mm: have order > 0 compaction start near a pageblock with free pages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / idr.c
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
11 * Small id to pointer translation service.
12 *
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38
39 static struct kmem_cache *idr_layer_cache;
40 static DEFINE_SPINLOCK(simple_ida_lock);
41
42 static struct idr_layer *get_from_free_list(struct idr *idp)
43 {
44 struct idr_layer *p;
45 unsigned long flags;
46
47 spin_lock_irqsave(&idp->lock, flags);
48 if ((p = idp->id_free)) {
49 idp->id_free = p->ary[0];
50 idp->id_free_cnt--;
51 p->ary[0] = NULL;
52 }
53 spin_unlock_irqrestore(&idp->lock, flags);
54 return(p);
55 }
56
57 static void idr_layer_rcu_free(struct rcu_head *head)
58 {
59 struct idr_layer *layer;
60
61 layer = container_of(head, struct idr_layer, rcu_head);
62 kmem_cache_free(idr_layer_cache, layer);
63 }
64
65 static inline void free_layer(struct idr_layer *p)
66 {
67 call_rcu(&p->rcu_head, idr_layer_rcu_free);
68 }
69
70 /* only called when idp->lock is held */
71 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
72 {
73 p->ary[0] = idp->id_free;
74 idp->id_free = p;
75 idp->id_free_cnt++;
76 }
77
78 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
79 {
80 unsigned long flags;
81
82 /*
83 * Depends on the return element being zeroed.
84 */
85 spin_lock_irqsave(&idp->lock, flags);
86 __move_to_free_list(idp, p);
87 spin_unlock_irqrestore(&idp->lock, flags);
88 }
89
90 static void idr_mark_full(struct idr_layer **pa, int id)
91 {
92 struct idr_layer *p = pa[0];
93 int l = 0;
94
95 __set_bit(id & IDR_MASK, &p->bitmap);
96 /*
97 * If this layer is full mark the bit in the layer above to
98 * show that this part of the radix tree is full. This may
99 * complete the layer above and require walking up the radix
100 * tree.
101 */
102 while (p->bitmap == IDR_FULL) {
103 if (!(p = pa[++l]))
104 break;
105 id = id >> IDR_BITS;
106 __set_bit((id & IDR_MASK), &p->bitmap);
107 }
108 }
109
110 /**
111 * idr_pre_get - reserve resources for idr allocation
112 * @idp: idr handle
113 * @gfp_mask: memory allocation flags
114 *
115 * This function should be called prior to calling the idr_get_new* functions.
116 * It preallocates enough memory to satisfy the worst possible allocation. The
117 * caller should pass in GFP_KERNEL if possible. This of course requires that
118 * no spinning locks be held.
119 *
120 * If the system is REALLY out of memory this function returns %0,
121 * otherwise %1.
122 */
123 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
124 {
125 while (idp->id_free_cnt < IDR_FREE_MAX) {
126 struct idr_layer *new;
127 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
128 if (new == NULL)
129 return (0);
130 move_to_free_list(idp, new);
131 }
132 return 1;
133 }
134 EXPORT_SYMBOL(idr_pre_get);
135
136 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
137 {
138 int n, m, sh;
139 struct idr_layer *p, *new;
140 int l, id, oid;
141 unsigned long bm;
142
143 id = *starting_id;
144 restart:
145 p = idp->top;
146 l = idp->layers;
147 pa[l--] = NULL;
148 while (1) {
149 /*
150 * We run around this while until we reach the leaf node...
151 */
152 n = (id >> (IDR_BITS*l)) & IDR_MASK;
153 bm = ~p->bitmap;
154 m = find_next_bit(&bm, IDR_SIZE, n);
155 if (m == IDR_SIZE) {
156 /* no space available go back to previous layer. */
157 l++;
158 oid = id;
159 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
160
161 /* if already at the top layer, we need to grow */
162 if (id >= 1 << (idp->layers * IDR_BITS)) {
163 *starting_id = id;
164 return IDR_NEED_TO_GROW;
165 }
166 p = pa[l];
167 BUG_ON(!p);
168
169 /* If we need to go up one layer, continue the
170 * loop; otherwise, restart from the top.
