mb86a20s: fix demod settings
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44 struct page *page, *next;
45 unsigned long high_pfn = 0;
46
47 list_for_each_entry_safe(page, next, freelist, lru) {
48 unsigned long pfn = page_to_pfn(page);
49 list_del(&page->lru);
50 __free_page(page);
51 if (pfn > high_pfn)
52 high_pfn = pfn;
53 }
54
55 return high_pfn;
56 }
57
58 static void map_pages(struct list_head *list)
59 {
60 struct page *page;
61
62 list_for_each_entry(page, list, lru) {
63 arch_alloc_page(page, 0);
64 kernel_map_pages(page, 1, 1);
65 kasan_alloc_pages(page, 0);
66 }
67 }
68
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 /*
75 * Check that the whole (or subset of) a pageblock given by the interval of
76 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77 * with the migration of free compaction scanner. The scanners then need to
78 * use only pfn_valid_within() check for arches that allow holes within
79 * pageblocks.
80 *
81 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
82 *
83 * It's possible on some configurations to have a setup like node0 node1 node0
84 * i.e. it's possible that all pages within a zones range of pages do not
85 * belong to a single zone. We assume that a border between node0 and node1
86 * can occur within a single pageblock, but not a node0 node1 node0
87 * interleaving within a single pageblock. It is therefore sufficient to check
88 * the first and last page of a pageblock and avoid checking each individual
89 * page in a pageblock.
90 */
91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92 unsigned long end_pfn, struct zone *zone)
93 {
94 struct page *start_page;
95 struct page *end_page;
96
97 /* end_pfn is one past the range we are checking */
98 end_pfn--;
99
100 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101 return NULL;
102
103 start_page = pfn_to_page(start_pfn);
104
105 if (page_zone(start_page) != zone)
106 return NULL;
107
108 end_page = pfn_to_page(end_pfn);
109
110 /* This gives a shorter code than deriving page_zone(end_page) */
111 if (page_zone_id(start_page) != page_zone_id(end_page))
112 return NULL;
113
114 return start_page;
115 }
116
117 #ifdef CONFIG_COMPACTION
118
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
121
122 /*
123 * Compaction is deferred when compaction fails to result in a page
124 * allocation success. 1 << compact_defer_limit compactions are skipped up
125 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
126 */
127 void defer_compaction(struct zone *zone, int order)
128 {
129 zone->compact_considered = 0;
130 zone->compact_defer_shift++;
131
132 if (order < zone->compact_order_failed)
133 zone->compact_order_failed = order;
134
135 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
137
138 trace_mm_compaction_defer_compaction(zone, order);
139 }
140
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone *zone, int order)
143 {
144 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
145
146 if (order < zone->compact_order_failed)
147 return false;
148
149 /* Avoid possible overflow */
150 if (++zone->compact_considered > defer_limit)
151 zone->compact_considered = defer_limit;
152
153 if (zone->compact_considered >= defer_limit)
154 return false;
155
156 trace_mm_compaction_deferred(zone, order);
157
158 return true;
159 }
160
161 /*
162 * Update defer tracking counters after successful compaction of given order,
163 * which means an allocation either succeeded (alloc_success == true) or is
164 * expected to succeed.
165 */
166 void compaction_defer_reset(struct zone *zone, int order,
167 bool alloc_success)
168 {
169 if (alloc_success) {
170 zone->compact_considered = 0;
171 zone->compact_defer_shift = 0;
172 }
173 if (order >= zone->compact_order_failed)
174 zone->compact_order_failed = order + 1;
175
176 trace_mm_compaction_defer_reset(zone, order);
177 }
178
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone *zone, int order)
181 {
182 if (order < zone->compact_order_failed)
183 return false;
184
185 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186 zone->compact_considered >= 1UL << zone->compact_defer_shift;
187 }
188
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control *cc,
191 struct page *page)
192 {
193 if (cc->ignore_skip_hint)
194 return true;
195
196 return !get_pageblock_skip(page);
197 }
198
199 static void reset_cached_positions(struct zone *zone)
200 {
201 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203 zone->compact_cached_free_pfn = zone_end_pfn(zone);
204 }
205
206 /*
207 * This function is called to clear all cached information on pageblocks that
208 * should be skipped for page isolation when the migrate and free page scanner
209 * meet.
210 */
211 static void __reset_isolation_suitable(struct zone *zone)
212 {
213 unsigned long start_pfn = zone->zone_start_pfn;
214 unsigned long end_pfn = zone_end_pfn(zone);
215 unsigned long pfn;
216
217 zone->compact_blockskip_flush = false;
218
219 /* Walk the zone and mark every pageblock as suitable for isolation */
220 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
221 struct page *page;
222
223 cond_resched();
224
225 if (!pfn_valid(pfn))
226 continue;
227
228 page = pfn_to_page(pfn);
229 if (zone != page_zone(page))
230 continue;
231
232 clear_pageblock_skip(page);
233 }
234
235 reset_cached_positions(zone);
236 }
237
238 void reset_isolation_suitable(pg_data_t *pgdat)
239 {
240 int zoneid;
241
242 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
243 struct zone *zone = &pgdat->node_zones[zoneid];
244 if (!populated_zone(zone))
245 continue;
246
247 /* Only flush if a full compaction finished recently */
248 if (zone->compact_blockskip_flush)
249 __reset_isolation_suitable(zone);
250 }
251 }
252
253 /*
254 * If no pages were isolated then mark this pageblock to be skipped in the
255 * future. The information is later cleared by __reset_isolation_suitable().
256 */
257 static void update_pageblock_skip(struct compact_control *cc,
258 struct page *page, unsigned long nr_isolated,
259 bool migrate_scanner)
260 {
261 struct zone *zone = cc->zone;
262 unsigned long pfn;
263
264 if (cc->ignore_skip_hint)
265 return;
266
267 if (!page)
268 return;
269
270 if (nr_isolated)
271 return;
272
273 set_pageblock_skip(page);
274
275 pfn = page_to_pfn(page);
276
277 /* Update where async and sync compaction should restart */
278 if (migrate_scanner) {
279 if (pfn > zone->compact_cached_migrate_pfn[0])
280 zone->compact_cached_migrate_pfn[0] = pfn;
281 if (cc->mode != MIGRATE_ASYNC &&
282 pfn > zone->compact_cached_migrate_pfn[1])
283 zone->compact_cached_migrate_pfn[1] = pfn;
284 } else {
285 if (pfn < zone->compact_cached_free_pfn)
286 zone->compact_cached_free_pfn = pfn;
287 }
288 }
289 #else
290 static inline bool isolation_suitable(struct compact_control *cc,
291 struct page *page)
292 {
293 return true;
294 }
295
296 static void update_pageblock_skip(struct compact_control *cc,
297 struct page *page, unsigned long nr_isolated,
298 bool migrate_scanner)
299 {
300 }
301 #endif /* CONFIG_COMPACTION */
302
303 /*
304 * Compaction requires the taking of some coarse locks that are potentially
305 * very heavily contended. For async compaction, back out if the lock cannot
306 * be taken immediately. For sync compaction, spin on the lock if needed.
