arch Kconfig: centralise CONFIG_ARCH_NO_VIRT_TO_BUS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / Kconfig
1 config SELECT_MEMORY_MODEL
2 def_bool y
3 depends on ARCH_SELECT_MEMORY_MODEL
4
5 choice
6 prompt "Memory model"
7 depends on SELECT_MEMORY_MODEL
8 default DISCONTIGMEM_MANUAL if ARCH_DISCONTIGMEM_DEFAULT
9 default SPARSEMEM_MANUAL if ARCH_SPARSEMEM_DEFAULT
10 default FLATMEM_MANUAL
11
12 config FLATMEM_MANUAL
13 bool "Flat Memory"
14 depends on !(ARCH_DISCONTIGMEM_ENABLE || ARCH_SPARSEMEM_ENABLE) || ARCH_FLATMEM_ENABLE
15 help
16 This option allows you to change some of the ways that
17 Linux manages its memory internally. Most users will
18 only have one option here: FLATMEM. This is normal
19 and a correct option.
20
21 Some users of more advanced features like NUMA and
22 memory hotplug may have different options here.
23 DISCONTIGMEM is an more mature, better tested system,
24 but is incompatible with memory hotplug and may suffer
25 decreased performance over SPARSEMEM. If unsure between
26 "Sparse Memory" and "Discontiguous Memory", choose
27 "Discontiguous Memory".
28
29 If unsure, choose this option (Flat Memory) over any other.
30
31 config DISCONTIGMEM_MANUAL
32 bool "Discontiguous Memory"
33 depends on ARCH_DISCONTIGMEM_ENABLE
34 help
35 This option provides enhanced support for discontiguous
36 memory systems, over FLATMEM. These systems have holes
37 in their physical address spaces, and this option provides
38 more efficient handling of these holes. However, the vast
39 majority of hardware has quite flat address spaces, and
40 can have degraded performance from the extra overhead that
41 this option imposes.
42
43 Many NUMA configurations will have this as the only option.
44
45 If unsure, choose "Flat Memory" over this option.
46
47 config SPARSEMEM_MANUAL
48 bool "Sparse Memory"
49 depends on ARCH_SPARSEMEM_ENABLE
50 help
51 This will be the only option for some systems, including
52 memory hotplug systems. This is normal.
53
54 For many other systems, this will be an alternative to
55 "Discontiguous Memory". This option provides some potential
56 performance benefits, along with decreased code complexity,
57 but it is newer, and more experimental.
58
59 If unsure, choose "Discontiguous Memory" or "Flat Memory"
60 over this option.
61
62 endchoice
63
64 config DISCONTIGMEM
65 def_bool y
66 depends on (!SELECT_MEMORY_MODEL && ARCH_DISCONTIGMEM_ENABLE) || DISCONTIGMEM_MANUAL
67
68 config SPARSEMEM
69 def_bool y
70 depends on (!SELECT_MEMORY_MODEL && ARCH_SPARSEMEM_ENABLE) || SPARSEMEM_MANUAL
71
72 config FLATMEM
73 def_bool y
74 depends on (!DISCONTIGMEM && !SPARSEMEM) || FLATMEM_MANUAL
75
76 config FLAT_NODE_MEM_MAP
77 def_bool y
78 depends on !SPARSEMEM
79
80 #
81 # Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's
82 # to represent different areas of memory. This variable allows
83 # those dependencies to exist individually.
84 #
85 config NEED_MULTIPLE_NODES
86 def_bool y
87 depends on DISCONTIGMEM || NUMA
88
89 config HAVE_MEMORY_PRESENT
90 def_bool y
91 depends on ARCH_HAVE_MEMORY_PRESENT || SPARSEMEM
92
93 #
94 # SPARSEMEM_EXTREME (which is the default) does some bootmem
95 # allocations when memory_present() is called. If this cannot
96 # be done on your architecture, select this option. However,
97 # statically allocating the mem_section[] array can potentially
98 # consume vast quantities of .bss, so be careful.
99 #
100 # This option will also potentially produce smaller runtime code
101 # with gcc 3.4 and later.
102 #
103 config SPARSEMEM_STATIC
104 bool
105
106 #
107 # Architecture platforms which require a two level mem_section in SPARSEMEM
108 # must select this option. This is usually for architecture platforms with
109 # an extremely sparse physical address space.
