page_alloc: introduce zone_movable_limit[] to keep movable limit for nodes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include "internal.h"
19
20 #ifdef CONFIG_COMPACTION
21 static inline void count_compact_event(enum vm_event_item item)
22 {
23 count_vm_event(item);
24 }
25
26 static inline void count_compact_events(enum vm_event_item item, long delta)
27 {
28 count_vm_events(item, delta);
29 }
30 #else
31 #define count_compact_event(item) do { } while (0)
32 #define count_compact_events(item, delta) do { } while (0)
33 #endif
34
35 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/compaction.h>
39
40 static unsigned long release_freepages(struct list_head *freelist)
41 {
42 struct page *page, *next;
43 unsigned long count = 0;
44
45 list_for_each_entry_safe(page, next, freelist, lru) {
46 list_del(&page->lru);
47 __free_page(page);
48 count++;
49 }
50
51 return count;
52 }
53
54 static void map_pages(struct list_head *list)
55 {
56 struct page *page;
57
58 list_for_each_entry(page, list, lru) {
59 arch_alloc_page(page, 0);
60 kernel_map_pages(page, 1, 1);
61 }
62 }
63
64 static inline bool migrate_async_suitable(int migratetype)
65 {
66 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
67 }
68
69 #ifdef CONFIG_COMPACTION
70 /* Returns true if the pageblock should be scanned for pages to isolate. */
71 static inline bool isolation_suitable(struct compact_control *cc,
72 struct page *page)
73 {
74 if (cc->ignore_skip_hint)
75 return true;
76
77 return !get_pageblock_skip(page);
78 }
79
80 /*
81 * This function is called to clear all cached information on pageblocks that
82 * should be skipped for page isolation when the migrate and free page scanner
83 * meet.
84 */
85 static void __reset_isolation_suitable(struct zone *zone)
86 {
87 unsigned long start_pfn = zone->zone_start_pfn;
88 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
89 unsigned long pfn;
90
91 zone->compact_cached_migrate_pfn = start_pfn;
92 zone->compact_cached_free_pfn = end_pfn;
93 zone->compact_blockskip_flush = false;
94
95 /* Walk the zone and mark every pageblock as suitable for isolation */
96 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
97 struct page *page;
98
99 cond_resched();
100
101 if (!pfn_valid(pfn))
102 continue;
103
104 page = pfn_to_page(pfn);
105 if (zone != page_zone(page))
106 continue;
107
108 clear_pageblock_skip(page);
109 }
110 }
111
112 void reset_isolation_suitable(pg_data_t *pgdat)
113 {
114 int zoneid;
115
116 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
117 struct zone *zone = &pgdat->node_zones[zoneid];
118 if (!populated_zone(zone))
119 continue;
120
121 /* Only flush if a full compaction finished recently */
122 if (zone->compact_blockskip_flush)
123 __reset_isolation_suitable(zone);
124 }
125 }
126
127 /*
128 * If no pages were isolated then mark this pageblock to be skipped in the
129 * future. The information is later cleared by __reset_isolation_suitable().
130 */
131 static void update_pageblock_skip(struct compact_control *cc,
132 struct page *page, unsigned long nr_isolated,
133 bool migrate_scanner)
134 {
135 struct zone *zone = cc->zone;
136 if (!page)
137 return;
138
139 if (!nr_isolated) {
140 unsigned long pfn = page_to_pfn(page);
141 set_pageblock_skip(page);
142
143 /* Update where compaction should restart */
144 if (migrate_scanner) {
145 if (!cc->finished_update_migrate &&
146 pfn > zone->compact_cached_migrate_pfn)
147 zone->compact_cached_migrate_pfn = pfn;
148 } else {
149 if (!cc->finished_update_free &&
150 pfn < zone->compact_cached_free_pfn)
151 zone->compact_cached_free_pfn = pfn;
152 }
153 }
154 }
155 #else
156 static inline bool isolation_suitable(struct compact_control *cc,
157 struct page *page)
158 {
159 return true;
160 }
161
162 static void update_pageblock_skip(struct compact_control *cc,
163 struct page *page, unsigned long nr_isolated,
164 bool migrate_scanner)
165 {
166 }
167 #endif /* CONFIG_COMPACTION */
168
169 static inline bool should_release_lock(spinlock_t *lock)
170 {
171 return need_resched() || spin_is_contended(lock);
172 }
173
174 /*
175 * Compaction requires the taking of some coarse locks that are potentially
176 * very heavily contended. Check if the process needs to be scheduled or
177 * if the lock is contended. For async compaction, back out in the event
178 * if contention is severe. For sync compaction, schedule.
