Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / lib / idr.c
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
11 * Small id to pointer translation service.
12 *
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37
38 static struct kmem_cache *idr_layer_cache;
39
40 static struct idr_layer *get_from_free_list(struct idr *idp)
41 {
42 struct idr_layer *p;
43 unsigned long flags;
44
45 spin_lock_irqsave(&idp->lock, flags);
46 if ((p = idp->id_free)) {
47 idp->id_free = p->ary[0];
48 idp->id_free_cnt--;
49 p->ary[0] = NULL;
50 }
51 spin_unlock_irqrestore(&idp->lock, flags);
52 return(p);
53 }
54
55 static void idr_layer_rcu_free(struct rcu_head *head)
56 {
57 struct idr_layer *layer;
58
59 layer = container_of(head, struct idr_layer, rcu_head);
60 kmem_cache_free(idr_layer_cache, layer);
61 }
62
63 static inline void free_layer(struct idr_layer *p)
64 {
65 call_rcu(&p->rcu_head, idr_layer_rcu_free);
66 }
67
68 /* only called when idp->lock is held */
69 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
70 {
71 p->ary[0] = idp->id_free;
72 idp->id_free = p;
73 idp->id_free_cnt++;
74 }
75
76 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
77 {
78 unsigned long flags;
79
80 /*
81 * Depends on the return element being zeroed.
82 */
83 spin_lock_irqsave(&idp->lock, flags);
84 __move_to_free_list(idp, p);
85 spin_unlock_irqrestore(&idp->lock, flags);
86 }
87
88 static void idr_mark_full(struct idr_layer **pa, int id)
89 {
90 struct idr_layer *p = pa[0];
91 int l = 0;
92
93 __set_bit(id & IDR_MASK, &p->bitmap);
94 /*
95 * If this layer is full mark the bit in the layer above to
96 * show that this part of the radix tree is full. This may
97 * complete the layer above and require walking up the radix
98 * tree.
99 */
100 while (p->bitmap == IDR_FULL) {
101 if (!(p = pa[++l]))
102 break;
103 id = id >> IDR_BITS;
104 __set_bit((id & IDR_MASK), &p->bitmap);
105 }
106 }
107
108 /**
109 * idr_pre_get - reserver resources for idr allocation
110 * @idp: idr handle
111 * @gfp_mask: memory allocation flags
112 *
113 * This function should be called prior to locking and calling the
114 * idr_get_new* functions. It preallocates enough memory to satisfy
115 * the worst possible allocation.
116 *
117 * If the system is REALLY out of memory this function returns 0,
118 * otherwise 1.
119 */
120 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
121 {
122 while (idp->id_free_cnt < IDR_FREE_MAX) {
123 struct idr_layer *new;
124 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
125 if (new == NULL)
126 return (0);
127 move_to_free_list(idp, new);
128 }
129 return 1;
130 }
131 EXPORT_SYMBOL(idr_pre_get);
132
133 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
134 {
135 int n, m, sh;
136 struct idr_layer *p, *new;
137 int l, id, oid;
138 unsigned long bm;
139
140 id = *starting_id;
141 restart:
142 p = idp->top;
143 l = p->layer;
144 while (1) {
145 /*
146 * We run around this while until we reach the leaf node...
147 */
148 n = (id >> (IDR_BITS*l)) & IDR_MASK;
149 bm = ~p->bitmap;
150 m = find_next_bit(&bm, IDR_SIZE, n);
151 if (m == IDR_SIZE) {
152 /* no space available go back to previous layer. */
153 l++;
154 oid = id;
155 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
156
157 /* did id go over the limit? */
158 if (id >= (1 << (idp->layers * IDR_BITS))) {
159 *starting_id = id;
160 return IDR_NEED_TO_GROW;
161 }
162
163 /* If we need to go up one layer, continue the
164 * loop; otherwise, restart from the top.
165 */
166 sh = IDR_BITS * (l + 1);
167 if (oid >> sh == id >> sh)
168 continue;
169 else
170 goto restart;
171 }
172 if (m != n) {
173 sh = IDR_BITS*l;
174 id = ((id >> sh) ^ n ^ m) << sh;
175 }
176 if ((id >= MAX_ID_BIT) || (id < 0))
177 return IDR_NOMORE_SPACE;
178 if (l == 0)
179 break;
180 /*
181 * Create the layer below if it is missing.
