Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / bootmem.c
1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/bootmem.h>
14 #include <linux/module.h>
15 #include <linux/kmemleak.h>
16
17 #include <asm/bug.h>
18 #include <asm/io.h>
19 #include <asm/processor.h>
20
21 #include "internal.h"
22
23 unsigned long max_low_pfn;
24 unsigned long min_low_pfn;
25 unsigned long max_pfn;
26
27 #ifdef CONFIG_CRASH_DUMP
28 /*
29 * If we have booted due to a crash, max_pfn will be a very low value. We need
30 * to know the amount of memory that the previous kernel used.
31 */
32 unsigned long saved_max_pfn;
33 #endif
34
35 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
36
37 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
38
39 static int bootmem_debug;
40
41 static int __init bootmem_debug_setup(char *buf)
42 {
43 bootmem_debug = 1;
44 return 0;
45 }
46 early_param("bootmem_debug", bootmem_debug_setup);
47
48 #define bdebug(fmt, args...) ({ \
49 if (unlikely(bootmem_debug)) \
50 printk(KERN_INFO \
51 "bootmem::%s " fmt, \
52 __func__, ## args); \
53 })
54
55 static unsigned long __init bootmap_bytes(unsigned long pages)
56 {
57 unsigned long bytes = (pages + 7) / 8;
58
59 return ALIGN(bytes, sizeof(long));
60 }
61
62 /**
63 * bootmem_bootmap_pages - calculate bitmap size in pages
64 * @pages: number of pages the bitmap has to represent
65 */
66 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
67 {
68 unsigned long bytes = bootmap_bytes(pages);
69
70 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
71 }
72
73 /*
74 * link bdata in order
75 */
76 static void __init link_bootmem(bootmem_data_t *bdata)
77 {
78 struct list_head *iter;
79
80 list_for_each(iter, &bdata_list) {
81 bootmem_data_t *ent;
82
83 ent = list_entry(iter, bootmem_data_t, list);
84 if (bdata->node_min_pfn < ent->node_min_pfn)
85 break;
86 }
87 list_add_tail(&bdata->list, iter);
88 }
89
90 /*
91 * Called once to set up the allocator itself.
92 */
93 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
94 unsigned long mapstart, unsigned long start, unsigned long end)
95 {
96 unsigned long mapsize;
97
98 mminit_validate_memmodel_limits(&start, &end);
99 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
100 bdata->node_min_pfn = start;
101 bdata->node_low_pfn = end;
102 link_bootmem(bdata);
103
104 /*
105 * Initially all pages are reserved - setup_arch() has to
106 * register free RAM areas explicitly.
107 */
108 mapsize = bootmap_bytes(end - start);
109 memset(bdata->node_bootmem_map, 0xff, mapsize);
110
111 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
112 bdata - bootmem_node_data, start, mapstart, end, mapsize);
113
114 return mapsize;
115 }
116
117 /**
118 * init_bootmem_node - register a node as boot memory
119 * @pgdat: node to register
120 * @freepfn: pfn where the bitmap for this node is to be placed
121 * @startpfn: first pfn on the node
122 * @endpfn: first pfn after the node
123 *
124 * Returns the number of bytes needed to hold the bitmap for this node.
125 */
126 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
127 unsigned long startpfn, unsigned long endpfn)
128 {
129 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
130 }
131
132 /**
133 * init_bootmem - register boot memory
134 * @start: pfn where the bitmap is to be placed
135 * @pages: number of available physical pages
136 *
137 * Returns the number of bytes needed to hold the bitmap.
138 */
139 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
140 {
141 max_low_pfn = pages;
142 min_low_pfn = start;
143 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
144 }
145
146 /*
147 * free_bootmem_late - free bootmem pages directly to page allocator
148 * @addr: starting address of the range
149 * @size: size of the range in bytes
150 *
151 * This is only useful when the bootmem allocator has already been torn
152 * down, but we are still initializing the system. Pages are given directly
153 * to the page allocator, no bootmem metadata is updated because it is gone.
