Merge tag 'v3.9-rc7' into regulator-fix-core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45
46 #include "workqueue_internal.h"
47
48 enum {
49 /*
50 * worker_pool flags
51 *
52 * A bound pool is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The pool behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
64 */
65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
68 POOL_FREEZING = 1 << 3, /* freeze in progress */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
77
78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
79 WORKER_CPU_INTENSIVE,
80
81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
82
83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
84
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
99 HIGHPRI_NICE_LEVEL = -20,
100 };
101
102 /*
103 * Structure fields follow one of the following exclusion rules.
104 *
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
107 *
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
111 * L: pool->lock protected. Access with pool->lock held.
112 *
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
117 *
118 * F: wq->flush_mutex protected.
119 *
120 * W: workqueue_lock protected.
121 */
122
123 /* struct worker is defined in workqueue_internal.h */
124
125 struct worker_pool {
126 spinlock_t lock; /* the pool lock */
127 unsigned int cpu; /* I: the associated cpu */
128 int id; /* I: pool ID */
129 unsigned int flags; /* X: flags */
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
133
134 /* nr_idle includes the ones off idle_list for rebinding */
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
146 struct ida worker_ida; /* L: for worker IDs */
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
154 } ____cacheline_aligned_in_smp;
155
156 /*
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
161 */
162 struct pool_workqueue {
163 struct worker_pool *pool; /* I: the associated pool */
164 struct workqueue_struct *wq; /* I: the owning workqueue */
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
169 int nr_active; /* L: nr of active works */
170 int max_active; /* L: max active works */
171 struct list_head delayed_works; /* L: delayed works */
172 };
173
174 /*
175 * Structure used to wait for workqueue flush.
176 */
177 struct wq_flusher {
178 struct list_head list; /* F: list of flushers */
179 int flush_color; /* F: flush color waiting for */
180 struct completion done; /* flush completion */
181 };
182
183 /*
184 * All cpumasks are assumed to be always set on UP and thus can't be
185 * used to determine whether there's something to be done.
186 */
187 #ifdef CONFIG_SMP
188 typedef cpumask_var_t mayday_mask_t;
189 #define mayday_test_and_set_cpu(cpu, mask) \
190 cpumask_test_and_set_cpu((cpu), (mask))
191 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
192 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
193 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
194 #define free_mayday_mask(mask) free_cpumask_var((mask))
195 #else
196 typedef unsigned long mayday_mask_t;
197 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
198 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
199 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
200 #define alloc_mayday_mask(maskp, gfp) true
201 #define free_mayday_mask(mask) do { } while (0)
202 #endif
203
204 /*
205 * The externally visible workqueue abstraction is an array of
206 * per-CPU workqueues:
207 */
208 struct workqueue_struct {
209 unsigned int flags; /* W: WQ_* flags */
210 union {
211 struct pool_workqueue __percpu *pcpu;
212 struct pool_workqueue *single;
213 unsigned long v;
214 } pool_wq; /* I: pwq's */
215 struct list_head list; /* W: list of all workqueues */
216
217 struct mutex flush_mutex; /* protects wq flushing */
218 int work_color; /* F: current work color */
219 int flush_color; /* F: current flush color */
220 atomic_t nr_pwqs_to_flush; /* flush in progress */
221 struct wq_flusher *first_flusher; /* F: first flusher */
222 struct list_head flusher_queue; /* F: flush waiters */
223 struct list_head flusher_overflow; /* F: flush overflow list */
224
225 mayday_mask_t mayday_mask; /* cpus requesting rescue */
226 struct worker *rescuer; /* I: rescue worker */
227
228 int nr_drainers; /* W: drain in progress */
229 int saved_max_active; /* W: saved pwq max_active */
230 #ifdef CONFIG_LOCKDEP
231 struct lockdep_map lockdep_map;
232 #endif
233 char name[]; /* I: workqueue name */
234 };
235
236 struct workqueue_struct *system_wq __read_mostly;
237 EXPORT_SYMBOL_GPL(system_wq);
238 struct workqueue_struct *system_highpri_wq __read_mostly;
239 EXPORT_SYMBOL_GPL(system_highpri_wq);
240 struct workqueue_struct *system_long_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_long_wq);
242 struct workqueue_struct *system_unbound_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_unbound_wq);
244 struct workqueue_struct *system_freezable_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_freezable_wq);
246
247 #define CREATE_TRACE_POINTS
248 #include <trace/events/workqueue.h>
249
250 #define for_each_std_worker_pool(pool, cpu) \
251 for ((pool) = &std_worker_pools(cpu)[0]; \
252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
253
254 #define for_each_busy_worker(worker, i, pool) \
255 hash_for_each(pool->busy_hash, i, worker, hentry)
256
257 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 unsigned int sw)
259 {
260 if (cpu < nr_cpu_ids) {
261 if (sw & 1) {
262 cpu = cpumask_next(cpu, mask);
263 if (cpu < nr_cpu_ids)
264 return cpu;
265 }
266 if (sw & 2)
267 return WORK_CPU_UNBOUND;
268 }
269 return WORK_CPU_END;
270 }
271
272 static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
273 struct workqueue_struct *wq)
274 {
275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
276 }
277
278 /*
279 * CPU iterators
280 *
281 * An extra cpu number is defined using an invalid cpu number
282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
283 * specific CPU. The following iterators are similar to for_each_*_cpu()
284 * iterators but also considers the unbound CPU.