171 */
172 sh = IDR_BITS * (l + 1);
173 if (oid >> sh == id >> sh)
174 continue;
175 else
176 goto restart;
177 }
178 if (m != n) {
179 sh = IDR_BITS*l;
180 id = ((id >> sh) ^ n ^ m) << sh;
181 }
182 if ((id >= MAX_ID_BIT) || (id < 0))
183 return IDR_NOMORE_SPACE;
184 if (l == 0)
185 break;
186 /*
187 * Create the layer below if it is missing.
188 */
189 if (!p->ary[m]) {
190 new = get_from_free_list(idp);
191 if (!new)
192 return -1;
193 new->layer = l-1;
194 rcu_assign_pointer(p->ary[m], new);
195 p->count++;
196 }
197 pa[l--] = p;
198 p = p->ary[m];
199 }
200
201 pa[l] = p;
202 return id;
203 }
204
205 static int idr_get_empty_slot(struct idr *idp, int starting_id,
206 struct idr_layer **pa)
207 {
208 struct idr_layer *p, *new;
209 int layers, v, id;
210 unsigned long flags;
211
212 id = starting_id;
213 build_up:
214 p = idp->top;
215 layers = idp->layers;
216 if (unlikely(!p)) {
217 if (!(p = get_from_free_list(idp)))
218 return -1;
219 p->layer = 0;
220 layers = 1;
221 }
222 /*
223 * Add a new layer to the top of the tree if the requested
224 * id is larger than the currently allocated space.
225 */
226 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
227 layers++;
228 if (!p->count) {
229 /* special case: if the tree is currently empty,
230 * then we grow the tree by moving the top node
231 * upwards.
232 */
233 p->layer++;
234 continue;
235 }
236 if (!(new = get_from_free_list(idp))) {
237 /*
238 * The allocation failed. If we built part of
239 * the structure tear it down.
240 */
241 spin_lock_irqsave(&idp->lock, flags);
242 for (new = p; p && p != idp->top; new = p) {
243 p = p->ary[0];
244 new->ary[0] = NULL;
245 new->bitmap = new->count = 0;
246 __move_to_free_list(idp, new);
247 }
248 spin_unlock_irqrestore(&idp->lock, flags);
249 return -1;
250 }
251 new->ary[0] = p;
252 new->count = 1;
253 new->layer = layers-1;
254 if (p->bitmap == IDR_FULL)
255 __set_bit(0, &new->bitmap);
256 p = new;
257 }
258 rcu_assign_pointer(idp->top, p);
259 idp->layers = layers;
260 v = sub_alloc(idp, &id, pa);
261 if (v == IDR_NEED_TO_GROW)
262 goto build_up;
263 return(v);
264 }
265
266 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
267 {
268 struct idr_layer *pa[MAX_LEVEL];
269 int id;
270
271 id = idr_get_empty_slot(idp, starting_id, pa);
272 if (id >= 0) {
273 /*
274 * Successfully found an empty slot. Install the user
275 * pointer and mark the slot full.
276 */
277 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
278 (struct idr_layer *)ptr);
279 pa[0]->count++;
280 idr_mark_full(pa, id);
281 }
282
283 return id;
284 }
285
286 /**
287 * idr_get_new_above - allocate new idr entry above or equal to a start id
288 * @idp: idr handle
289 * @ptr: pointer you want associated with the id
290 * @starting_id: id to start search at
291 * @id: pointer to the allocated handle
292 *
293 * This is the allocate id function. It should be called with any
294 * required locks.
295 *
296 * If allocation from IDR's private freelist fails, idr_get_new_above() will
297 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
298 * IDR's preallocation and then retry the idr_get_new_above() call.
299 *
300 * If the idr is full idr_get_new_above() will return %-ENOSPC.
301 *
302 * @id returns a value in the range @starting_id ... %0x7fffffff
303 */
304 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
305 {
306 int rv;
307
308 rv = idr_get_new_above_int(idp, ptr, starting_id);
309 /*
310 * This is a cheap hack until the IDR code can be fixed to
311 * return proper error values.
