before
2396 * waiting for the lock.
2397 */
2398 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2399 } else if (!page) {
2400 /* No page in the page cache at all */
2401 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2402 count_vm_event(PGMAJFAULT);
2403 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2404 ret = VM_FAULT_MAJOR;
2405 retry_find:
2406 page = find_get_page(mapping, offset);
2407 if (!page)
2408 goto no_cached_page;
2409 }
2410
2411 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2412 put_page(page);
2413 return ret | VM_FAULT_RETRY;
2414 }
2415
2416 /* Did it get truncated? */
2417 if (unlikely(page->mapping != mapping)) {
2418 unlock_page(page);
2419 put_page(page);
2420 goto retry_find;
2421 }
2422 VM_BUG_ON_PAGE(page->index != offset, page);
2423
2424 /*
2425 * We have a locked page in the page cache, now we need to check
2426 * that it's up-to-date. If not, it is going to be due to an error.
2427 */
2428 if (unlikely(!PageUptodate(page)))
2429 goto page_not_uptodate;
2430
2431 /*
2432 * Found the page and have a reference on it.
2433 * We must recheck i_size under page lock.
2434 */
2435 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2436 if (unlikely(offset >= max_off)) {
2437 unlock_page(page);
2438 put_page(page);
2439 return VM_FAULT_SIGBUS;
2440 }
2441
2442 vmf->page = page;
2443 return ret | VM_FAULT_LOCKED;
2444
2445 no_cached_page:
2446 /*
2447 * We're only likely to ever get here if MADV_RANDOM is in
2448 * effect.
2449 */
2450 error = page_cache_read(file, offset, vmf->gfp_mask);
2451
2452 /*
2453 * The page we want has now been added to the page cache.
2454 * In the unlikely event that someone removed it in the
2455 * meantime, we'll just come back here and read it again.
2456 */
2457 if (error >= 0)
2458 goto retry_find;
2459
2460 /*
2461 * An error return from page_cache_read can result if the
2462 * system is low on memory, or a problem occurs while trying
2463 * to schedule I/O.
2464 */
2465 if (error == -ENOMEM)
2466 return VM_FAULT_OOM;
2467 return VM_FAULT_SIGBUS;
2468
2469 page_not_uptodate:
2470 /*
2471 * Umm, take care of errors if the page isn't up-to-date.
2472 * Try to re-read it _once_. We do this synchronously,
2473 * because there really aren't any performance issues here
2474 * and we need to check for errors.
2475 */
2476 ClearPageError(page);
2477 error = mapping->a_ops->readpage(file, page);
2478 if (!error) {
2479 wait_on_page_locked(page);
2480 if (!PageUptodate(page))
2481 error = -EIO;
2482 }
2483 put_page(page);
2484
2485 if (!error || error == AOP_TRUNCATED_PAGE)
2486 goto retry_find;
2487
2488 /* Things didn't work out. Return zero to tell the mm layer so. */
2489 shrink_readahead_size_eio(file, ra);
2490 return VM_FAULT_SIGBUS;
2491 }
2492 EXPORT_SYMBOL(filemap_fault);
2493
2494 void filemap_map_pages(struct vm_fault *vmf,
2495 pgoff_t start_pgoff, pgoff_t end_pgoff)
2496 {
2497 struct radix_tree_iter iter;
2498 void **slot;
2499 struct file *file = vmf->vma->vm_file;
2500 struct address_space *mapping = file->f_mapping;
2501 pgoff_t last_pgoff = start_pgoff;
2502 unsigned long max_idx;
2503 struct page *head, *page;
2504
2505 rcu_read_lock();
2506 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2507 start_pgoff) {
2508 if (iter.index > end_pgoff)
2509 break;
2510 repeat:
2511 page = radix_tree_deref_slot(slot);
2512 if (unlikely(!page))
2513 goto next;
2514 if (radix_tree_exception(page)) {
2515 if (radix_tree_deref_retry(page)) {
2516 slot = radix_tree_iter_retry(&iter);
2517 continue;
2518 }
2519 goto next;
2520 }
2521
2522 head = compound_head(page);
2523 if (!page_cache_get_speculative(head))
2524 goto repeat;
2525
2526 /* The page was split under us? */
2527 if (compound_head(page) != head) {
2528 put_page(head);
2529 goto repeat;
2530 }
2531
2532 /* Has the page moved? */
2533 if (unlikely(page != *slot)) {
2534 put_page(head);
2535 goto repeat;
2536 }
2537
2538 if (!PageUptodate(page) ||
2539 PageReadahead(page) ||
2540 PageHWPoison(page))
2541 goto skip;
2542 if (!trylock_page(page))
2543 goto skip;
2544
2545 if (page->mapping != mapping || !PageUptodate(page))
2546 goto unlock;
2547