307 *
308 * Returns true if the lock is held
309 * Returns false if the lock is not held and compaction should abort
310 */
311 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
312 struct compact_control *cc)
313 {
314 if (cc->mode == MIGRATE_ASYNC) {
315 if (!spin_trylock_irqsave(lock, *flags)) {
316 cc->contended = COMPACT_CONTENDED_LOCK;
317 return false;
318 }
319 } else {
320 spin_lock_irqsave(lock, *flags);
321 }
322
323 return true;
324 }
325
326 /*
327 * Compaction requires the taking of some coarse locks that are potentially
328 * very heavily contended. The lock should be periodically unlocked to avoid
329 * having disabled IRQs for a long time, even when there is nobody waiting on
330 * the lock. It might also be that allowing the IRQs will result in
331 * need_resched() becoming true. If scheduling is needed, async compaction
332 * aborts. Sync compaction schedules.
333 * Either compaction type will also abort if a fatal signal is pending.
334 * In either case if the lock was locked, it is dropped and not regained.
335 *
336 * Returns true if compaction should abort due to fatal signal pending, or
337 * async compaction due to need_resched()
338 * Returns false when compaction can continue (sync compaction might have
339 * scheduled)
340 */
341 static bool compact_unlock_should_abort(spinlock_t *lock,
342 unsigned long flags, bool *locked, struct compact_control *cc)
343 {
344 if (*locked) {
345 spin_unlock_irqrestore(lock, flags);
346 *locked = false;
347 }
348
349 if (fatal_signal_pending(current)) {
350 cc->contended = COMPACT_CONTENDED_SCHED;
351 return true;
352 }
353
354 if (need_resched()) {
355 if (cc->mode == MIGRATE_ASYNC) {
356 cc->contended = COMPACT_CONTENDED_SCHED;
357 return true;
358 }
359 cond_resched();
360 }
361
362 return false;
363 }
364
365 /*
366 * Aside from avoiding lock contention, compaction also periodically checks
367 * need_resched() and either schedules in sync compaction or aborts async
368 * compaction. This is similar to what compact_unlock_should_abort() does, but
369 * is used where no lock is concerned.
370 *
371 * Returns false when no scheduling was needed, or sync compaction scheduled.
372 * Returns true when async compaction should abort.
373 */
374 static inline bool compact_should_abort(struct compact_control *cc)
375 {
376 /* async compaction aborts if contended */
377 if (need_resched()) {
378 if (cc->mode == MIGRATE_ASYNC) {
379 cc->contended = COMPACT_CONTENDED_SCHED;
380 return true;
381 }
382
383 cond_resched();
384 }
385
386 return false;
387 }
388
389 /*
390 * Isolate free pages onto a private freelist. If @strict is true, will abort
391 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
392 * (even though it may still end up isolating some pages).
393 */
394 static unsigned long isolate_freepages_block(struct compact_control *cc,
395 unsigned long *start_pfn,
396 unsigned long end_pfn,
397 struct list_head *freelist,
398 bool strict)
399 {
400 int nr_scanned = 0, total_isolated = 0;
401 struct page *cursor, *valid_page = NULL;
402 unsigned long flags = 0;
403 bool locked = false;
404 unsigned long blockpfn = *start_pfn;
405
406 cursor = pfn_to_page(blockpfn);
407
408 /* Isolate free pages. */
409 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
410 int isolated, i;
411 struct page *page = cursor;
412
413 /*
414 * Periodically drop the lock (if held) regardless of its
415 * contention, to give chance to IRQs. Abort if fatal signal
416 * pending or async compaction detects need_resched()
417 */
418 if (!(blockpfn % SWAP_CLUSTER_MAX)
419 && compact_unlock_should_abort(&cc->zone->lock, flags,
420 &locked, cc))
421 break;
422
423 nr_scanned++;
424 if (!pfn_valid_within(blockpfn))
425 goto isolate_fail;
426
427 if (!valid_page)
428 valid_page = page;
429
430 /*
431 * For compound pages such as THP and hugetlbfs, we can save
432 * potentially a lot of iterations if we skip them at once.
433 * The check is racy, but we can consider only valid values
434 * and the only danger is skipping too much.
435 */
436 if (PageCompound(page)) {
437 unsigned int comp_order = compound_order(page);
438
439 if (likely(comp_order < MAX_ORDER)) {
440 blockpfn += (1UL << comp_order) - 1;
441 cursor += (1UL << comp_order) - 1;
442 }
443
444 goto isolate_fail;
445 }
446
447 if (!PageBuddy(page))
448 goto isolate_fail;
449
450 /*
451 * If we already hold the lock, we can skip some rechecking.
452 * Note that if we hold the lock now, checked_pageblock was
453 * already set in some previous iteration (or strict is true),
454 * so it is correct to skip the suitable migration target
455 * recheck as well.
456 */
457 if (!locked) {
458 /*
459 * The zone lock must be held to isolate freepages.
460 * Unfortunately this is a very coarse lock and can be
461 * heavily contended if there are parallel allocations
462 * or parallel compactions. For async compaction do not
463 * spin on the lock and we acquire the lock as late as
464 * possible.
465 */
466 locked = compact_trylock_irqsave(&cc->zone->lock,
467 &flags, cc);
468 if (!locked)
469 break;
470
471 /* Recheck this is a buddy page under lock */
472 if (!PageBuddy(page))
473 goto isolate_fail;
474 }
475
476 /* Found a free page, break it into order-0 pages */
477 isolated = split_free_page(page);
478 if (!isolated)
479 break;
480
481 total_isolated += isolated;
482 cc->nr_freepages += isolated;
483 for (i = 0; i < isolated; i++) {
484 list_add(&page->lru, freelist);
485 page++;
486 }
487 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
488 blockpfn += isolated;
489 break;
490 }
491 /* Advance to the end of split page */
492 blockpfn += isolated - 1;
493 cursor += isolated - 1;
494 continue;
495
496 isolate_fail:
497 if (strict)
498 break;
499 else
500 continue;
501
502 }
503
504 if (locked)
505 spin_unlock_irqrestore(&cc->zone->lock, flags);
506
507 /*
508 * There is a tiny chance that we have read bogus compound_order(),
509 * so be careful to not go outside of the pageblock.