182 */
183 if (!p->ary[m]) {
184 new = get_from_free_list(idp);
185 if (!new)
186 return -1;
187 new->layer = l-1;
188 rcu_assign_pointer(p->ary[m], new);
189 p->count++;
190 }
191 pa[l--] = p;
192 p = p->ary[m];
193 }
194
195 pa[l] = p;
196 return id;
197 }
198
199 static int idr_get_empty_slot(struct idr *idp, int starting_id,
200 struct idr_layer **pa)
201 {
202 struct idr_layer *p, *new;
203 int layers, v, id;
204 unsigned long flags;
205
206 id = starting_id;
207 build_up:
208 p = idp->top;
209 layers = idp->layers;
210 if (unlikely(!p)) {
211 if (!(p = get_from_free_list(idp)))
212 return -1;
213 p->layer = 0;
214 layers = 1;
215 }
216 /*
217 * Add a new layer to the top of the tree if the requested
218 * id is larger than the currently allocated space.
219 */
220 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
221 layers++;
222 if (!p->count) {
223 /* special case: if the tree is currently empty,
224 * then we grow the tree by moving the top node
225 * upwards.
226 */
227 p->layer++;
228 continue;
229 }
230 if (!(new = get_from_free_list(idp))) {
231 /*
232 * The allocation failed. If we built part of
233 * the structure tear it down.
234 */
235 spin_lock_irqsave(&idp->lock, flags);
236 for (new = p; p && p != idp->top; new = p) {
237 p = p->ary[0];
238 new->ary[0] = NULL;
239 new->bitmap = new->count = 0;
240 __move_to_free_list(idp, new);
241 }
242 spin_unlock_irqrestore(&idp->lock, flags);
243 return -1;
244 }
245 new->ary[0] = p;
246 new->count = 1;
247 new->layer = layers-1;
248 if (p->bitmap == IDR_FULL)
249 __set_bit(0, &new->bitmap);
250 p = new;
251 }
252 rcu_assign_pointer(idp->top, p);
253 idp->layers = layers;
254 v = sub_alloc(idp, &id, pa);
255 if (v == IDR_NEED_TO_GROW)
256 goto build_up;
257 return(v);
258 }
259
260 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
261 {
262 struct idr_layer *pa[MAX_LEVEL];
263 int id;
264
265 id = idr_get_empty_slot(idp, starting_id, pa);
266 if (id >= 0) {
267 /*
268 * Successfully found an empty slot. Install the user
269 * pointer and mark the slot full.
270 */
271 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
272 (struct idr_layer *)ptr);
273 pa[0]->count++;
274 idr_mark_full(pa, id);
275 }
276
277 return id;
278 }
279
280 /**
281 * idr_get_new_above - allocate new idr entry above or equal to a start id
282 * @idp: idr handle
283 * @ptr: pointer you want associated with the id
284 * @start_id: id to start search at
285 * @id: pointer to the allocated handle
286 *
287 * This is the allocate id function. It should be called with any
288 * required locks.
289 *
290 * If memory is required, it will return -EAGAIN, you should unlock
291 * and go back to the idr_pre_get() call. If the idr is full, it will
292 * return -ENOSPC.
293 *
294 * @id returns a value in the range @starting_id ... 0x7fffffff
295 */
296 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
297 {
298 int rv;
299
300 rv = idr_get_new_above_int(idp, ptr, starting_id);
301 /*
302 * This is a cheap hack until the IDR code can be fixed to
303 * return proper error values.
304 */
305 if (rv < 0)
306 return _idr_rc_to_errno(rv);
307 *id = rv;
308 return 0;
309 }
310 EXPORT_SYMBOL(idr_get_new_above);
311
312 /**
313 * idr_get_new - allocate new idr entry
314 * @idp: idr handle
315 * @ptr: pointer you want associated with the id
316 * @id: pointer to the allocated handle
317 *
318 * This is the allocate id function. It should be called with any
319 * required locks.
320 *
321 * If memory is required, it will return -EAGAIN, you should unlock
322 * and go back to the idr_pre_get() call. If the idr is full, it will
323 * return -ENOSPC.
324 *
325 * @id returns a value in the range 0 ... 0x7fffffff
326 */
327 int idr_get_new(struct idr *idp, void *ptr, int *id)
328 {
329 int rv;
330
331 rv = idr_get_new_above_int(idp, ptr, 0);
332 /*
333 * This is a cheap hack until the IDR code can be fixed to
334 * return proper error values.
