idr: make idr_get_new* rcu-safe
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / idr.c
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
11 * Small id to pointer translation service.
12 *
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37
38 static struct kmem_cache *idr_layer_cache;
39
40 static struct idr_layer *get_from_free_list(struct idr *idp)
41 {
42 struct idr_layer *p;
43 unsigned long flags;
44
45 spin_lock_irqsave(&idp->lock, flags);
46 if ((p = idp->id_free)) {
47 idp->id_free = p->ary[0];
48 idp->id_free_cnt--;
49 p->ary[0] = NULL;
50 }
51 spin_unlock_irqrestore(&idp->lock, flags);
52 return(p);
53 }
54
55 /* only called when idp->lock is held */
56 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
57 {
58 p->ary[0] = idp->id_free;
59 idp->id_free = p;
60 idp->id_free_cnt++;
61 }
62
63 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
64 {
65 unsigned long flags;
66
67 /*
68 * Depends on the return element being zeroed.
69 */
70 spin_lock_irqsave(&idp->lock, flags);
71 __move_to_free_list(idp, p);
72 spin_unlock_irqrestore(&idp->lock, flags);
73 }
74
75 static void idr_mark_full(struct idr_layer **pa, int id)
76 {
77 struct idr_layer *p = pa[0];
78 int l = 0;
79
80 __set_bit(id & IDR_MASK, &p->bitmap);
81 /*
82 * If this layer is full mark the bit in the layer above to
83 * show that this part of the radix tree is full. This may
84 * complete the layer above and require walking up the radix
85 * tree.
86 */
87 while (p->bitmap == IDR_FULL) {
88 if (!(p = pa[++l]))
89 break;
90 id = id >> IDR_BITS;
91 __set_bit((id & IDR_MASK), &p->bitmap);
92 }
93 }
94
95 /**
96 * idr_pre_get - reserver resources for idr allocation
97 * @idp: idr handle
98 * @gfp_mask: memory allocation flags
99 *
100 * This function should be called prior to locking and calling the
101 * idr_get_new* functions. It preallocates enough memory to satisfy
102 * the worst possible allocation.
103 *
104 * If the system is REALLY out of memory this function returns 0,
105 * otherwise 1.
106 */
107 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
108 {
109 while (idp->id_free_cnt < IDR_FREE_MAX) {
110 struct idr_layer *new;
111 new = kmem_cache_alloc(idr_layer_cache, gfp_mask);
112 if (new == NULL)
113 return (0);
114 move_to_free_list(idp, new);
115 }
116 return 1;
117 }
118 EXPORT_SYMBOL(idr_pre_get);
119
120 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
121 {
122 int n, m, sh;
123 struct idr_layer *p, *new;
124 int l, id, oid;
125 unsigned long bm;
126
127 id = *starting_id;
128 restart:
129 p = idp->top;
130 l = idp->layers;
131 pa[l--] = NULL;
132 while (1) {
133 /*
134 * We run around this while until we reach the leaf node...
135 */
136 n = (id >> (IDR_BITS*l)) & IDR_MASK;
137 bm = ~p->bitmap;
138 m = find_next_bit(&bm, IDR_SIZE, n);
139 if (m == IDR_SIZE) {
140 /* no space available go back to previous layer. */
141 l++;
142 oid = id;
143 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
144
145 /* if already at the top layer, we need to grow */
146 if (!(p = pa[l])) {
147 *starting_id = id;
148 return IDR_NEED_TO_GROW;
149 }
150
151 /* If we need to go up one layer, continue the
152 * loop; otherwise, restart from the top.
153 */
154 sh = IDR_BITS * (l + 1);
155 if (oid >> sh == id >> sh)
156 continue;
157 else
158 goto restart;
159 }
160 if (m != n) {
161 sh = IDR_BITS*l;
162 id = ((id >> sh) ^ n ^ m) << sh;
163 }
164 if ((id >= MAX_ID_BIT) || (id < 0))
165 return IDR_NOMORE_SPACE;
166 if (l == 0)
167 break;
168 /*
169 * Create the layer below if it is missing.
