Merge commit 'kumar/next' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/workqueue.h>
38
39 /*
40 * The per-CPU workqueue (if single thread, we always use the first
41 * possible cpu).
42 */
43 struct cpu_workqueue_struct {
44
45 spinlock_t lock;
46
47 struct list_head worklist;
48 wait_queue_head_t more_work;
49 struct work_struct *current_work;
50
51 struct workqueue_struct *wq;
52 struct task_struct *thread;
53 } ____cacheline_aligned;
54
55 /*
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
58 */
59 struct workqueue_struct {
60 struct cpu_workqueue_struct *cpu_wq;
61 struct list_head list;
62 const char *name;
63 int singlethread;
64 int freezeable; /* Freeze threads during suspend */
65 int rt;
66 #ifdef CONFIG_LOCKDEP
67 struct lockdep_map lockdep_map;
68 #endif
69 };
70
71 #ifdef CONFIG_DEBUG_OBJECTS_WORK
72
73 static struct debug_obj_descr work_debug_descr;
74
75 /*
76 * fixup_init is called when:
77 * - an active object is initialized
78 */
79 static int work_fixup_init(void *addr, enum debug_obj_state state)
80 {
81 struct work_struct *work = addr;
82
83 switch (state) {
84 case ODEBUG_STATE_ACTIVE:
85 cancel_work_sync(work);
86 debug_object_init(work, &work_debug_descr);
87 return 1;
88 default:
89 return 0;
90 }
91 }
92
93 /*
94 * fixup_activate is called when:
95 * - an active object is activated
96 * - an unknown object is activated (might be a statically initialized object)
97 */
98 static int work_fixup_activate(void *addr, enum debug_obj_state state)
99 {
100 struct work_struct *work = addr;
101
102 switch (state) {
103
104 case ODEBUG_STATE_NOTAVAILABLE:
105 /*
106 * This is not really a fixup. The work struct was
107 * statically initialized. We just make sure that it
108 * is tracked in the object tracker.
109 */
110 if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) {
111 debug_object_init(work, &work_debug_descr);
112 debug_object_activate(work, &work_debug_descr);
113 return 0;
114 }
115 WARN_ON_ONCE(1);
116 return 0;
117
118 case ODEBUG_STATE_ACTIVE:
119 WARN_ON(1);
120
121 default:
122 return 0;
123 }
124 }
125
126 /*
127 * fixup_free is called when:
128 * - an active object is freed
129 */
130 static int work_fixup_free(void *addr, enum debug_obj_state state)
131 {
132 struct work_struct *work = addr;
133
134 switch (state) {
135 case ODEBUG_STATE_ACTIVE:
136 cancel_work_sync(work);
137 debug_object_free(work, &work_debug_descr);
138 return 1;
139 default:
140 return 0;
141 }
142 }
143
144 static struct debug_obj_descr work_debug_descr = {
145 .name = "work_struct",
146 .fixup_init = work_fixup_init,
147 .fixup_activate = work_fixup_activate,
148 .fixup_free = work_fixup_free,
149 };
150
151 static inline void debug_work_activate(struct work_struct *work)
152 {
153 debug_object_activate(work, &work_debug_descr);
154 }
155
156 static inline void debug_work_deactivate(struct work_struct *work)
157 {
158 debug_object_deactivate(work, &work_debug_descr);
159 }
160
161 void __init_work(struct work_struct *work, int onstack)
162 {
163 if (onstack)
164 debug_object_init_on_stack(work, &work_debug_descr);
165 else
166 debug_object_init(work, &work_debug_descr);
167 }
168 EXPORT_SYMBOL_GPL(__init_work);
169
170 void destroy_work_on_stack(struct work_struct *work)
171 {
172 debug_object_free(work, &work_debug_descr);
173 }
174 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
175
176 #else
177 static inline void debug_work_activate(struct work_struct *work) { }
178 static inline void debug_work_deactivate(struct work_struct *work) { }
179 #endif
180
181 /* Serializes the accesses to the list of workqueues. */
182 static DEFINE_SPINLOCK(workqueue_lock);
183 static LIST_HEAD(workqueues);
184
185 static int singlethread_cpu __read_mostly;
186 static const struct cpumask *cpu_singlethread_map __read_mostly;
187 /*
188 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
189 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
190 * which comes in between can't use for_each_online_cpu(). We could
191 * use cpu_possible_map, the cpumask below is more a documentation
192 * than optimization.