2548 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2549 if (page->index >= max_idx)
2550 goto unlock;
2551
2552 if (file->f_ra.mmap_miss > 0)
2553 file->f_ra.mmap_miss--;
2554
2555 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2556 if (vmf->pte)
2557 vmf->pte += iter.index - last_pgoff;
2558 last_pgoff = iter.index;
2559 if (alloc_set_pte(vmf, NULL, page))
2560 goto unlock;
2561 unlock_page(page);
2562 goto next;
2563 unlock:
2564 unlock_page(page);
2565 skip:
2566 put_page(page);
2567 next:
2568 /* Huge page is mapped? No need to proceed. */
2569 if (pmd_trans_huge(*vmf->pmd))
2570 break;
2571 if (iter.index == end_pgoff)
2572 break;
2573 }
2574 rcu_read_unlock();
2575 }
2576 EXPORT_SYMBOL(filemap_map_pages);
2577
2578 int filemap_page_mkwrite(struct vm_fault *vmf)
2579 {
2580 struct page *page = vmf->page;
2581 struct inode *inode = file_inode(vmf->vma->vm_file);
2582 int ret = VM_FAULT_LOCKED;
2583
2584 sb_start_pagefault(inode->i_sb);
2585 file_update_time(vmf->vma->vm_file);
2586 lock_page(page);
2587 if (page->mapping != inode->i_mapping) {
2588 unlock_page(page);
2589 ret = VM_FAULT_NOPAGE;
2590 goto out;
2591 }
2592 /*
2593 * We mark the page dirty already here so that when freeze is in
2594 * progress, we are guaranteed that writeback during freezing will
2595 * see the dirty page and writeprotect it again.
2596 */
2597 set_page_dirty(page);
2598 wait_for_stable_page(page);
2599 out:
2600 sb_end_pagefault(inode->i_sb);
2601 return ret;
2602 }
2603 EXPORT_SYMBOL(filemap_page_mkwrite);
2604
2605 const struct vm_operations_struct generic_file_vm_ops = {
2606 .fault = filemap_fault,
2607 .map_pages = filemap_map_pages,
2608 .page_mkwrite = filemap_page_mkwrite,
2609 };
2610
2611 /* This is used for a general mmap of a disk file */
2612
2613 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2614 {
2615 struct address_space *mapping = file->f_mapping;
2616
2617 if (!mapping->a_ops->readpage)
2618 return -ENOEXEC;
2619 file_accessed(file);
2620 vma->vm_ops = &generic_file_vm_ops;
2621 return 0;
2622 }
2623
2624 /*
2625 * This is for filesystems which do not implement ->writepage.
2626 */
2627 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2628 {
2629 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2630 return -EINVAL;
2631 return generic_file_mmap(file, vma);
2632 }
2633 #else
2634 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2635 {
2636 return -ENOSYS;
2637 }
2638 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2639 {
2640 return -ENOSYS;
2641 }
2642 #endif /* CONFIG_MMU */
2643
2644 EXPORT_SYMBOL(generic_file_mmap);
2645 EXPORT_SYMBOL(generic_file_readonly_mmap);
2646
2647 static struct page *wait_on_page_read(struct page *page)
2648 {
2649 if (!IS_ERR(page)) {
2650 wait_on_page_locked(page);
2651 if (!PageUptodate(page)) {
2652 put_page(page);
2653 page = ERR_PTR(-EIO);
2654 }
2655 }
2656 return page;
2657 }
2658
2659 static struct page *do_read_cache_page(struct address_space *mapping,
2660 pgoff_t index,
2661 int (*filler)(void *, struct page *),
2662 void *data,
2663 gfp_t gfp)
2664 {
2665 struct page *page;
2666 int err;
2667 repeat:
2668 page = find_get_page(mapping, index);
2669 if (!page) {
2670 page = __page_cache_alloc(gfp | __GFP_COLD);
2671 if (!page)
2672 return ERR_PTR(-ENOMEM);
2673 err = add_to_page_cache_lru(page, mapping, index, gfp);
2674 if (unlikely(err)) {
2675 put_page(page);
2676 if (err == -EEXIST)
2677 goto repeat;
2678 /* Presumably ENOMEM for radix tree node */
2679 return ERR_PTR(err);
2680 }
2681
2682 filler:
2683 err = filler(data, page);
2684 if (err < 0) {
2685 put_page(page);
2686 return ERR_PTR(err);
2687 }
2688
2689 page = wait_on_page_read(page);
2690 if (IS_ERR(page))
2691 return page;
2692 goto out;
2693 }
2694 if (PageUptodate(page))
2695 goto out;
2696
2697 /*
2698 * Page is not up to date and may be locked due one of the following
2699 * case a: Page is being filled and the page lock is held
2700 * case b: Read/write error clearing the page uptodate status
2701 * case c: Truncation in progress (page locked)
2702 * case d: Reclaim in progress
2703 *
2704 * Case a, the page will be up to date when the page is unlocked.