312 */
313 if (rv < 0)
314 return _idr_rc_to_errno(rv);
315 *id = rv;
316 return 0;
317 }
318 EXPORT_SYMBOL(idr_get_new_above);
319
320 /**
321 * idr_get_new - allocate new idr entry
322 * @idp: idr handle
323 * @ptr: pointer you want associated with the id
324 * @id: pointer to the allocated handle
325 *
326 * If allocation from IDR's private freelist fails, idr_get_new_above() will
327 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
328 * IDR's preallocation and then retry the idr_get_new_above() call.
329 *
330 * If the idr is full idr_get_new_above() will return %-ENOSPC.
331 *
332 * @id returns a value in the range %0 ... %0x7fffffff
333 */
334 int idr_get_new(struct idr *idp, void *ptr, int *id)
335 {
336 int rv;
337
338 rv = idr_get_new_above_int(idp, ptr, 0);
339 /*
340 * This is a cheap hack until the IDR code can be fixed to
341 * return proper error values.
342 */
343 if (rv < 0)
344 return _idr_rc_to_errno(rv);
345 *id = rv;
346 return 0;
347 }
348 EXPORT_SYMBOL(idr_get_new);
349
350 static void idr_remove_warning(int id)
351 {
352 printk(KERN_WARNING
353 "idr_remove called for id=%d which is not allocated.\n", id);
354 dump_stack();
355 }
356
357 static void sub_remove(struct idr *idp, int shift, int id)
358 {
359 struct idr_layer *p = idp->top;
360 struct idr_layer **pa[MAX_LEVEL];
361 struct idr_layer ***paa = &pa[0];
362 struct idr_layer *to_free;
363 int n;
364
365 *paa = NULL;
366 *++paa = &idp->top;
367
368 while ((shift > 0) && p) {
369 n = (id >> shift) & IDR_MASK;
370 __clear_bit(n, &p->bitmap);
371 *++paa = &p->ary[n];
372 p = p->ary[n];
373 shift -= IDR_BITS;
374 }
375 n = id & IDR_MASK;
376 if (likely(p != NULL && test_bit(n, &p->bitmap))){
377 __clear_bit(n, &p->bitmap);
378 rcu_assign_pointer(p->ary[n], NULL);
379 to_free = NULL;
380 while(*paa && ! --((**paa)->count)){
381 if (to_free)
382 free_layer(to_free);
383 to_free = **paa;
384 **paa-- = NULL;
385 }
386 if (!*paa)
387 idp->layers = 0;
388 if (to_free)
389 free_layer(to_free);
390 } else
391 idr_remove_warning(id);
392 }
393
394 /**
395 * idr_remove - remove the given id and free its slot
396 * @idp: idr handle
397 * @id: unique key
398 */
399 void idr_remove(struct idr *idp, int id)
400 {
401 struct idr_layer *p;
402 struct idr_layer *to_free;
403
404 /* Mask off upper bits we don't use for the search. */
405 id &= MAX_ID_MASK;
406
407 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
408 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
409 idp->top->ary[0]) {
410 /*
411 * Single child at leftmost slot: we can shrink the tree.
412 * This level is not needed anymore since when layers are
413 * inserted, they are inserted at the top of the existing
414 * tree.
415 */
416 to_free = idp->top;
417 p = idp->top->ary[0];
418 rcu_assign_pointer(idp->top, p);
419 --idp->layers;
420 to_free->bitmap = to_free->count = 0;
421 free_layer(to_free);
422 }
423 while (idp->id_free_cnt >= IDR_FREE_MAX) {
424 p = get_from_free_list(idp);
425 /*
426 * Note: we don't call the rcu callback here, since the only
427 * layers that fall into the freelist are those that have been
428 * preallocated.
429 */
430 kmem_cache_free(idr_layer_cache, p);
431 }
432 return;
433 }
434 EXPORT_SYMBOL(idr_remove);
435
436 /**
437 * idr_remove_all - remove all ids from the given idr tree
438 * @idp: idr handle
439 *
440 * idr_destroy() only frees up unused, cached idp_layers, but this
441 * function will remove all id mappings and leave all idp_layers
442 * unused.
443 *
444 * A typical clean-up sequence for objects stored in an idr tree will
445 * use idr_for_each() to free all objects, if necessay, then
446 * idr_remove_all() to remove all ids, and idr_destroy() to free
447 * up the cached idr_layers.