179 *
180 * Returns true if the lock is held.
181 * Returns false if the lock is released and compaction should abort
182 */
183 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
184 bool locked, struct compact_control *cc)
185 {
186 if (should_release_lock(lock)) {
187 if (locked) {
188 spin_unlock_irqrestore(lock, *flags);
189 locked = false;
190 }
191
192 /* async aborts if taking too long or contended */
193 if (!cc->sync) {
194 cc->contended = true;
195 return false;
196 }
197
198 cond_resched();
199 }
200
201 if (!locked)
202 spin_lock_irqsave(lock, *flags);
203 return true;
204 }
205
206 static inline bool compact_trylock_irqsave(spinlock_t *lock,
207 unsigned long *flags, struct compact_control *cc)
208 {
209 return compact_checklock_irqsave(lock, flags, false, cc);
210 }
211
212 /* Returns true if the page is within a block suitable for migration to */
213 static bool suitable_migration_target(struct page *page)
214 {
215 int migratetype = get_pageblock_migratetype(page);
216
217 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
218 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
219 return false;
220
221 /* If the page is a large free page, then allow migration */
222 if (PageBuddy(page) && page_order(page) >= pageblock_order)
223 return true;
224
225 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
226 if (migrate_async_suitable(migratetype))
227 return true;
228
229 /* Otherwise skip the block */
230 return false;
231 }
232
233 /*
234 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
235 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
236 * pages inside of the pageblock (even though it may still end up isolating
237 * some pages).
238 */
239 static unsigned long isolate_freepages_block(struct compact_control *cc,
240 unsigned long blockpfn,
241 unsigned long end_pfn,
242 struct list_head *freelist,
243 bool strict)
244 {
245 int nr_scanned = 0, total_isolated = 0;
246 struct page *cursor, *valid_page = NULL;
247 unsigned long nr_strict_required = end_pfn - blockpfn;
248 unsigned long flags;
249 bool locked = false;
250
251 cursor = pfn_to_page(blockpfn);
252
253 /* Isolate free pages. */
254 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
255 int isolated, i;
256 struct page *page = cursor;
257
258 nr_scanned++;
259 if (!pfn_valid_within(blockpfn))
260 continue;
261 if (!valid_page)
262 valid_page = page;
263 if (!PageBuddy(page))
264 continue;
265
266 /*
267 * The zone lock must be held to isolate freepages.
268 * Unfortunately this is a very coarse lock and can be
269 * heavily contended if there are parallel allocations
270 * or parallel compactions. For async compaction do not
271 * spin on the lock and we acquire the lock as late as
272 * possible.
273 */
274 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
275 locked, cc);
276 if (!locked)
277 break;
278
279 /* Recheck this is a suitable migration target under lock */
280 if (!strict && !suitable_migration_target(page))
281 break;
282
283 /* Recheck this is a buddy page under lock */
284 if (!PageBuddy(page))
285 continue;
286
287 /* Found a free page, break it into order-0 pages */
288 isolated = split_free_page(page);
289 if (!isolated && strict)
290 break;
291 total_isolated += isolated;
292 for (i = 0; i < isolated; i++) {
293 list_add(&page->lru, freelist);
294 page++;
295 }
296
297 /* If a page was split, advance to the end of it */
298 if (isolated) {
299 blockpfn += isolated - 1;
300 cursor += isolated - 1;
301 }
302 }
303
304 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
305
306 /*
307 * If strict isolation is requested by CMA then check that all the
308 * pages requested were isolated. If there were any failures, 0 is
309 * returned and CMA will fail.
310 */
311 if (strict && nr_strict_required > total_isolated)
312 total_isolated = 0;
313
314 if (locked)
315 spin_unlock_irqrestore(&cc->zone->lock, flags);
316
317 /* Update the pageblock-skip if the whole pageblock was scanned */
318 if (blockpfn == end_pfn)
319 update_pageblock_skip(cc, valid_page, total_isolated, false);
320
321 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
322 if (total_isolated)
323 count_compact_events(COMPACTISOLATED, total_isolated);
324 return total_isolated;
325 }
326
327 /**
328 * isolate_freepages_range() - isolate free pages.
329 * @start_pfn: The first PFN to start isolating.
330 * @end_pfn: The one-past-last PFN.