510 */
511 if (unlikely(blockpfn > end_pfn))
512 blockpfn = end_pfn;
513
514 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
515 nr_scanned, total_isolated);
516
517 /* Record how far we have got within the block */
518 *start_pfn = blockpfn;
519
520 /*
521 * If strict isolation is requested by CMA then check that all the
522 * pages requested were isolated. If there were any failures, 0 is
523 * returned and CMA will fail.
524 */
525 if (strict && blockpfn < end_pfn)
526 total_isolated = 0;
527
528 /* Update the pageblock-skip if the whole pageblock was scanned */
529 if (blockpfn == end_pfn)
530 update_pageblock_skip(cc, valid_page, total_isolated, false);
531
532 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
533 if (total_isolated)
534 count_compact_events(COMPACTISOLATED, total_isolated);
535 return total_isolated;
536 }
537
538 /**
539 * isolate_freepages_range() - isolate free pages.
540 * @start_pfn: The first PFN to start isolating.
541 * @end_pfn: The one-past-last PFN.
542 *
543 * Non-free pages, invalid PFNs, or zone boundaries within the
544 * [start_pfn, end_pfn) range are considered errors, cause function to
545 * undo its actions and return zero.
546 *
547 * Otherwise, function returns one-past-the-last PFN of isolated page
548 * (which may be greater then end_pfn if end fell in a middle of
549 * a free page).
550 */
551 unsigned long
552 isolate_freepages_range(struct compact_control *cc,
553 unsigned long start_pfn, unsigned long end_pfn)
554 {
555 unsigned long isolated, pfn, block_end_pfn;
556 LIST_HEAD(freelist);
557
558 pfn = start_pfn;
559 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
560
561 for (; pfn < end_pfn; pfn += isolated,
562 block_end_pfn += pageblock_nr_pages) {
563 /* Protect pfn from changing by isolate_freepages_block */
564 unsigned long isolate_start_pfn = pfn;
565
566 block_end_pfn = min(block_end_pfn, end_pfn);
567
568 /*
569 * pfn could pass the block_end_pfn if isolated freepage
570 * is more than pageblock order. In this case, we adjust
571 * scanning range to right one.
572 */
573 if (pfn >= block_end_pfn) {
574 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
575 block_end_pfn = min(block_end_pfn, end_pfn);
576 }
577
578 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
579 break;
580
581 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
582 block_end_pfn, &freelist, true);
583
584 /*
585 * In strict mode, isolate_freepages_block() returns 0 if
586 * there are any holes in the block (ie. invalid PFNs or
587 * non-free pages).
588 */
589 if (!isolated)
590 break;
591
592 /*
593 * If we managed to isolate pages, it is always (1 << n) *
594 * pageblock_nr_pages for some non-negative n. (Max order
595 * page may span two pageblocks).
596 */
597 }
598
599 /* split_free_page does not map the pages */
600 map_pages(&freelist);
601
602 if (pfn < end_pfn) {
603 /* Loop terminated early, cleanup. */
604 release_freepages(&freelist);
605 return 0;
606 }
607
608 /* We don't use freelists for anything. */
609 return pfn;
610 }
611
612 /* Update the number of anon and file isolated pages in the zone */
613 static void acct_isolated(struct zone *zone, struct compact_control *cc)
614 {
615 struct page *page;
616 unsigned int count[2] = { 0, };
617
618 if (list_empty(&cc->migratepages))
619 return;
620
621 list_for_each_entry(page, &cc->migratepages, lru)
622 count[!!page_is_file_cache(page)]++;
623
624 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
625 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
626 }
627
628 /* Similar to reclaim, but different enough that they don't share logic */
629 static bool too_many_isolated(struct zone *zone)
630 {
631 unsigned long active, inactive, isolated;
632
633 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
634 zone_page_state(zone, NR_INACTIVE_ANON);
635 active = zone_page_state(zone, NR_ACTIVE_FILE) +
636 zone_page_state(zone, NR_ACTIVE_ANON);
637 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
638 zone_page_state(zone, NR_ISOLATED_ANON);
639
640 return isolated > (inactive + active) / 2;
641 }
642
643 /**
644 * isolate_migratepages_block() - isolate all migrate-able pages within
645 * a single pageblock
646 * @cc: Compaction control structure.
647 * @low_pfn: The first PFN to isolate
648 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
649 * @isolate_mode: Isolation mode to be used.
650 *
651 * Isolate all pages that can be migrated from the range specified by
652 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
653 * Returns zero if there is a fatal signal pending, otherwise PFN of the
654 * first page that was not scanned (which may be both less, equal to or more
655 * than end_pfn).
656 *
657 * The pages are isolated on cc->migratepages list (not required to be empty),
658 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
659 * is neither read nor updated.
660 */
661 static unsigned long
662 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
663 unsigned long end_pfn, isolate_mode_t isolate_mode)
664 {
665 struct zone *zone = cc->zone;
666 unsigned long nr_scanned = 0, nr_isolated = 0;
667 struct list_head *migratelist = &cc->migratepages;
668 struct lruvec *lruvec;
669 unsigned long flags = 0;
670 bool locked = false;
671 struct page *page = NULL, *valid_page = NULL;
672 unsigned long start_pfn = low_pfn;
673
674 /*
675 * Ensure that there are not too many pages isolated from the LRU
676 * list by either parallel reclaimers or compaction. If there are,
677 * delay for some time until fewer pages are isolated
678 */
679 while (unlikely(too_many_isolated(zone))) {
680 /* async migration should just abort */
681 if (cc->mode == MIGRATE_ASYNC)
682 return 0;
683
684 congestion_wait(BLK_RW_ASYNC, HZ/10);
685
686 if (fatal_signal_pending(current))
687 return 0;
688 }
689
690 if (compact_should_abort(cc))
691 return 0;
692
693 /* Time to isolate some pages for migration */
694 for (; low_pfn < end_pfn; low_pfn++) {
695 bool is_lru;
696
697 /*
698 * Periodically drop the lock (if held) regardless of its
699 * contention, to give chance to IRQs. Abort async compaction
700 * if contended.