170 */
171 if (!p->ary[m]) {
172 new = get_from_free_list(idp);
173 if (!new)
174 return -1;
175 rcu_assign_pointer(p->ary[m], new);
176 p->count++;
177 }
178 pa[l--] = p;
179 p = p->ary[m];
180 }
181
182 pa[l] = p;
183 return id;
184 }
185
186 static int idr_get_empty_slot(struct idr *idp, int starting_id,
187 struct idr_layer **pa)
188 {
189 struct idr_layer *p, *new;
190 int layers, v, id;
191 unsigned long flags;
192
193 id = starting_id;
194 build_up:
195 p = idp->top;
196 layers = idp->layers;
197 if (unlikely(!p)) {
198 if (!(p = get_from_free_list(idp)))
199 return -1;
200 layers = 1;
201 }
202 /*
203 * Add a new layer to the top of the tree if the requested
204 * id is larger than the currently allocated space.
205 */
206 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
207 layers++;
208 if (!p->count)
209 continue;
210 if (!(new = get_from_free_list(idp))) {
211 /*
212 * The allocation failed. If we built part of
213 * the structure tear it down.
214 */
215 spin_lock_irqsave(&idp->lock, flags);
216 for (new = p; p && p != idp->top; new = p) {
217 p = p->ary[0];
218 new->ary[0] = NULL;
219 new->bitmap = new->count = 0;
220 __move_to_free_list(idp, new);
221 }
222 spin_unlock_irqrestore(&idp->lock, flags);
223 return -1;
224 }
225 new->ary[0] = p;
226 new->count = 1;
227 if (p->bitmap == IDR_FULL)
228 __set_bit(0, &new->bitmap);
229 p = new;
230 }
231 rcu_assign_pointer(idp->top, p);
232 idp->layers = layers;
233 v = sub_alloc(idp, &id, pa);
234 if (v == IDR_NEED_TO_GROW)
235 goto build_up;
236 return(v);
237 }
238
239 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
240 {
241 struct idr_layer *pa[MAX_LEVEL];
242 int id;
243
244 id = idr_get_empty_slot(idp, starting_id, pa);
245 if (id >= 0) {
246 /*
247 * Successfully found an empty slot. Install the user
248 * pointer and mark the slot full.
249 */
250 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
251 (struct idr_layer *)ptr);
252 pa[0]->count++;
253 idr_mark_full(pa, id);
254 }
255
256 return id;
257 }
258
259 /**
260 * idr_get_new_above - allocate new idr entry above or equal to a start id
261 * @idp: idr handle
262 * @ptr: pointer you want associated with the ide
263 * @start_id: id to start search at
264 * @id: pointer to the allocated handle
265 *
266 * This is the allocate id function. It should be called with any
267 * required locks.
268 *
269 * If memory is required, it will return -EAGAIN, you should unlock
270 * and go back to the idr_pre_get() call. If the idr is full, it will
271 * return -ENOSPC.
272 *
273 * @id returns a value in the range 0 ... 0x7fffffff
274 */
275 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
276 {
277 int rv;
278
279 rv = idr_get_new_above_int(idp, ptr, starting_id);
280 /*
281 * This is a cheap hack until the IDR code can be fixed to
282 * return proper error values.
283 */
284 if (rv < 0)
285 return _idr_rc_to_errno(rv);
286 *id = rv;
287 return 0;
288 }
289 EXPORT_SYMBOL(idr_get_new_above);
290
291 /**
292 * idr_get_new - allocate new idr entry
293 * @idp: idr handle
294 * @ptr: pointer you want associated with the ide
295 * @id: pointer to the allocated handle
296 *
297 * This is the allocate id function. It should be called with any
298 * required locks.
299 *
300 * If memory is required, it will return -EAGAIN, you should unlock
301 * and go back to the idr_pre_get() call. If the idr is full, it will
302 * return -ENOSPC.
303 *
304 * @id returns a value in the range 0 ... 0x7fffffff
305 */
306 int idr_get_new(struct idr *idp, void *ptr, int *id)
307 {
308 int rv;
309
310 rv = idr_get_new_above_int(idp, ptr, 0);
311 /*
312 * This is a cheap hack until the IDR code can be fixed to
313 * return proper error values.
