Merge tag 'sound-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include "internal.h"
19
20 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/compaction.h>
24
25 static unsigned long release_freepages(struct list_head *freelist)
26 {
27 struct page *page, *next;
28 unsigned long count = 0;
29
30 list_for_each_entry_safe(page, next, freelist, lru) {
31 list_del(&page->lru);
32 __free_page(page);
33 count++;
34 }
35
36 return count;
37 }
38
39 static void map_pages(struct list_head *list)
40 {
41 struct page *page;
42
43 list_for_each_entry(page, list, lru) {
44 arch_alloc_page(page, 0);
45 kernel_map_pages(page, 1, 1);
46 }
47 }
48
49 static inline bool migrate_async_suitable(int migratetype)
50 {
51 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
52 }
53
54 #ifdef CONFIG_COMPACTION
55 /* Returns true if the pageblock should be scanned for pages to isolate. */
56 static inline bool isolation_suitable(struct compact_control *cc,
57 struct page *page)
58 {
59 if (cc->ignore_skip_hint)
60 return true;
61
62 return !get_pageblock_skip(page);
63 }
64
65 /*
66 * This function is called to clear all cached information on pageblocks that
67 * should be skipped for page isolation when the migrate and free page scanner
68 * meet.
69 */
70 static void __reset_isolation_suitable(struct zone *zone)
71 {
72 unsigned long start_pfn = zone->zone_start_pfn;
73 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
74 unsigned long pfn;
75
76 zone->compact_cached_migrate_pfn = start_pfn;
77 zone->compact_cached_free_pfn = end_pfn;
78 zone->compact_blockskip_flush = false;
79
80 /* Walk the zone and mark every pageblock as suitable for isolation */
81 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
82 struct page *page;
83
84 cond_resched();
85
86 if (!pfn_valid(pfn))
87 continue;
88
89 page = pfn_to_page(pfn);
90 if (zone != page_zone(page))
91 continue;
92
93 clear_pageblock_skip(page);
94 }
95 }
96
97 void reset_isolation_suitable(pg_data_t *pgdat)
98 {
99 int zoneid;
100
101 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
102 struct zone *zone = &pgdat->node_zones[zoneid];
103 if (!populated_zone(zone))
104 continue;
105
106 /* Only flush if a full compaction finished recently */
107 if (zone->compact_blockskip_flush)
108 __reset_isolation_suitable(zone);
109 }
110 }
111
112 /*
113 * If no pages were isolated then mark this pageblock to be skipped in the
114 * future. The information is later cleared by __reset_isolation_suitable().
115 */
116 static void update_pageblock_skip(struct compact_control *cc,
117 struct page *page, unsigned long nr_isolated,
118 bool migrate_scanner)
119 {
120 struct zone *zone = cc->zone;
121 if (!page)
122 return;
123
124 if (!nr_isolated) {
125 unsigned long pfn = page_to_pfn(page);
126 set_pageblock_skip(page);
127
128 /* Update where compaction should restart */
129 if (migrate_scanner) {
130 if (!cc->finished_update_migrate &&
131 pfn > zone->compact_cached_migrate_pfn)
132 zone->compact_cached_migrate_pfn = pfn;
133 } else {
134 if (!cc->finished_update_free &&
135 pfn < zone->compact_cached_free_pfn)
136 zone->compact_cached_free_pfn = pfn;
137 }
138 }
139 }
140 #else
141 static inline bool isolation_suitable(struct compact_control *cc,
142 struct page *page)
143 {
144 return true;
145 }
146
147 static void update_pageblock_skip(struct compact_control *cc,
148 struct page *page, unsigned long nr_isolated,
149 bool migrate_scanner)
150 {
151 }
152 #endif /* CONFIG_COMPACTION */
153
154 static inline bool should_release_lock(spinlock_t *lock)
155 {
156 return need_resched() || spin_is_contended(lock);
157 }
158
159 /*
160 * Compaction requires the taking of some coarse locks that are potentially
161 * very heavily contended. Check if the process needs to be scheduled or
162 * if the lock is contended. For async compaction, back out in the event
163 * if contention is severe. For sync compaction, schedule.
164 *
165 * Returns true if the lock is held.