331 *
332 * Non-free pages, invalid PFNs, or zone boundaries within the
333 * [start_pfn, end_pfn) range are considered errors, cause function to
334 * undo its actions and return zero.
335 *
336 * Otherwise, function returns one-past-the-last PFN of isolated page
337 * (which may be greater then end_pfn if end fell in a middle of
338 * a free page).
339 */
340 unsigned long
341 isolate_freepages_range(struct compact_control *cc,
342 unsigned long start_pfn, unsigned long end_pfn)
343 {
344 unsigned long isolated, pfn, block_end_pfn;
345 LIST_HEAD(freelist);
346
347 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
348 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
349 break;
350
351 /*
352 * On subsequent iterations ALIGN() is actually not needed,
353 * but we keep it that we not to complicate the code.
354 */
355 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
356 block_end_pfn = min(block_end_pfn, end_pfn);
357
358 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
359 &freelist, true);
360
361 /*
362 * In strict mode, isolate_freepages_block() returns 0 if
363 * there are any holes in the block (ie. invalid PFNs or
364 * non-free pages).
365 */
366 if (!isolated)
367 break;
368
369 /*
370 * If we managed to isolate pages, it is always (1 << n) *
371 * pageblock_nr_pages for some non-negative n. (Max order
372 * page may span two pageblocks).
373 */
374 }
375
376 /* split_free_page does not map the pages */
377 map_pages(&freelist);
378
379 if (pfn < end_pfn) {
380 /* Loop terminated early, cleanup. */
381 release_freepages(&freelist);
382 return 0;
383 }
384
385 /* We don't use freelists for anything. */
386 return pfn;
387 }
388
389 /* Update the number of anon and file isolated pages in the zone */
390 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
391 {
392 struct page *page;
393 unsigned int count[2] = { 0, };
394
395 list_for_each_entry(page, &cc->migratepages, lru)
396 count[!!page_is_file_cache(page)]++;
397
398 /* If locked we can use the interrupt unsafe versions */
399 if (locked) {
400 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
401 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
402 } else {
403 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
404 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
405 }
406 }
407
408 /* Similar to reclaim, but different enough that they don't share logic */
409 static bool too_many_isolated(struct zone *zone)
410 {
411 unsigned long active, inactive, isolated;
412
413 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
414 zone_page_state(zone, NR_INACTIVE_ANON);
415 active = zone_page_state(zone, NR_ACTIVE_FILE) +
416 zone_page_state(zone, NR_ACTIVE_ANON);
417 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
418 zone_page_state(zone, NR_ISOLATED_ANON);
419
420 return isolated > (inactive + active) / 2;
421 }
422
423 /**
424 * isolate_migratepages_range() - isolate all migrate-able pages in range.
425 * @zone: Zone pages are in.
426 * @cc: Compaction control structure.
427 * @low_pfn: The first PFN of the range.
428 * @end_pfn: The one-past-the-last PFN of the range.
429 * @unevictable: true if it allows to isolate unevictable pages
430 *
431 * Isolate all pages that can be migrated from the range specified by
432 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
433 * pending), otherwise PFN of the first page that was not scanned
434 * (which may be both less, equal to or more then end_pfn).
435 *
436 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
437 * zero.
438 *
439 * Apart from cc->migratepages and cc->nr_migratetypes this function
440 * does not modify any cc's fields, in particular it does not modify
441 * (or read for that matter) cc->migrate_pfn.
442 */
443 unsigned long
444 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
445 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
446 {
447 unsigned long last_pageblock_nr = 0, pageblock_nr;
448 unsigned long nr_scanned = 0, nr_isolated = 0;
449 struct list_head *migratelist = &cc->migratepages;
450 isolate_mode_t mode = 0;
451 struct lruvec *lruvec;
452 unsigned long flags;
453 bool locked = false;
454 struct page *page = NULL, *valid_page = NULL;
455
456 /*
457 * Ensure that there are not too many pages isolated from the LRU
458 * list by either parallel reclaimers or compaction. If there are,
459 * delay for some time until fewer pages are isolated
460 */
461 while (unlikely(too_many_isolated(zone))) {
462 /* async migration should just abort */
463 if (!cc->sync)
464 return 0;
465
466 congestion_wait(BLK_RW_ASYNC, HZ/10);
467
468 if (fatal_signal_pending(current))
469 return 0;
470 }
471
472 /* Time to isolate some pages for migration */
473 cond_resched();
474 for (; low_pfn < end_pfn; low_pfn++) {
475 /* give a chance to irqs before checking need_resched() */
476 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
477 if (should_release_lock(&zone->lru_lock)) {
478 spin_unlock_irqrestore(&zone->lru_lock, flags);
479 locked = false;
480 }
481 }
482
483 /*
484 * migrate_pfn does not necessarily start aligned to a
485 * pageblock. Ensure that pfn_valid is called when moving
486 * into a new MAX_ORDER_NR_PAGES range in case of large
487 * memory holes within the zone
488 */
489 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
490 if (!pfn_valid(low_pfn)) {
491 low_pfn += MAX_ORDER_NR_PAGES - 1;
492 continue;
493 }
494 }
495
496 if (!pfn_valid_within(low_pfn))
497 continue;
498 nr_scanned++;
499
500 /*
501 * Get the page and ensure the page is within the same zone.