314 */
315 if (rv < 0)
316 return _idr_rc_to_errno(rv);
317 *id = rv;
318 return 0;
319 }
320 EXPORT_SYMBOL(idr_get_new);
321
322 static void idr_remove_warning(int id)
323 {
324 printk(KERN_WARNING
325 "idr_remove called for id=%d which is not allocated.\n", id);
326 dump_stack();
327 }
328
329 static void sub_remove(struct idr *idp, int shift, int id)
330 {
331 struct idr_layer *p = idp->top;
332 struct idr_layer **pa[MAX_LEVEL];
333 struct idr_layer ***paa = &pa[0];
334 int n;
335
336 *paa = NULL;
337 *++paa = &idp->top;
338
339 while ((shift > 0) && p) {
340 n = (id >> shift) & IDR_MASK;
341 __clear_bit(n, &p->bitmap);
342 *++paa = &p->ary[n];
343 p = p->ary[n];
344 shift -= IDR_BITS;
345 }
346 n = id & IDR_MASK;
347 if (likely(p != NULL && test_bit(n, &p->bitmap))){
348 __clear_bit(n, &p->bitmap);
349 p->ary[n] = NULL;
350 while(*paa && ! --((**paa)->count)){
351 move_to_free_list(idp, **paa);
352 **paa-- = NULL;
353 }
354 if (!*paa)
355 idp->layers = 0;
356 } else
357 idr_remove_warning(id);
358 }
359
360 /**
361 * idr_remove - remove the given id and free it's slot
362 * @idp: idr handle
363 * @id: unique key
364 */
365 void idr_remove(struct idr *idp, int id)
366 {
367 struct idr_layer *p;
368
369 /* Mask off upper bits we don't use for the search. */
370 id &= MAX_ID_MASK;
371
372 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
373 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
374 idp->top->ary[0]) { // We can drop a layer
375
376 p = idp->top->ary[0];
377 idp->top->bitmap = idp->top->count = 0;
378 move_to_free_list(idp, idp->top);
379 idp->top = p;
380 --idp->layers;
381 }
382 while (idp->id_free_cnt >= IDR_FREE_MAX) {
383 p = get_from_free_list(idp);
384 kmem_cache_free(idr_layer_cache, p);
385 }
386 return;
387 }
388 EXPORT_SYMBOL(idr_remove);
389
390 /**
391 * idr_remove_all - remove all ids from the given idr tree
392 * @idp: idr handle
393 *
394 * idr_destroy() only frees up unused, cached idp_layers, but this
395 * function will remove all id mappings and leave all idp_layers
396 * unused.
397 *
398 * A typical clean-up sequence for objects stored in an idr tree, will
399 * use idr_for_each() to free all objects, if necessay, then
400 * idr_remove_all() to remove all ids, and idr_destroy() to free
401 * up the cached idr_layers.
402 */
403 void idr_remove_all(struct idr *idp)
404 {
405 int n, id, max;
406 struct idr_layer *p;
407 struct idr_layer *pa[MAX_LEVEL];
408 struct idr_layer **paa = &pa[0];
409
410 n = idp->layers * IDR_BITS;
411 p = idp->top;
412 max = 1 << n;
413
414 id = 0;
415 while (id < max) {
416 while (n > IDR_BITS && p) {
417 n -= IDR_BITS;
418 *paa++ = p;
419 p = p->ary[(id >> n) & IDR_MASK];
420 }
421
422 id += 1 << n;
423 while (n < fls(id)) {
424 if (p) {
425 memset(p, 0, sizeof *p);
426 move_to_free_list(idp, p);
427 }
428 n += IDR_BITS;
429 p = *--paa;
430 }
431 }
432 idp->top = NULL;
433 idp->layers = 0;
434 }
435 EXPORT_SYMBOL(idr_remove_all);
436
437 /**
438 * idr_destroy - release all cached layers within an idr tree
439 * idp: idr handle
440 */
441 void idr_destroy(struct idr *idp)
442 {
443 while (idp->id_free_cnt) {
444 struct idr_layer *p = get_from_free_list(idp);
445 kmem_cache_free(idr_layer_cache, p);
446 }
447 }
448 EXPORT_SYMBOL(idr_destroy);
449
450 /**
451 * idr_find - return pointer for given id
452 * @idp: idr handle
453 * @id: lookup key
454 *
455 * Return the pointer given the id it has been registered with. A %NULL
456 * return indicates that @id is not valid or you passed %NULL in
457 * idr_get_new().
