perf symbols: Rename kernel_mapto kernel_map[s]__functions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31
32 #include <asm/io.h>
33 #include <asm/dma.h>
34 #include <asm/scatterlist.h>
35
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/iommu-helper.h>
39
40 #define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
42
43 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44
45 /*
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 */
50 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51
52 /*
53 * Enumeration for sync targets
54 */
55 enum dma_sync_target {
56 SYNC_FOR_CPU = 0,
57 SYNC_FOR_DEVICE = 1,
58 };
59
60 int swiotlb_force;
61
62 /*
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
65 * API.
66 */
67 static char *io_tlb_start, *io_tlb_end;
68
69 /*
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73 static unsigned long io_tlb_nslabs;
74
75 /*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78 static unsigned long io_tlb_overflow = 32*1024;
79
80 void *io_tlb_overflow_buffer;
81
82 /*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86 static unsigned int *io_tlb_list;
87 static unsigned int io_tlb_index;
88
89 /*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
93 static phys_addr_t *io_tlb_orig_addr;
94
95 /*
96 * Protect the above data structures in the map and unmap calls
97 */
98 static DEFINE_SPINLOCK(io_tlb_lock);
99
100 static int __init
101 setup_io_tlb_npages(char *str)
102 {
103 if (isdigit(*str)) {
104 io_tlb_nslabs = simple_strtoul(str, &str, 0);
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
107 }
108 if (*str == ',')
109 ++str;
110 if (!strcmp(str, "force"))
111 swiotlb_force = 1;
112 return 1;
113 }
114 __setup("swiotlb=", setup_io_tlb_npages);
115 /* make io_tlb_overflow tunable too? */
116
117 /* Note that this doesn't work with highmem page */
118 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
119 volatile void *address)
120 {
121 return phys_to_dma(hwdev, virt_to_phys(address));
122 }
123
124 static void swiotlb_print_info(unsigned long bytes)
125 {
126 phys_addr_t pstart, pend;
127
128 pstart = virt_to_phys(io_tlb_start);
129 pend = virt_to_phys(io_tlb_end);
130
131 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
132 bytes >> 20, io_tlb_start, io_tlb_end);
133 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
134 (unsigned long long)pstart,
135 (unsigned long long)pend);
136 }
137
138 /*
139 * Statically reserve bounce buffer space and initialize bounce buffer data
140 * structures for the software IO TLB used to implement the DMA API.
141 */
142 void __init
143 swiotlb_init_with_default_size(size_t default_size)
144 {
145 unsigned long i, bytes;
146
147 if (!io_tlb_nslabs) {
148 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
149 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
150 }
151
152 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
153
154 /*
155 * Get IO TLB memory from the low pages
156 */
157 io_tlb_start = alloc_bootmem_low_pages(bytes);
158 if (!io_tlb_start)
159 panic("Cannot allocate SWIOTLB buffer");
160 io_tlb_end = io_tlb_start + bytes;
161
162 /*
163 * Allocate and initialize the free list array. This array is used
164 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
165 * between io_tlb_start and io_tlb_end.
166 */
167 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
168 for (i = 0; i < io_tlb_nslabs; i++)
169 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
170 io_tlb_index = 0;
171 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
172
173 /*
174 * Get the overflow emergency buffer
175 */
176 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
177 if (!io_tlb_overflow_buffer)
178 panic("Cannot allocate SWIOTLB overflow buffer!\n");
179
180 swiotlb_print_info(bytes);
181 }
182
183 void __init
184 swiotlb_init(void)
185 {
186 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
187 }
188
189 /*
190 * Systems with larger DMA zones (those that don't support ISA) can
191 * initialize the swiotlb later using the slab allocator if needed.
192 * This should be just like above, but with some error catching.
193 */
194 int
195 swiotlb_late_init_with_default_size(size_t default_size)
196 {
197 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
198 unsigned int order;
199
200 if (!io_tlb_nslabs) {
201 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
202 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
203 }
204
205 /*
206 * Get IO TLB memory from the low pages
207 */
208 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
209 io_tlb_nslabs = SLABS_PER_PAGE << order;
210 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
211
212 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
213 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
214 order);
215 if (io_tlb_start)
216 break;
217 order--;
218 }
219
220 if (!io_tlb_start)
221 goto cleanup1;
222
223 if (order != get_order(bytes)) {
224 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
225 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
226 io_tlb_nslabs = SLABS_PER_PAGE << order;
227 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
228 }
229 io_tlb_end = io_tlb_start + bytes;
230 memset(io_tlb_start, 0, bytes);
231
232 /*
233 * Allocate and initialize the free list array. This array is used
234 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
235 * between io_tlb_start and io_tlb_end.