285 *
286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
288 * for_each_pwq_cpu() : possible CPUs for bound workqueues,
289 * WORK_CPU_UNBOUND for unbound workqueues
290 */
291 #define for_each_wq_cpu(cpu) \
292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
293 (cpu) < WORK_CPU_END; \
294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
295
296 #define for_each_online_wq_cpu(cpu) \
297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
298 (cpu) < WORK_CPU_END; \
299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
300
301 #define for_each_pwq_cpu(cpu, wq) \
302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \
303 (cpu) < WORK_CPU_END; \
304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
305
306 #ifdef CONFIG_DEBUG_OBJECTS_WORK
307
308 static struct debug_obj_descr work_debug_descr;
309
310 static void *work_debug_hint(void *addr)
311 {
312 return ((struct work_struct *) addr)->func;
313 }
314
315 /*
316 * fixup_init is called when:
317 * - an active object is initialized
318 */
319 static int work_fixup_init(void *addr, enum debug_obj_state state)
320 {
321 struct work_struct *work = addr;
322
323 switch (state) {
324 case ODEBUG_STATE_ACTIVE:
325 cancel_work_sync(work);
326 debug_object_init(work, &work_debug_descr);
327 return 1;
328 default:
329 return 0;
330 }
331 }
332
333 /*
334 * fixup_activate is called when:
335 * - an active object is activated
336 * - an unknown object is activated (might be a statically initialized object)
337 */
338 static int work_fixup_activate(void *addr, enum debug_obj_state state)
339 {
340 struct work_struct *work = addr;
341
342 switch (state) {
343
344 case ODEBUG_STATE_NOTAVAILABLE:
345 /*
346 * This is not really a fixup. The work struct was
347 * statically initialized. We just make sure that it
348 * is tracked in the object tracker.
349 */
350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 debug_object_init(work, &work_debug_descr);
352 debug_object_activate(work, &work_debug_descr);
353 return 0;
354 }
355 WARN_ON_ONCE(1);
356 return 0;
357
358 case ODEBUG_STATE_ACTIVE:
359 WARN_ON(1);
360
361 default:
362 return 0;
363 }
364 }
365
366 /*
367 * fixup_free is called when:
368 * - an active object is freed
369 */
370 static int work_fixup_free(void *addr, enum debug_obj_state state)
371 {
372 struct work_struct *work = addr;
373
374 switch (state) {
375 case ODEBUG_STATE_ACTIVE:
376 cancel_work_sync(work);
377 debug_object_free(work, &work_debug_descr);
378 return 1;
379 default:
380 return 0;
381 }
382 }
383
384 static struct debug_obj_descr work_debug_descr = {
385 .name = "work_struct",
386 .debug_hint = work_debug_hint,
387 .fixup_init = work_fixup_init,
388 .fixup_activate = work_fixup_activate,
389 .fixup_free = work_fixup_free,
390 };
391
392 static inline void debug_work_activate(struct work_struct *work)
393 {
394 debug_object_activate(work, &work_debug_descr);
395 }
396
397 static inline void debug_work_deactivate(struct work_struct *work)
398 {
399 debug_object_deactivate(work, &work_debug_descr);
400 }
401
402 void __init_work(struct work_struct *work, int onstack)
403 {
404 if (onstack)
405 debug_object_init_on_stack(work, &work_debug_descr);
406 else
407 debug_object_init(work, &work_debug_descr);
408 }
409 EXPORT_SYMBOL_GPL(__init_work);
410
411 void destroy_work_on_stack(struct work_struct *work)
412 {
413 debug_object_free(work, &work_debug_descr);
414 }
415 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416
417 #else
418 static inline void debug_work_activate(struct work_struct *work) { }
419 static inline void debug_work_deactivate(struct work_struct *work) { }
420 #endif
421
422 /* Serializes the accesses to the list of workqueues. */
423 static DEFINE_SPINLOCK(workqueue_lock);
424 static LIST_HEAD(workqueues);
425 static bool workqueue_freezing; /* W: have wqs started freezing? */
426
427 /*
428 * The CPU and unbound standard worker pools. The unbound ones have
429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430 */