458 *
459 * The caller must serialize idr_find() vs idr_get_new() and idr_remove().
460 */
461 void *idr_find(struct idr *idp, int id)
462 {
463 int n;
464 struct idr_layer *p;
465
466 n = idp->layers * IDR_BITS;
467 p = idp->top;
468
469 /* Mask off upper bits we don't use for the search. */
470 id &= MAX_ID_MASK;
471
472 if (id >= (1 << n))
473 return NULL;
474
475 while (n > 0 && p) {
476 n -= IDR_BITS;
477 p = p->ary[(id >> n) & IDR_MASK];
478 }
479 return((void *)p);
480 }
481 EXPORT_SYMBOL(idr_find);
482
483 /**
484 * idr_for_each - iterate through all stored pointers
485 * @idp: idr handle
486 * @fn: function to be called for each pointer
487 * @data: data passed back to callback function
488 *
489 * Iterate over the pointers registered with the given idr. The
490 * callback function will be called for each pointer currently
491 * registered, passing the id, the pointer and the data pointer passed
492 * to this function. It is not safe to modify the idr tree while in
493 * the callback, so functions such as idr_get_new and idr_remove are
494 * not allowed.
495 *
496 * We check the return of @fn each time. If it returns anything other
497 * than 0, we break out and return that value.
498 *
499 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
500 */
501 int idr_for_each(struct idr *idp,
502 int (*fn)(int id, void *p, void *data), void *data)
503 {
504 int n, id, max, error = 0;
505 struct idr_layer *p;
506 struct idr_layer *pa[MAX_LEVEL];
507 struct idr_layer **paa = &pa[0];
508
509 n = idp->layers * IDR_BITS;
510 p = idp->top;
511 max = 1 << n;
512
513 id = 0;
514 while (id < max) {
515 while (n > 0 && p) {
516 n -= IDR_BITS;
517 *paa++ = p;
518 p = p->ary[(id >> n) & IDR_MASK];
519 }
520
521 if (p) {
522 error = fn(id, (void *)p, data);
523 if (error)
524 break;
525 }
526
527 id += 1 << n;
528 while (n < fls(id)) {
529 n += IDR_BITS;
530 p = *--paa;
531 }
532 }
533
534 return error;
535 }
536 EXPORT_SYMBOL(idr_for_each);
537
538 /**
539 * idr_replace - replace pointer for given id
540 * @idp: idr handle
541 * @ptr: pointer you want associated with the id
542 * @id: lookup key
543 *
544 * Replace the pointer registered with an id and return the old value.
545 * A -ENOENT return indicates that @id was not found.
546 * A -EINVAL return indicates that @id was not within valid constraints.
547 *
548 * The caller must serialize vs idr_find(), idr_get_new(), and idr_remove().
549 */
550 void *idr_replace(struct idr *idp, void *ptr, int id)
551 {
552 int n;
553 struct idr_layer *p, *old_p;
554
555 n = idp->layers * IDR_BITS;
556 p = idp->top;
557
558 id &= MAX_ID_MASK;
559
560 if (id >= (1 << n))
561 return ERR_PTR(-EINVAL);
562
563 n -= IDR_BITS;
564 while ((n > 0) && p) {
565 p = p->ary[(id >> n) & IDR_MASK];
566 n -= IDR_BITS;
567 }
568
569 n = id & IDR_MASK;
570 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
571 return ERR_PTR(-ENOENT);
572
573 old_p = p->ary[n];
574 p->ary[n] = ptr;
575
576 return old_p;
577 }
578 EXPORT_SYMBOL(idr_replace);
579
580 static void idr_cache_ctor(struct kmem_cache *idr_layer_cache, void *idr_layer)
581 {
582 memset(idr_layer, 0, sizeof(struct idr_layer));
583 }
584
585 void __init idr_init_cache(void)
586 {
587 idr_layer_cache = kmem_cache_create("idr_layer_cache",
588 sizeof(struct idr_layer), 0, SLAB_PANIC,
589 idr_cache_ctor);
590 }
591
592 /**
593 * idr_init - initialize idr handle
594 * @idp: idr handle
595 *
596 * This function is use to set up the handle (@idp) that you will pass
597 * to the rest of the functions.