236 */
237 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
238 get_order(io_tlb_nslabs * sizeof(int)));
239 if (!io_tlb_list)
240 goto cleanup2;
241
242 for (i = 0; i < io_tlb_nslabs; i++)
243 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
244 io_tlb_index = 0;
245
246 io_tlb_orig_addr = (phys_addr_t *)
247 __get_free_pages(GFP_KERNEL,
248 get_order(io_tlb_nslabs *
249 sizeof(phys_addr_t)));
250 if (!io_tlb_orig_addr)
251 goto cleanup3;
252
253 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
254
255 /*
256 * Get the overflow emergency buffer
257 */
258 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
259 get_order(io_tlb_overflow));
260 if (!io_tlb_overflow_buffer)
261 goto cleanup4;
262
263 swiotlb_print_info(bytes);
264
265 return 0;
266
267 cleanup4:
268 free_pages((unsigned long)io_tlb_orig_addr,
269 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
270 io_tlb_orig_addr = NULL;
271 cleanup3:
272 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
273 sizeof(int)));
274 io_tlb_list = NULL;
275 cleanup2:
276 io_tlb_end = NULL;
277 free_pages((unsigned long)io_tlb_start, order);
278 io_tlb_start = NULL;
279 cleanup1:
280 io_tlb_nslabs = req_nslabs;
281 return -ENOMEM;
282 }
283
284 static int is_swiotlb_buffer(phys_addr_t paddr)
285 {
286 return paddr >= virt_to_phys(io_tlb_start) &&
287 paddr < virt_to_phys(io_tlb_end);
288 }
289
290 /*
291 * Bounce: copy the swiotlb buffer back to the original dma location
292 */
293 static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
294 enum dma_data_direction dir)
295 {
296 unsigned long pfn = PFN_DOWN(phys);
297
298 if (PageHighMem(pfn_to_page(pfn))) {
299 /* The buffer does not have a mapping. Map it in and copy */
300 unsigned int offset = phys & ~PAGE_MASK;
301 char *buffer;
302 unsigned int sz = 0;
303 unsigned long flags;
304
305 while (size) {
306 sz = min_t(size_t, PAGE_SIZE - offset, size);
307
308 local_irq_save(flags);
309 buffer = kmap_atomic(pfn_to_page(pfn),
310 KM_BOUNCE_READ);
311 if (dir == DMA_TO_DEVICE)
312 memcpy(dma_addr, buffer + offset, sz);
313 else
314 memcpy(buffer + offset, dma_addr, sz);
315 kunmap_atomic(buffer, KM_BOUNCE_READ);
316 local_irq_restore(flags);
317
318 size -= sz;
319 pfn++;
320 dma_addr += sz;
321 offset = 0;
322 }
323 } else {
324 if (dir == DMA_TO_DEVICE)
325 memcpy(dma_addr, phys_to_virt(phys), size);
326 else
327 memcpy(phys_to_virt(phys), dma_addr, size);
328 }
329 }
330
331 /*
332 * Allocates bounce buffer and returns its kernel virtual address.
333 */
334 static void *
335 map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
336 {
337 unsigned long flags;
338 char *dma_addr;
339 unsigned int nslots, stride, index, wrap;
340 int i;
341 unsigned long start_dma_addr;
342 unsigned long mask;
343 unsigned long offset_slots;
344 unsigned long max_slots;
345
346 mask = dma_get_seg_boundary(hwdev);
347 start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
348
349 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
350
351 /*
352 * Carefully handle integer overflow which can occur when mask == ~0UL.
353 */
354 max_slots = mask + 1
355 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
356 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
357
358 /*
359 * For mappings greater than a page, we limit the stride (and
360 * hence alignment) to a page size.
361 */
362 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
363 if (size > PAGE_SIZE)
364 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
365 else
366 stride = 1;
367
368 BUG_ON(!nslots);
369
370 /*
371 * Find suitable number of IO TLB entries size that will fit this
372 * request and allocate a buffer from that IO TLB pool.