110 #
111 config SPARSEMEM_EXTREME
112 def_bool y
113 depends on SPARSEMEM && !SPARSEMEM_STATIC
114
115 config SPARSEMEM_VMEMMAP_ENABLE
116 bool
117
118 config SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
119 def_bool y
120 depends on SPARSEMEM && X86_64
121
122 config SPARSEMEM_VMEMMAP
123 bool "Sparse Memory virtual memmap"
124 depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE
125 default y
126 help
127 SPARSEMEM_VMEMMAP uses a virtually mapped memmap to optimise
128 pfn_to_page and page_to_pfn operations. This is the most
129 efficient option when sufficient kernel resources are available.
130
131 config HAVE_MEMBLOCK
132 boolean
133
134 config HAVE_MEMBLOCK_NODE_MAP
135 boolean
136
137 config ARCH_DISCARD_MEMBLOCK
138 boolean
139
140 config NO_BOOTMEM
141 boolean
142
143 config MEMORY_ISOLATION
144 boolean
145
146 config MOVABLE_NODE
147 boolean "Enable to assign a node which has only movable memory"
148 depends on HAVE_MEMBLOCK
149 depends on NO_BOOTMEM
150 depends on X86_64
151 depends on NUMA
152 default n
153 help
154 Allow a node to have only movable memory. Pages used by the kernel,
155 such as direct mapping pages cannot be migrated. So the corresponding
156 memory device cannot be hotplugged. This option allows users to
157 online all the memory of a node as movable memory so that the whole
158 node can be hotplugged. Users who don't use the memory hotplug
159 feature are fine with this option on since they don't online memory
160 as movable.
161
162 Say Y here if you want to hotplug a whole node.
163 Say N here if you want kernel to use memory on all nodes evenly.
164
165 #
166 # Only be set on architectures that have completely implemented memory hotplug
167 # feature. If you are not sure, don't touch it.
168 #
169 config HAVE_BOOTMEM_INFO_NODE
170 def_bool n
171
172 # eventually, we can have this option just 'select SPARSEMEM'
173 config MEMORY_HOTPLUG
174 bool "Allow for memory hot-add"
175 depends on SPARSEMEM || X86_64_ACPI_NUMA
176 depends on HOTPLUG && ARCH_ENABLE_MEMORY_HOTPLUG
177 depends on (IA64 || X86 || PPC_BOOK3S_64 || SUPERH || S390)
178
179 config MEMORY_HOTPLUG_SPARSE
180 def_bool y
181 depends on SPARSEMEM && MEMORY_HOTPLUG
182
183 config MEMORY_HOTREMOVE
184 bool "Allow for memory hot remove"
185 select MEMORY_ISOLATION
186 select HAVE_BOOTMEM_INFO_NODE if X86_64
187 depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
188 depends on MIGRATION
189
190 #
191 # If we have space for more page flags then we can enable additional
192 # optimizations and functionality.
193 #
194 # Regular Sparsemem takes page flag bits for the sectionid if it does not
195 # use a virtual memmap. Disable extended page flags for 32 bit platforms
196 # that require the use of a sectionid in the page flags.
197 #
198 config PAGEFLAGS_EXTENDED
199 def_bool y
200 depends on 64BIT || SPARSEMEM_VMEMMAP || !SPARSEMEM
201
202 # Heavily threaded applications may benefit from splitting the mm-wide
203 # page_table_lock, so that faults on different parts of the user address
204 # space can be handled with less contention: split it at this NR_CPUS.
205 # Default to 4 for wider testing, though 8 might be more appropriate.
206 # ARM's adjust_pte (unused if VIPT) depends on mm-wide page_table_lock.
207 # PA-RISC 7xxx's spinlock_t would enlarge struct page from 32 to 44 bytes.
208 # DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC spinlock_t also enlarge struct page.
209 #
210 config SPLIT_PTLOCK_CPUS
211 int
212 default "999999" if ARM && !CPU_CACHE_VIPT
213 default "999999" if PARISC && !PA20
214 default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC
215 default "4"
216
217 #
218 # support for memory balloon compaction
219 config BALLOON_COMPACTION
220 bool "Allow for balloon memory compaction/migration"
221 def_bool y
222 depends on COMPACTION && VIRTIO_BALLOON
223 help
224 Memory fragmentation introduced by ballooning might reduce
225 significantly the number of 2MB contiguous memory blocks that can be
226 used within a guest, thus imposing performance penalties associated
227 with the reduced number of transparent huge pages that could be used
228 by the guest workload. Allowing the compaction & migration for memory
229 pages enlisted as being part of memory balloon devices avoids the
230 scenario aforementioned and helps improving memory defragmentation.