448 */
449 void idr_remove_all(struct idr *idp)
450 {
451 int n, id, max;
452 int bt_mask;
453 struct idr_layer *p;
454 struct idr_layer *pa[MAX_LEVEL];
455 struct idr_layer **paa = &pa[0];
456
457 n = idp->layers * IDR_BITS;
458 p = idp->top;
459 rcu_assign_pointer(idp->top, NULL);
460 max = 1 << n;
461
462 id = 0;
463 while (id < max) {
464 while (n > IDR_BITS && p) {
465 n -= IDR_BITS;
466 *paa++ = p;
467 p = p->ary[(id >> n) & IDR_MASK];
468 }
469
470 bt_mask = id;
471 id += 1 << n;
472 /* Get the highest bit that the above add changed from 0->1. */
473 while (n < fls(id ^ bt_mask)) {
474 if (p)
475 free_layer(p);
476 n += IDR_BITS;
477 p = *--paa;
478 }
479 }
480 idp->layers = 0;
481 }
482 EXPORT_SYMBOL(idr_remove_all);
483
484 /**
485 * idr_destroy - release all cached layers within an idr tree
486 * @idp: idr handle
487 */
488 void idr_destroy(struct idr *idp)
489 {
490 while (idp->id_free_cnt) {
491 struct idr_layer *p = get_from_free_list(idp);
492 kmem_cache_free(idr_layer_cache, p);
493 }
494 }
495 EXPORT_SYMBOL(idr_destroy);
496
497 /**
498 * idr_find - return pointer for given id
499 * @idp: idr handle
500 * @id: lookup key
501 *
502 * Return the pointer given the id it has been registered with. A %NULL
503 * return indicates that @id is not valid or you passed %NULL in
504 * idr_get_new().
505 *
506 * This function can be called under rcu_read_lock(), given that the leaf
507 * pointers lifetimes are correctly managed.
508 */
509 void *idr_find(struct idr *idp, int id)
510 {
511 int n;
512 struct idr_layer *p;
513
514 p = rcu_dereference_raw(idp->top);
515 if (!p)
516 return NULL;
517 n = (p->layer+1) * IDR_BITS;
518
519 /* Mask off upper bits we don't use for the search. */
520 id &= MAX_ID_MASK;
521
522 if (id >= (1 << n))
523 return NULL;
524 BUG_ON(n == 0);
525
526 while (n > 0 && p) {
527 n -= IDR_BITS;
528 BUG_ON(n != p->layer*IDR_BITS);
529 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
530 }
531 return((void *)p);
532 }
533 EXPORT_SYMBOL(idr_find);
534
535 /**
536 * idr_for_each - iterate through all stored pointers
537 * @idp: idr handle
538 * @fn: function to be called for each pointer
539 * @data: data passed back to callback function
540 *
541 * Iterate over the pointers registered with the given idr. The
542 * callback function will be called for each pointer currently
543 * registered, passing the id, the pointer and the data pointer passed
544 * to this function. It is not safe to modify the idr tree while in
545 * the callback, so functions such as idr_get_new and idr_remove are
546 * not allowed.
547 *
548 * We check the return of @fn each time. If it returns anything other
549 * than %0, we break out and return that value.
550 *
551 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
552 */
553 int idr_for_each(struct idr *idp,
554 int (*fn)(int id, void *p, void *data), void *data)
555 {
556 int n, id, max, error = 0;
557 struct idr_layer *p;
558 struct idr_layer *pa[MAX_LEVEL];
559 struct idr_layer **paa = &pa[0];
560
561 n = idp->layers * IDR_BITS;
562 p = rcu_dereference_raw(idp->top);
563 max = 1 << n;
564
565 id = 0;
566 while (id < max) {
567 while (n > 0 && p) {
568 n -= IDR_BITS;
569 *paa++ = p;
570 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
571 }
572
573 if (p) {
574 error = fn(id, (void *)p, data);
575 if (error)
576 break;
577 }
578
579 id += 1 << n;
580 while (n < fls(id)) {
581 n += IDR_BITS;
582 p = *--paa;
583 }
584 }
585
586 return error;
587 }
588 EXPORT_SYMBOL(idr_for_each);
589
590 /**
591 * idr_get_next - lookup next object of id to given id.