166 * Returns false if the lock is released and compaction should abort
167 */
168 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
169 bool locked, struct compact_control *cc)
170 {
171 if (should_release_lock(lock)) {
172 if (locked) {
173 spin_unlock_irqrestore(lock, *flags);
174 locked = false;
175 }
176
177 /* async aborts if taking too long or contended */
178 if (!cc->sync) {
179 cc->contended = true;
180 return false;
181 }
182
183 cond_resched();
184 }
185
186 if (!locked)
187 spin_lock_irqsave(lock, *flags);
188 return true;
189 }
190
191 static inline bool compact_trylock_irqsave(spinlock_t *lock,
192 unsigned long *flags, struct compact_control *cc)
193 {
194 return compact_checklock_irqsave(lock, flags, false, cc);
195 }
196
197 /* Returns true if the page is within a block suitable for migration to */
198 static bool suitable_migration_target(struct page *page)
199 {
200 int migratetype = get_pageblock_migratetype(page);
201
202 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
203 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
204 return false;
205
206 /* If the page is a large free page, then allow migration */
207 if (PageBuddy(page) && page_order(page) >= pageblock_order)
208 return true;
209
210 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
211 if (migrate_async_suitable(migratetype))
212 return true;
213
214 /* Otherwise skip the block */
215 return false;
216 }
217
218 /*
219 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
220 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
221 * pages inside of the pageblock (even though it may still end up isolating
222 * some pages).
223 */
224 static unsigned long isolate_freepages_block(struct compact_control *cc,
225 unsigned long blockpfn,
226 unsigned long end_pfn,
227 struct list_head *freelist,
228 bool strict)
229 {
230 int nr_scanned = 0, total_isolated = 0;
231 struct page *cursor, *valid_page = NULL;
232 unsigned long nr_strict_required = end_pfn - blockpfn;
233 unsigned long flags;
234 bool locked = false;
235
236 cursor = pfn_to_page(blockpfn);
237
238 /* Isolate free pages. */
239 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
240 int isolated, i;
241 struct page *page = cursor;
242
243 nr_scanned++;
244 if (!pfn_valid_within(blockpfn))
245 continue;
246 if (!valid_page)
247 valid_page = page;
248 if (!PageBuddy(page))
249 continue;
250
251 /*
252 * The zone lock must be held to isolate freepages.
253 * Unfortunately this is a very coarse lock and can be
254 * heavily contended if there are parallel allocations
255 * or parallel compactions. For async compaction do not
256 * spin on the lock and we acquire the lock as late as
257 * possible.
258 */
259 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
260 locked, cc);
261 if (!locked)
262 break;
263
264 /* Recheck this is a suitable migration target under lock */
265 if (!strict && !suitable_migration_target(page))
266 break;
267
268 /* Recheck this is a buddy page under lock */
269 if (!PageBuddy(page))
270 continue;
271
272 /* Found a free page, break it into order-0 pages */
273 isolated = split_free_page(page);
274 if (!isolated && strict)
275 break;
276 total_isolated += isolated;
277 for (i = 0; i < isolated; i++) {
278 list_add(&page->lru, freelist);
279 page++;
280 }
281
282 /* If a page was split, advance to the end of it */
283 if (isolated) {
284 blockpfn += isolated - 1;
285 cursor += isolated - 1;
286 }
287 }
288
289 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
290
291 /*
292 * If strict isolation is requested by CMA then check that all the
293 * pages requested were isolated. If there were any failures, 0 is
294 * returned and CMA will fail.
295 */
296 if (strict && nr_strict_required > total_isolated)
297 total_isolated = 0;
298
299 if (locked)
300 spin_unlock_irqrestore(&cc->zone->lock, flags);
301
302 /* Update the pageblock-skip if the whole pageblock was scanned */
303 if (blockpfn == end_pfn)
304 update_pageblock_skip(cc, valid_page, total_isolated, false);
305
306 count_vm_events(COMPACTFREE_SCANNED, nr_scanned);
307 if (total_isolated)
308 count_vm_events(COMPACTISOLATED, total_isolated);
309
310 return total_isolated;
311 }
312
313 /**
314 * isolate_freepages_range() - isolate free pages.
315 * @start_pfn: The first PFN to start isolating.
316 * @end_pfn: The one-past-last PFN.
317 *
318 * Non-free pages, invalid PFNs, or zone boundaries within the
319 * [start_pfn, end_pfn) range are considered errors, cause function to
320 * undo its actions and return zero.
321 *
322 * Otherwise, function returns one-past-the-last PFN of isolated page
323 * (which may be greater then end_pfn if end fell in a middle of
324 * a free page).
325 */
326 unsigned long
327 isolate_freepages_range(struct compact_control *cc,
328 unsigned long start_pfn, unsigned long end_pfn)
329 {
330 unsigned long isolated, pfn, block_end_pfn;
331 LIST_HEAD(freelist);
332
333 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
334 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
335 break;
336
337 /*
338 * On subsequent iterations ALIGN() is actually not needed,
339 * but we keep it that we not to complicate the code.
340 */
341 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
342 block_end_pfn = min(block_end_pfn, end_pfn);
343
344 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
345 &freelist, true);
346
347 /*
348 * In strict mode, isolate_freepages_block() returns 0 if
349 * there are any holes in the block (ie. invalid PFNs or
350 * non-free pages).