502 * See the comment in isolate_freepages about overlapping
503 * nodes. It is deliberate that the new zone lock is not taken
504 * as memory compaction should not move pages between nodes.
505 */
506 page = pfn_to_page(low_pfn);
507 if (page_zone(page) != zone)
508 continue;
509
510 if (!valid_page)
511 valid_page = page;
512
513 /* If isolation recently failed, do not retry */
514 pageblock_nr = low_pfn >> pageblock_order;
515 if (!isolation_suitable(cc, page))
516 goto next_pageblock;
517
518 /* Skip if free */
519 if (PageBuddy(page))
520 continue;
521
522 /*
523 * For async migration, also only scan in MOVABLE blocks. Async
524 * migration is optimistic to see if the minimum amount of work
525 * satisfies the allocation
526 */
527 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
528 !migrate_async_suitable(get_pageblock_migratetype(page))) {
529 cc->finished_update_migrate = true;
530 goto next_pageblock;
531 }
532
533 /*
534 * Check may be lockless but that's ok as we recheck later.
535 * It's possible to migrate LRU pages and balloon pages
536 * Skip any other type of page
537 */
538 if (!PageLRU(page)) {
539 if (unlikely(balloon_page_movable(page))) {
540 if (locked && balloon_page_isolate(page)) {
541 /* Successfully isolated */
542 cc->finished_update_migrate = true;
543 list_add(&page->lru, migratelist);
544 cc->nr_migratepages++;
545 nr_isolated++;
546 goto check_compact_cluster;
547 }
548 }
549 continue;
550 }
551
552 /*
553 * PageLRU is set. lru_lock normally excludes isolation
554 * splitting and collapsing (collapsing has already happened
555 * if PageLRU is set) but the lock is not necessarily taken
556 * here and it is wasteful to take it just to check transhuge.
557 * Check TransHuge without lock and skip the whole pageblock if
558 * it's either a transhuge or hugetlbfs page, as calling
559 * compound_order() without preventing THP from splitting the
560 * page underneath us may return surprising results.
561 */
562 if (PageTransHuge(page)) {
563 if (!locked)
564 goto next_pageblock;
565 low_pfn += (1 << compound_order(page)) - 1;
566 continue;
567 }
568
569 /* Check if it is ok to still hold the lock */
570 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
571 locked, cc);
572 if (!locked || fatal_signal_pending(current))
573 break;
574
575 /* Recheck PageLRU and PageTransHuge under lock */
576 if (!PageLRU(page))
577 continue;
578 if (PageTransHuge(page)) {
579 low_pfn += (1 << compound_order(page)) - 1;
580 continue;
581 }
582
583 if (!cc->sync)
584 mode |= ISOLATE_ASYNC_MIGRATE;
585
586 if (unevictable)
587 mode |= ISOLATE_UNEVICTABLE;
588
589 lruvec = mem_cgroup_page_lruvec(page, zone);
590
591 /* Try isolate the page */
592 if (__isolate_lru_page(page, mode) != 0)
593 continue;
594
595 VM_BUG_ON(PageTransCompound(page));
596
597 /* Successfully isolated */
598 cc->finished_update_migrate = true;
599 del_page_from_lru_list(page, lruvec, page_lru(page));
600 list_add(&page->lru, migratelist);
601 cc->nr_migratepages++;
602 nr_isolated++;
603
604 check_compact_cluster:
605 /* Avoid isolating too much */
606 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
607 ++low_pfn;
608 break;
609 }
610
611 continue;
612
613 next_pageblock:
614 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
615 last_pageblock_nr = pageblock_nr;
616 }
617
618 acct_isolated(zone, locked, cc);
619
620 if (locked)
621 spin_unlock_irqrestore(&zone->lru_lock, flags);
622
623 /* Update the pageblock-skip if the whole pageblock was scanned */
624 if (low_pfn == end_pfn)
625 update_pageblock_skip(cc, valid_page, nr_isolated, true);
626
627 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
628
629 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
630 if (nr_isolated)
631 count_compact_events(COMPACTISOLATED, nr_isolated);
632
633 return low_pfn;
634 }
635
636 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
637 #ifdef CONFIG_COMPACTION
638 /*
639 * Based on information in the current compact_control, find blocks
640 * suitable for isolating free pages from and then isolate them.