193 */
194 static cpumask_var_t cpu_populated_map __read_mostly;
195
196 /* If it's single threaded, it isn't in the list of workqueues. */
197 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
198 {
199 return wq->singlethread;
200 }
201
202 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
203 {
204 return is_wq_single_threaded(wq)
205 ? cpu_singlethread_map : cpu_populated_map;
206 }
207
208 static
209 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
210 {
211 if (unlikely(is_wq_single_threaded(wq)))
212 cpu = singlethread_cpu;
213 return per_cpu_ptr(wq->cpu_wq, cpu);
214 }
215
216 /*
217 * Set the workqueue on which a work item is to be run
218 * - Must *only* be called if the pending flag is set
219 */
220 static inline void set_wq_data(struct work_struct *work,
221 struct cpu_workqueue_struct *cwq)
222 {
223 unsigned long new;
224
225 BUG_ON(!work_pending(work));
226
227 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
228 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
229 atomic_long_set(&work->data, new);
230 }
231
232 /*
233 * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued.
234 */
235 static inline void clear_wq_data(struct work_struct *work)
236 {
237 unsigned long flags = *work_data_bits(work) &
238 (1UL << WORK_STRUCT_STATIC);
239 atomic_long_set(&work->data, flags);
240 }
241
242 static inline
243 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
244 {
245 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
246 }
247
248 static void insert_work(struct cpu_workqueue_struct *cwq,
249 struct work_struct *work, struct list_head *head)
250 {
251 trace_workqueue_insertion(cwq->thread, work);
252
253 set_wq_data(work, cwq);
254 /*
255 * Ensure that we get the right work->data if we see the
256 * result of list_add() below, see try_to_grab_pending().
257 */
258 smp_wmb();
259 list_add_tail(&work->entry, head);
260 wake_up(&cwq->more_work);
261 }
262
263 static void __queue_work(struct cpu_workqueue_struct *cwq,
264 struct work_struct *work)
265 {
266 unsigned long flags;
267
268 debug_work_activate(work);
269 spin_lock_irqsave(&cwq->lock, flags);
270 insert_work(cwq, work, &cwq->worklist);
271 spin_unlock_irqrestore(&cwq->lock, flags);
272 }
273
274 /**
275 * queue_work - queue work on a workqueue
276 * @wq: workqueue to use
277 * @work: work to queue
278 *
279 * Returns 0 if @work was already on a queue, non-zero otherwise.
280 *
281 * We queue the work to the CPU on which it was submitted, but if the CPU dies
282 * it can be processed by another CPU.
283 */
284 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
285 {
286 int ret;
287
288 ret = queue_work_on(get_cpu(), wq, work);
289 put_cpu();
290
291 return ret;
292 }
293 EXPORT_SYMBOL_GPL(queue_work);
294
295 /**
296 * queue_work_on - queue work on specific cpu
297 * @cpu: CPU number to execute work on
298 * @wq: workqueue to use
299 * @work: work to queue
300 *
301 * Returns 0 if @work was already on a queue, non-zero otherwise.
302 *
303 * We queue the work to a specific CPU, the caller must ensure it
304 * can't go away.
305 */
306 int
307 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
308 {
309 int ret = 0;
310
311 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
312 BUG_ON(!list_empty(&work->entry));
313 __queue_work(wq_per_cpu(wq, cpu), work);
314 ret = 1;
315 }
316 return ret;
317 }
318 EXPORT_SYMBOL_GPL(queue_work_on);
319
320 static void delayed_work_timer_fn(unsigned long __data)
321 {
322 struct delayed_work *dwork = (struct delayed_work *)__data;
323 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
324 struct workqueue_struct *wq = cwq->wq;
325
326 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
327 }
328
329 /**
330 * queue_delayed_work - queue work on a workqueue after delay
331 * @wq: workqueue to use
332 * @dwork: delayable work to queue
333 * @delay: number of jiffies to wait before queueing
334 *
335 * Returns 0 if @work was already on a queue, non-zero otherwise.
336 */
337 int queue_delayed_work(struct workqueue_struct *wq,
338 struct delayed_work *dwork, unsigned long delay)
339 {
340 if (delay == 0)
341 return queue_work(wq, &dwork->work);
342
343 return queue_delayed_work_on(-1, wq, dwork, delay);
344 }
345 EXPORT_SYMBOL_GPL(queue_delayed_work);
346
347 /**
348 * queue_delayed_work_on - queue work on specific CPU after delay
349 * @cpu: CPU number to execute work on
350 * @wq: workqueue to use
351 * @dwork: work to queue
352 * @delay: number of jiffies to wait before queueing
353 *
354 * Returns 0 if @work was already on a queue, non-zero otherwise.