351 */
352 if (!isolated)
353 break;
354
355 /*
356 * If we managed to isolate pages, it is always (1 << n) *
357 * pageblock_nr_pages for some non-negative n. (Max order
358 * page may span two pageblocks).
359 */
360 }
361
362 /* split_free_page does not map the pages */
363 map_pages(&freelist);
364
365 if (pfn < end_pfn) {
366 /* Loop terminated early, cleanup. */
367 release_freepages(&freelist);
368 return 0;
369 }
370
371 /* We don't use freelists for anything. */
372 return pfn;
373 }
374
375 /* Update the number of anon and file isolated pages in the zone */
376 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
377 {
378 struct page *page;
379 unsigned int count[2] = { 0, };
380
381 list_for_each_entry(page, &cc->migratepages, lru)
382 count[!!page_is_file_cache(page)]++;
383
384 /* If locked we can use the interrupt unsafe versions */
385 if (locked) {
386 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
387 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
388 } else {
389 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
390 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
391 }
392 }
393
394 /* Similar to reclaim, but different enough that they don't share logic */
395 static bool too_many_isolated(struct zone *zone)
396 {
397 unsigned long active, inactive, isolated;
398
399 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
400 zone_page_state(zone, NR_INACTIVE_ANON);
401 active = zone_page_state(zone, NR_ACTIVE_FILE) +
402 zone_page_state(zone, NR_ACTIVE_ANON);
403 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
404 zone_page_state(zone, NR_ISOLATED_ANON);
405
406 return isolated > (inactive + active) / 2;
407 }
408
409 /**
410 * isolate_migratepages_range() - isolate all migrate-able pages in range.
411 * @zone: Zone pages are in.
412 * @cc: Compaction control structure.
413 * @low_pfn: The first PFN of the range.
414 * @end_pfn: The one-past-the-last PFN of the range.
415 * @unevictable: true if it allows to isolate unevictable pages
416 *
417 * Isolate all pages that can be migrated from the range specified by
418 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
419 * pending), otherwise PFN of the first page that was not scanned
420 * (which may be both less, equal to or more then end_pfn).
421 *
422 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
423 * zero.
424 *
425 * Apart from cc->migratepages and cc->nr_migratetypes this function
426 * does not modify any cc's fields, in particular it does not modify
427 * (or read for that matter) cc->migrate_pfn.
428 */
429 unsigned long
430 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
431 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
432 {
433 unsigned long last_pageblock_nr = 0, pageblock_nr;
434 unsigned long nr_scanned = 0, nr_isolated = 0;
435 struct list_head *migratelist = &cc->migratepages;
436 isolate_mode_t mode = 0;
437 struct lruvec *lruvec;
438 unsigned long flags;
439 bool locked = false;
440 struct page *page = NULL, *valid_page = NULL;
441
442 /*
443 * Ensure that there are not too many pages isolated from the LRU
444 * list by either parallel reclaimers or compaction. If there are,
445 * delay for some time until fewer pages are isolated
446 */
447 while (unlikely(too_many_isolated(zone))) {
448 /* async migration should just abort */
449 if (!cc->sync)
450 return 0;
451
452 congestion_wait(BLK_RW_ASYNC, HZ/10);
453
454 if (fatal_signal_pending(current))
455 return 0;
456 }
457
458 /* Time to isolate some pages for migration */
459 cond_resched();
460 for (; low_pfn < end_pfn; low_pfn++) {
461 /* give a chance to irqs before checking need_resched() */
462 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
463 if (should_release_lock(&zone->lru_lock)) {
464 spin_unlock_irqrestore(&zone->lru_lock, flags);
465 locked = false;
466 }
467 }
468
469 /*
470 * migrate_pfn does not necessarily start aligned to a
471 * pageblock. Ensure that pfn_valid is called when moving
472 * into a new MAX_ORDER_NR_PAGES range in case of large
473 * memory holes within the zone
474 */
475 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
476 if (!pfn_valid(low_pfn)) {
477 low_pfn += MAX_ORDER_NR_PAGES - 1;
478 continue;
479 }
480 }
481
482 if (!pfn_valid_within(low_pfn))
483 continue;
484 nr_scanned++;
485
486 /*
487 * Get the page and ensure the page is within the same zone.
488 * See the comment in isolate_freepages about overlapping
489 * nodes. It is deliberate that the new zone lock is not taken
490 * as memory compaction should not move pages between nodes.