154 */
155 void __init free_bootmem_late(unsigned long addr, unsigned long size)
156 {
157 unsigned long cursor, end;
158
159 kmemleak_free_part(__va(addr), size);
160
161 cursor = PFN_UP(addr);
162 end = PFN_DOWN(addr + size);
163
164 for (; cursor < end; cursor++) {
165 __free_pages_bootmem(pfn_to_page(cursor), 0);
166 totalram_pages++;
167 }
168 }
169
170 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
171 {
172 int aligned;
173 struct page *page;
174 unsigned long start, end, pages, count = 0;
175
176 if (!bdata->node_bootmem_map)
177 return 0;
178
179 start = bdata->node_min_pfn;
180 end = bdata->node_low_pfn;
181
182 /*
183 * If the start is aligned to the machines wordsize, we might
184 * be able to free pages in bulks of that order.
185 */
186 aligned = !(start & (BITS_PER_LONG - 1));
187
188 bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
189 bdata - bootmem_node_data, start, end, aligned);
190
191 while (start < end) {
192 unsigned long *map, idx, vec;
193
194 map = bdata->node_bootmem_map;
195 idx = start - bdata->node_min_pfn;
196 vec = ~map[idx / BITS_PER_LONG];
197
198 if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
199 int order = ilog2(BITS_PER_LONG);
200
201 __free_pages_bootmem(pfn_to_page(start), order);
202 count += BITS_PER_LONG;
203 } else {
204 unsigned long off = 0;
205
206 while (vec && off < BITS_PER_LONG) {
207 if (vec & 1) {
208 page = pfn_to_page(start + off);
209 __free_pages_bootmem(page, 0);
210 count++;
211 }
212 vec >>= 1;
213 off++;
214 }
215 }
216 start += BITS_PER_LONG;
217 }
218
219 page = virt_to_page(bdata->node_bootmem_map);
220 pages = bdata->node_low_pfn - bdata->node_min_pfn;
221 pages = bootmem_bootmap_pages(pages);
222 count += pages;
223 while (pages--)
224 __free_pages_bootmem(page++, 0);
225
226 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
227
228 return count;
229 }
230
231 /**
232 * free_all_bootmem_node - release a node's free pages to the buddy allocator
233 * @pgdat: node to be released
234 *
235 * Returns the number of pages actually released.
236 */
237 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
238 {
239 register_page_bootmem_info_node(pgdat);
240 return free_all_bootmem_core(pgdat->bdata);
241 }
242
243 /**
244 * free_all_bootmem - release free pages to the buddy allocator
245 *
246 * Returns the number of pages actually released.
247 */
248 unsigned long __init free_all_bootmem(void)
249 {
250 return free_all_bootmem_core(NODE_DATA(0)->bdata);
251 }
252
253 static void __init __free(bootmem_data_t *bdata,
254 unsigned long sidx, unsigned long eidx)
255 {
256 unsigned long idx;
257
258 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
259 sidx + bdata->node_min_pfn,
260 eidx + bdata->node_min_pfn);
261
262 if (bdata->hint_idx > sidx)
263 bdata->hint_idx = sidx;
264
265 for (idx = sidx; idx < eidx; idx++)
266 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
267 BUG();
268 }
269
270 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
271 unsigned long eidx, int flags)
272 {
273 unsigned long idx;
274 int exclusive = flags & BOOTMEM_EXCLUSIVE;
275
276 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
277 bdata - bootmem_node_data,
278 sidx + bdata->node_min_pfn,
279 eidx + bdata->node_min_pfn,
280 flags);
281
282 for (idx = sidx; idx < eidx; idx++)
283 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
284 if (exclusive) {
285 __free(bdata, sidx, idx);
286 return -EBUSY;
287 }
288 bdebug("silent double reserve of PFN %lx\n",
289 idx + bdata->node_min_pfn);
290 }
291 return 0;
292 }
293
294 static int __init mark_bootmem_node(bootmem_data_t *bdata,
295 unsigned long start, unsigned long end,
296 int reserve, int flags)
297 {
298 unsigned long sidx, eidx;
299
300 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
301 bdata - bootmem_node_data, start, end, reserve, flags);
302
303 BUG_ON(start < bdata->node_min_pfn);
304 BUG_ON(end > bdata->node_low_pfn);
305
306 sidx = start - bdata->node_min_pfn;
307 eidx = end - bdata->node_min_pfn;
308
309 if (reserve)
310 return __reserve(bdata, sidx, eidx, flags);
311 else
312 __free(bdata, sidx, eidx);
313 return 0;
314 }
315
316 static int __init mark_bootmem(unsigned long start, unsigned long end,
317 int reserve, int flags)
318 {
319 unsigned long pos;
320 bootmem_data_t *bdata;
321
322 pos = start;
323 list_for_each_entry(bdata, &bdata_list, list) {
324 int err;
325 unsigned long max;
326
327 if (pos < bdata->node_min_pfn ||
328 pos >= bdata->node_low_pfn) {
329 BUG_ON(pos != start);
330 continue;
331 }
332
333 max = min(bdata->node_low_pfn, end);
334
335 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
336 if (reserve && err) {
337 mark_bootmem(start, pos, 0, 0);
338 return err;
339 }
340
341 if (max == end)
342 return 0;
343 pos = bdata->node_low_pfn;
344 }
345 BUG();
346 }
347
348 /**
349 * free_bootmem_node - mark a page range as usable
350 * @pgdat: node the range resides on
351 * @physaddr: starting address of the range
352 * @size: size of the range in bytes
353 *
354 * Partial pages will be considered reserved and left as they are.