355 */
356 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
357 struct delayed_work *dwork, unsigned long delay)
358 {
359 int ret = 0;
360 struct timer_list *timer = &dwork->timer;
361 struct work_struct *work = &dwork->work;
362
363 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
364 BUG_ON(timer_pending(timer));
365 BUG_ON(!list_empty(&work->entry));
366
367 timer_stats_timer_set_start_info(&dwork->timer);
368
369 /* This stores cwq for the moment, for the timer_fn */
370 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
371 timer->expires = jiffies + delay;
372 timer->data = (unsigned long)dwork;
373 timer->function = delayed_work_timer_fn;
374
375 if (unlikely(cpu >= 0))
376 add_timer_on(timer, cpu);
377 else
378 add_timer(timer);
379 ret = 1;
380 }
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
384
385 static void run_workqueue(struct cpu_workqueue_struct *cwq)
386 {
387 spin_lock_irq(&cwq->lock);
388 while (!list_empty(&cwq->worklist)) {
389 struct work_struct *work = list_entry(cwq->worklist.next,
390 struct work_struct, entry);
391 work_func_t f = work->func;
392 #ifdef CONFIG_LOCKDEP
393 /*
394 * It is permissible to free the struct work_struct
395 * from inside the function that is called from it,
396 * this we need to take into account for lockdep too.
397 * To avoid bogus "held lock freed" warnings as well
398 * as problems when looking into work->lockdep_map,
399 * make a copy and use that here.
400 */
401 struct lockdep_map lockdep_map = work->lockdep_map;
402 #endif
403 trace_workqueue_execution(cwq->thread, work);
404 debug_work_deactivate(work);
405 cwq->current_work = work;
406 list_del_init(cwq->worklist.next);
407 spin_unlock_irq(&cwq->lock);
408
409 BUG_ON(get_wq_data(work) != cwq);
410 work_clear_pending(work);
411 lock_map_acquire(&cwq->wq->lockdep_map);
412 lock_map_acquire(&lockdep_map);
413 f(work);
414 lock_map_release(&lockdep_map);
415 lock_map_release(&cwq->wq->lockdep_map);
416
417 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
418 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
419 "%s/0x%08x/%d\n",
420 current->comm, preempt_count(),
421 task_pid_nr(current));
422 printk(KERN_ERR " last function: ");
423 print_symbol("%s\n", (unsigned long)f);
424 debug_show_held_locks(current);
425 dump_stack();
426 }
427
428 spin_lock_irq(&cwq->lock);
429 cwq->current_work = NULL;
430 }
431 spin_unlock_irq(&cwq->lock);
432 }
433
434 static int worker_thread(void *__cwq)
435 {
436 struct cpu_workqueue_struct *cwq = __cwq;
437 DEFINE_WAIT(wait);
438
439 if (cwq->wq->freezeable)
440 set_freezable();
441
442 for (;;) {
443 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
444 if (!freezing(current) &&
445 !kthread_should_stop() &&
446 list_empty(&cwq->worklist))
447 schedule();
448 finish_wait(&cwq->more_work, &wait);
449
450 try_to_freeze();
451
452 if (kthread_should_stop())
453 break;
454
455 run_workqueue(cwq);
456 }
457
458 return 0;
459 }
460
461 struct wq_barrier {
462 struct work_struct work;
463 struct completion done;
464 };
465
466 static void wq_barrier_func(struct work_struct *work)
467 {
468 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
469 complete(&barr->done);
470 }
471
472 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
473 struct wq_barrier *barr, struct list_head *head)
474 {
475 /*
476 * debugobject calls are safe here even with cwq->lock locked
477 * as we know for sure that this will not trigger any of the
478 * checks and call back into the fixup functions where we
479 * might deadlock.
480 */
481 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
482 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
483
484 init_completion(&barr->done);
485
486 debug_work_activate(&barr->work);
487 insert_work(cwq, &barr->work, head);
488 }
489
490 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
491 {
492 int active = 0;
493 struct wq_barrier barr;
494
495 WARN_ON(cwq->thread == current);
496
497 spin_lock_irq(&cwq->lock);
498 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
499 insert_wq_barrier(cwq, &barr, &cwq->worklist);
500 active = 1;
501 }
502 spin_unlock_irq(&cwq->lock);
503
504 if (active) {
505 wait_for_completion(&barr.done);
506 destroy_work_on_stack(&barr.work);
507 }
508
509 return active;
510 }
511
512 /**
513 * flush_workqueue - ensure that any scheduled work has run to completion.