491 */
492 page = pfn_to_page(low_pfn);
493 if (page_zone(page) != zone)
494 continue;
495
496 if (!valid_page)
497 valid_page = page;
498
499 /* If isolation recently failed, do not retry */
500 pageblock_nr = low_pfn >> pageblock_order;
501 if (!isolation_suitable(cc, page))
502 goto next_pageblock;
503
504 /* Skip if free */
505 if (PageBuddy(page))
506 continue;
507
508 /*
509 * For async migration, also only scan in MOVABLE blocks. Async
510 * migration is optimistic to see if the minimum amount of work
511 * satisfies the allocation
512 */
513 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
514 !migrate_async_suitable(get_pageblock_migratetype(page))) {
515 cc->finished_update_migrate = true;
516 goto next_pageblock;
517 }
518
519 /*
520 * Check may be lockless but that's ok as we recheck later.
521 * It's possible to migrate LRU pages and balloon pages
522 * Skip any other type of page
523 */
524 if (!PageLRU(page)) {
525 if (unlikely(balloon_page_movable(page))) {
526 if (locked && balloon_page_isolate(page)) {
527 /* Successfully isolated */
528 cc->finished_update_migrate = true;
529 list_add(&page->lru, migratelist);
530 cc->nr_migratepages++;
531 nr_isolated++;
532 goto check_compact_cluster;
533 }
534 }
535 continue;
536 }
537
538 /*
539 * PageLRU is set. lru_lock normally excludes isolation
540 * splitting and collapsing (collapsing has already happened
541 * if PageLRU is set) but the lock is not necessarily taken
542 * here and it is wasteful to take it just to check transhuge.
543 * Check TransHuge without lock and skip the whole pageblock if
544 * it's either a transhuge or hugetlbfs page, as calling
545 * compound_order() without preventing THP from splitting the
546 * page underneath us may return surprising results.
547 */
548 if (PageTransHuge(page)) {
549 if (!locked)
550 goto next_pageblock;
551 low_pfn += (1 << compound_order(page)) - 1;
552 continue;
553 }
554
555 /* Check if it is ok to still hold the lock */
556 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
557 locked, cc);
558 if (!locked || fatal_signal_pending(current))
559 break;
560
561 /* Recheck PageLRU and PageTransHuge under lock */
562 if (!PageLRU(page))
563 continue;
564 if (PageTransHuge(page)) {
565 low_pfn += (1 << compound_order(page)) - 1;
566 continue;
567 }
568
569 if (!cc->sync)
570 mode |= ISOLATE_ASYNC_MIGRATE;
571
572 if (unevictable)
573 mode |= ISOLATE_UNEVICTABLE;
574
575 lruvec = mem_cgroup_page_lruvec(page, zone);
576
577 /* Try isolate the page */
578 if (__isolate_lru_page(page, mode) != 0)
579 continue;
580
581 VM_BUG_ON(PageTransCompound(page));
582
583 /* Successfully isolated */
584 cc->finished_update_migrate = true;
585 del_page_from_lru_list(page, lruvec, page_lru(page));
586 list_add(&page->lru, migratelist);
587 cc->nr_migratepages++;
588 nr_isolated++;
589
590 check_compact_cluster:
591 /* Avoid isolating too much */
592 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
593 ++low_pfn;
594 break;
595 }
596
597 continue;
598
599 next_pageblock:
600 low_pfn += pageblock_nr_pages;
601 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
602 last_pageblock_nr = pageblock_nr;
603 }
604
605 acct_isolated(zone, locked, cc);
606
607 if (locked)
608 spin_unlock_irqrestore(&zone->lru_lock, flags);
609
610 /* Update the pageblock-skip if the whole pageblock was scanned */
611 if (low_pfn == end_pfn)
612 update_pageblock_skip(cc, valid_page, nr_isolated, true);
613
614 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
615
616 count_vm_events(COMPACTMIGRATE_SCANNED, nr_scanned);
617 if (nr_isolated)
618 count_vm_events(COMPACTISOLATED, nr_isolated);
619
620 return low_pfn;
621 }
622
623 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
624 #ifdef CONFIG_COMPACTION
625 /*
626 * Based on information in the current compact_control, find blocks
627 * suitable for isolating free pages from and then isolate them.
628 */
629 static void isolate_freepages(struct zone *zone,
630 struct compact_control *cc)
631 {
632 struct page *page;
633 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
634 int nr_freepages = cc->nr_freepages;
635 struct list_head *freelist = &cc->freepages;
636
637 /*
638 * Initialise the free scanner. The starting point is where we last
639 * scanned from (or the end of the zone if starting). The low point
640 * is the end of the pageblock the migration scanner is using.
641 */
642 pfn = cc->free_pfn;
643 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
644
645 /*
646 * Take care that if the migration scanner is at the end of the zone
647 * that the free scanner does not accidentally move to the next zone
648 * in the next isolation cycle.