2705 * There is no need to serialise on the page lock here as the page
2706 * is pinned so the lock gives no additional protection. Even if the
2707 * the page is truncated, the data is still valid if PageUptodate as
2708 * it's a race vs truncate race.
2709 * Case b, the page will not be up to date
2710 * Case c, the page may be truncated but in itself, the data may still
2711 * be valid after IO completes as it's a read vs truncate race. The
2712 * operation must restart if the page is not uptodate on unlock but
2713 * otherwise serialising on page lock to stabilise the mapping gives
2714 * no additional guarantees to the caller as the page lock is
2715 * released before return.
2716 * Case d, similar to truncation. If reclaim holds the page lock, it
2717 * will be a race with remove_mapping that determines if the mapping
2718 * is valid on unlock but otherwise the data is valid and there is
2719 * no need to serialise with page lock.
2720 *
2721 * As the page lock gives no additional guarantee, we optimistically
2722 * wait on the page to be unlocked and check if it's up to date and
2723 * use the page if it is. Otherwise, the page lock is required to
2724 * distinguish between the different cases. The motivation is that we
2725 * avoid spurious serialisations and wakeups when multiple processes
2726 * wait on the same page for IO to complete.
2727 */
2728 wait_on_page_locked(page);
2729 if (PageUptodate(page))
2730 goto out;
2731
2732 /* Distinguish between all the cases under the safety of the lock */
2733 lock_page(page);
2734
2735 /* Case c or d, restart the operation */
2736 if (!page->mapping) {
2737 unlock_page(page);
2738 put_page(page);
2739 goto repeat;
2740 }
2741
2742 /* Someone else locked and filled the page in a very small window */
2743 if (PageUptodate(page)) {
2744 unlock_page(page);
2745 goto out;
2746 }
2747 goto filler;
2748
2749 out:
2750 mark_page_accessed(page);
2751 return page;
2752 }
2753
2754 /**
2755 * read_cache_page - read into page cache, fill it if needed
2756 * @mapping: the page's address_space
2757 * @index: the page index
2758 * @filler: function to perform the read
2759 * @data: first arg to filler(data, page) function, often left as NULL
2760 *
2761 * Read into the page cache. If a page already exists, and PageUptodate() is
2762 * not set, try to fill the page and wait for it to become unlocked.
2763 *
2764 * If the page does not get brought uptodate, return -EIO.
2765 */
2766 struct page *read_cache_page(struct address_space *mapping,
2767 pgoff_t index,
2768 int (*filler)(void *, struct page *),
2769 void *data)
2770 {
2771 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2772 }
2773 EXPORT_SYMBOL(read_cache_page);
2774
2775 /**
2776 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2777 * @mapping: the page's address_space
2778 * @index: the page index
2779 * @gfp: the page allocator flags to use if allocating
2780 *
2781 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2782 * any new page allocations done using the specified allocation flags.
2783 *
2784 * If the page does not get brought uptodate, return -EIO.
2785 */
2786 struct page *read_cache_page_gfp(struct address_space *mapping,
2787 pgoff_t index,
2788 gfp_t gfp)
2789 {
2790 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2791
2792 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2793 }
2794 EXPORT_SYMBOL(read_cache_page_gfp);
2795
2796 /*
2797 * Performs necessary checks before doing a write
2798 *
2799 * Can adjust writing position or amount of bytes to write.
2800 * Returns appropriate error code that caller should return or
2801 * zero in case that write should be allowed.