431 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 cpu_std_worker_pools);
433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434
435 /* idr of all pools */
436 static DEFINE_MUTEX(worker_pool_idr_mutex);
437 static DEFINE_IDR(worker_pool_idr);
438
439 static int worker_thread(void *__worker);
440
441 static struct worker_pool *std_worker_pools(int cpu)
442 {
443 if (cpu != WORK_CPU_UNBOUND)
444 return per_cpu(cpu_std_worker_pools, cpu);
445 else
446 return unbound_std_worker_pools;
447 }
448
449 static int std_worker_pool_pri(struct worker_pool *pool)
450 {
451 return pool - std_worker_pools(pool->cpu);
452 }
453
454 /* allocate ID and assign it to @pool */
455 static int worker_pool_assign_id(struct worker_pool *pool)
456 {
457 int ret;
458
459 mutex_lock(&worker_pool_idr_mutex);
460 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
461 if (ret >= 0)
462 pool->id = ret;
463 mutex_unlock(&worker_pool_idr_mutex);
464
465 return ret < 0 ? ret : 0;
466 }
467
468 /*
469 * Lookup worker_pool by id. The idr currently is built during boot and
470 * never modified. Don't worry about locking for now.
471 */
472 static struct worker_pool *worker_pool_by_id(int pool_id)
473 {
474 return idr_find(&worker_pool_idr, pool_id);
475 }
476
477 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
478 {
479 struct worker_pool *pools = std_worker_pools(cpu);
480
481 return &pools[highpri];
482 }
483
484 static struct pool_workqueue *get_pwq(unsigned int cpu,
485 struct workqueue_struct *wq)
486 {
487 if (!(wq->flags & WQ_UNBOUND)) {
488 if (likely(cpu < nr_cpu_ids))
489 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
490 } else if (likely(cpu == WORK_CPU_UNBOUND))
491 return wq->pool_wq.single;
492 return NULL;
493 }
494
495 static unsigned int work_color_to_flags(int color)
496 {
497 return color << WORK_STRUCT_COLOR_SHIFT;
498 }
499
500 static int get_work_color(struct work_struct *work)
501 {
502 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
503 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
504 }
505
506 static int work_next_color(int color)
507 {
508 return (color + 1) % WORK_NR_COLORS;
509 }
510
511 /*
512 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
513 * contain the pointer to the queued pwq. Once execution starts, the flag
514 * is cleared and the high bits contain OFFQ flags and pool ID.
515 *
516 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
517 * and clear_work_data() can be used to set the pwq, pool or clear
518 * work->data. These functions should only be called while the work is
519 * owned - ie. while the PENDING bit is set.
520 *
521 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
522 * corresponding to a work. Pool is available once the work has been
523 * queued anywhere after initialization until it is sync canceled. pwq is
524 * available only while the work item is queued.
525 *
526 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
527 * canceled. While being canceled, a work item may have its PENDING set
528 * but stay off timer and worklist for arbitrarily long and nobody should
529 * try to steal the PENDING bit.
530 */
531 static inline void set_work_data(struct work_struct *work, unsigned long data,
532 unsigned long flags)
533 {
534 BUG_ON(!work_pending(work));
535 atomic_long_set(&work->data, data | flags | work_static(work));
536 }
537
538 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
539 unsigned long extra_flags)
540 {
541 set_work_data(work, (unsigned long)pwq,
542 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
543 }
544
545 static void set_work_pool_and_keep_pending(struct work_struct *work,
546 int pool_id)
547 {
548 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
549 WORK_STRUCT_PENDING);
550 }
551
552 static void set_work_pool_and_clear_pending(struct work_struct *work,
553 int pool_id)
554 {
555 /*
556 * The following wmb is paired with the implied mb in
557 * test_and_set_bit(PENDING) and ensures all updates to @work made
558 * here are visible to and precede any updates by the next PENDING
559 * owner.