649 */
650 high_pfn = min(low_pfn, pfn);
651
652 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
653
654 /*
655 * Isolate free pages until enough are available to migrate the
656 * pages on cc->migratepages. We stop searching if the migrate
657 * and free page scanners meet or enough free pages are isolated.
658 */
659 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
660 pfn -= pageblock_nr_pages) {
661 unsigned long isolated;
662
663 if (!pfn_valid(pfn))
664 continue;
665
666 /*
667 * Check for overlapping nodes/zones. It's possible on some
668 * configurations to have a setup like
669 * node0 node1 node0
670 * i.e. it's possible that all pages within a zones range of
671 * pages do not belong to a single zone.
672 */
673 page = pfn_to_page(pfn);
674 if (page_zone(page) != zone)
675 continue;
676
677 /* Check the block is suitable for migration */
678 if (!suitable_migration_target(page))
679 continue;
680
681 /* If isolation recently failed, do not retry */
682 if (!isolation_suitable(cc, page))
683 continue;
684
685 /* Found a block suitable for isolating free pages from */
686 isolated = 0;
687
688 /*
689 * As pfn may not start aligned, pfn+pageblock_nr_page
690 * may cross a MAX_ORDER_NR_PAGES boundary and miss
691 * a pfn_valid check. Ensure isolate_freepages_block()
692 * only scans within a pageblock
693 */
694 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
695 end_pfn = min(end_pfn, zone_end_pfn);
696 isolated = isolate_freepages_block(cc, pfn, end_pfn,
697 freelist, false);
698 nr_freepages += isolated;
699
700 /*
701 * Record the highest PFN we isolated pages from. When next
702 * looking for free pages, the search will restart here as
703 * page migration may have returned some pages to the allocator
704 */
705 if (isolated) {
706 cc->finished_update_free = true;
707 high_pfn = max(high_pfn, pfn);
708 }
709 }
710
711 /* split_free_page does not map the pages */
712 map_pages(freelist);
713
714 cc->free_pfn = high_pfn;
715 cc->nr_freepages = nr_freepages;
716 }
717
718 /*
719 * This is a migrate-callback that "allocates" freepages by taking pages
720 * from the isolated freelists in the block we are migrating to.
721 */
722 static struct page *compaction_alloc(struct page *migratepage,
723 unsigned long data,
724 int **result)
725 {
726 struct compact_control *cc = (struct compact_control *)data;
727 struct page *freepage;
728
729 /* Isolate free pages if necessary */
730 if (list_empty(&cc->freepages)) {
731 isolate_freepages(cc->zone, cc);
732
733 if (list_empty(&cc->freepages))
734 return NULL;
735 }
736
737 freepage = list_entry(cc->freepages.next, struct page, lru);
738 list_del(&freepage->lru);
739 cc->nr_freepages--;
740
741 return freepage;
742 }
743
744 /*
745 * We cannot control nr_migratepages and nr_freepages fully when migration is
746 * running as migrate_pages() has no knowledge of compact_control. When
747 * migration is complete, we count the number of pages on the lists by hand.
748 */
749 static void update_nr_listpages(struct compact_control *cc)
750 {
751 int nr_migratepages = 0;
752 int nr_freepages = 0;
753 struct page *page;
754
755 list_for_each_entry(page, &cc->migratepages, lru)
756 nr_migratepages++;
757 list_for_each_entry(page, &cc->freepages, lru)
758 nr_freepages++;
759
760 cc->nr_migratepages = nr_migratepages;
761 cc->nr_freepages = nr_freepages;
762 }
763
764 /* possible outcome of isolate_migratepages */
765 typedef enum {
766 ISOLATE_ABORT, /* Abort compaction now */
767 ISOLATE_NONE, /* No pages isolated, continue scanning */
768 ISOLATE_SUCCESS, /* Pages isolated, migrate */
769 } isolate_migrate_t;
770
771 /*
772 * Isolate all pages that can be migrated from the block pointed to by
773 * the migrate scanner within compact_control.
774 */
775 static isolate_migrate_t isolate_migratepages(struct zone *zone,
776 struct compact_control *cc)
777 {
778 unsigned long low_pfn, end_pfn;
779
780 /* Do not scan outside zone boundaries */
781 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
782
783 /* Only scan within a pageblock boundary */
784 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
785
786 /* Do not cross the free scanner or scan within a memory hole */
787 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
788 cc->migrate_pfn = end_pfn;
789 return ISOLATE_NONE;
790 }
791
792 /* Perform the isolation */
793 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
794 if (!low_pfn || cc->contended)
795 return ISOLATE_ABORT;
796
797 cc->migrate_pfn = low_pfn;
798
799 return ISOLATE_SUCCESS;
800 }
801
802 static int compact_finished(struct zone *zone,
803 struct compact_control *cc)
804 {
805 unsigned long watermark;
806
807 if (fatal_signal_pending(current))
808 return COMPACT_PARTIAL;
809
810 /* Compaction run completes if the migrate and free scanner meet */
811 if (cc->free_pfn <= cc->migrate_pfn) {
812 /*
813 * Mark that the PG_migrate_skip information should be cleared
814 * by kswapd when it goes to sleep. kswapd does not set the
815 * flag itself as the decision to be clear should be directly
816 * based on an allocation request.