598 */
599 void idr_init(struct idr *idp)
600 {
601 memset(idp, 0, sizeof(struct idr));
602 spin_lock_init(&idp->lock);
603 }
604 EXPORT_SYMBOL(idr_init);
605
606
607 /*
608 * IDA - IDR based ID allocator
609 *
610 * this is id allocator without id -> pointer translation. Memory
611 * usage is much lower than full blown idr because each id only
612 * occupies a bit. ida uses a custom leaf node which contains
613 * IDA_BITMAP_BITS slots.
614 *
615 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
616 */
617
618 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
619 {
620 unsigned long flags;
621
622 if (!ida->free_bitmap) {
623 spin_lock_irqsave(&ida->idr.lock, flags);
624 if (!ida->free_bitmap) {
625 ida->free_bitmap = bitmap;
626 bitmap = NULL;
627 }
628 spin_unlock_irqrestore(&ida->idr.lock, flags);
629 }
630
631 kfree(bitmap);
632 }
633
634 /**
635 * ida_pre_get - reserve resources for ida allocation
636 * @ida: ida handle
637 * @gfp_mask: memory allocation flag
638 *
639 * This function should be called prior to locking and calling the
640 * following function. It preallocates enough memory to satisfy the
641 * worst possible allocation.
642 *
643 * If the system is REALLY out of memory this function returns 0,
644 * otherwise 1.
645 */
646 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
647 {
648 /* allocate idr_layers */
649 if (!idr_pre_get(&ida->idr, gfp_mask))
650 return 0;
651
652 /* allocate free_bitmap */
653 if (!ida->free_bitmap) {
654 struct ida_bitmap *bitmap;
655
656 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
657 if (!bitmap)
658 return 0;
659
660 free_bitmap(ida, bitmap);
661 }
662
663 return 1;
664 }
665 EXPORT_SYMBOL(ida_pre_get);
666
667 /**
668 * ida_get_new_above - allocate new ID above or equal to a start id
669 * @ida: ida handle
670 * @staring_id: id to start search at
671 * @p_id: pointer to the allocated handle
672 *
673 * Allocate new ID above or equal to @ida. It should be called with
674 * any required locks.
675 *
676 * If memory is required, it will return -EAGAIN, you should unlock
677 * and go back to the ida_pre_get() call. If the ida is full, it will
678 * return -ENOSPC.
679 *
680 * @p_id returns a value in the range 0 ... 0x7fffffff.
681 */
682 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
683 {
684 struct idr_layer *pa[MAX_LEVEL];
685 struct ida_bitmap *bitmap;
686 unsigned long flags;
687 int idr_id = starting_id / IDA_BITMAP_BITS;
688 int offset = starting_id % IDA_BITMAP_BITS;
689 int t, id;
690
691 restart:
692 /* get vacant slot */
693 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
694 if (t < 0)
695 return _idr_rc_to_errno(t);
696
697 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
698 return -ENOSPC;
699
700 if (t != idr_id)
701 offset = 0;
702 idr_id = t;
703
704 /* if bitmap isn't there, create a new one */
705 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
706 if (!bitmap) {
707 spin_lock_irqsave(&ida->idr.lock, flags);
708 bitmap = ida->free_bitmap;
709 ida->free_bitmap = NULL;
710 spin_unlock_irqrestore(&ida->idr.lock, flags);
711
712 if (!bitmap)
713 return -EAGAIN;
714
715 memset(bitmap, 0, sizeof(struct ida_bitmap));
716 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
717 (void *)bitmap);
718 pa[0]->count++;
719 }
720
721 /* lookup for empty slot */
722 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
723 if (t == IDA_BITMAP_BITS) {
724 /* no empty slot after offset, continue to the next chunk */
725 idr_id++;
726 offset = 0;
727 goto restart;
728 }
729
730 id = idr_id * IDA_BITMAP_BITS + t;
731 if (id >= MAX_ID_BIT)
732 return -ENOSPC;
733
734 __set_bit(t, bitmap->bitmap);
735 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
736 idr_mark_full(pa, idr_id);
737
738 *p_id = id;
739
740 /* Each leaf node can handle nearly a thousand slots and the
741 * whole idea of ida is to have small memory foot print.