335 */
336 if (rv < 0)
337 return _idr_rc_to_errno(rv);
338 *id = rv;
339 return 0;
340 }
341 EXPORT_SYMBOL(idr_get_new);
342
343 static void idr_remove_warning(int id)
344 {
345 printk(KERN_WARNING
346 "idr_remove called for id=%d which is not allocated.\n", id);
347 dump_stack();
348 }
349
350 static void sub_remove(struct idr *idp, int shift, int id)
351 {
352 struct idr_layer *p = idp->top;
353 struct idr_layer **pa[MAX_LEVEL];
354 struct idr_layer ***paa = &pa[0];
355 struct idr_layer *to_free;
356 int n;
357
358 *paa = NULL;
359 *++paa = &idp->top;
360
361 while ((shift > 0) && p) {
362 n = (id >> shift) & IDR_MASK;
363 __clear_bit(n, &p->bitmap);
364 *++paa = &p->ary[n];
365 p = p->ary[n];
366 shift -= IDR_BITS;
367 }
368 n = id & IDR_MASK;
369 if (likely(p != NULL && test_bit(n, &p->bitmap))){
370 __clear_bit(n, &p->bitmap);
371 rcu_assign_pointer(p->ary[n], NULL);
372 to_free = NULL;
373 while(*paa && ! --((**paa)->count)){
374 if (to_free)
375 free_layer(to_free);
376 to_free = **paa;
377 **paa-- = NULL;
378 }
379 if (!*paa)
380 idp->layers = 0;
381 if (to_free)
382 free_layer(to_free);
383 } else
384 idr_remove_warning(id);
385 }
386
387 /**
388 * idr_remove - remove the given id and free it's slot
389 * @idp: idr handle
390 * @id: unique key
391 */
392 void idr_remove(struct idr *idp, int id)
393 {
394 struct idr_layer *p;
395 struct idr_layer *to_free;
396
397 /* Mask off upper bits we don't use for the search. */
398 id &= MAX_ID_MASK;
399
400 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
401 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
402 idp->top->ary[0]) {
403 /*
404 * Single child at leftmost slot: we can shrink the tree.
405 * This level is not needed anymore since when layers are
406 * inserted, they are inserted at the top of the existing
407 * tree.
408 */
409 to_free = idp->top;
410 p = idp->top->ary[0];
411 rcu_assign_pointer(idp->top, p);
412 --idp->layers;
413 to_free->bitmap = to_free->count = 0;
414 free_layer(to_free);
415 }
416 while (idp->id_free_cnt >= IDR_FREE_MAX) {
417 p = get_from_free_list(idp);
418 /*
419 * Note: we don't call the rcu callback here, since the only
420 * layers that fall into the freelist are those that have been
421 * preallocated.
422 */
423 kmem_cache_free(idr_layer_cache, p);
424 }
425 return;
426 }
427 EXPORT_SYMBOL(idr_remove);
428
429 /**
430 * idr_remove_all - remove all ids from the given idr tree
431 * @idp: idr handle
432 *
433 * idr_destroy() only frees up unused, cached idp_layers, but this
434 * function will remove all id mappings and leave all idp_layers
435 * unused.
436 *
437 * A typical clean-up sequence for objects stored in an idr tree, will
438 * use idr_for_each() to free all objects, if necessay, then
439 * idr_remove_all() to remove all ids, and idr_destroy() to free
440 * up the cached idr_layers.
441 */
442 void idr_remove_all(struct idr *idp)
443 {
444 int n, id, max;
445 struct idr_layer *p;
446 struct idr_layer *pa[MAX_LEVEL];
447 struct idr_layer **paa = &pa[0];
448
449 n = idp->layers * IDR_BITS;
450 p = idp->top;
451 rcu_assign_pointer(idp->top, NULL);
452 max = 1 << n;
453
454 id = 0;
455 while (id < max) {
456 while (n > IDR_BITS && p) {
457 n -= IDR_BITS;
458 *paa++ = p;
459 p = p->ary[(id >> n) & IDR_MASK];
460 }
461
462 id += 1 << n;
463 while (n < fls(id)) {
464 if (p)
465 free_layer(p);
466 n += IDR_BITS;
467 p = *--paa;
468 }
469 }
470 idp->layers = 0;
471 }
472 EXPORT_SYMBOL(idr_remove_all);
473
474 /**
475 * idr_destroy - release all cached layers within an idr tree
476 * idp: idr handle
477 */
478 void idr_destroy(struct idr *idp)
479 {
480 while (idp->id_free_cnt) {
481 struct idr_layer *p = get_from_free_list(idp);
482 kmem_cache_free(idr_layer_cache, p);
483 }
484 }
485 EXPORT_SYMBOL(idr_destroy);
486
487 /**
488 * idr_find - return pointer for given id
489 * @idp: idr handle
490 * @id: lookup key
491 *
492 * Return the pointer given the id it has been registered with. A %NULL
493 * return indicates that @id is not valid or you passed %NULL in
494 * idr_get_new().