641 */
642 static void isolate_freepages(struct zone *zone,
643 struct compact_control *cc)
644 {
645 struct page *page;
646 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
647 int nr_freepages = cc->nr_freepages;
648 struct list_head *freelist = &cc->freepages;
649
650 /*
651 * Initialise the free scanner. The starting point is where we last
652 * scanned from (or the end of the zone if starting). The low point
653 * is the end of the pageblock the migration scanner is using.
654 */
655 pfn = cc->free_pfn;
656 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
657
658 /*
659 * Take care that if the migration scanner is at the end of the zone
660 * that the free scanner does not accidentally move to the next zone
661 * in the next isolation cycle.
662 */
663 high_pfn = min(low_pfn, pfn);
664
665 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
666
667 /*
668 * Isolate free pages until enough are available to migrate the
669 * pages on cc->migratepages. We stop searching if the migrate
670 * and free page scanners meet or enough free pages are isolated.
671 */
672 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
673 pfn -= pageblock_nr_pages) {
674 unsigned long isolated;
675
676 if (!pfn_valid(pfn))
677 continue;
678
679 /*
680 * Check for overlapping nodes/zones. It's possible on some
681 * configurations to have a setup like
682 * node0 node1 node0
683 * i.e. it's possible that all pages within a zones range of
684 * pages do not belong to a single zone.
685 */
686 page = pfn_to_page(pfn);
687 if (page_zone(page) != zone)
688 continue;
689
690 /* Check the block is suitable for migration */
691 if (!suitable_migration_target(page))
692 continue;
693
694 /* If isolation recently failed, do not retry */
695 if (!isolation_suitable(cc, page))
696 continue;
697
698 /* Found a block suitable for isolating free pages from */
699 isolated = 0;
700
701 /*
702 * As pfn may not start aligned, pfn+pageblock_nr_page
703 * may cross a MAX_ORDER_NR_PAGES boundary and miss
704 * a pfn_valid check. Ensure isolate_freepages_block()
705 * only scans within a pageblock
706 */
707 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
708 end_pfn = min(end_pfn, zone_end_pfn);
709 isolated = isolate_freepages_block(cc, pfn, end_pfn,
710 freelist, false);
711 nr_freepages += isolated;
712
713 /*
714 * Record the highest PFN we isolated pages from. When next
715 * looking for free pages, the search will restart here as
716 * page migration may have returned some pages to the allocator
717 */
718 if (isolated) {
719 cc->finished_update_free = true;
720 high_pfn = max(high_pfn, pfn);
721 }
722 }
723
724 /* split_free_page does not map the pages */
725 map_pages(freelist);
726
727 cc->free_pfn = high_pfn;
728 cc->nr_freepages = nr_freepages;
729 }
730
731 /*
732 * This is a migrate-callback that "allocates" freepages by taking pages
733 * from the isolated freelists in the block we are migrating to.
734 */
735 static struct page *compaction_alloc(struct page *migratepage,
736 unsigned long data,
737 int **result)
738 {
739 struct compact_control *cc = (struct compact_control *)data;
740 struct page *freepage;
741
742 /* Isolate free pages if necessary */
743 if (list_empty(&cc->freepages)) {
744 isolate_freepages(cc->zone, cc);
745
746 if (list_empty(&cc->freepages))
747 return NULL;
748 }
749
750 freepage = list_entry(cc->freepages.next, struct page, lru);
751 list_del(&freepage->lru);
752 cc->nr_freepages--;
753
754 return freepage;
755 }
756
757 /*
758 * We cannot control nr_migratepages and nr_freepages fully when migration is
759 * running as migrate_pages() has no knowledge of compact_control. When
760 * migration is complete, we count the number of pages on the lists by hand.