817 */
818 if (!current_is_kswapd())
819 zone->compact_blockskip_flush = true;
820
821 return COMPACT_COMPLETE;
822 }
823
824 /*
825 * order == -1 is expected when compacting via
826 * /proc/sys/vm/compact_memory
827 */
828 if (cc->order == -1)
829 return COMPACT_CONTINUE;
830
831 /* Compaction run is not finished if the watermark is not met */
832 watermark = low_wmark_pages(zone);
833 watermark += (1 << cc->order);
834
835 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
836 return COMPACT_CONTINUE;
837
838 /* Direct compactor: Is a suitable page free? */
839 if (cc->page) {
840 /* Was a suitable page captured? */
841 if (*cc->page)
842 return COMPACT_PARTIAL;
843 } else {
844 unsigned int order;
845 for (order = cc->order; order < MAX_ORDER; order++) {
846 struct free_area *area = &zone->free_area[cc->order];
847 /* Job done if page is free of the right migratetype */
848 if (!list_empty(&area->free_list[cc->migratetype]))
849 return COMPACT_PARTIAL;
850
851 /* Job done if allocation would set block type */
852 if (cc->order >= pageblock_order && area->nr_free)
853 return COMPACT_PARTIAL;
854 }
855 }
856
857 return COMPACT_CONTINUE;
858 }
859
860 /*
861 * compaction_suitable: Is this suitable to run compaction on this zone now?
862 * Returns
863 * COMPACT_SKIPPED - If there are too few free pages for compaction
864 * COMPACT_PARTIAL - If the allocation would succeed without compaction
865 * COMPACT_CONTINUE - If compaction should run now
866 */
867 unsigned long compaction_suitable(struct zone *zone, int order)
868 {
869 int fragindex;
870 unsigned long watermark;
871
872 /*
873 * order == -1 is expected when compacting via
874 * /proc/sys/vm/compact_memory
875 */
876 if (order == -1)
877 return COMPACT_CONTINUE;
878
879 /*
880 * Watermarks for order-0 must be met for compaction. Note the 2UL.
881 * This is because during migration, copies of pages need to be
882 * allocated and for a short time, the footprint is higher
883 */
884 watermark = low_wmark_pages(zone) + (2UL << order);
885 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
886 return COMPACT_SKIPPED;
887
888 /*
889 * fragmentation index determines if allocation failures are due to
890 * low memory or external fragmentation
891 *
892 * index of -1000 implies allocations might succeed depending on
893 * watermarks
894 * index towards 0 implies failure is due to lack of memory
895 * index towards 1000 implies failure is due to fragmentation
896 *
897 * Only compact if a failure would be due to fragmentation.
898 */
899 fragindex = fragmentation_index(zone, order);
900 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
901 return COMPACT_SKIPPED;
902
903 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
904 0, 0))
905 return COMPACT_PARTIAL;
906
907 return COMPACT_CONTINUE;
908 }
909
910 static void compact_capture_page(struct compact_control *cc)
911 {
912 unsigned long flags;
913 int mtype, mtype_low, mtype_high;
914
915 if (!cc->page || *cc->page)
916 return;
917
918 /*
919 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
920 * regardless of the migratetype of the freelist is is captured from.
921 * This is fine because the order for a high-order MIGRATE_MOVABLE
922 * allocation is typically at least a pageblock size and overall
923 * fragmentation is not impaired. Other allocation types must
924 * capture pages from their own migratelist because otherwise they
925 * could pollute other pageblocks like MIGRATE_MOVABLE with
926 * difficult to move pages and making fragmentation worse overall.