514 * @wq: workqueue to flush
515 *
516 * Forces execution of the workqueue and blocks until its completion.
517 * This is typically used in driver shutdown handlers.
518 *
519 * We sleep until all works which were queued on entry have been handled,
520 * but we are not livelocked by new incoming ones.
521 *
522 * This function used to run the workqueues itself. Now we just wait for the
523 * helper threads to do it.
524 */
525 void flush_workqueue(struct workqueue_struct *wq)
526 {
527 const struct cpumask *cpu_map = wq_cpu_map(wq);
528 int cpu;
529
530 might_sleep();
531 lock_map_acquire(&wq->lockdep_map);
532 lock_map_release(&wq->lockdep_map);
533 for_each_cpu(cpu, cpu_map)
534 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
535 }
536 EXPORT_SYMBOL_GPL(flush_workqueue);
537
538 /**
539 * flush_work - block until a work_struct's callback has terminated
540 * @work: the work which is to be flushed
541 *
542 * Returns false if @work has already terminated.
543 *
544 * It is expected that, prior to calling flush_work(), the caller has
545 * arranged for the work to not be requeued, otherwise it doesn't make
546 * sense to use this function.
547 */
548 int flush_work(struct work_struct *work)
549 {
550 struct cpu_workqueue_struct *cwq;
551 struct list_head *prev;
552 struct wq_barrier barr;
553
554 might_sleep();
555 cwq = get_wq_data(work);
556 if (!cwq)
557 return 0;
558
559 lock_map_acquire(&cwq->wq->lockdep_map);
560 lock_map_release(&cwq->wq->lockdep_map);
561
562 prev = NULL;
563 spin_lock_irq(&cwq->lock);
564 if (!list_empty(&work->entry)) {
565 /*
566 * See the comment near try_to_grab_pending()->smp_rmb().
567 * If it was re-queued under us we are not going to wait.
568 */
569 smp_rmb();
570 if (unlikely(cwq != get_wq_data(work)))
571 goto out;
572 prev = &work->entry;
573 } else {
574 if (cwq->current_work != work)
575 goto out;
576 prev = &cwq->worklist;
577 }
578 insert_wq_barrier(cwq, &barr, prev->next);
579 out:
580 spin_unlock_irq(&cwq->lock);
581 if (!prev)
582 return 0;
583
584 wait_for_completion(&barr.done);
585 destroy_work_on_stack(&barr.work);
586 return 1;
587 }
588 EXPORT_SYMBOL_GPL(flush_work);
589
590 /*
591 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
592 * so this work can't be re-armed in any way.
593 */
594 static int try_to_grab_pending(struct work_struct *work)
595 {
596 struct cpu_workqueue_struct *cwq;
597 int ret = -1;
598
599 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
600 return 0;
601
602 /*
603 * The queueing is in progress, or it is already queued. Try to
604 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
605 */
606
607 cwq = get_wq_data(work);
608 if (!cwq)
609 return ret;
610
611 spin_lock_irq(&cwq->lock);
612 if (!list_empty(&work->entry)) {
613 /*
614 * This work is queued, but perhaps we locked the wrong cwq.
615 * In that case we must see the new value after rmb(), see
616 * insert_work()->wmb().