373 */
374 spin_lock_irqsave(&io_tlb_lock, flags);
375 index = ALIGN(io_tlb_index, stride);
376 if (index >= io_tlb_nslabs)
377 index = 0;
378 wrap = index;
379
380 do {
381 while (iommu_is_span_boundary(index, nslots, offset_slots,
382 max_slots)) {
383 index += stride;
384 if (index >= io_tlb_nslabs)
385 index = 0;
386 if (index == wrap)
387 goto not_found;
388 }
389
390 /*
391 * If we find a slot that indicates we have 'nslots' number of
392 * contiguous buffers, we allocate the buffers from that slot
393 * and mark the entries as '0' indicating unavailable.
394 */
395 if (io_tlb_list[index] >= nslots) {
396 int count = 0;
397
398 for (i = index; i < (int) (index + nslots); i++)
399 io_tlb_list[i] = 0;
400 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
401 io_tlb_list[i] = ++count;
402 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
403
404 /*
405 * Update the indices to avoid searching in the next
406 * round.
407 */
408 io_tlb_index = ((index + nslots) < io_tlb_nslabs
409 ? (index + nslots) : 0);
410
411 goto found;
412 }
413 index += stride;
414 if (index >= io_tlb_nslabs)
415 index = 0;
416 } while (index != wrap);
417
418 not_found:
419 spin_unlock_irqrestore(&io_tlb_lock, flags);
420 return NULL;
421 found:
422 spin_unlock_irqrestore(&io_tlb_lock, flags);
423
424 /*
425 * Save away the mapping from the original address to the DMA address.
426 * This is needed when we sync the memory. Then we sync the buffer if
427 * needed.
428 */
429 for (i = 0; i < nslots; i++)
430 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
431 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
432 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
433
434 return dma_addr;
435 }
436
437 /*
438 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
439 */
440 static void
441 do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
442 {
443 unsigned long flags;
444 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
445 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
446 phys_addr_t phys = io_tlb_orig_addr[index];
447
448 /*
449 * First, sync the memory before unmapping the entry
450 */
451 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
452 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
453
454 /*
455 * Return the buffer to the free list by setting the corresponding
456 * entries to indicate the number of contigous entries available.
457 * While returning the entries to the free list, we merge the entries
458 * with slots below and above the pool being returned.
459 */
460 spin_lock_irqsave(&io_tlb_lock, flags);
461 {
462 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
463 io_tlb_list[index + nslots] : 0);
464 /*
465 * Step 1: return the slots to the free list, merging the
466 * slots with superceeding slots
467 */
468 for (i = index + nslots - 1; i >= index; i--)
469 io_tlb_list[i] = ++count;
470 /*
471 * Step 2: merge the returned slots with the preceding slots,
472 * if available (non zero)
473 */
474 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
475 io_tlb_list[i] = ++count;
476 }
477 spin_unlock_irqrestore(&io_tlb_lock, flags);
478 }
479
480 static void
481 sync_single(struct device *hwdev, char *dma_addr, size_t size,
482 int dir, int target)
483 {
484 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
485 phys_addr_t phys = io_tlb_orig_addr[index];
486
487 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
488
489 switch (target) {
490 case SYNC_FOR_CPU:
491 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
492 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
493 else
494 BUG_ON(dir != DMA_TO_DEVICE);
495 break;
496 case SYNC_FOR_DEVICE:
497 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
498 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
499 else
500 BUG_ON(dir != DMA_FROM_DEVICE);
501 break;
502 default:
503 BUG();
504 }
505 }
506
507 void *
508 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
509 dma_addr_t *dma_handle, gfp_t flags)
510 {
511 dma_addr_t dev_addr;
512 void *ret;
513 int order = get_order(size);
514 u64 dma_mask = DMA_BIT_MASK(32);
515
516 if (hwdev && hwdev->coherent_dma_mask)
517 dma_mask = hwdev->coherent_dma_mask;
518
519 ret = (void *)__get_free_pages(flags, order);
520 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size > dma_mask) {
521 /*
522 * The allocated memory isn't reachable by the device.
523 */
524 free_pages((unsigned long) ret, order);
525 ret = NULL;
526 }
527 if (!ret) {
528 /*
529 * We are either out of memory or the device can't DMA
530 * to GFP_DMA memory; fall back on map_single(), which
531 * will grab memory from the lowest available address range.