355 *
356 * The range must reside completely on the specified node.
357 */
358 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
359 unsigned long size)
360 {
361 unsigned long start, end;
362
363 kmemleak_free_part(__va(physaddr), size);
364
365 start = PFN_UP(physaddr);
366 end = PFN_DOWN(physaddr + size);
367
368 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
369 }
370
371 /**
372 * free_bootmem - mark a page range as usable
373 * @addr: starting address of the range
374 * @size: size of the range in bytes
375 *
376 * Partial pages will be considered reserved and left as they are.
377 *
378 * The range must be contiguous but may span node boundaries.
379 */
380 void __init free_bootmem(unsigned long addr, unsigned long size)
381 {
382 unsigned long start, end;
383
384 kmemleak_free_part(__va(addr), size);
385
386 start = PFN_UP(addr);
387 end = PFN_DOWN(addr + size);
388
389 mark_bootmem(start, end, 0, 0);
390 }
391
392 /**
393 * reserve_bootmem_node - mark a page range as reserved
394 * @pgdat: node the range resides on
395 * @physaddr: starting address of the range
396 * @size: size of the range in bytes
397 * @flags: reservation flags (see linux/bootmem.h)
398 *
399 * Partial pages will be reserved.
400 *
401 * The range must reside completely on the specified node.
402 */
403 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
404 unsigned long size, int flags)
405 {
406 unsigned long start, end;
407
408 start = PFN_DOWN(physaddr);
409 end = PFN_UP(physaddr + size);
410
411 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
412 }
413
414 /**
415 * reserve_bootmem - mark a page range as usable
416 * @addr: starting address of the range
417 * @size: size of the range in bytes
418 * @flags: reservation flags (see linux/bootmem.h)
419 *
420 * Partial pages will be reserved.
421 *
422 * The range must be contiguous but may span node boundaries.
423 */
424 int __init reserve_bootmem(unsigned long addr, unsigned long size,
425 int flags)
426 {
427 unsigned long start, end;
428
429 start = PFN_DOWN(addr);
430 end = PFN_UP(addr + size);
431
432 return mark_bootmem(start, end, 1, flags);
433 }
434
435 static unsigned long __init align_idx(struct bootmem_data *bdata,
436 unsigned long idx, unsigned long step)
437 {
438 unsigned long base = bdata->node_min_pfn;
439
440 /*
441 * Align the index with respect to the node start so that the
442 * combination of both satisfies the requested alignment.