495 *
496 * This function can be called under rcu_read_lock(), given that the leaf
497 * pointers lifetimes are correctly managed.
498 */
499 void *idr_find(struct idr *idp, int id)
500 {
501 int n;
502 struct idr_layer *p;
503
504 p = rcu_dereference(idp->top);
505 if (!p)
506 return NULL;
507 n = (p->layer+1) * IDR_BITS;
508
509 /* Mask off upper bits we don't use for the search. */
510 id &= MAX_ID_MASK;
511
512 if (id >= (1 << n))
513 return NULL;
514 BUG_ON(n == 0);
515
516 while (n > 0 && p) {
517 n -= IDR_BITS;
518 BUG_ON(n != p->layer*IDR_BITS);
519 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
520 }
521 return((void *)p);
522 }
523 EXPORT_SYMBOL(idr_find);
524
525 /**
526 * idr_for_each - iterate through all stored pointers
527 * @idp: idr handle
528 * @fn: function to be called for each pointer
529 * @data: data passed back to callback function
530 *
531 * Iterate over the pointers registered with the given idr. The
532 * callback function will be called for each pointer currently
533 * registered, passing the id, the pointer and the data pointer passed
534 * to this function. It is not safe to modify the idr tree while in
535 * the callback, so functions such as idr_get_new and idr_remove are
536 * not allowed.
537 *
538 * We check the return of @fn each time. If it returns anything other
539 * than 0, we break out and return that value.
540 *
541 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
542 */
543 int idr_for_each(struct idr *idp,
544 int (*fn)(int id, void *p, void *data), void *data)
545 {
546 int n, id, max, error = 0;
547 struct idr_layer *p;
548 struct idr_layer *pa[MAX_LEVEL];
549 struct idr_layer **paa = &pa[0];
550
551 n = idp->layers * IDR_BITS;
552 p = rcu_dereference(idp->top);
553 max = 1 << n;
554
555 id = 0;
556 while (id < max) {
557 while (n > 0 && p) {
558 n -= IDR_BITS;
559 *paa++ = p;
560 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
561 }
562
563 if (p) {
564 error = fn(id, (void *)p, data);
565 if (error)
566 break;
567 }
568
569 id += 1 << n;
570 while (n < fls(id)) {
571 n += IDR_BITS;
572 p = *--paa;
573 }
574 }
575
576 return error;
577 }
578 EXPORT_SYMBOL(idr_for_each);
579
580 /**
581 * idr_get_next - lookup next object of id to given id.
582 * @idp: idr handle
583 * @id: pointer to lookup key
584 *
585 * Returns pointer to registered object with id, which is next number to
586 * given id.
587 */
588
589 void *idr_get_next(struct idr *idp, int *nextidp)
590 {
591 struct idr_layer *p, *pa[MAX_LEVEL];
592 struct idr_layer **paa = &pa[0];
593 int id = *nextidp;
594 int n, max;
595
596 /* find first ent */
597 n = idp->layers * IDR_BITS;
598 max = 1 << n;
599 p = rcu_dereference(idp->top);
600 if (!p)
601 return NULL;
602
603 while (id < max) {
604 while (n > 0 && p) {
605 n -= IDR_BITS;
606 *paa++ = p;
607 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
608 }
609
610 if (p) {
611 *nextidp = id;
612 return p;
613 }
614
615 id += 1 << n;
616 while (n < fls(id)) {
617 n += IDR_BITS;
618 p = *--paa;
619 }
620 }
621 return NULL;
622 }
623
624
625
626 /**
627 * idr_replace - replace pointer for given id
628 * @idp: idr handle
629 * @ptr: pointer you want associated with the id
630 * @id: lookup key
631 *
632 * Replace the pointer registered with an id and return the old value.
633 * A -ENOENT return indicates that @id was not found.
634 * A -EINVAL return indicates that @id was not within valid constraints.
635 *
636 * The caller must serialize with writers.