617 */
618 smp_rmb();
619 if (cwq == get_wq_data(work)) {
620 debug_work_deactivate(work);
621 list_del_init(&work->entry);
622 ret = 1;
623 }
624 }
625 spin_unlock_irq(&cwq->lock);
626
627 return ret;
628 }
629
630 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
631 struct work_struct *work)
632 {
633 struct wq_barrier barr;
634 int running = 0;
635
636 spin_lock_irq(&cwq->lock);
637 if (unlikely(cwq->current_work == work)) {
638 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
639 running = 1;
640 }
641 spin_unlock_irq(&cwq->lock);
642
643 if (unlikely(running)) {
644 wait_for_completion(&barr.done);
645 destroy_work_on_stack(&barr.work);
646 }
647 }
648
649 static void wait_on_work(struct work_struct *work)
650 {
651 struct cpu_workqueue_struct *cwq;
652 struct workqueue_struct *wq;
653 const struct cpumask *cpu_map;
654 int cpu;
655
656 might_sleep();
657
658 lock_map_acquire(&work->lockdep_map);
659 lock_map_release(&work->lockdep_map);
660
661 cwq = get_wq_data(work);
662 if (!cwq)
663 return;
664
665 wq = cwq->wq;
666 cpu_map = wq_cpu_map(wq);
667
668 for_each_cpu(cpu, cpu_map)
669 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
670 }
671
672 static int __cancel_work_timer(struct work_struct *work,
673 struct timer_list* timer)
674 {
675 int ret;
676
677 do {
678 ret = (timer && likely(del_timer(timer)));
679 if (!ret)
680 ret = try_to_grab_pending(work);
681 wait_on_work(work);
682 } while (unlikely(ret < 0));
683
684 clear_wq_data(work);
685 return ret;
686 }
687
688 /**
689 * cancel_work_sync - block until a work_struct's callback has terminated
690 * @work: the work which is to be flushed
691 *
692 * Returns true if @work was pending.
693 *
694 * cancel_work_sync() will cancel the work if it is queued. If the work's
695 * callback appears to be running, cancel_work_sync() will block until it
696 * has completed.
697 *
698 * It is possible to use this function if the work re-queues itself. It can
699 * cancel the work even if it migrates to another workqueue, however in that
700 * case it only guarantees that work->func() has completed on the last queued
701 * workqueue.
702 *
703 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
704 * pending, otherwise it goes into a busy-wait loop until the timer expires.
705 *
706 * The caller must ensure that workqueue_struct on which this work was last
707 * queued can't be destroyed before this function returns.
708 */
709 int cancel_work_sync(struct work_struct *work)
710 {
711 return __cancel_work_timer(work, NULL);
712 }
713 EXPORT_SYMBOL_GPL(cancel_work_sync);
714
715 /**
716 * cancel_delayed_work_sync - reliably kill off a delayed work.
717 * @dwork: the delayed work struct
718 *
719 * Returns true if @dwork was pending.
720 *
721 * It is possible to use this function if @dwork rearms itself via queue_work()
722 * or queue_delayed_work(). See also the comment for cancel_work_sync().
723 */
724 int cancel_delayed_work_sync(struct delayed_work *dwork)
725 {
726 return __cancel_work_timer(&dwork->work, &dwork->timer);
727 }
728 EXPORT_SYMBOL(cancel_delayed_work_sync);
729
730 static struct workqueue_struct *keventd_wq __read_mostly;
731
732 /**
733 * schedule_work - put work task in global workqueue
734 * @work: job to be done
735 *
736 * Returns zero if @work was already on the kernel-global workqueue and
737 * non-zero otherwise.
738 *
739 * This puts a job in the kernel-global workqueue if it was not already
740 * queued and leaves it in the same position on the kernel-global
741 * workqueue otherwise.
742 */
743 int schedule_work(struct work_struct *work)
744 {
745 return queue_work(keventd_wq, work);
746 }
747 EXPORT_SYMBOL(schedule_work);
748
749 /*
750 * schedule_work_on - put work task on a specific cpu
751 * @cpu: cpu to put the work task on
752 * @work: job to be done
753 *
754 * This puts a job on a specific cpu
755 */
756 int schedule_work_on(int cpu, struct work_struct *work)
757 {
758 return queue_work_on(cpu, keventd_wq, work);
759 }
760 EXPORT_SYMBOL(schedule_work_on);
761
762 /**
763 * schedule_delayed_work - put work task in global workqueue after delay
764 * @dwork: job to be done
765 * @delay: number of jiffies to wait or 0 for immediate execution
766 *
767 * After waiting for a given time this puts a job in the kernel-global
768 * workqueue.
769 */
770 int schedule_delayed_work(struct delayed_work *dwork,
771 unsigned long delay)
772 {
773 return queue_delayed_work(keventd_wq, dwork, delay);
774 }
775 EXPORT_SYMBOL(schedule_delayed_work);
776
777 /**
778 * flush_delayed_work - block until a dwork_struct's callback has terminated
779 * @dwork: the delayed work which is to be flushed
780 *
781 * Any timeout is cancelled, and any pending work is run immediately.