592 * @idp: idr handle
593 * @nextidp: pointer to lookup key
594 *
595 * Returns pointer to registered object with id, which is next number to
596 * given id. After being looked up, *@nextidp will be updated for the next
597 * iteration.
598 *
599 * This function can be called under rcu_read_lock(), given that the leaf
600 * pointers lifetimes are correctly managed.
601 */
602 void *idr_get_next(struct idr *idp, int *nextidp)
603 {
604 struct idr_layer *p, *pa[MAX_LEVEL];
605 struct idr_layer **paa = &pa[0];
606 int id = *nextidp;
607 int n, max;
608
609 /* find first ent */
610 p = rcu_dereference_raw(idp->top);
611 if (!p)
612 return NULL;
613 n = (p->layer + 1) * IDR_BITS;
614 max = 1 << n;
615
616 while (id < max) {
617 while (n > 0 && p) {
618 n -= IDR_BITS;
619 *paa++ = p;
620 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
621 }
622
623 if (p) {
624 *nextidp = id;
625 return p;
626 }
627
628 id += 1 << n;
629 while (n < fls(id)) {
630 n += IDR_BITS;
631 p = *--paa;
632 }
633 }
634 return NULL;
635 }
636 EXPORT_SYMBOL(idr_get_next);
637
638
639 /**
640 * idr_replace - replace pointer for given id
641 * @idp: idr handle
642 * @ptr: pointer you want associated with the id
643 * @id: lookup key
644 *
645 * Replace the pointer registered with an id and return the old value.
646 * A %-ENOENT return indicates that @id was not found.
647 * A %-EINVAL return indicates that @id was not within valid constraints.
648 *
649 * The caller must serialize with writers.
650 */
651 void *idr_replace(struct idr *idp, void *ptr, int id)
652 {
653 int n;
654 struct idr_layer *p, *old_p;
655
656 p = idp->top;
657 if (!p)
658 return ERR_PTR(-EINVAL);
659
660 n = (p->layer+1) * IDR_BITS;
661
662 id &= MAX_ID_MASK;
663
664 if (id >= (1 << n))
665 return ERR_PTR(-EINVAL);
666
667 n -= IDR_BITS;
668 while ((n > 0) && p) {
669 p = p->ary[(id >> n) & IDR_MASK];
670 n -= IDR_BITS;
671 }
672
673 n = id & IDR_MASK;
674 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
675 return ERR_PTR(-ENOENT);
676
677 old_p = p->ary[n];
678 rcu_assign_pointer(p->ary[n], ptr);
679
680 return old_p;
681 }
682 EXPORT_SYMBOL(idr_replace);
683
684 void __init idr_init_cache(void)
685 {
686 idr_layer_cache = kmem_cache_create("idr_layer_cache",
687 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
688 }
689
690 /**
691 * idr_init - initialize idr handle
692 * @idp: idr handle
693 *
694 * This function is use to set up the handle (@idp) that you will pass
695 * to the rest of the functions.
696 */
697 void idr_init(struct idr *idp)
698 {
699 memset(idp, 0, sizeof(struct idr));
700 spin_lock_init(&idp->lock);
701 }
702 EXPORT_SYMBOL(idr_init);
703
704
705 /**
706 * DOC: IDA description
707 * IDA - IDR based ID allocator
708 *
709 * This is id allocator without id -> pointer translation. Memory
710 * usage is much lower than full blown idr because each id only
711 * occupies a bit. ida uses a custom leaf node which contains
712 * IDA_BITMAP_BITS slots.
713 *
714 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
715 */
716
717 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
718 {
719 unsigned long flags;
720
721 if (!ida->free_bitmap) {
722 spin_lock_irqsave(&ida->idr.lock, flags);
723 if (!ida->free_bitmap) {
724 ida->free_bitmap = bitmap;
725 bitmap = NULL;
726 }
727 spin_unlock_irqrestore(&ida->idr.lock, flags);
728 }
729
730 kfree(bitmap);
731 }
732
733 /**
734 * ida_pre_get - reserve resources for ida allocation
735 * @ida: ida handle
736 * @gfp_mask: memory allocation flag
737 *
738 * This function should be called prior to locking and calling the
739 * following function. It preallocates enough memory to satisfy the
740 * worst possible allocation.