701 */
702 if (!(low_pfn % SWAP_CLUSTER_MAX)
703 && compact_unlock_should_abort(&zone->lru_lock, flags,
704 &locked, cc))
705 break;
706
707 if (!pfn_valid_within(low_pfn))
708 continue;
709 nr_scanned++;
710
711 page = pfn_to_page(low_pfn);
712
713 if (!valid_page)
714 valid_page = page;
715
716 /*
717 * Skip if free. We read page order here without zone lock
718 * which is generally unsafe, but the race window is small and
719 * the worst thing that can happen is that we skip some
720 * potential isolation targets.
721 */
722 if (PageBuddy(page)) {
723 unsigned long freepage_order = page_order_unsafe(page);
724
725 /*
726 * Without lock, we cannot be sure that what we got is
727 * a valid page order. Consider only values in the
728 * valid order range to prevent low_pfn overflow.
729 */
730 if (freepage_order > 0 && freepage_order < MAX_ORDER)
731 low_pfn += (1UL << freepage_order) - 1;
732 continue;
733 }
734
735 /*
736 * Check may be lockless but that's ok as we recheck later.
737 * It's possible to migrate LRU pages and balloon pages
738 * Skip any other type of page
739 */
740 is_lru = PageLRU(page);
741 if (!is_lru) {
742 if (unlikely(balloon_page_movable(page))) {
743 if (balloon_page_isolate(page)) {
744 /* Successfully isolated */
745 goto isolate_success;
746 }
747 }
748 }
749
750 /*
751 * Regardless of being on LRU, compound pages such as THP and
752 * hugetlbfs are not to be compacted. We can potentially save
753 * a lot of iterations if we skip them at once. The check is
754 * racy, but we can consider only valid values and the only
755 * danger is skipping too much.
756 */
757 if (PageCompound(page)) {
758 unsigned int comp_order = compound_order(page);
759
760 if (likely(comp_order < MAX_ORDER))
761 low_pfn += (1UL << comp_order) - 1;
762
763 continue;
764 }
765
766 if (!is_lru)
767 continue;
768
769 /*
770 * Migration will fail if an anonymous page is pinned in memory,
771 * so avoid taking lru_lock and isolating it unnecessarily in an
772 * admittedly racy check.
773 */
774 if (!page_mapping(page) &&
775 page_count(page) > page_mapcount(page))
776 continue;
777
778 /* If we already hold the lock, we can skip some rechecking */
779 if (!locked) {
780 locked = compact_trylock_irqsave(&zone->lru_lock,
781 &flags, cc);
782 if (!locked)
783 break;
784
785 /* Recheck PageLRU and PageCompound under lock */
786 if (!PageLRU(page))
787 continue;
788
789 /*
790 * Page become compound since the non-locked check,
791 * and it's on LRU. It can only be a THP so the order
792 * is safe to read and it's 0 for tail pages.
793 */
794 if (unlikely(PageCompound(page))) {
795 low_pfn += (1UL << compound_order(page)) - 1;
796 continue;
797 }
798 }
799
800 lruvec = mem_cgroup_page_lruvec(page, zone);
801
802 /* Try isolate the page */
803 if (__isolate_lru_page(page, isolate_mode) != 0)
804 continue;
805
806 VM_BUG_ON_PAGE(PageCompound(page), page);
807
808 /* Successfully isolated */
809 del_page_from_lru_list(page, lruvec, page_lru(page));
810
811 isolate_success:
812 list_add(&page->lru, migratelist);
813 cc->nr_migratepages++;
814 nr_isolated++;
815
816 /* Avoid isolating too much */
817 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
818 ++low_pfn;
819 break;
820 }
821 }
822
823 /*
824 * The PageBuddy() check could have potentially brought us outside
825 * the range to be scanned.
826 */
827 if (unlikely(low_pfn > end_pfn))
828 low_pfn = end_pfn;
829
830 if (locked)
831 spin_unlock_irqrestore(&zone->lru_lock, flags);
832
833 /*
834 * Update the pageblock-skip information and cached scanner pfn,
835 * if the whole pageblock was scanned without isolating any page.
836 */
837 if (low_pfn == end_pfn)
838 update_pageblock_skip(cc, valid_page, nr_isolated, true);
839
840 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
841 nr_scanned, nr_isolated);
842
843 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
844 if (nr_isolated)
845 count_compact_events(COMPACTISOLATED, nr_isolated);
846
847 return low_pfn;
848 }
849
850 /**
851 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
852 * @cc: Compaction control structure.
853 * @start_pfn: The first PFN to start isolating.
854 * @end_pfn: The one-past-last PFN.
855 *
856 * Returns zero if isolation fails fatally due to e.g. pending signal.
857 * Otherwise, function returns one-past-the-last PFN of isolated page
858 * (which may be greater than end_pfn if end fell in a middle of a THP page).
859 */
860 unsigned long
861 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
862 unsigned long end_pfn)
863 {
864 unsigned long pfn, block_end_pfn;
865
866 /* Scan block by block. First and last block may be incomplete */
867 pfn = start_pfn;
868 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
869
870 for (; pfn < end_pfn; pfn = block_end_pfn,
871 block_end_pfn += pageblock_nr_pages) {
872
873 block_end_pfn = min(block_end_pfn, end_pfn);
874
875 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
876 continue;
877
878 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
879 ISOLATE_UNEVICTABLE);
880
881 if (!pfn)
882 break;
883
884 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
885 break;
886 }
887 acct_isolated(cc->zone, cc);
888
889 return pfn;
890 }
891
892 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
893 #ifdef CONFIG_COMPACTION
894
895 /* Returns true if the page is within a block suitable for migration to */
896 static bool suitable_migration_target(struct page *page)
897 {
898 /* If the page is a large free page, then disallow migration */
899 if (PageBuddy(page)) {
900 /*
901 * We are checking page_order without zone->lock taken. But
902 * the only small danger is that we skip a potentially suitable
903 * pageblock, so it's not worth to check order for valid range.
904 */
905 if (page_order_unsafe(page) >= pageblock_order)
906 return false;
907 }
908
909 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
910 if (migrate_async_suitable(get_pageblock_migratetype(page)))
911 return true;
912
913 /* Otherwise skip the block */
914 return false;
915 }
916
917 /*
918 * Test whether the free scanner has reached the same or lower pageblock than
919 * the migration scanner, and compaction should thus terminate.