532 */
533 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
534 if (!ret)
535 return NULL;
536 }
537
538 memset(ret, 0, size);
539 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
540
541 /* Confirm address can be DMA'd by device */
542 if (dev_addr + size > dma_mask) {
543 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
544 (unsigned long long)dma_mask,
545 (unsigned long long)dev_addr);
546
547 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
548 do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
549 return NULL;
550 }
551 *dma_handle = dev_addr;
552 return ret;
553 }
554 EXPORT_SYMBOL(swiotlb_alloc_coherent);
555
556 void
557 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
558 dma_addr_t dev_addr)
559 {
560 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
561
562 WARN_ON(irqs_disabled());
563 if (!is_swiotlb_buffer(paddr))
564 free_pages((unsigned long)vaddr, get_order(size));
565 else
566 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
567 do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
568 }
569 EXPORT_SYMBOL(swiotlb_free_coherent);
570
571 static void
572 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
573 {
574 /*
575 * Ran out of IOMMU space for this operation. This is very bad.
576 * Unfortunately the drivers cannot handle this operation properly.
577 * unless they check for dma_mapping_error (most don't)
578 * When the mapping is small enough return a static buffer to limit
579 * the damage, or panic when the transfer is too big.
580 */
581 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
582 "device %s\n", size, dev ? dev_name(dev) : "?");
583
584 if (size <= io_tlb_overflow || !do_panic)
585 return;
586
587 if (dir == DMA_BIDIRECTIONAL)
588 panic("DMA: Random memory could be DMA accessed\n");
589 if (dir == DMA_FROM_DEVICE)
590 panic("DMA: Random memory could be DMA written\n");
591 if (dir == DMA_TO_DEVICE)
592 panic("DMA: Random memory could be DMA read\n");
593 }
594
595 /*
596 * Map a single buffer of the indicated size for DMA in streaming mode. The
597 * physical address to use is returned.
598 *
599 * Once the device is given the dma address, the device owns this memory until
600 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
601 */
602 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
603 unsigned long offset, size_t size,
604 enum dma_data_direction dir,
605 struct dma_attrs *attrs)
606 {
607 phys_addr_t phys = page_to_phys(page) + offset;
608 dma_addr_t dev_addr = phys_to_dma(dev, phys);
609 void *map;
610
611 BUG_ON(dir == DMA_NONE);
612 /*
613 * If the address happens to be in the device's DMA window,
614 * we can safely return the device addr and not worry about bounce
615 * buffering it.
616 */
617 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
618 return dev_addr;
619
620 /*
621 * Oh well, have to allocate and map a bounce buffer.
622 */
623 map = map_single(dev, phys, size, dir);
624 if (!map) {
625 swiotlb_full(dev, size, dir, 1);
626 map = io_tlb_overflow_buffer;
627 }
628
629 dev_addr = swiotlb_virt_to_bus(dev, map);
630
631 /*
632 * Ensure that the address returned is DMA'ble
633 */
634 if (!dma_capable(dev, dev_addr, size))
635 panic("map_single: bounce buffer is not DMA'ble");
636
637 return dev_addr;
638 }
639 EXPORT_SYMBOL_GPL(swiotlb_map_page);
640
641 /*
642 * Unmap a single streaming mode DMA translation. The dma_addr and size must
643 * match what was provided for in a previous swiotlb_map_page call. All
644 * other usages are undefined.
645 *
646 * After this call, reads by the cpu to the buffer are guaranteed to see
647 * whatever the device wrote there.
648 */
649 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
650 size_t size, int dir)
651 {
652 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
653
654 BUG_ON(dir == DMA_NONE);
655
656 if (is_swiotlb_buffer(paddr)) {
657 do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
658 return;
659 }
660
661 if (dir != DMA_FROM_DEVICE)
662 return;
663
664 /*
665 * phys_to_virt doesn't work with hihgmem page but we could
666 * call dma_mark_clean() with hihgmem page here. However, we
667 * are fine since dma_mark_clean() is null on POWERPC. We can
668 * make dma_mark_clean() take a physical address if necessary.
669 */
670 dma_mark_clean(phys_to_virt(paddr), size);
671 }
672
673 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
674 size_t size, enum dma_data_direction dir,
675 struct dma_attrs *attrs)
676 {
677 unmap_single(hwdev, dev_addr, size, dir);
678 }
679 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
680
681 /*
682 * Make physical memory consistent for a single streaming mode DMA translation
683 * after a transfer.