742 * Throw away extra resources one by one after each successful
743 * allocation.
744 */
745 if (ida->idr.id_free_cnt || ida->free_bitmap) {
746 struct idr_layer *p = get_from_free_list(&ida->idr);
747 if (p)
748 kmem_cache_free(idr_layer_cache, p);
749 }
750
751 return 0;
752 }
753 EXPORT_SYMBOL(ida_get_new_above);
754
755 /**
756 * ida_get_new - allocate new ID
757 * @ida: idr handle
758 * @p_id: pointer to the allocated handle
759 *
760 * Allocate new ID. It should be called with any required locks.
761 *
762 * If memory is required, it will return -EAGAIN, you should unlock
763 * and go back to the idr_pre_get() call. If the idr is full, it will
764 * return -ENOSPC.
765 *
766 * @id returns a value in the range 0 ... 0x7fffffff.
767 */
768 int ida_get_new(struct ida *ida, int *p_id)
769 {
770 return ida_get_new_above(ida, 0, p_id);
771 }
772 EXPORT_SYMBOL(ida_get_new);
773
774 /**
775 * ida_remove - remove the given ID
776 * @ida: ida handle
777 * @id: ID to free
778 */
779 void ida_remove(struct ida *ida, int id)
780 {
781 struct idr_layer *p = ida->idr.top;
782 int shift = (ida->idr.layers - 1) * IDR_BITS;
783 int idr_id = id / IDA_BITMAP_BITS;
784 int offset = id % IDA_BITMAP_BITS;
785 int n;
786 struct ida_bitmap *bitmap;
787
788 /* clear full bits while looking up the leaf idr_layer */
789 while ((shift > 0) && p) {
790 n = (idr_id >> shift) & IDR_MASK;
791 __clear_bit(n, &p->bitmap);
792 p = p->ary[n];
793 shift -= IDR_BITS;
794 }
795
796 if (p == NULL)
797 goto err;
798
799 n = idr_id & IDR_MASK;
800 __clear_bit(n, &p->bitmap);
801
802 bitmap = (void *)p->ary[n];
803 if (!test_bit(offset, bitmap->bitmap))
804 goto err;
805
806 /* update bitmap and remove it if empty */
807 __clear_bit(offset, bitmap->bitmap);
808 if (--bitmap->nr_busy == 0) {
809 __set_bit(n, &p->bitmap); /* to please idr_remove() */
810 idr_remove(&ida->idr, idr_id);
811 free_bitmap(ida, bitmap);
812 }
813
814 return;
815
816 err:
817 printk(KERN_WARNING
818 "ida_remove called for id=%d which is not allocated.\n", id);
819 }
820 EXPORT_SYMBOL(ida_remove);
821
822 /**
823 * ida_destroy - release all cached layers within an ida tree
824 * ida: ida handle
825 */
826 void ida_destroy(struct ida *ida)
827 {
828 idr_destroy(&ida->idr);
829 kfree(ida->free_bitmap);
830 }
831 EXPORT_SYMBOL(ida_destroy);
832
833 /**
834 * ida_init - initialize ida handle
835 * @ida: ida handle
836 *
837 * This function is use to set up the handle (@ida) that you will pass
838 * to the rest of the functions.
839 */
840 void ida_init(struct ida *ida)
841 {
842 memset(ida, 0, sizeof(struct ida));
843 idr_init(&ida->idr);
844
845 }
846 EXPORT_SYMBOL(ida_init);