2802 */
2803 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2804 {
2805 struct file *file = iocb->ki_filp;
2806 struct inode *inode = file->f_mapping->host;
2807 unsigned long limit = rlimit(RLIMIT_FSIZE);
2808 loff_t pos;
2809
2810 if (!iov_iter_count(from))
2811 return 0;
2812
2813 /* FIXME: this is for backwards compatibility with 2.4 */
2814 if (iocb->ki_flags & IOCB_APPEND)
2815 iocb->ki_pos = i_size_read(inode);
2816
2817 pos = iocb->ki_pos;
2818
2819 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2820 return -EINVAL;
2821
2822 if (limit != RLIM_INFINITY) {
2823 if (iocb->ki_pos >= limit) {
2824 send_sig(SIGXFSZ, current, 0);
2825 return -EFBIG;
2826 }
2827 iov_iter_truncate(from, limit - (unsigned long)pos);
2828 }
2829
2830 /*
2831 * LFS rule
2832 */
2833 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2834 !(file->f_flags & O_LARGEFILE))) {
2835 if (pos >= MAX_NON_LFS)
2836 return -EFBIG;
2837 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2838 }
2839
2840 /*
2841 * Are we about to exceed the fs block limit ?
2842 *
2843 * If we have written data it becomes a short write. If we have
2844 * exceeded without writing data we send a signal and return EFBIG.
2845 * Linus frestrict idea will clean these up nicely..
2846 */
2847 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2848 return -EFBIG;
2849
2850 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2851 return iov_iter_count(from);
2852 }
2853 EXPORT_SYMBOL(generic_write_checks);
2854
2855 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2856 loff_t pos, unsigned len, unsigned flags,
2857 struct page **pagep, void **fsdata)
2858 {
2859 const struct address_space_operations *aops = mapping->a_ops;
2860
2861 return aops->write_begin(file, mapping, pos, len, flags,
2862 pagep, fsdata);
2863 }
2864 EXPORT_SYMBOL(pagecache_write_begin);
2865
2866 int pagecache_write_end(struct file *file, struct address_space *mapping,
2867 loff_t pos, unsigned len, unsigned copied,
2868 struct page *page, void *fsdata)
2869 {
2870 const struct address_space_operations *aops = mapping->a_ops;
2871
2872 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2873 }
2874 EXPORT_SYMBOL(pagecache_write_end);
2875
2876 ssize_t
2877 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2878 {
2879 struct file *file = iocb->ki_filp;
2880 struct address_space *mapping = file->f_mapping;
2881 struct inode *inode = mapping->host;
2882 loff_t pos = iocb->ki_pos;
2883 ssize_t written;
2884 size_t write_len;
2885 pgoff_t end;
2886
2887 write_len = iov_iter_count(from);
2888 end = (pos + write_len - 1) >> PAGE_SHIFT;
2889
2890 if (iocb->ki_flags & IOCB_NOWAIT) {
2891 /* If there are pages to writeback, return */
2892 if (filemap_range_has_page(inode->i_mapping, pos,
2893 pos + iov_iter_count(from)))
2894 return -EAGAIN;
2895 } else {
2896 written = filemap_write_and_wait_range(mapping, pos,
2897 pos + write_len - 1);
2898 if (written)
2899 goto out;
2900 }
2901
2902 /*
2903 * After a write we want buffered reads to be sure to go to disk to get
2904 * the new data. We invalidate clean cached page from the region we're
2905 * about to write. We do this *before* the write so that we can return
2906 * without clobbering -EIOCBQUEUED from ->direct_IO().
2907 */
2908 written = invalidate_inode_pages2_range(mapping,
2909 pos >> PAGE_SHIFT, end);
2910 /*
2911 * If a page can not be invalidated, return 0 to fall back
2912 * to buffered write.
2913 */
2914 if (written) {
2915 if (written == -EBUSY)
2916 return 0;
2917 goto out;
2918 }
2919
2920 written = mapping->a_ops->direct_IO(iocb, from);
2921
2922 /*
2923 * Finally, try again to invalidate clean pages which might have been
2924 * cached by non-direct readahead, or faulted in by get_user_pages()
2925 * if the source of the write was an mmap'ed region of the file
2926 * we're writing. Either one is a pretty crazy thing to do,
2927 * so we don't support it 100%. If this invalidation
2928 * fails, tough, the write still worked...