741 *
742 * If the system is REALLY out of memory this function returns %0,
743 * otherwise %1.
744 */
745 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
746 {
747 /* allocate idr_layers */
748 if (!idr_pre_get(&ida->idr, gfp_mask))
749 return 0;
750
751 /* allocate free_bitmap */
752 if (!ida->free_bitmap) {
753 struct ida_bitmap *bitmap;
754
755 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
756 if (!bitmap)
757 return 0;
758
759 free_bitmap(ida, bitmap);
760 }
761
762 return 1;
763 }
764 EXPORT_SYMBOL(ida_pre_get);
765
766 /**
767 * ida_get_new_above - allocate new ID above or equal to a start id
768 * @ida: ida handle
769 * @starting_id: id to start search at
770 * @p_id: pointer to the allocated handle
771 *
772 * Allocate new ID above or equal to @starting_id. It should be called
773 * with any required locks.
774 *
775 * If memory is required, it will return %-EAGAIN, you should unlock
776 * and go back to the ida_pre_get() call. If the ida is full, it will
777 * return %-ENOSPC.
778 *
779 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
780 */
781 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
782 {
783 struct idr_layer *pa[MAX_LEVEL];
784 struct ida_bitmap *bitmap;
785 unsigned long flags;
786 int idr_id = starting_id / IDA_BITMAP_BITS;
787 int offset = starting_id % IDA_BITMAP_BITS;
788 int t, id;
789
790 restart:
791 /* get vacant slot */
792 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
793 if (t < 0)
794 return _idr_rc_to_errno(t);
795
796 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
797 return -ENOSPC;
798
799 if (t != idr_id)
800 offset = 0;
801 idr_id = t;
802
803 /* if bitmap isn't there, create a new one */
804 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
805 if (!bitmap) {
806 spin_lock_irqsave(&ida->idr.lock, flags);
807 bitmap = ida->free_bitmap;
808 ida->free_bitmap = NULL;
809 spin_unlock_irqrestore(&ida->idr.lock, flags);
810
811 if (!bitmap)
812 return -EAGAIN;
813
814 memset(bitmap, 0, sizeof(struct ida_bitmap));
815 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
816 (void *)bitmap);
817 pa[0]->count++;
818 }
819
820 /* lookup for empty slot */
821 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
822 if (t == IDA_BITMAP_BITS) {
823 /* no empty slot after offset, continue to the next chunk */
824 idr_id++;
825 offset = 0;
826 goto restart;
827 }
828
829 id = idr_id * IDA_BITMAP_BITS + t;
830 if (id >= MAX_ID_BIT)
831 return -ENOSPC;
832
833 __set_bit(t, bitmap->bitmap);
834 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
835 idr_mark_full(pa, idr_id);
836
837 *p_id = id;
838
839 /* Each leaf node can handle nearly a thousand slots and the
840 * whole idea of ida is to have small memory foot print.
841 * Throw away extra resources one by one after each successful
842 * allocation.
843 */
844 if (ida->idr.id_free_cnt || ida->free_bitmap) {
845 struct idr_layer *p = get_from_free_list(&ida->idr);
846 if (p)
847 kmem_cache_free(idr_layer_cache, p);
848 }
849
850 return 0;
851 }
852 EXPORT_SYMBOL(ida_get_new_above);
853
854 /**
855 * ida_get_new - allocate new ID
856 * @ida: idr handle
857 * @p_id: pointer to the allocated handle
858 *
859 * Allocate new ID. It should be called with any required locks.
860 *
861 * If memory is required, it will return %-EAGAIN, you should unlock
862 * and go back to the idr_pre_get() call. If the idr is full, it will
863 * return %-ENOSPC.
864 *
865 * @p_id returns a value in the range %0 ... %0x7fffffff.