761 */
762 static void update_nr_listpages(struct compact_control *cc)
763 {
764 int nr_migratepages = 0;
765 int nr_freepages = 0;
766 struct page *page;
767
768 list_for_each_entry(page, &cc->migratepages, lru)
769 nr_migratepages++;
770 list_for_each_entry(page, &cc->freepages, lru)
771 nr_freepages++;
772
773 cc->nr_migratepages = nr_migratepages;
774 cc->nr_freepages = nr_freepages;
775 }
776
777 /* possible outcome of isolate_migratepages */
778 typedef enum {
779 ISOLATE_ABORT, /* Abort compaction now */
780 ISOLATE_NONE, /* No pages isolated, continue scanning */
781 ISOLATE_SUCCESS, /* Pages isolated, migrate */
782 } isolate_migrate_t;
783
784 /*
785 * Isolate all pages that can be migrated from the block pointed to by
786 * the migrate scanner within compact_control.
787 */
788 static isolate_migrate_t isolate_migratepages(struct zone *zone,
789 struct compact_control *cc)
790 {
791 unsigned long low_pfn, end_pfn;
792
793 /* Do not scan outside zone boundaries */
794 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
795
796 /* Only scan within a pageblock boundary */
797 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
798
799 /* Do not cross the free scanner or scan within a memory hole */
800 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
801 cc->migrate_pfn = end_pfn;
802 return ISOLATE_NONE;
803 }
804
805 /* Perform the isolation */
806 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
807 if (!low_pfn || cc->contended)
808 return ISOLATE_ABORT;
809
810 cc->migrate_pfn = low_pfn;
811
812 return ISOLATE_SUCCESS;
813 }
814
815 static int compact_finished(struct zone *zone,
816 struct compact_control *cc)
817 {
818 unsigned int order;
819 unsigned long watermark;
820
821 if (fatal_signal_pending(current))
822 return COMPACT_PARTIAL;
823
824 /* Compaction run completes if the migrate and free scanner meet */
825 if (cc->free_pfn <= cc->migrate_pfn) {
826 /*
827 * Mark that the PG_migrate_skip information should be cleared
828 * by kswapd when it goes to sleep. kswapd does not set the
829 * flag itself as the decision to be clear should be directly
830 * based on an allocation request.
831 */
832 if (!current_is_kswapd())
833 zone->compact_blockskip_flush = true;
834
835 return COMPACT_COMPLETE;
836 }
837
838 /*
839 * order == -1 is expected when compacting via
840 * /proc/sys/vm/compact_memory
841 */
842 if (cc->order == -1)
843 return COMPACT_CONTINUE;
844
845 /* Compaction run is not finished if the watermark is not met */
846 watermark = low_wmark_pages(zone);
847 watermark += (1 << cc->order);
848
849 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
850 return COMPACT_CONTINUE;
851
852 /* Direct compactor: Is a suitable page free? */
853 for (order = cc->order; order < MAX_ORDER; order++) {
854 struct free_area *area = &zone->free_area[order];
855
856 /* Job done if page is free of the right migratetype */
857 if (!list_empty(&area->free_list[cc->migratetype]))
858 return COMPACT_PARTIAL;
859
860 /* Job done if allocation would set block type */
861 if (cc->order >= pageblock_order && area->nr_free)
862 return COMPACT_PARTIAL;
863 }
864
865 return COMPACT_CONTINUE;
866 }
867
868 /*
869 * compaction_suitable: Is this suitable to run compaction on this zone now?
870 * Returns
871 * COMPACT_SKIPPED - If there are too few free pages for compaction
872 * COMPACT_PARTIAL - If the allocation would succeed without compaction
873 * COMPACT_CONTINUE - If compaction should run now
874 */
875 unsigned long compaction_suitable(struct zone *zone, int order)
876 {
877 int fragindex;
878 unsigned long watermark;
879
880 /*
881 * order == -1 is expected when compacting via
882 * /proc/sys/vm/compact_memory
883 */
884 if (order == -1)
885 return COMPACT_CONTINUE;
886
887 /*
888 * Watermarks for order-0 must be met for compaction. Note the 2UL.
889 * This is because during migration, copies of pages need to be
890 * allocated and for a short time, the footprint is higher
891 */
892 watermark = low_wmark_pages(zone) + (2UL << order);
893 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
894 return COMPACT_SKIPPED;
895
896 /*
897 * fragmentation index determines if allocation failures are due to
898 * low memory or external fragmentation
899 *
900 * index of -1000 implies allocations might succeed depending on
901 * watermarks
902 * index towards 0 implies failure is due to lack of memory
903 * index towards 1000 implies failure is due to fragmentation
904 *
905 * Only compact if a failure would be due to fragmentation.