2929 */
2930 invalidate_inode_pages2_range(mapping,
2931 pos >> PAGE_SHIFT, end);
2932
2933 if (written > 0) {
2934 pos += written;
2935 write_len -= written;
2936 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2937 i_size_write(inode, pos);
2938 mark_inode_dirty(inode);
2939 }
2940 iocb->ki_pos = pos;
2941 }
2942 iov_iter_revert(from, write_len - iov_iter_count(from));
2943 out:
2944 return written;
2945 }
2946 EXPORT_SYMBOL(generic_file_direct_write);
2947
2948 /*
2949 * Find or create a page at the given pagecache position. Return the locked
2950 * page. This function is specifically for buffered writes.
2951 */
2952 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2953 pgoff_t index, unsigned flags)
2954 {
2955 struct page *page;
2956 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2957
2958 if (flags & AOP_FLAG_NOFS)
2959 fgp_flags |= FGP_NOFS;
2960
2961 page = pagecache_get_page(mapping, index, fgp_flags,
2962 mapping_gfp_mask(mapping));
2963 if (page)
2964 wait_for_stable_page(page);
2965
2966 return page;
2967 }
2968 EXPORT_SYMBOL(grab_cache_page_write_begin);
2969
2970 ssize_t generic_perform_write(struct file *file,
2971 struct iov_iter *i, loff_t pos)
2972 {
2973 struct address_space *mapping = file->f_mapping;
2974 const struct address_space_operations *a_ops = mapping->a_ops;
2975 long status = 0;
2976 ssize_t written = 0;
2977 unsigned int flags = 0;
2978
2979 do {
2980 struct page *page;
2981 unsigned long offset; /* Offset into pagecache page */
2982 unsigned long bytes; /* Bytes to write to page */
2983 size_t copied; /* Bytes copied from user */
2984 void *fsdata;
2985
2986 offset = (pos & (PAGE_SIZE - 1));
2987 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2988 iov_iter_count(i));
2989
2990 again:
2991 /*
2992 * Bring in the user page that we will copy from _first_.
2993 * Otherwise there's a nasty deadlock on copying from the
2994 * same page as we're writing to, without it being marked
2995 * up-to-date.
2996 *
2997 * Not only is this an optimisation, but it is also required
2998 * to check that the address is actually valid, when atomic
2999 * usercopies are used, below.
3000 */
3001 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3002 status = -EFAULT;
3003 break;
3004 }
3005
3006 if (fatal_signal_pending(current)) {
3007 status = -EINTR;
3008 break;
3009 }
3010
3011 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3012 &page, &fsdata);
3013 if (unlikely(status < 0))
3014 break;
3015
3016 if (mapping_writably_mapped(mapping))
3017 flush_dcache_page(page);
3018
3019 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3020 flush_dcache_page(page);
3021
3022 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3023 page, fsdata);
3024 if (unlikely(status < 0))
3025 break;
3026 copied = status;
3027
3028 cond_resched();
3029
3030 iov_iter_advance(i, copied);
3031 if (unlikely(copied == 0)) {
3032 /*
3033 * If we were unable to copy any data at all, we must
3034 * fall back to a single segment length write.
3035 *
3036 * If we didn't fallback here, we could livelock
3037 * because not all segments in the iov can be copied at
3038 * once without a pagefault.
3039 */
3040 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3041 iov_iter_single_seg_count(i));
3042 goto again;
3043 }
3044 pos += copied;
3045 written += copied;
3046
3047 balance_dirty_pages_ratelimited(mapping);
3048 } while (iov_iter_count(i));
3049
3050 return written ? written : status;
3051 }
3052 EXPORT_SYMBOL(generic_perform_write);
3053
3054 /**
3055 * __generic_file_write_iter - write data to a file
3056 * @iocb: IO state structure (file, offset, etc.)
3057 * @from: iov_iter with data to write
3058 *
3059 * This function does all the work needed for actually writing data to a
3060 * file. It does all basic checks, removes SUID from the file, updates
3061 * modification times and calls proper subroutines depending on whether we
3062 * do direct IO or a standard buffered write.
3063 *
3064 * It expects i_mutex to be grabbed unless we work on a block device or similar
3065 * object which does not need locking at all.
3066 *
3067 * This function does *not* take care of syncing data in case of O_SYNC write.
3068 * A caller has to handle it. This is mainly due to the fact that we want to
3069 * avoid syncing under i_mutex.