443 */
444
445 return ALIGN(base + idx, step) - base;
446 }
447
448 static unsigned long __init align_off(struct bootmem_data *bdata,
449 unsigned long off, unsigned long align)
450 {
451 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
452
453 /* Same as align_idx for byte offsets */
454
455 return ALIGN(base + off, align) - base;
456 }
457
458 static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
459 unsigned long size, unsigned long align,
460 unsigned long goal, unsigned long limit)
461 {
462 unsigned long fallback = 0;
463 unsigned long min, max, start, sidx, midx, step;
464
465 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
466 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
467 align, goal, limit);
468
469 BUG_ON(!size);
470 BUG_ON(align & (align - 1));
471 BUG_ON(limit && goal + size > limit);
472
473 if (!bdata->node_bootmem_map)
474 return NULL;
475
476 min = bdata->node_min_pfn;
477 max = bdata->node_low_pfn;
478
479 goal >>= PAGE_SHIFT;
480 limit >>= PAGE_SHIFT;
481
482 if (limit && max > limit)
483 max = limit;
484 if (max <= min)
485 return NULL;
486
487 step = max(align >> PAGE_SHIFT, 1UL);
488
489 if (goal && min < goal && goal < max)
490 start = ALIGN(goal, step);
491 else
492 start = ALIGN(min, step);
493
494 sidx = start - bdata->node_min_pfn;
495 midx = max - bdata->node_min_pfn;
496
497 if (bdata->hint_idx > sidx) {
498 /*
499 * Handle the valid case of sidx being zero and still
500 * catch the fallback below.
501 */
502 fallback = sidx + 1;
503 sidx = align_idx(bdata, bdata->hint_idx, step);
504 }
505
506 while (1) {
507 int merge;
508 void *region;
509 unsigned long eidx, i, start_off, end_off;
510 find_block:
511 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
512 sidx = align_idx(bdata, sidx, step);
513 eidx = sidx + PFN_UP(size);
514
515 if (sidx >= midx || eidx > midx)
516 break;
517
518 for (i = sidx; i < eidx; i++)
519 if (test_bit(i, bdata->node_bootmem_map)) {
520 sidx = align_idx(bdata, i, step);
521 if (sidx == i)
522 sidx += step;
523 goto find_block;
524 }
525
526 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
527 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
528 start_off = align_off(bdata, bdata->last_end_off, align);
529 else
530 start_off = PFN_PHYS(sidx);
531
532 merge = PFN_DOWN(start_off) < sidx;
533 end_off = start_off + size;
534
535 bdata->last_end_off = end_off;
536 bdata->hint_idx = PFN_UP(end_off);
537
538 /*
539 * Reserve the area now:
540 */
541 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
542 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
543 BUG();
544
545 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
546 start_off);
547 memset(region, 0, size);
548 /*
549 * The min_count is set to 0 so that bootmem allocated blocks
550 * are never reported as leaks.
551 */
552 kmemleak_alloc(region, size, 0, 0);
553 return region;
554 }
555
556 if (fallback) {
557 sidx = align_idx(bdata, fallback - 1, step);
558 fallback = 0;
559 goto find_block;
560 }
561
562 return NULL;
563 }
564
565 static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
566 unsigned long size, unsigned long align,
567 unsigned long goal, unsigned long limit)
568 {
569 if (WARN_ON_ONCE(slab_is_available()))
570 return kzalloc(size, GFP_NOWAIT);
571
572 #ifdef CONFIG_HAVE_ARCH_BOOTMEM
573 {
574 bootmem_data_t *p_bdata;
575
576 p_bdata = bootmem_arch_preferred_node(bdata, size, align,
577 goal, limit);
578 if (p_bdata)
579 return alloc_bootmem_core(p_bdata, size, align,
580 goal, limit);
581 }
582 #endif
583 return NULL;
584 }
585
586 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
587 unsigned long align,
588 unsigned long goal,
589 unsigned long limit)
590 {
591 bootmem_data_t *bdata;
592 void *region;
593
594 restart:
595 region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
596 if (region)
597 return region;
598
599 list_for_each_entry(bdata, &bdata_list, list) {
600 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
601 continue;
602 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
603 break;
604
605 region = alloc_bootmem_core(bdata, size, align, goal, limit);
606 if (region)
607 return region;
608 }
609
610 if (goal) {
611 goal = 0;
612 goto restart;
613 }
614
615 return NULL;
616 }
617
618 /**
619 * __alloc_bootmem_nopanic - allocate boot memory without panicking
620 * @size: size of the request in bytes
621 * @align: alignment of the region
622 * @goal: preferred starting address of the region
623 *
624 * The goal is dropped if it can not be satisfied and the allocation will
625 * fall back to memory below @goal.
626 *
627 * Allocation may happen on any node in the system.
628 *
629 * Returns NULL on failure.