927 */
928 if (cc->migratetype == MIGRATE_MOVABLE) {
929 mtype_low = 0;
930 mtype_high = MIGRATE_PCPTYPES;
931 } else {
932 mtype_low = cc->migratetype;
933 mtype_high = cc->migratetype + 1;
934 }
935
936 /* Speculatively examine the free lists without zone lock */
937 for (mtype = mtype_low; mtype < mtype_high; mtype++) {
938 int order;
939 for (order = cc->order; order < MAX_ORDER; order++) {
940 struct page *page;
941 struct free_area *area;
942 area = &(cc->zone->free_area[order]);
943 if (list_empty(&area->free_list[mtype]))
944 continue;
945
946 /* Take the lock and attempt capture of the page */
947 if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
948 return;
949 if (!list_empty(&area->free_list[mtype])) {
950 page = list_entry(area->free_list[mtype].next,
951 struct page, lru);
952 if (capture_free_page(page, cc->order, mtype)) {
953 spin_unlock_irqrestore(&cc->zone->lock,
954 flags);
955 *cc->page = page;
956 return;
957 }
958 }
959 spin_unlock_irqrestore(&cc->zone->lock, flags);
960 }
961 }
962 }
963
964 static int compact_zone(struct zone *zone, struct compact_control *cc)
965 {
966 int ret;
967 unsigned long start_pfn = zone->zone_start_pfn;
968 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
969
970 ret = compaction_suitable(zone, cc->order);
971 switch (ret) {
972 case COMPACT_PARTIAL:
973 case COMPACT_SKIPPED:
974 /* Compaction is likely to fail */
975 return ret;
976 case COMPACT_CONTINUE:
977 /* Fall through to compaction */
978 ;
979 }
980
981 /*
982 * Setup to move all movable pages to the end of the zone. Used cached
983 * information on where the scanners should start but check that it
984 * is initialised by ensuring the values are within zone boundaries.
985 */
986 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
987 cc->free_pfn = zone->compact_cached_free_pfn;
988 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
989 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
990 zone->compact_cached_free_pfn = cc->free_pfn;
991 }
992 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
993 cc->migrate_pfn = start_pfn;
994 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
995 }
996
997 /*
998 * Clear pageblock skip if there were failures recently and compaction
999 * is about to be retried after being deferred. kswapd does not do
1000 * this reset as it'll reset the cached information when going to sleep.
1001 */
1002 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1003 __reset_isolation_suitable(zone);
1004
1005 migrate_prep_local();
1006
1007 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1008 unsigned long nr_migrate, nr_remaining;
1009 int err;
1010
1011 switch (isolate_migratepages(zone, cc)) {
1012 case ISOLATE_ABORT:
1013 ret = COMPACT_PARTIAL;
1014 putback_movable_pages(&cc->migratepages);
1015 cc->nr_migratepages = 0;
1016 goto out;
1017 case ISOLATE_NONE:
1018 continue;
1019 case ISOLATE_SUCCESS:
1020 ;
1021 }
1022
1023 nr_migrate = cc->nr_migratepages;
1024 err = migrate_pages(&cc->migratepages, compaction_alloc,
1025 (unsigned long)cc, false,
1026 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1027 MR_COMPACTION);
1028 update_nr_listpages(cc);
1029 nr_remaining = cc->nr_migratepages;
1030
1031 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1032 nr_remaining);
1033
1034 /* Release isolated pages not migrated */
1035 if (err) {
1036 putback_movable_pages(&cc->migratepages);
1037 cc->nr_migratepages = 0;
1038 if (err == -ENOMEM) {
1039 ret = COMPACT_PARTIAL;
1040 goto out;
1041 }
1042 }
1043
1044 /* Capture a page now if it is a suitable size */
1045 compact_capture_page(cc);
1046 }
1047
1048 out:
1049 /* Release free pages and check accounting */
1050 cc->nr_freepages -= release_freepages(&cc->freepages);
1051 VM_BUG_ON(cc->nr_freepages != 0);
1052
1053 return ret;
1054 }
1055
1056 static unsigned long compact_zone_order(struct zone *zone,
1057 int order, gfp_t gfp_mask,
1058 bool sync, bool *contended,
1059 struct page **page)
1060 {
1061 unsigned long ret;
1062 struct compact_control cc = {
1063 .nr_freepages = 0,
1064 .nr_migratepages = 0,
1065 .order = order,
1066 .migratetype = allocflags_to_migratetype(gfp_mask),
1067 .zone = zone,
1068 .sync = sync,
1069 .page = page,
1070 };
1071 INIT_LIST_HEAD(&cc.freepages);
1072 INIT_LIST_HEAD(&cc.migratepages);
1073
1074 ret = compact_zone(zone, &cc);
1075
1076 VM_BUG_ON(!list_empty(&cc.freepages));
1077 VM_BUG_ON(!list_empty(&cc.migratepages));
1078
1079 *contended = cc.contended;
1080 return ret;
1081 }
1082
1083 int sysctl_extfrag_threshold = 500;
1084
1085 /**
1086 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1087 * @zonelist: The zonelist used for the current allocation
1088 * @order: The order of the current allocation
1089 * @gfp_mask: The GFP mask of the current allocation
1090 * @nodemask: The allowed nodes to allocate from
1091 * @sync: Whether migration is synchronous or not
1092 * @contended: Return value that is true if compaction was aborted due to lock contention
1093 * @page: Optionally capture a free page of the requested order during compaction
1094 *
1095 * This is the main entry point for direct page compaction.