637 */
638 void *idr_replace(struct idr *idp, void *ptr, int id)
639 {
640 int n;
641 struct idr_layer *p, *old_p;
642
643 p = idp->top;
644 if (!p)
645 return ERR_PTR(-EINVAL);
646
647 n = (p->layer+1) * IDR_BITS;
648
649 id &= MAX_ID_MASK;
650
651 if (id >= (1 << n))
652 return ERR_PTR(-EINVAL);
653
654 n -= IDR_BITS;
655 while ((n > 0) && p) {
656 p = p->ary[(id >> n) & IDR_MASK];
657 n -= IDR_BITS;
658 }
659
660 n = id & IDR_MASK;
661 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
662 return ERR_PTR(-ENOENT);
663
664 old_p = p->ary[n];
665 rcu_assign_pointer(p->ary[n], ptr);
666
667 return old_p;
668 }
669 EXPORT_SYMBOL(idr_replace);
670
671 void __init idr_init_cache(void)
672 {
673 idr_layer_cache = kmem_cache_create("idr_layer_cache",
674 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
675 }
676
677 /**
678 * idr_init - initialize idr handle
679 * @idp: idr handle
680 *
681 * This function is use to set up the handle (@idp) that you will pass
682 * to the rest of the functions.
683 */
684 void idr_init(struct idr *idp)
685 {
686 memset(idp, 0, sizeof(struct idr));
687 spin_lock_init(&idp->lock);
688 }
689 EXPORT_SYMBOL(idr_init);
690
691
692 /*
693 * IDA - IDR based ID allocator
694 *
695 * this is id allocator without id -> pointer translation. Memory
696 * usage is much lower than full blown idr because each id only
697 * occupies a bit. ida uses a custom leaf node which contains
698 * IDA_BITMAP_BITS slots.
699 *
700 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
701 */
702
703 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
704 {
705 unsigned long flags;
706
707 if (!ida->free_bitmap) {
708 spin_lock_irqsave(&ida->idr.lock, flags);
709 if (!ida->free_bitmap) {
710 ida->free_bitmap = bitmap;
711 bitmap = NULL;
712 }
713 spin_unlock_irqrestore(&ida->idr.lock, flags);
714 }
715
716 kfree(bitmap);
717 }
718
719 /**
720 * ida_pre_get - reserve resources for ida allocation
721 * @ida: ida handle
722 * @gfp_mask: memory allocation flag
723 *
724 * This function should be called prior to locking and calling the
725 * following function. It preallocates enough memory to satisfy the
726 * worst possible allocation.
727 *
728 * If the system is REALLY out of memory this function returns 0,
729 * otherwise 1.
730 */
731 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
732 {
733 /* allocate idr_layers */
734 if (!idr_pre_get(&ida->idr, gfp_mask))
735 return 0;
736
737 /* allocate free_bitmap */
738 if (!ida->free_bitmap) {
739 struct ida_bitmap *bitmap;
740
741 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
742 if (!bitmap)
743 return 0;
744
745 free_bitmap(ida, bitmap);
746 }
747
748 return 1;
749 }
750 EXPORT_SYMBOL(ida_pre_get);
751
752 /**
753 * ida_get_new_above - allocate new ID above or equal to a start id
754 * @ida: ida handle
755 * @staring_id: id to start search at
756 * @p_id: pointer to the allocated handle
757 *
758 * Allocate new ID above or equal to @ida. It should be called with
759 * any required locks.
760 *
761 * If memory is required, it will return -EAGAIN, you should unlock
762 * and go back to the ida_pre_get() call. If the ida is full, it will
763 * return -ENOSPC.
764 *
765 * @p_id returns a value in the range @starting_id ... 0x7fffffff.