906 */
907 fragindex = fragmentation_index(zone, order);
908 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
909 return COMPACT_SKIPPED;
910
911 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
912 0, 0))
913 return COMPACT_PARTIAL;
914
915 return COMPACT_CONTINUE;
916 }
917
918 static int compact_zone(struct zone *zone, struct compact_control *cc)
919 {
920 int ret;
921 unsigned long start_pfn = zone->zone_start_pfn;
922 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
923
924 ret = compaction_suitable(zone, cc->order);
925 switch (ret) {
926 case COMPACT_PARTIAL:
927 case COMPACT_SKIPPED:
928 /* Compaction is likely to fail */
929 return ret;
930 case COMPACT_CONTINUE:
931 /* Fall through to compaction */
932 ;
933 }
934
935 /*
936 * Setup to move all movable pages to the end of the zone. Used cached
937 * information on where the scanners should start but check that it
938 * is initialised by ensuring the values are within zone boundaries.
939 */
940 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
941 cc->free_pfn = zone->compact_cached_free_pfn;
942 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
943 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
944 zone->compact_cached_free_pfn = cc->free_pfn;
945 }
946 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
947 cc->migrate_pfn = start_pfn;
948 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
949 }
950
951 /*
952 * Clear pageblock skip if there were failures recently and compaction
953 * is about to be retried after being deferred. kswapd does not do
954 * this reset as it'll reset the cached information when going to sleep.
955 */
956 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
957 __reset_isolation_suitable(zone);
958
959 migrate_prep_local();
960
961 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
962 unsigned long nr_migrate, nr_remaining;
963 int err;
964
965 switch (isolate_migratepages(zone, cc)) {
966 case ISOLATE_ABORT:
967 ret = COMPACT_PARTIAL;
968 putback_movable_pages(&cc->migratepages);
969 cc->nr_migratepages = 0;
970 goto out;
971 case ISOLATE_NONE:
972 continue;
973 case ISOLATE_SUCCESS:
974 ;
975 }
976
977 nr_migrate = cc->nr_migratepages;
978 err = migrate_pages(&cc->migratepages, compaction_alloc,
979 (unsigned long)cc, false,
980 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
981 MR_COMPACTION);
982 update_nr_listpages(cc);
983 nr_remaining = cc->nr_migratepages;
984
985 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
986 nr_remaining);
987
988 /* Release isolated pages not migrated */
989 if (err) {
990 putback_movable_pages(&cc->migratepages);
991 cc->nr_migratepages = 0;
992 if (err == -ENOMEM) {
993 ret = COMPACT_PARTIAL;
994 goto out;
995 }
996 }
997 }
998
999 out:
1000 /* Release free pages and check accounting */
1001 cc->nr_freepages -= release_freepages(&cc->freepages);
1002 VM_BUG_ON(cc->nr_freepages != 0);
1003
1004 return ret;
1005 }
1006
1007 static unsigned long compact_zone_order(struct zone *zone,
1008 int order, gfp_t gfp_mask,
1009 bool sync, bool *contended)
1010 {
1011 unsigned long ret;
1012 struct compact_control cc = {
1013 .nr_freepages = 0,
1014 .nr_migratepages = 0,
1015 .order = order,
1016 .migratetype = allocflags_to_migratetype(gfp_mask),
1017 .zone = zone,
1018 .sync = sync,
1019 };
1020 INIT_LIST_HEAD(&cc.freepages);
1021 INIT_LIST_HEAD(&cc.migratepages);
1022
1023 ret = compact_zone(zone, &cc);
1024
1025 VM_BUG_ON(!list_empty(&cc.freepages));
1026 VM_BUG_ON(!list_empty(&cc.migratepages));
1027
1028 *contended = cc.contended;
1029 return ret;
1030 }
1031
1032 int sysctl_extfrag_threshold = 500;
1033
1034 /**
1035 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1036 * @zonelist: The zonelist used for the current allocation
1037 * @order: The order of the current allocation
1038 * @gfp_mask: The GFP mask of the current allocation
1039 * @nodemask: The allowed nodes to allocate from
1040 * @sync: Whether migration is synchronous or not
1041 * @contended: Return value that is true if compaction was aborted due to lock contention
1042 * @page: Optionally capture a free page of the requested order during compaction
1043 *
1044 * This is the main entry point for direct page compaction.