920 */
921 static inline bool compact_scanners_met(struct compact_control *cc)
922 {
923 return (cc->free_pfn >> pageblock_order)
924 <= (cc->migrate_pfn >> pageblock_order);
925 }
926
927 /*
928 * Based on information in the current compact_control, find blocks
929 * suitable for isolating free pages from and then isolate them.
930 */
931 static void isolate_freepages(struct compact_control *cc)
932 {
933 struct zone *zone = cc->zone;
934 struct page *page;
935 unsigned long block_start_pfn; /* start of current pageblock */
936 unsigned long isolate_start_pfn; /* exact pfn we start at */
937 unsigned long block_end_pfn; /* end of current pageblock */
938 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
939 struct list_head *freelist = &cc->freepages;
940
941 /*
942 * Initialise the free scanner. The starting point is where we last
943 * successfully isolated from, zone-cached value, or the end of the
944 * zone when isolating for the first time. For looping we also need
945 * this pfn aligned down to the pageblock boundary, because we do
946 * block_start_pfn -= pageblock_nr_pages in the for loop.
947 * For ending point, take care when isolating in last pageblock of a
948 * a zone which ends in the middle of a pageblock.
949 * The low boundary is the end of the pageblock the migration scanner
950 * is using.
951 */
952 isolate_start_pfn = cc->free_pfn;
953 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
954 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
955 zone_end_pfn(zone));
956 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
957
958 /*
959 * Isolate free pages until enough are available to migrate the
960 * pages on cc->migratepages. We stop searching if the migrate
961 * and free page scanners meet or enough free pages are isolated.
962 */
963 for (; block_start_pfn >= low_pfn;
964 block_end_pfn = block_start_pfn,
965 block_start_pfn -= pageblock_nr_pages,
966 isolate_start_pfn = block_start_pfn) {
967 /*
968 * This can iterate a massively long zone without finding any
969 * suitable migration targets, so periodically check if we need
970 * to schedule, or even abort async compaction.
971 */
972 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
973 && compact_should_abort(cc))
974 break;
975
976 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
977 zone);
978 if (!page)
979 continue;
980
981 /* Check the block is suitable for migration */
982 if (!suitable_migration_target(page))
983 continue;
984
985 /* If isolation recently failed, do not retry */
986 if (!isolation_suitable(cc, page))
987 continue;
988
989 /* Found a block suitable for isolating free pages from. */
990 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
991 freelist, false);
992
993 /*
994 * If we isolated enough freepages, or aborted due to lock
995 * contention, terminate.
996 */
997 if ((cc->nr_freepages >= cc->nr_migratepages)
998 || cc->contended) {
999 if (isolate_start_pfn >= block_end_pfn) {
1000 /*
1001 * Restart at previous pageblock if more
1002 * freepages can be isolated next time.
1003 */
1004 isolate_start_pfn =
1005 block_start_pfn - pageblock_nr_pages;
1006 }
1007 break;
1008 } else if (isolate_start_pfn < block_end_pfn) {
1009 /*
1010 * If isolation failed early, do not continue
1011 * needlessly.
1012 */
1013 break;
1014 }
1015 }
1016
1017 /* split_free_page does not map the pages */
1018 map_pages(freelist);
1019
1020 /*
1021 * Record where the free scanner will restart next time. Either we
1022 * broke from the loop and set isolate_start_pfn based on the last
1023 * call to isolate_freepages_block(), or we met the migration scanner
1024 * and the loop terminated due to isolate_start_pfn < low_pfn
1025 */
1026 cc->free_pfn = isolate_start_pfn;
1027 }
1028
1029 /*
1030 * This is a migrate-callback that "allocates" freepages by taking pages
1031 * from the isolated freelists in the block we are migrating to.
1032 */
1033 static struct page *compaction_alloc(struct page *migratepage,
1034 unsigned long data,
1035 int **result)
1036 {
1037 struct compact_control *cc = (struct compact_control *)data;
1038 struct page *freepage;
1039
1040 /*
1041 * Isolate free pages if necessary, and if we are not aborting due to
1042 * contention.
1043 */
1044 if (list_empty(&cc->freepages)) {
1045 if (!cc->contended)
1046 isolate_freepages(cc);
1047
1048 if (list_empty(&cc->freepages))
1049 return NULL;
1050 }
1051
1052 freepage = list_entry(cc->freepages.next, struct page, lru);
1053 list_del(&freepage->lru);
1054 cc->nr_freepages--;
1055
1056 return freepage;
1057 }
1058
1059 /*
1060 * This is a migrate-callback that "frees" freepages back to the isolated
1061 * freelist. All pages on the freelist are from the same zone, so there is no
1062 * special handling needed for NUMA.
1063 */
1064 static void compaction_free(struct page *page, unsigned long data)
1065 {
1066 struct compact_control *cc = (struct compact_control *)data;
1067
1068 list_add(&page->lru, &cc->freepages);
1069 cc->nr_freepages++;
1070 }
1071
1072 /* possible outcome of isolate_migratepages */
1073 typedef enum {
1074 ISOLATE_ABORT, /* Abort compaction now */
1075 ISOLATE_NONE, /* No pages isolated, continue scanning */
1076 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1077 } isolate_migrate_t;
1078
1079 /*
1080 * Allow userspace to control policy on scanning the unevictable LRU for
1081 * compactable pages.
1082 */
1083 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1084
1085 /*
1086 * Isolate all pages that can be migrated from the first suitable block,
1087 * starting at the block pointed to by the migrate scanner pfn within
1088 * compact_control.
1089 */
1090 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1091 struct compact_control *cc)
1092 {
1093 unsigned long low_pfn, end_pfn;
1094 unsigned long isolate_start_pfn;
1095 struct page *page;
1096 const isolate_mode_t isolate_mode =
1097 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1098 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1099
1100 /*
1101 * Start at where we last stopped, or beginning of the zone as
1102 * initialized by compact_zone()
1103 */
1104 low_pfn = cc->migrate_pfn;
1105
1106 /* Only scan within a pageblock boundary */
1107 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1108
1109 /*
1110 * Iterate over whole pageblocks until we find the first suitable.
1111 * Do not cross the free scanner.
1112 */
1113 for (; end_pfn <= cc->free_pfn;
1114 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1115
1116 /*
1117 * This can potentially iterate a massively long zone with
1118 * many pageblocks unsuitable, so periodically check if we
1119 * need to schedule, or even abort async compaction.
1120 */
1121 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1122 && compact_should_abort(cc))
1123 break;
1124
1125 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1126 if (!page)
1127 continue;
1128
1129 /* If isolation recently failed, do not retry */
1130 if (!isolation_suitable(cc, page))
1131 continue;
1132
1133 /*
1134 * For async compaction, also only scan in MOVABLE blocks.