782 */
783 void flush_delayed_work(struct delayed_work *dwork)
784 {
785 if (del_timer_sync(&dwork->timer)) {
786 struct cpu_workqueue_struct *cwq;
787 cwq = wq_per_cpu(get_wq_data(&dwork->work)->wq, get_cpu());
788 __queue_work(cwq, &dwork->work);
789 put_cpu();
790 }
791 flush_work(&dwork->work);
792 }
793 EXPORT_SYMBOL(flush_delayed_work);
794
795 /**
796 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
797 * @cpu: cpu to use
798 * @dwork: job to be done
799 * @delay: number of jiffies to wait
800 *
801 * After waiting for a given time this puts a job in the kernel-global
802 * workqueue on the specified CPU.
803 */
804 int schedule_delayed_work_on(int cpu,
805 struct delayed_work *dwork, unsigned long delay)
806 {
807 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
808 }
809 EXPORT_SYMBOL(schedule_delayed_work_on);
810
811 /**
812 * schedule_on_each_cpu - call a function on each online CPU from keventd
813 * @func: the function to call
814 *
815 * Returns zero on success.
816 * Returns -ve errno on failure.
817 *
818 * schedule_on_each_cpu() is very slow.
819 */
820 int schedule_on_each_cpu(work_func_t func)
821 {
822 int cpu;
823 int orig = -1;
824 struct work_struct *works;
825
826 works = alloc_percpu(struct work_struct);
827 if (!works)
828 return -ENOMEM;
829
830 get_online_cpus();
831
832 /*
833 * When running in keventd don't schedule a work item on
834 * itself. Can just call directly because the work queue is
835 * already bound. This also is faster.
836 */
837 if (current_is_keventd())
838 orig = raw_smp_processor_id();
839
840 for_each_online_cpu(cpu) {
841 struct work_struct *work = per_cpu_ptr(works, cpu);
842
843 INIT_WORK(work, func);
844 if (cpu != orig)
845 schedule_work_on(cpu, work);
846 }
847 if (orig >= 0)
848 func(per_cpu_ptr(works, orig));
849
850 for_each_online_cpu(cpu)
851 flush_work(per_cpu_ptr(works, cpu));
852
853 put_online_cpus();
854 free_percpu(works);
855 return 0;
856 }
857
858 /**
859 * flush_scheduled_work - ensure that any scheduled work has run to completion.
860 *
861 * Forces execution of the kernel-global workqueue and blocks until its
862 * completion.
863 *
864 * Think twice before calling this function! It's very easy to get into
865 * trouble if you don't take great care. Either of the following situations
866 * will lead to deadlock:
867 *
868 * One of the work items currently on the workqueue needs to acquire
869 * a lock held by your code or its caller.
870 *
871 * Your code is running in the context of a work routine.
872 *
873 * They will be detected by lockdep when they occur, but the first might not
874 * occur very often. It depends on what work items are on the workqueue and
875 * what locks they need, which you have no control over.
876 *
877 * In most situations flushing the entire workqueue is overkill; you merely
878 * need to know that a particular work item isn't queued and isn't running.
879 * In such cases you should use cancel_delayed_work_sync() or
880 * cancel_work_sync() instead.
881 */
882 void flush_scheduled_work(void)
883 {
884 flush_workqueue(keventd_wq);
885 }
886 EXPORT_SYMBOL(flush_scheduled_work);
887
888 /**
889 * execute_in_process_context - reliably execute the routine with user context
890 * @fn: the function to execute
891 * @ew: guaranteed storage for the execute work structure (must
892 * be available when the work executes)
893 *
894 * Executes the function immediately if process context is available,
895 * otherwise schedules the function for delayed execution.
896 *
897 * Returns: 0 - function was executed
898 * 1 - function was scheduled for execution
899 */
900 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
901 {
902 if (!in_interrupt()) {
903 fn(&ew->work);
904 return 0;
905 }
906
907 INIT_WORK(&ew->work, fn);
908 schedule_work(&ew->work);
909
910 return 1;
911 }
912 EXPORT_SYMBOL_GPL(execute_in_process_context);
913
914 int keventd_up(void)
915 {
916 return keventd_wq != NULL;
917 }
918
919 int current_is_keventd(void)
920 {
921 struct cpu_workqueue_struct *cwq;
922 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
923 int ret = 0;
924
925 BUG_ON(!keventd_wq);
926
927 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
928 if (current == cwq->thread)
929 ret = 1;
930
931 return ret;
932
933 }
934
935 static struct cpu_workqueue_struct *
936 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
937 {
938 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
939
940 cwq->wq = wq;
941 spin_lock_init(&cwq->lock);
942 INIT_LIST_HEAD(&cwq->worklist);
943 init_waitqueue_head(&cwq->more_work);
944
945 return cwq;
946 }
947
948 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
949 {
950 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
951 struct workqueue_struct *wq = cwq->wq;
952 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
953 struct task_struct *p;
954
955 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
956 /*
957 * Nobody can add the work_struct to this cwq,
958 * if (caller is __create_workqueue)
959 * nobody should see this wq
960 * else // caller is CPU_UP_PREPARE
961 * cpu is not on cpu_online_map
962 * so we can abort safely.