866 */
867 int ida_get_new(struct ida *ida, int *p_id)
868 {
869 return ida_get_new_above(ida, 0, p_id);
870 }
871 EXPORT_SYMBOL(ida_get_new);
872
873 /**
874 * ida_remove - remove the given ID
875 * @ida: ida handle
876 * @id: ID to free
877 */
878 void ida_remove(struct ida *ida, int id)
879 {
880 struct idr_layer *p = ida->idr.top;
881 int shift = (ida->idr.layers - 1) * IDR_BITS;
882 int idr_id = id / IDA_BITMAP_BITS;
883 int offset = id % IDA_BITMAP_BITS;
884 int n;
885 struct ida_bitmap *bitmap;
886
887 /* clear full bits while looking up the leaf idr_layer */
888 while ((shift > 0) && p) {
889 n = (idr_id >> shift) & IDR_MASK;
890 __clear_bit(n, &p->bitmap);
891 p = p->ary[n];
892 shift -= IDR_BITS;
893 }
894
895 if (p == NULL)
896 goto err;
897
898 n = idr_id & IDR_MASK;
899 __clear_bit(n, &p->bitmap);
900
901 bitmap = (void *)p->ary[n];
902 if (!test_bit(offset, bitmap->bitmap))
903 goto err;
904
905 /* update bitmap and remove it if empty */
906 __clear_bit(offset, bitmap->bitmap);
907 if (--bitmap->nr_busy == 0) {
908 __set_bit(n, &p->bitmap); /* to please idr_remove() */
909 idr_remove(&ida->idr, idr_id);
910 free_bitmap(ida, bitmap);
911 }
912
913 return;
914
915 err:
916 printk(KERN_WARNING
917 "ida_remove called for id=%d which is not allocated.\n", id);
918 }
919 EXPORT_SYMBOL(ida_remove);
920
921 /**
922 * ida_destroy - release all cached layers within an ida tree
923 * @ida: ida handle
924 */
925 void ida_destroy(struct ida *ida)
926 {
927 idr_destroy(&ida->idr);
928 kfree(ida->free_bitmap);
929 }
930 EXPORT_SYMBOL(ida_destroy);
931
932 /**
933 * ida_simple_get - get a new id.
934 * @ida: the (initialized) ida.
935 * @start: the minimum id (inclusive, < 0x8000000)
936 * @end: the maximum id (exclusive, < 0x8000000 or 0)
937 * @gfp_mask: memory allocation flags
938 *
939 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
940 * On memory allocation failure, returns -ENOMEM.
941 *
942 * Use ida_simple_remove() to get rid of an id.
943 */
944 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
945 gfp_t gfp_mask)
946 {
947 int ret, id;
948 unsigned int max;
949 unsigned long flags;
950
951 BUG_ON((int)start < 0);
952 BUG_ON((int)end < 0);
953
954 if (end == 0)
955 max = 0x80000000;
956 else {
957 BUG_ON(end < start);
958 max = end - 1;
959 }
960
961 again:
962 if (!ida_pre_get(ida, gfp_mask))
963 return -ENOMEM;
964
965 spin_lock_irqsave(&simple_ida_lock, flags);
966 ret = ida_get_new_above(ida, start, &id);
967 if (!ret) {
968 if (id > max) {
969 ida_remove(ida, id);
970 ret = -ENOSPC;
971 } else {
972 ret = id;
973 }
974 }
975 spin_unlock_irqrestore(&simple_ida_lock, flags);
976
977 if (unlikely(ret == -EAGAIN))
978 goto again;
979
980 return ret;
981 }
982 EXPORT_SYMBOL(ida_simple_get);
983
984 /**
985 * ida_simple_remove - remove an allocated id.
986 * @ida: the (initialized) ida.
987 * @id: the id returned by ida_simple_get.
988 */
989 void ida_simple_remove(struct ida *ida, unsigned int id)
990 {
991 unsigned long flags;
992
993 BUG_ON((int)id < 0);
994 spin_lock_irqsave(&simple_ida_lock, flags);
995 ida_remove(ida, id);
996 spin_unlock_irqrestore(&simple_ida_lock, flags);
997 }
998 EXPORT_SYMBOL(ida_simple_remove);
999
1000 /**
1001 * ida_init - initialize ida handle
1002 * @ida: ida handle
1003 *
1004 * This function is use to set up the handle (@ida) that you will pass
1005 * to the rest of the functions.
1006 */
1007 void ida_init(struct ida *ida)
1008 {
1009 memset(ida, 0, sizeof(struct ida));
1010 idr_init(&ida->idr);
1011
1012 }
1013 EXPORT_SYMBOL(ida_init);