231
232 #
233 # support for memory compaction
234 config COMPACTION
235 bool "Allow for memory compaction"
236 def_bool y
237 select MIGRATION
238 depends on MMU
239 help
240 Allows the compaction of memory for the allocation of huge pages.
241
242 #
243 # support for page migration
244 #
245 config MIGRATION
246 bool "Page migration"
247 def_bool y
248 depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA
249 help
250 Allows the migration of the physical location of pages of processes
251 while the virtual addresses are not changed. This is useful in
252 two situations. The first is on NUMA systems to put pages nearer
253 to the processors accessing. The second is when allocating huge
254 pages as migration can relocate pages to satisfy a huge page
255 allocation instead of reclaiming.
256
257 config PHYS_ADDR_T_64BIT
258 def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT
259
260 config ZONE_DMA_FLAG
261 int
262 default "0" if !ZONE_DMA
263 default "1"
264
265 config BOUNCE
266 def_bool y
267 depends on BLOCK && MMU && (ZONE_DMA || HIGHMEM)
268
269 # On the 'tile' arch, USB OHCI needs the bounce pool since tilegx will often
270 # have more than 4GB of memory, but we don't currently use the IOTLB to present
271 # a 32-bit address to OHCI. So we need to use a bounce pool instead.
272 #
273 # We also use the bounce pool to provide stable page writes for jbd. jbd
274 # initiates buffer writeback without locking the page or setting PG_writeback,
275 # and fixing that behavior (a second time; jbd2 doesn't have this problem) is
276 # a major rework effort. Instead, use the bounce buffer to snapshot pages
277 # (until jbd goes away). The only jbd user is ext3.
278 config NEED_BOUNCE_POOL
279 bool
280 default y if (TILE && USB_OHCI_HCD) || (BLK_DEV_INTEGRITY && JBD)
281
282 config NR_QUICK
283 int
284 depends on QUICKLIST
285 default "2" if AVR32
286 default "1"
287
288 config VIRT_TO_BUS
289 def_bool y
290 depends on HAVE_VIRT_TO_BUS
291
292 config MMU_NOTIFIER
293 bool
294
295 config KSM
296 bool "Enable KSM for page merging"
297 depends on MMU
298 help
299 Enable Kernel Samepage Merging: KSM periodically scans those areas
300 of an application's address space that an app has advised may be
301 mergeable. When it finds pages of identical content, it replaces
302 the many instances by a single page with that content, so
303 saving memory until one or another app needs to modify the content.
304 Recommended for use with KVM, or with other duplicative applications.
305 See Documentation/vm/ksm.txt for more information: KSM is inactive
306 until a program has madvised that an area is MADV_MERGEABLE, and
307 root has set /sys/kernel/mm/ksm/run to 1 (if CONFIG_SYSFS is set).
308
309 config DEFAULT_MMAP_MIN_ADDR
310 int "Low address space to protect from user allocation"
311 depends on MMU
312 default 4096
313 help
314 This is the portion of low virtual memory which should be protected
315 from userspace allocation. Keeping a user from writing to low pages
316 can help reduce the impact of kernel NULL pointer bugs.
317
318 For most ia64, ppc64 and x86 users with lots of address space
319 a value of 65536 is reasonable and should cause no problems.
320 On arm and other archs it should not be higher than 32768.
321 Programs which use vm86 functionality or have some need to map
322 this low address space will need CAP_SYS_RAWIO or disable this
323 protection by setting the value to 0.
324
325 This value can be changed after boot using the
326 /proc/sys/vm/mmap_min_addr tunable.
327
328 config ARCH_SUPPORTS_MEMORY_FAILURE
329 bool
330
331 config MEMORY_FAILURE
332 depends on MMU
333 depends on ARCH_SUPPORTS_MEMORY_FAILURE
334 bool "Enable recovery from hardware memory errors"
335 select MEMORY_ISOLATION
336 help
337 Enables code to recover from some memory failures on systems
338 with MCA recovery. This allows a system to continue running
339 even when some of its memory has uncorrected errors. This requires
340 special hardware support and typically ECC memory.
341
342 config HWPOISON_INJECT
343 tristate "HWPoison pages injector"
344 depends on MEMORY_FAILURE && DEBUG_KERNEL && PROC_FS
345 select PROC_PAGE_MONITOR
346
347 config NOMMU_INITIAL_TRIM_EXCESS
348 int "Turn on mmap() excess space trimming before booting"
349 depends on !MMU
350 default 1
351 help
352 The NOMMU mmap() frequently needs to allocate large contiguous chunks
353 of memory on which to store mappings, but it can only ask the system
354 allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently
355 more than it requires. To deal with this, mmap() is able to trim off
356 the excess and return it to the allocator.