3070 */
3071 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3072 {
3073 struct file *file = iocb->ki_filp;
3074 struct address_space * mapping = file->f_mapping;
3075 struct inode *inode = mapping->host;
3076 ssize_t written = 0;
3077 ssize_t err;
3078 ssize_t status;
3079
3080 /* We can write back this queue in page reclaim */
3081 current->backing_dev_info = inode_to_bdi(inode);
3082 err = file_remove_privs(file);
3083 if (err)
3084 goto out;
3085
3086 err = file_update_time(file);
3087 if (err)
3088 goto out;
3089
3090 if (iocb->ki_flags & IOCB_DIRECT) {
3091 loff_t pos, endbyte;
3092
3093 written = generic_file_direct_write(iocb, from);
3094 /*
3095 * If the write stopped short of completing, fall back to
3096 * buffered writes. Some filesystems do this for writes to
3097 * holes, for example. For DAX files, a buffered write will
3098 * not succeed (even if it did, DAX does not handle dirty
3099 * page-cache pages correctly).
3100 */
3101 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3102 goto out;
3103
3104 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3105 /*
3106 * If generic_perform_write() returned a synchronous error
3107 * then we want to return the number of bytes which were
3108 * direct-written, or the error code if that was zero. Note
3109 * that this differs from normal direct-io semantics, which
3110 * will return -EFOO even if some bytes were written.
3111 */
3112 if (unlikely(status < 0)) {
3113 err = status;
3114 goto out;
3115 }
3116 /*
3117 * We need to ensure that the page cache pages are written to
3118 * disk and invalidated to preserve the expected O_DIRECT
3119 * semantics.
3120 */
3121 endbyte = pos + status - 1;
3122 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3123 if (err == 0) {
3124 iocb->ki_pos = endbyte + 1;
3125 written += status;
3126 invalidate_mapping_pages(mapping,
3127 pos >> PAGE_SHIFT,
3128 endbyte >> PAGE_SHIFT);
3129 } else {
3130 /*
3131 * We don't know how much we wrote, so just return
3132 * the number of bytes which were direct-written
3133 */
3134 }
3135 } else {
3136 written = generic_perform_write(file, from, iocb->ki_pos);
3137 if (likely(written > 0))
3138 iocb->ki_pos += written;
3139 }
3140 out:
3141 current->backing_dev_info = NULL;
3142 return written ? written : err;
3143 }
3144 EXPORT_SYMBOL(__generic_file_write_iter);
3145
3146 /**
3147 * generic_file_write_iter - write data to a file
3148 * @iocb: IO state structure
3149 * @from: iov_iter with data to write
3150 *
3151 * This is a wrapper around __generic_file_write_iter() to be used by most
3152 * filesystems. It takes care of syncing the file in case of O_SYNC file
3153 * and acquires i_mutex as needed.
3154 */
3155 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3156 {
3157 struct file *file = iocb->ki_filp;
3158 struct inode *inode = file->f_mapping->host;
3159 ssize_t ret;
3160
3161 inode_lock(inode);
3162 ret = generic_write_checks(iocb, from);
3163 if (ret > 0)
3164 ret = __generic_file_write_iter(iocb, from);
3165 inode_unlock(inode);
3166
3167 if (ret > 0)
3168 ret = generic_write_sync(iocb, ret);
3169 return ret;
3170 }
3171 EXPORT_SYMBOL(generic_file_write_iter);
3172
3173 /**
3174 * try_to_release_page() - release old fs-specific metadata on a page
3175 *
3176 * @page: the page which the kernel is trying to free
3177 * @gfp_mask: memory allocation flags (and I/O mode)
3178 *
3179 * The address_space is to try to release any data against the page
3180 * (presumably at page->private). If the release was successful, return '1'.
3181 * Otherwise return zero.
3182 *
3183 * This may also be called if PG_fscache is set on a page, indicating that the
3184 * page is known to the local caching routines.
3185 *
3186 * The @gfp_mask argument specifies whether I/O may be performed to release
3187 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3188 *
3189 */
3190 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3191 {
3192 struct address_space * const mapping = page->mapping;
3193
3194 BUG_ON(!PageLocked(page));
3195 if (PageWriteback(page))
3196 return 0;
3197
3198 if (mapping && mapping->a_ops->releasepage)
3199 return mapping->a_ops->releasepage(page, gfp_mask);
3200 return try_to_free_buffers(page);
3201 }
3202
3203 EXPORT_SYMBOL(try_to_release_page);