684 *
685 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
686 * using the cpu, yet do not wish to teardown the dma mapping, you must
687 * call this function before doing so. At the next point you give the dma
688 * address back to the card, you must first perform a
689 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
690 */
691 static void
692 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
693 size_t size, int dir, int target)
694 {
695 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
696
697 BUG_ON(dir == DMA_NONE);
698
699 if (is_swiotlb_buffer(paddr)) {
700 sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
701 return;
702 }
703
704 if (dir != DMA_FROM_DEVICE)
705 return;
706
707 dma_mark_clean(phys_to_virt(paddr), size);
708 }
709
710 void
711 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
712 size_t size, enum dma_data_direction dir)
713 {
714 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
715 }
716 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
717
718 void
719 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
720 size_t size, enum dma_data_direction dir)
721 {
722 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
723 }
724 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
725
726 /*
727 * Same as above, but for a sub-range of the mapping.
728 */
729 static void
730 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
731 unsigned long offset, size_t size,
732 int dir, int target)
733 {
734 swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
735 }
736
737 void
738 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
739 unsigned long offset, size_t size,
740 enum dma_data_direction dir)
741 {
742 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
743 SYNC_FOR_CPU);
744 }
745 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
746
747 void
748 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
749 unsigned long offset, size_t size,
750 enum dma_data_direction dir)
751 {
752 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
753 SYNC_FOR_DEVICE);
754 }
755 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
756
757 /*
758 * Map a set of buffers described by scatterlist in streaming mode for DMA.
759 * This is the scatter-gather version of the above swiotlb_map_page
760 * interface. Here the scatter gather list elements are each tagged with the
761 * appropriate dma address and length. They are obtained via
762 * sg_dma_{address,length}(SG).
763 *
764 * NOTE: An implementation may be able to use a smaller number of
765 * DMA address/length pairs than there are SG table elements.
766 * (for example via virtual mapping capabilities)
767 * The routine returns the number of addr/length pairs actually
768 * used, at most nents.
769 *
770 * Device ownership issues as mentioned above for swiotlb_map_page are the
771 * same here.
772 */
773 int
774 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
775 enum dma_data_direction dir, struct dma_attrs *attrs)
776 {
777 struct scatterlist *sg;
778 int i;
779
780 BUG_ON(dir == DMA_NONE);
781
782 for_each_sg(sgl, sg, nelems, i) {
783 phys_addr_t paddr = sg_phys(sg);
784 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
785
786 if (swiotlb_force ||
787 !dma_capable(hwdev, dev_addr, sg->length)) {
788 void *map = map_single(hwdev, sg_phys(sg),
789 sg->length, dir);
790 if (!map) {
791 /* Don't panic here, we expect map_sg users
792 to do proper error handling. */
793 swiotlb_full(hwdev, sg->length, dir, 0);
794 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
795 attrs);
796 sgl[0].dma_length = 0;
797 return 0;
798 }
799 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
800 } else
801 sg->dma_address = dev_addr;
802 sg->dma_length = sg->length;
803 }
804 return nelems;
805 }
806 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
807
808 int
809 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
810 int dir)
811 {
812 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
813 }
814 EXPORT_SYMBOL(swiotlb_map_sg);
815
816 /*
817 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
818 * concerning calls here are the same as for swiotlb_unmap_page() above.
819 */
820 void
821 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
822 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
823 {
824 struct scatterlist *sg;
825 int i;
826
827 BUG_ON(dir == DMA_NONE);
828
829 for_each_sg(sgl, sg, nelems, i)
830 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
831
832 }
833 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
834
835 void
836 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
837 int dir)
838 {
839 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
840 }
841 EXPORT_SYMBOL(swiotlb_unmap_sg);
842
843 /*
844 * Make physical memory consistent for a set of streaming mode DMA translations
845 * after a transfer.
846 *
847 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
848 * and usage.
849 */
850 static void
851 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
852 int nelems, int dir, int target)
853 {
854 struct scatterlist *sg;
855 int i;
856
857 for_each_sg(sgl, sg, nelems, i)
858 swiotlb_sync_single(hwdev, sg->dma_address,
859 sg->dma_length, dir, target);
860 }
861
862 void
863 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
864 int nelems, enum dma_data_direction dir)
865 {
866 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
867 }
868 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
869
870 void
871 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
872 int nelems, enum dma_data_direction dir)
873 {
874 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
875 }
876 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
877
878 int
879 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
880 {
881 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
882 }
883 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
884
885 /*
886 * Return whether the given device DMA address mask can be supported
887 * properly. For example, if your device can only drive the low 24-bits
888 * during bus mastering, then you would pass 0x00ffffff as the mask to
889 * this function.
890 */
891 int
892 swiotlb_dma_supported(struct device *hwdev, u64 mask)
893 {
894 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
895 }
896 EXPORT_SYMBOL(swiotlb_dma_supported);