1096 */
1097 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1098 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1099 bool sync, bool *contended, struct page **page)
1100 {
1101 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1102 int may_enter_fs = gfp_mask & __GFP_FS;
1103 int may_perform_io = gfp_mask & __GFP_IO;
1104 struct zoneref *z;
1105 struct zone *zone;
1106 int rc = COMPACT_SKIPPED;
1107 int alloc_flags = 0;
1108
1109 /* Check if the GFP flags allow compaction */
1110 if (!order || !may_enter_fs || !may_perform_io)
1111 return rc;
1112
1113 count_vm_event(COMPACTSTALL);
1114
1115 #ifdef CONFIG_CMA
1116 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1117 alloc_flags |= ALLOC_CMA;
1118 #endif
1119 /* Compact each zone in the list */
1120 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1121 nodemask) {
1122 int status;
1123
1124 status = compact_zone_order(zone, order, gfp_mask, sync,
1125 contended, page);
1126 rc = max(status, rc);
1127
1128 /* If a normal allocation would succeed, stop compacting */
1129 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1130 alloc_flags))
1131 break;
1132 }
1133
1134 return rc;
1135 }
1136
1137
1138 /* Compact all zones within a node */
1139 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1140 {
1141 int zoneid;
1142 struct zone *zone;
1143
1144 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1145
1146 zone = &pgdat->node_zones[zoneid];
1147 if (!populated_zone(zone))
1148 continue;
1149
1150 cc->nr_freepages = 0;
1151 cc->nr_migratepages = 0;
1152 cc->zone = zone;
1153 INIT_LIST_HEAD(&cc->freepages);
1154 INIT_LIST_HEAD(&cc->migratepages);
1155
1156 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1157 compact_zone(zone, cc);
1158
1159 if (cc->order > 0) {
1160 int ok = zone_watermark_ok(zone, cc->order,
1161 low_wmark_pages(zone), 0, 0);
1162 if (ok && cc->order >= zone->compact_order_failed)
1163 zone->compact_order_failed = cc->order + 1;
1164 /* Currently async compaction is never deferred. */
1165 else if (!ok && cc->sync)
1166 defer_compaction(zone, cc->order);
1167 }
1168
1169 VM_BUG_ON(!list_empty(&cc->freepages));
1170 VM_BUG_ON(!list_empty(&cc->migratepages));
1171 }
1172
1173 return 0;
1174 }
1175
1176 int compact_pgdat(pg_data_t *pgdat, int order)
1177 {
1178 struct compact_control cc = {
1179 .order = order,
1180 .sync = false,
1181 .page = NULL,
1182 };
1183
1184 return __compact_pgdat(pgdat, &cc);
1185 }
1186
1187 static int compact_node(int nid)
1188 {
1189 struct compact_control cc = {
1190 .order = -1,
1191 .sync = true,
1192 .page = NULL,
1193 };
1194
1195 return __compact_pgdat(NODE_DATA(nid), &cc);
1196 }
1197
1198 /* Compact all nodes in the system */
1199 static int compact_nodes(void)
1200 {
1201 int nid;
1202
1203 /* Flush pending updates to the LRU lists */
1204 lru_add_drain_all();
1205
1206 for_each_online_node(nid)
1207 compact_node(nid);
1208
1209 return COMPACT_COMPLETE;
1210 }
1211
1212 /* The written value is actually unused, all memory is compacted */
1213 int sysctl_compact_memory;
1214
1215 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1216 int sysctl_compaction_handler(struct ctl_table *table, int write,
1217 void __user *buffer, size_t *length, loff_t *ppos)
1218 {
1219 if (write)
1220 return compact_nodes();
1221
1222 return 0;
1223 }
1224
1225 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1226 void __user *buffer, size_t *length, loff_t *ppos)
1227 {
1228 proc_dointvec_minmax(table, write, buffer, length, ppos);
1229
1230 return 0;
1231 }
1232
1233 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1234 ssize_t sysfs_compact_node(struct device *dev,
1235 struct device_attribute *attr,
1236 const char *buf, size_t count)
1237 {
1238 int nid = dev->id;
1239
1240 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1241 /* Flush pending updates to the LRU lists */
1242 lru_add_drain_all();
1243
1244 compact_node(nid);
1245 }
1246
1247 return count;
1248 }
1249 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1250
1251 int compaction_register_node(struct node *node)
1252 {
1253 return device_create_file(&node->dev, &dev_attr_compact);
1254 }
1255
1256 void compaction_unregister_node(struct node *node)
1257 {
1258 return device_remove_file(&node->dev, &dev_attr_compact);
1259 }
1260 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1261
1262 #endif /* CONFIG_COMPACTION */