963 */
964 if (IS_ERR(p))
965 return PTR_ERR(p);
966 if (cwq->wq->rt)
967 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
968 cwq->thread = p;
969
970 trace_workqueue_creation(cwq->thread, cpu);
971
972 return 0;
973 }
974
975 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
976 {
977 struct task_struct *p = cwq->thread;
978
979 if (p != NULL) {
980 if (cpu >= 0)
981 kthread_bind(p, cpu);
982 wake_up_process(p);
983 }
984 }
985
986 struct workqueue_struct *__create_workqueue_key(const char *name,
987 int singlethread,
988 int freezeable,
989 int rt,
990 struct lock_class_key *key,
991 const char *lock_name)
992 {
993 struct workqueue_struct *wq;
994 struct cpu_workqueue_struct *cwq;
995 int err = 0, cpu;
996
997 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
998 if (!wq)
999 return NULL;
1000
1001 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
1002 if (!wq->cpu_wq) {
1003 kfree(wq);
1004 return NULL;
1005 }
1006
1007 wq->name = name;
1008 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
1009 wq->singlethread = singlethread;
1010 wq->freezeable = freezeable;
1011 wq->rt = rt;
1012 INIT_LIST_HEAD(&wq->list);
1013
1014 if (singlethread) {
1015 cwq = init_cpu_workqueue(wq, singlethread_cpu);
1016 err = create_workqueue_thread(cwq, singlethread_cpu);
1017 start_workqueue_thread(cwq, -1);
1018 } else {
1019 cpu_maps_update_begin();
1020 /*
1021 * We must place this wq on list even if the code below fails.
1022 * cpu_down(cpu) can remove cpu from cpu_populated_map before
1023 * destroy_workqueue() takes the lock, in that case we leak
1024 * cwq[cpu]->thread.
1025 */
1026 spin_lock(&workqueue_lock);
1027 list_add(&wq->list, &workqueues);
1028 spin_unlock(&workqueue_lock);
1029 /*
1030 * We must initialize cwqs for each possible cpu even if we
1031 * are going to call destroy_workqueue() finally. Otherwise
1032 * cpu_up() can hit the uninitialized cwq once we drop the
1033 * lock.
1034 */
1035 for_each_possible_cpu(cpu) {
1036 cwq = init_cpu_workqueue(wq, cpu);
1037 if (err || !cpu_online(cpu))
1038 continue;
1039 err = create_workqueue_thread(cwq, cpu);
1040 start_workqueue_thread(cwq, cpu);
1041 }
1042 cpu_maps_update_done();
1043 }
1044
1045 if (err) {
1046 destroy_workqueue(wq);
1047 wq = NULL;
1048 }
1049 return wq;
1050 }
1051 EXPORT_SYMBOL_GPL(__create_workqueue_key);
1052
1053 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
1054 {
1055 /*
1056 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
1057 * cpu_add_remove_lock protects cwq->thread.
1058 */
1059 if (cwq->thread == NULL)
1060 return;
1061
1062 lock_map_acquire(&cwq->wq->lockdep_map);
1063 lock_map_release(&cwq->wq->lockdep_map);
1064
1065 flush_cpu_workqueue(cwq);
1066 /*
1067 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
1068 * a concurrent flush_workqueue() can insert a barrier after us.
1069 * However, in that case run_workqueue() won't return and check
1070 * kthread_should_stop() until it flushes all work_struct's.
1071 * When ->worklist becomes empty it is safe to exit because no
1072 * more work_structs can be queued on this cwq: flush_workqueue
1073 * checks list_empty(), and a "normal" queue_work() can't use
1074 * a dead CPU.