630 */
631 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
632 unsigned long goal)
633 {
634 return ___alloc_bootmem_nopanic(size, align, goal, 0);
635 }
636
637 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
638 unsigned long goal, unsigned long limit)
639 {
640 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
641
642 if (mem)
643 return mem;
644 /*
645 * Whoops, we cannot satisfy the allocation request.
646 */
647 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
648 panic("Out of memory");
649 return NULL;
650 }
651
652 /**
653 * __alloc_bootmem - allocate boot memory
654 * @size: size of the request in bytes
655 * @align: alignment of the region
656 * @goal: preferred starting address of the region
657 *
658 * The goal is dropped if it can not be satisfied and the allocation will
659 * fall back to memory below @goal.
660 *
661 * Allocation may happen on any node in the system.
662 *
663 * The function panics if the request can not be satisfied.
664 */
665 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
666 unsigned long goal)
667 {
668 return ___alloc_bootmem(size, align, goal, 0);
669 }
670
671 static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
672 unsigned long size, unsigned long align,
673 unsigned long goal, unsigned long limit)
674 {
675 void *ptr;
676
677 ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
678 if (ptr)
679 return ptr;
680
681 ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
682 if (ptr)
683 return ptr;
684
685 return ___alloc_bootmem(size, align, goal, limit);
686 }
687
688 /**
689 * __alloc_bootmem_node - allocate boot memory from a specific node
690 * @pgdat: node to allocate from
691 * @size: size of the request in bytes
692 * @align: alignment of the region
693 * @goal: preferred starting address of the region
694 *
695 * The goal is dropped if it can not be satisfied and the allocation will
696 * fall back to memory below @goal.
697 *
698 * Allocation may fall back to any node in the system if the specified node
699 * can not hold the requested memory.
700 *
701 * The function panics if the request can not be satisfied.
702 */
703 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
704 unsigned long align, unsigned long goal)
705 {
706 if (WARN_ON_ONCE(slab_is_available()))
707 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
708
709 return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
710 }
711
712 #ifdef CONFIG_SPARSEMEM
713 /**
714 * alloc_bootmem_section - allocate boot memory from a specific section
715 * @size: size of the request in bytes
716 * @section_nr: sparse map section to allocate from
717 *
718 * Return NULL on failure.
719 */
720 void * __init alloc_bootmem_section(unsigned long size,
721 unsigned long section_nr)
722 {
723 bootmem_data_t *bdata;
724 unsigned long pfn, goal, limit;
725
726 pfn = section_nr_to_pfn(section_nr);
727 goal = pfn << PAGE_SHIFT;
728 limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
729 bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
730
731 return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
732 }
733 #endif
734
735 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
736 unsigned long align, unsigned long goal)
737 {
738 void *ptr;
739
740 if (WARN_ON_ONCE(slab_is_available()))
741 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
742
743 ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
744 if (ptr)
745 return ptr;
746
747 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
748 if (ptr)
749 return ptr;
750
751 return __alloc_bootmem_nopanic(size, align, goal);
752 }
753
754 #ifndef ARCH_LOW_ADDRESS_LIMIT
755 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
756 #endif
757
758 /**
759 * __alloc_bootmem_low - allocate low boot memory
760 * @size: size of the request in bytes
761 * @align: alignment of the region
762 * @goal: preferred starting address of the region
763 *
764 * The goal is dropped if it can not be satisfied and the allocation will
765 * fall back to memory below @goal.
766 *
767 * Allocation may happen on any node in the system.
768 *
769 * The function panics if the request can not be satisfied.
770 */
771 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
772 unsigned long goal)
773 {
774 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
775 }
776
777 /**
778 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
779 * @pgdat: node to allocate from
780 * @size: size of the request in bytes
781 * @align: alignment of the region
782 * @goal: preferred starting address of the region
783 *
784 * The goal is dropped if it can not be satisfied and the allocation will
785 * fall back to memory below @goal.
786 *
787 * Allocation may fall back to any node in the system if the specified node
788 * can not hold the requested memory.
789 *
790 * The function panics if the request can not be satisfied.
791 */
792 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
793 unsigned long align, unsigned long goal)
794 {
795 if (WARN_ON_ONCE(slab_is_available()))
796 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
797
798 return ___alloc_bootmem_node(pgdat->bdata, size, align,
799 goal, ARCH_LOW_ADDRESS_LIMIT);
800 }