1135 * Async compaction is optimistic to see if the minimum amount
1136 * of work satisfies the allocation.
1137 */
1138 if (cc->mode == MIGRATE_ASYNC &&
1139 !migrate_async_suitable(get_pageblock_migratetype(page)))
1140 continue;
1141
1142 /* Perform the isolation */
1143 isolate_start_pfn = low_pfn;
1144 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1145 isolate_mode);
1146
1147 if (!low_pfn || cc->contended) {
1148 acct_isolated(zone, cc);
1149 return ISOLATE_ABORT;
1150 }
1151
1152 /*
1153 * Record where we could have freed pages by migration and not
1154 * yet flushed them to buddy allocator.
1155 * - this is the lowest page that could have been isolated and
1156 * then freed by migration.
1157 */
1158 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1159 cc->last_migrated_pfn = isolate_start_pfn;
1160
1161 /*
1162 * Either we isolated something and proceed with migration. Or
1163 * we failed and compact_zone should decide if we should
1164 * continue or not.
1165 */
1166 break;
1167 }
1168
1169 acct_isolated(zone, cc);
1170 /* Record where migration scanner will be restarted. */
1171 cc->migrate_pfn = low_pfn;
1172
1173 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1174 }
1175
1176 /*
1177 * order == -1 is expected when compacting via
1178 * /proc/sys/vm/compact_memory
1179 */
1180 static inline bool is_via_compact_memory(int order)
1181 {
1182 return order == -1;
1183 }
1184
1185 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1186 const int migratetype)
1187 {
1188 unsigned int order;
1189 unsigned long watermark;
1190
1191 if (cc->contended || fatal_signal_pending(current))
1192 return COMPACT_CONTENDED;
1193
1194 /* Compaction run completes if the migrate and free scanner meet */
1195 if (compact_scanners_met(cc)) {
1196 /* Let the next compaction start anew. */
1197 reset_cached_positions(zone);
1198
1199 /*
1200 * Mark that the PG_migrate_skip information should be cleared
1201 * by kswapd when it goes to sleep. kswapd does not set the
1202 * flag itself as the decision to be clear should be directly
1203 * based on an allocation request.
1204 */
1205 if (!current_is_kswapd())
1206 zone->compact_blockskip_flush = true;
1207
1208 return COMPACT_COMPLETE;
1209 }
1210
1211 if (is_via_compact_memory(cc->order))
1212 return COMPACT_CONTINUE;
1213
1214 /* Compaction run is not finished if the watermark is not met */
1215 watermark = low_wmark_pages(zone);
1216
1217 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1218 cc->alloc_flags))
1219 return COMPACT_CONTINUE;
1220
1221 /* Direct compactor: Is a suitable page free? */
1222 for (order = cc->order; order < MAX_ORDER; order++) {
1223 struct free_area *area = &zone->free_area[order];
1224 bool can_steal;
1225
1226 /* Job done if page is free of the right migratetype */
1227 if (!list_empty(&area->free_list[migratetype]))
1228 return COMPACT_PARTIAL;
1229
1230 #ifdef CONFIG_CMA
1231 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1232 if (migratetype == MIGRATE_MOVABLE &&
1233 !list_empty(&area->free_list[MIGRATE_CMA]))
1234 return COMPACT_PARTIAL;
1235 #endif
1236 /*
1237 * Job done if allocation would steal freepages from
1238 * other migratetype buddy lists.
1239 */
1240 if (find_suitable_fallback(area, order, migratetype,
1241 true, &can_steal) != -1)
1242 return COMPACT_PARTIAL;
1243 }
1244
1245 return COMPACT_NO_SUITABLE_PAGE;
1246 }
1247
1248 static int compact_finished(struct zone *zone, struct compact_control *cc,
1249 const int migratetype)
1250 {
1251 int ret;
1252
1253 ret = __compact_finished(zone, cc, migratetype);
1254 trace_mm_compaction_finished(zone, cc->order, ret);
1255 if (ret == COMPACT_NO_SUITABLE_PAGE)
1256 ret = COMPACT_CONTINUE;
1257
1258 return ret;
1259 }
1260
1261 /*
1262 * compaction_suitable: Is this suitable to run compaction on this zone now?
1263 * Returns
1264 * COMPACT_SKIPPED - If there are too few free pages for compaction
1265 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1266 * COMPACT_CONTINUE - If compaction should run now
1267 */
1268 static unsigned long __compaction_suitable(struct zone *zone, int order,
1269 int alloc_flags, int classzone_idx)
1270 {
1271 int fragindex;
1272 unsigned long watermark;
1273
1274 if (is_via_compact_memory(order))
1275 return COMPACT_CONTINUE;
1276
1277 watermark = low_wmark_pages(zone);
1278 /*
1279 * If watermarks for high-order allocation are already met, there
1280 * should be no need for compaction at all.
1281 */
1282 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1283 alloc_flags))
1284 return COMPACT_PARTIAL;
1285
1286 /*
1287 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1288 * This is because during migration, copies of pages need to be
1289 * allocated and for a short time, the footprint is higher
1290 */
1291 watermark += (2UL << order);
1292 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1293 return COMPACT_SKIPPED;
1294
1295 /*
1296 * fragmentation index determines if allocation failures are due to
1297 * low memory or external fragmentation
1298 *
1299 * index of -1000 would imply allocations might succeed depending on
1300 * watermarks, but we already failed the high-order watermark check
1301 * index towards 0 implies failure is due to lack of memory
1302 * index towards 1000 implies failure is due to fragmentation
1303 *
1304 * Only compact if a failure would be due to fragmentation.
1305 */
1306 fragindex = fragmentation_index(zone, order);
1307 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1308 return COMPACT_NOT_SUITABLE_ZONE;
1309
1310 return COMPACT_CONTINUE;
1311 }
1312
1313 unsigned long compaction_suitable(struct zone *zone, int order,
1314 int alloc_flags, int classzone_idx)
1315 {
1316 unsigned long ret;
1317
1318 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1319 trace_mm_compaction_suitable(zone, order, ret);
1320 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1321 ret = COMPACT_SKIPPED;
1322
1323 return ret;
1324 }
1325
1326 static int compact_zone(struct zone *zone, struct compact_control *cc)
1327 {
1328 int ret;
1329 unsigned long start_pfn = zone->zone_start_pfn;
1330 unsigned long end_pfn = zone_end_pfn(zone);
1331 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1332 const bool sync = cc->mode != MIGRATE_ASYNC;
1333
1334 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1335 cc->classzone_idx);
1336 switch (ret) {
1337 case COMPACT_PARTIAL:
1338 case COMPACT_SKIPPED:
1339 /* Compaction is likely to fail */
1340 return ret;
1341 case COMPACT_CONTINUE:
1342 /* Fall through to compaction */
1343 ;
1344 }
1345
1346 /*
1347 * Clear pageblock skip if there were failures recently and compaction
1348 * is about to be retried after being deferred. kswapd does not do
1349 * this reset as it'll reset the cached information when going to sleep.