1075 */
1076 trace_workqueue_destruction(cwq->thread);
1077 kthread_stop(cwq->thread);
1078 cwq->thread = NULL;
1079 }
1080
1081 /**
1082 * destroy_workqueue - safely terminate a workqueue
1083 * @wq: target workqueue
1084 *
1085 * Safely destroy a workqueue. All work currently pending will be done first.
1086 */
1087 void destroy_workqueue(struct workqueue_struct *wq)
1088 {
1089 const struct cpumask *cpu_map = wq_cpu_map(wq);
1090 int cpu;
1091
1092 cpu_maps_update_begin();
1093 spin_lock(&workqueue_lock);
1094 list_del(&wq->list);
1095 spin_unlock(&workqueue_lock);
1096
1097 for_each_cpu(cpu, cpu_map)
1098 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
1099 cpu_maps_update_done();
1100
1101 free_percpu(wq->cpu_wq);
1102 kfree(wq);
1103 }
1104 EXPORT_SYMBOL_GPL(destroy_workqueue);
1105
1106 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
1107 unsigned long action,
1108 void *hcpu)
1109 {
1110 unsigned int cpu = (unsigned long)hcpu;
1111 struct cpu_workqueue_struct *cwq;
1112 struct workqueue_struct *wq;
1113 int err = 0;
1114
1115 action &= ~CPU_TASKS_FROZEN;
1116
1117 switch (action) {
1118 case CPU_UP_PREPARE:
1119 cpumask_set_cpu(cpu, cpu_populated_map);
1120 }
1121 undo:
1122 list_for_each_entry(wq, &workqueues, list) {
1123 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1124
1125 switch (action) {
1126 case CPU_UP_PREPARE:
1127 err = create_workqueue_thread(cwq, cpu);
1128 if (!err)
1129 break;
1130 printk(KERN_ERR "workqueue [%s] for %i failed\n",
1131 wq->name, cpu);
1132 action = CPU_UP_CANCELED;
1133 err = -ENOMEM;
1134 goto undo;
1135
1136 case CPU_ONLINE:
1137 start_workqueue_thread(cwq, cpu);
1138 break;
1139
1140 case CPU_UP_CANCELED:
1141 start_workqueue_thread(cwq, -1);
1142 case CPU_POST_DEAD:
1143 cleanup_workqueue_thread(cwq);
1144 break;
1145 }
1146 }
1147
1148 switch (action) {
1149 case CPU_UP_CANCELED:
1150 case CPU_POST_DEAD:
1151 cpumask_clear_cpu(cpu, cpu_populated_map);
1152 }
1153
1154 return notifier_from_errno(err);
1155 }
1156
1157 #ifdef CONFIG_SMP
1158
1159 struct work_for_cpu {
1160 struct completion completion;
1161 long (*fn)(void *);
1162 void *arg;
1163 long ret;
1164 };
1165
1166 static int do_work_for_cpu(void *_wfc)
1167 {
1168 struct work_for_cpu *wfc = _wfc;
1169 wfc->ret = wfc->fn(wfc->arg);
1170 complete(&wfc->completion);
1171 return 0;
1172 }
1173
1174 /**
1175 * work_on_cpu - run a function in user context on a particular cpu
1176 * @cpu: the cpu to run on
1177 * @fn: the function to run
1178 * @arg: the function arg
1179 *
1180 * This will return the value @fn returns.
1181 * It is up to the caller to ensure that the cpu doesn't go offline.
1182 * The caller must not hold any locks which would prevent @fn from completing.
1183 */
1184 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1185 {
1186 struct task_struct *sub_thread;
1187 struct work_for_cpu wfc = {
1188 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1189 .fn = fn,
1190 .arg = arg,
1191 };
1192
1193 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1194 if (IS_ERR(sub_thread))
1195 return PTR_ERR(sub_thread);
1196 kthread_bind(sub_thread, cpu);
1197 wake_up_process(sub_thread);
1198 wait_for_completion(&wfc.completion);
1199 return wfc.ret;
1200 }
1201 EXPORT_SYMBOL_GPL(work_on_cpu);
1202 #endif /* CONFIG_SMP */
1203
1204 void __init init_workqueues(void)
1205 {
1206 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1207
1208 cpumask_copy(cpu_populated_map, cpu_online_mask);
1209 singlethread_cpu = cpumask_first(cpu_possible_mask);
1210 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1211 hotcpu_notifier(workqueue_cpu_callback, 0);
1212 keventd_wq = create_workqueue("events");
1213 BUG_ON(!keventd_wq);
1214 }