357
358 If trimming is enabled, the excess is trimmed off and returned to the
359 system allocator, which can cause extra fragmentation, particularly
360 if there are a lot of transient processes.
361
362 If trimming is disabled, the excess is kept, but not used, which for
363 long-term mappings means that the space is wasted.
364
365 Trimming can be dynamically controlled through a sysctl option
366 (/proc/sys/vm/nr_trim_pages) which specifies the minimum number of
367 excess pages there must be before trimming should occur, or zero if
368 no trimming is to occur.
369
370 This option specifies the initial value of this option. The default
371 of 1 says that all excess pages should be trimmed.
372
373 See Documentation/nommu-mmap.txt for more information.
374
375 config TRANSPARENT_HUGEPAGE
376 bool "Transparent Hugepage Support"
377 depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE
378 select COMPACTION
379 help
380 Transparent Hugepages allows the kernel to use huge pages and
381 huge tlb transparently to the applications whenever possible.
382 This feature can improve computing performance to certain
383 applications by speeding up page faults during memory
384 allocation, by reducing the number of tlb misses and by speeding
385 up the pagetable walking.
386
387 If memory constrained on embedded, you may want to say N.
388
389 choice
390 prompt "Transparent Hugepage Support sysfs defaults"
391 depends on TRANSPARENT_HUGEPAGE
392 default TRANSPARENT_HUGEPAGE_ALWAYS
393 help
394 Selects the sysfs defaults for Transparent Hugepage Support.
395
396 config TRANSPARENT_HUGEPAGE_ALWAYS
397 bool "always"
398 help
399 Enabling Transparent Hugepage always, can increase the
400 memory footprint of applications without a guaranteed
401 benefit but it will work automatically for all applications.
402
403 config TRANSPARENT_HUGEPAGE_MADVISE
404 bool "madvise"
405 help
406 Enabling Transparent Hugepage madvise, will only provide a
407 performance improvement benefit to the applications using
408 madvise(MADV_HUGEPAGE) but it won't risk to increase the
409 memory footprint of applications without a guaranteed
410 benefit.
411 endchoice
412
413 config CROSS_MEMORY_ATTACH
414 bool "Cross Memory Support"
415 depends on MMU
416 default y
417 help
418 Enabling this option adds the system calls process_vm_readv and
419 process_vm_writev which allow a process with the correct privileges
420 to directly read from or write to to another process's address space.
421 See the man page for more details.
422
423 #
424 # UP and nommu archs use km based percpu allocator
425 #
426 config NEED_PER_CPU_KM
427 depends on !SMP
428 bool
429 default y
430
431 config CLEANCACHE
432 bool "Enable cleancache driver to cache clean pages if tmem is present"
433 default n
434 help
435 Cleancache can be thought of as a page-granularity victim cache
436 for clean pages that the kernel's pageframe replacement algorithm
437 (PFRA) would like to keep around, but can't since there isn't enough
438 memory. So when the PFRA "evicts" a page, it first attempts to use
439 cleancache code to put the data contained in that page into
440 "transcendent memory", memory that is not directly accessible or
441 addressable by the kernel and is of unknown and possibly
442 time-varying size. And when a cleancache-enabled
443 filesystem wishes to access a page in a file on disk, it first
444 checks cleancache to see if it already contains it; if it does,
445 the page is copied into the kernel and a disk access is avoided.
446 When a transcendent memory driver is available (such as zcache or
447 Xen transcendent memory), a significant I/O reduction
448 may be achieved. When none is available, all cleancache calls
449 are reduced to a single pointer-compare-against-NULL resulting
450 in a negligible performance hit.
451
452 If unsure, say Y to enable cleancache
453
454 config FRONTSWAP
455 bool "Enable frontswap to cache swap pages if tmem is present"
456 depends on SWAP
457 default n
458 help
459 Frontswap is so named because it can be thought of as the opposite
460 of a "backing" store for a swap device. The data is stored into
461 "transcendent memory", memory that is not directly accessible or
462 addressable by the kernel and is of unknown and possibly
463 time-varying size. When space in transcendent memory is available,
464 a significant swap I/O reduction may be achieved. When none is
465 available, all frontswap calls are reduced to a single pointer-
466 compare-against-NULL resulting in a negligible performance hit
467 and swap data is stored as normal on the matching swap device.
468
469 If unsure, say Y to enable frontswap.