1350 */
1351 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1352 __reset_isolation_suitable(zone);
1353
1354 /*
1355 * Setup to move all movable pages to the end of the zone. Used cached
1356 * information on where the scanners should start but check that it
1357 * is initialised by ensuring the values are within zone boundaries.
1358 */
1359 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1360 cc->free_pfn = zone->compact_cached_free_pfn;
1361 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1362 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1363 zone->compact_cached_free_pfn = cc->free_pfn;
1364 }
1365 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1366 cc->migrate_pfn = start_pfn;
1367 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1368 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1369 }
1370 cc->last_migrated_pfn = 0;
1371
1372 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1373 cc->free_pfn, end_pfn, sync);
1374
1375 migrate_prep_local();
1376
1377 while ((ret = compact_finished(zone, cc, migratetype)) ==
1378 COMPACT_CONTINUE) {
1379 int err;
1380
1381 switch (isolate_migratepages(zone, cc)) {
1382 case ISOLATE_ABORT:
1383 ret = COMPACT_CONTENDED;
1384 putback_movable_pages(&cc->migratepages);
1385 cc->nr_migratepages = 0;
1386 goto out;
1387 case ISOLATE_NONE:
1388 /*
1389 * We haven't isolated and migrated anything, but
1390 * there might still be unflushed migrations from
1391 * previous cc->order aligned block.
1392 */
1393 goto check_drain;
1394 case ISOLATE_SUCCESS:
1395 ;
1396 }
1397
1398 err = migrate_pages(&cc->migratepages, compaction_alloc,
1399 compaction_free, (unsigned long)cc, cc->mode,
1400 MR_COMPACTION);
1401
1402 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1403 &cc->migratepages);
1404
1405 /* All pages were either migrated or will be released */
1406 cc->nr_migratepages = 0;
1407 if (err) {
1408 putback_movable_pages(&cc->migratepages);
1409 /*
1410 * migrate_pages() may return -ENOMEM when scanners meet
1411 * and we want compact_finished() to detect it
1412 */
1413 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1414 ret = COMPACT_CONTENDED;
1415 goto out;
1416 }
1417 }
1418
1419 check_drain:
1420 /*
1421 * Has the migration scanner moved away from the previous
1422 * cc->order aligned block where we migrated from? If yes,
1423 * flush the pages that were freed, so that they can merge and
1424 * compact_finished() can detect immediately if allocation
1425 * would succeed.
1426 */
1427 if (cc->order > 0 && cc->last_migrated_pfn) {
1428 int cpu;
1429 unsigned long current_block_start =
1430 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1431
1432 if (cc->last_migrated_pfn < current_block_start) {
1433 cpu = get_cpu();
1434 lru_add_drain_cpu(cpu);
1435 drain_local_pages(zone);
1436 put_cpu();
1437 /* No more flushing until we migrate again */
1438 cc->last_migrated_pfn = 0;
1439 }
1440 }
1441
1442 }
1443
1444 out:
1445 /*
1446 * Release free pages and update where the free scanner should restart,
1447 * so we don't leave any returned pages behind in the next attempt.
1448 */
1449 if (cc->nr_freepages > 0) {
1450 unsigned long free_pfn = release_freepages(&cc->freepages);
1451
1452 cc->nr_freepages = 0;
1453 VM_BUG_ON(free_pfn == 0);
1454 /* The cached pfn is always the first in a pageblock */
1455 free_pfn &= ~(pageblock_nr_pages-1);
1456 /*
1457 * Only go back, not forward. The cached pfn might have been
1458 * already reset to zone end in compact_finished()
1459 */
1460 if (free_pfn > zone->compact_cached_free_pfn)
1461 zone->compact_cached_free_pfn = free_pfn;
1462 }
1463
1464 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1465 cc->free_pfn, end_pfn, sync, ret);
1466
1467 if (ret == COMPACT_CONTENDED)
1468 ret = COMPACT_PARTIAL;
1469
1470 return ret;
1471 }
1472
1473 static unsigned long compact_zone_order(struct zone *zone, int order,
1474 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1475 int alloc_flags, int classzone_idx)
1476 {
1477 unsigned long ret;
1478 struct compact_control cc = {
1479 .nr_freepages = 0,
1480 .nr_migratepages = 0,
1481 .order = order,
1482 .gfp_mask = gfp_mask,
1483 .zone = zone,
1484 .mode = mode,
1485 .alloc_flags = alloc_flags,
1486 .classzone_idx = classzone_idx,
1487 };
1488 INIT_LIST_HEAD(&cc.freepages);
1489 INIT_LIST_HEAD(&cc.migratepages);
1490
1491 ret = compact_zone(zone, &cc);
1492
1493 VM_BUG_ON(!list_empty(&cc.freepages));
1494 VM_BUG_ON(!list_empty(&cc.migratepages));
1495
1496 *contended = cc.contended;
1497 return ret;
1498 }
1499
1500 int sysctl_extfrag_threshold = 500;
1501
1502 /**
1503 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1504 * @gfp_mask: The GFP mask of the current allocation
1505 * @order: The order of the current allocation
1506 * @alloc_flags: The allocation flags of the current allocation
1507 * @ac: The context of current allocation
1508 * @mode: The migration mode for async, sync light, or sync migration
1509 * @contended: Return value that determines if compaction was aborted due to
1510 * need_resched() or lock contention
1511 *
1512 * This is the main entry point for direct page compaction.