1045 */
1046 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1047 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1048 bool sync, bool *contended)
1049 {
1050 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1051 int may_enter_fs = gfp_mask & __GFP_FS;
1052 int may_perform_io = gfp_mask & __GFP_IO;
1053 struct zoneref *z;
1054 struct zone *zone;
1055 int rc = COMPACT_SKIPPED;
1056 int alloc_flags = 0;
1057
1058 /* Check if the GFP flags allow compaction */
1059 if (!order || !may_enter_fs || !may_perform_io)
1060 return rc;
1061
1062 count_compact_event(COMPACTSTALL);
1063
1064 #ifdef CONFIG_CMA
1065 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1066 alloc_flags |= ALLOC_CMA;
1067 #endif
1068 /* Compact each zone in the list */
1069 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1070 nodemask) {
1071 int status;
1072
1073 status = compact_zone_order(zone, order, gfp_mask, sync,
1074 contended);
1075 rc = max(status, rc);
1076
1077 /* If a normal allocation would succeed, stop compacting */
1078 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1079 alloc_flags))
1080 break;
1081 }
1082
1083 return rc;
1084 }
1085
1086
1087 /* Compact all zones within a node */
1088 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1089 {
1090 int zoneid;
1091 struct zone *zone;
1092
1093 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1094
1095 zone = &pgdat->node_zones[zoneid];
1096 if (!populated_zone(zone))
1097 continue;
1098
1099 cc->nr_freepages = 0;
1100 cc->nr_migratepages = 0;
1101 cc->zone = zone;
1102 INIT_LIST_HEAD(&cc->freepages);
1103 INIT_LIST_HEAD(&cc->migratepages);
1104
1105 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1106 compact_zone(zone, cc);
1107
1108 if (cc->order > 0) {
1109 int ok = zone_watermark_ok(zone, cc->order,
1110 low_wmark_pages(zone), 0, 0);
1111 if (ok && cc->order >= zone->compact_order_failed)
1112 zone->compact_order_failed = cc->order + 1;
1113 /* Currently async compaction is never deferred. */
1114 else if (!ok && cc->sync)
1115 defer_compaction(zone, cc->order);
1116 }
1117
1118 VM_BUG_ON(!list_empty(&cc->freepages));
1119 VM_BUG_ON(!list_empty(&cc->migratepages));
1120 }
1121 }
1122
1123 void compact_pgdat(pg_data_t *pgdat, int order)
1124 {
1125 struct compact_control cc = {
1126 .order = order,
1127 .sync = false,
1128 };
1129
1130 __compact_pgdat(pgdat, &cc);
1131 }
1132
1133 static void compact_node(int nid)
1134 {
1135 struct compact_control cc = {
1136 .order = -1,
1137 .sync = true,
1138 };
1139
1140 __compact_pgdat(NODE_DATA(nid), &cc);
1141 }
1142
1143 /* Compact all nodes in the system */
1144 static void compact_nodes(void)
1145 {
1146 int nid;
1147
1148 /* Flush pending updates to the LRU lists */
1149 lru_add_drain_all();
1150
1151 for_each_online_node(nid)
1152 compact_node(nid);
1153 }
1154
1155 /* The written value is actually unused, all memory is compacted */
1156 int sysctl_compact_memory;
1157
1158 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1159 int sysctl_compaction_handler(struct ctl_table *table, int write,
1160 void __user *buffer, size_t *length, loff_t *ppos)
1161 {
1162 if (write)
1163 compact_nodes();
1164
1165 return 0;
1166 }
1167
1168 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1169 void __user *buffer, size_t *length, loff_t *ppos)
1170 {
1171 proc_dointvec_minmax(table, write, buffer, length, ppos);
1172
1173 return 0;
1174 }
1175
1176 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1177 ssize_t sysfs_compact_node(struct device *dev,
1178 struct device_attribute *attr,
1179 const char *buf, size_t count)
1180 {
1181 int nid = dev->id;
1182
1183 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1184 /* Flush pending updates to the LRU lists */
1185 lru_add_drain_all();
1186
1187 compact_node(nid);
1188 }
1189
1190 return count;
1191 }
1192 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1193
1194 int compaction_register_node(struct node *node)
1195 {
1196 return device_create_file(&node->dev, &dev_attr_compact);
1197 }
1198
1199 void compaction_unregister_node(struct node *node)
1200 {
1201 return device_remove_file(&node->dev, &dev_attr_compact);
1202 }
1203 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1204
1205 #endif /* CONFIG_COMPACTION */