766 */
767 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
768 {
769 struct idr_layer *pa[MAX_LEVEL];
770 struct ida_bitmap *bitmap;
771 unsigned long flags;
772 int idr_id = starting_id / IDA_BITMAP_BITS;
773 int offset = starting_id % IDA_BITMAP_BITS;
774 int t, id;
775
776 restart:
777 /* get vacant slot */
778 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
779 if (t < 0)
780 return _idr_rc_to_errno(t);
781
782 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
783 return -ENOSPC;
784
785 if (t != idr_id)
786 offset = 0;
787 idr_id = t;
788
789 /* if bitmap isn't there, create a new one */
790 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
791 if (!bitmap) {
792 spin_lock_irqsave(&ida->idr.lock, flags);
793 bitmap = ida->free_bitmap;
794 ida->free_bitmap = NULL;
795 spin_unlock_irqrestore(&ida->idr.lock, flags);
796
797 if (!bitmap)
798 return -EAGAIN;
799
800 memset(bitmap, 0, sizeof(struct ida_bitmap));
801 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
802 (void *)bitmap);
803 pa[0]->count++;
804 }
805
806 /* lookup for empty slot */
807 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
808 if (t == IDA_BITMAP_BITS) {
809 /* no empty slot after offset, continue to the next chunk */
810 idr_id++;
811 offset = 0;
812 goto restart;
813 }
814
815 id = idr_id * IDA_BITMAP_BITS + t;
816 if (id >= MAX_ID_BIT)
817 return -ENOSPC;
818
819 __set_bit(t, bitmap->bitmap);
820 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
821 idr_mark_full(pa, idr_id);
822
823 *p_id = id;
824
825 /* Each leaf node can handle nearly a thousand slots and the
826 * whole idea of ida is to have small memory foot print.
827 * Throw away extra resources one by one after each successful
828 * allocation.
829 */
830 if (ida->idr.id_free_cnt || ida->free_bitmap) {
831 struct idr_layer *p = get_from_free_list(&ida->idr);
832 if (p)
833 kmem_cache_free(idr_layer_cache, p);
834 }
835
836 return 0;
837 }
838 EXPORT_SYMBOL(ida_get_new_above);
839
840 /**
841 * ida_get_new - allocate new ID
842 * @ida: idr handle
843 * @p_id: pointer to the allocated handle
844 *
845 * Allocate new ID. It should be called with any required locks.
846 *
847 * If memory is required, it will return -EAGAIN, you should unlock
848 * and go back to the idr_pre_get() call. If the idr is full, it will
849 * return -ENOSPC.
850 *
851 * @id returns a value in the range 0 ... 0x7fffffff.
852 */
853 int ida_get_new(struct ida *ida, int *p_id)
854 {
855 return ida_get_new_above(ida, 0, p_id);
856 }
857 EXPORT_SYMBOL(ida_get_new);
858
859 /**
860 * ida_remove - remove the given ID
861 * @ida: ida handle
862 * @id: ID to free
863 */
864 void ida_remove(struct ida *ida, int id)
865 {
866 struct idr_layer *p = ida->idr.top;
867 int shift = (ida->idr.layers - 1) * IDR_BITS;
868 int idr_id = id / IDA_BITMAP_BITS;
869 int offset = id % IDA_BITMAP_BITS;
870 int n;
871 struct ida_bitmap *bitmap;
872
873 /* clear full bits while looking up the leaf idr_layer */
874 while ((shift > 0) && p) {
875 n = (idr_id >> shift) & IDR_MASK;
876 __clear_bit(n, &p->bitmap);
877 p = p->ary[n];
878 shift -= IDR_BITS;
879 }
880
881 if (p == NULL)
882 goto err;
883
884 n = idr_id & IDR_MASK;
885 __clear_bit(n, &p->bitmap);
886
887 bitmap = (void *)p->ary[n];
888 if (!test_bit(offset, bitmap->bitmap))
889 goto err;
890
891 /* update bitmap and remove it if empty */
892 __clear_bit(offset, bitmap->bitmap);
893 if (--bitmap->nr_busy == 0) {
894 __set_bit(n, &p->bitmap); /* to please idr_remove() */
895 idr_remove(&ida->idr, idr_id);
896 free_bitmap(ida, bitmap);
897 }
898
899 return;
900
901 err:
902 printk(KERN_WARNING
903 "ida_remove called for id=%d which is not allocated.\n", id);
904 }
905 EXPORT_SYMBOL(ida_remove);
906
907 /**
908 * ida_destroy - release all cached layers within an ida tree
909 * ida: ida handle
910 */
911 void ida_destroy(struct ida *ida)
912 {
913 idr_destroy(&ida->idr);
914 kfree(ida->free_bitmap);
915 }
916 EXPORT_SYMBOL(ida_destroy);
917
918 /**
919 * ida_init - initialize ida handle
920 * @ida: ida handle
921 *
922 * This function is use to set up the handle (@ida) that you will pass
923 * to the rest of the functions.
924 */
925 void ida_init(struct ida *ida)
926 {
927 memset(ida, 0, sizeof(struct ida));
928 idr_init(&ida->idr);
929
930 }
931 EXPORT_SYMBOL(ida_init);