1513 */
1514 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1515 int alloc_flags, const struct alloc_context *ac,
1516 enum migrate_mode mode, int *contended)
1517 {
1518 int may_enter_fs = gfp_mask & __GFP_FS;
1519 int may_perform_io = gfp_mask & __GFP_IO;
1520 struct zoneref *z;
1521 struct zone *zone;
1522 int rc = COMPACT_DEFERRED;
1523 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1524
1525 *contended = COMPACT_CONTENDED_NONE;
1526
1527 /* Check if the GFP flags allow compaction */
1528 if (!order || !may_enter_fs || !may_perform_io)
1529 return COMPACT_SKIPPED;
1530
1531 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1532
1533 /* Compact each zone in the list */
1534 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1535 ac->nodemask) {
1536 int status;
1537 int zone_contended;
1538
1539 if (compaction_deferred(zone, order))
1540 continue;
1541
1542 status = compact_zone_order(zone, order, gfp_mask, mode,
1543 &zone_contended, alloc_flags,
1544 ac->classzone_idx);
1545 rc = max(status, rc);
1546 /*
1547 * It takes at least one zone that wasn't lock contended
1548 * to clear all_zones_contended.
1549 */
1550 all_zones_contended &= zone_contended;
1551
1552 /* If a normal allocation would succeed, stop compacting */
1553 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1554 ac->classzone_idx, alloc_flags)) {
1555 /*
1556 * We think the allocation will succeed in this zone,
1557 * but it is not certain, hence the false. The caller
1558 * will repeat this with true if allocation indeed
1559 * succeeds in this zone.
1560 */
1561 compaction_defer_reset(zone, order, false);
1562 /*
1563 * It is possible that async compaction aborted due to
1564 * need_resched() and the watermarks were ok thanks to
1565 * somebody else freeing memory. The allocation can
1566 * however still fail so we better signal the
1567 * need_resched() contention anyway (this will not
1568 * prevent the allocation attempt).
1569 */
1570 if (zone_contended == COMPACT_CONTENDED_SCHED)
1571 *contended = COMPACT_CONTENDED_SCHED;
1572
1573 goto break_loop;
1574 }
1575
1576 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1577 /*
1578 * We think that allocation won't succeed in this zone
1579 * so we defer compaction there. If it ends up
1580 * succeeding after all, it will be reset.
1581 */
1582 defer_compaction(zone, order);
1583 }
1584
1585 /*
1586 * We might have stopped compacting due to need_resched() in
1587 * async compaction, or due to a fatal signal detected. In that
1588 * case do not try further zones and signal need_resched()
1589 * contention.
1590 */
1591 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1592 || fatal_signal_pending(current)) {
1593 *contended = COMPACT_CONTENDED_SCHED;
1594 goto break_loop;
1595 }
1596
1597 continue;
1598 break_loop:
1599 /*
1600 * We might not have tried all the zones, so be conservative
1601 * and assume they are not all lock contended.
1602 */
1603 all_zones_contended = 0;
1604 break;
1605 }
1606
1607 /*
1608 * If at least one zone wasn't deferred or skipped, we report if all
1609 * zones that were tried were lock contended.
1610 */
1611 if (rc > COMPACT_SKIPPED && all_zones_contended)
1612 *contended = COMPACT_CONTENDED_LOCK;
1613
1614 return rc;
1615 }
1616
1617
1618 /* Compact all zones within a node */
1619 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1620 {
1621 int zoneid;
1622 struct zone *zone;
1623
1624 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1625
1626 zone = &pgdat->node_zones[zoneid];
1627 if (!populated_zone(zone))
1628 continue;
1629
1630 cc->nr_freepages = 0;
1631 cc->nr_migratepages = 0;
1632 cc->zone = zone;
1633 INIT_LIST_HEAD(&cc->freepages);
1634 INIT_LIST_HEAD(&cc->migratepages);
1635
1636 /*
1637 * When called via /proc/sys/vm/compact_memory
1638 * this makes sure we compact the whole zone regardless of
1639 * cached scanner positions.
1640 */
1641 if (is_via_compact_memory(cc->order))
1642 __reset_isolation_suitable(zone);
1643
1644 if (is_via_compact_memory(cc->order) ||
1645 !compaction_deferred(zone, cc->order))
1646 compact_zone(zone, cc);
1647
1648 if (cc->order > 0) {
1649 if (zone_watermark_ok(zone, cc->order,
1650 low_wmark_pages(zone), 0, 0))
1651 compaction_defer_reset(zone, cc->order, false);
1652 }
1653
1654 VM_BUG_ON(!list_empty(&cc->freepages));
1655 VM_BUG_ON(!list_empty(&cc->migratepages));
1656 }
1657 }
1658
1659 void compact_pgdat(pg_data_t *pgdat, int order)
1660 {
1661 struct compact_control cc = {
1662 .order = order,
1663 .mode = MIGRATE_ASYNC,
1664 };
1665
1666 if (!order)
1667 return;
1668
1669 __compact_pgdat(pgdat, &cc);
1670 }
1671
1672 static void compact_node(int nid)
1673 {
1674 struct compact_control cc = {
1675 .order = -1,
1676 .mode = MIGRATE_SYNC,
1677 .ignore_skip_hint = true,
1678 };
1679
1680 __compact_pgdat(NODE_DATA(nid), &cc);
1681 }
1682
1683 /* Compact all nodes in the system */
1684 static void compact_nodes(void)
1685 {
1686 int nid;
1687
1688 /* Flush pending updates to the LRU lists */
1689 lru_add_drain_all();
1690
1691 for_each_online_node(nid)
1692 compact_node(nid);
1693 }
1694
1695 /* The written value is actually unused, all memory is compacted */
1696 int sysctl_compact_memory;
1697
1698 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1699 int sysctl_compaction_handler(struct ctl_table *table, int write,
1700 void __user *buffer, size_t *length, loff_t *ppos)
1701 {
1702 if (write)
1703 compact_nodes();
1704
1705 return 0;
1706 }
1707
1708 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1709 void __user *buffer, size_t *length, loff_t *ppos)
1710 {
1711 proc_dointvec_minmax(table, write, buffer, length, ppos);
1712
1713 return 0;
1714 }
1715
1716 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1717 static ssize_t sysfs_compact_node(struct device *dev,
1718 struct device_attribute *attr,
1719 const char *buf, size_t count)
1720 {
1721 int nid = dev->id;
1722
1723 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1724 /* Flush pending updates to the LRU lists */
1725 lru_add_drain_all();
1726
1727 compact_node(nid);
1728 }
1729
1730 return count;
1731 }
1732 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1733
1734 int compaction_register_node(struct node *node)
1735 {
1736 return device_create_file(&node->dev, &dev_attr_compact);
1737 }
1738
1739 void compaction_unregister_node(struct node *node)
1740 {
1741 return device_remove_file(&node->dev, &dev_attr_compact);
1742 }
1743 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1744
1745 #endif /* CONFIG_COMPACTION */