560 */
561 smp_wmb();
562 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
563 }
564
565 static void clear_work_data(struct work_struct *work)
566 {
567 smp_wmb(); /* see set_work_pool_and_clear_pending() */
568 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
569 }
570
571 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
572 {
573 unsigned long data = atomic_long_read(&work->data);
574
575 if (data & WORK_STRUCT_PWQ)
576 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
577 else
578 return NULL;
579 }
580
581 /**
582 * get_work_pool - return the worker_pool a given work was associated with
583 * @work: the work item of interest
584 *
585 * Return the worker_pool @work was last associated with. %NULL if none.
586 */
587 static struct worker_pool *get_work_pool(struct work_struct *work)
588 {
589 unsigned long data = atomic_long_read(&work->data);
590 struct worker_pool *pool;
591 int pool_id;
592
593 if (data & WORK_STRUCT_PWQ)
594 return ((struct pool_workqueue *)
595 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
596
597 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
598 if (pool_id == WORK_OFFQ_POOL_NONE)
599 return NULL;
600
601 pool = worker_pool_by_id(pool_id);
602 WARN_ON_ONCE(!pool);
603 return pool;
604 }
605
606 /**
607 * get_work_pool_id - return the worker pool ID a given work is associated with
608 * @work: the work item of interest
609 *
610 * Return the worker_pool ID @work was last associated with.
611 * %WORK_OFFQ_POOL_NONE if none.
612 */
613 static int get_work_pool_id(struct work_struct *work)
614 {
615 unsigned long data = atomic_long_read(&work->data);
616
617 if (data & WORK_STRUCT_PWQ)
618 return ((struct pool_workqueue *)
619 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
620
621 return data >> WORK_OFFQ_POOL_SHIFT;
622 }
623
624 static void mark_work_canceling(struct work_struct *work)
625 {
626 unsigned long pool_id = get_work_pool_id(work);
627
628 pool_id <<= WORK_OFFQ_POOL_SHIFT;
629 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
630 }
631
632 static bool work_is_canceling(struct work_struct *work)
633 {
634 unsigned long data = atomic_long_read(&work->data);
635
636 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
637 }
638
639 /*
640 * Policy functions. These define the policies on how the global worker
641 * pools are managed. Unless noted otherwise, these functions assume that
642 * they're being called with pool->lock held.
643 */
644
645 static bool __need_more_worker(struct worker_pool *pool)
646 {
647 return !atomic_read(&pool->nr_running);
648 }
649
650 /*
651 * Need to wake up a worker? Called from anything but currently
652 * running workers.
653 *
654 * Note that, because unbound workers never contribute to nr_running, this
655 * function will always return %true for unbound pools as long as the
656 * worklist isn't empty.
657 */
658 static bool need_more_worker(struct worker_pool *pool)
659 {
660 return !list_empty(&pool->worklist) && __need_more_worker(pool);
661 }
662
663 /* Can I start working? Called from busy but !running workers. */
664 static bool may_start_working(struct worker_pool *pool)
665 {
666 return pool->nr_idle;
667 }
668
669 /* Do I need to keep working? Called from currently running workers. */
670 static bool keep_working(struct worker_pool *pool)
671 {
672 return !list_empty(&pool->worklist) &&
673 atomic_read(&pool->nr_running) <= 1;
674 }
675
676 /* Do we need a new worker? Called from manager. */
677 static bool need_to_create_worker(struct worker_pool *pool)
678 {
679 return need_more_worker(pool) && !may_start_working(pool);
680 }
681
682 /* Do I need to be the manager? */
683 static bool need_to_manage_workers(struct worker_pool *pool)
684 {
685 return need_to_create_worker(pool) ||
686 (pool->flags & POOL_MANAGE_WORKERS);
687 }
688
689 /* Do we have too many workers and should some go away? */
690 static bool too_many_workers(struct worker_pool *pool)
691 {
692 bool managing = pool->flags & POOL_MANAGING_WORKERS;
693 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
694 int nr_busy = pool->nr_workers - nr_idle;
695
696 /*
697 * nr_idle and idle_list may disagree if idle rebinding is in
698 * progress. Never return %true if idle_list is empty.
699 */
700 if (list_empty(&pool->idle_list))
701 return false;
702
703 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
704 }
705
706 /*
707 * Wake up functions.
708 */
709
710 /* Return the first worker. Safe with preemption disabled */
711 static struct worker *first_worker(struct worker_pool *pool)
712 {
713 if (unlikely(list_empty(&pool->idle_list)))
714 return NULL;
715
716 return list_first_entry(&pool->idle_list, struct worker, entry);
717 }
718
719 /**
720 * wake_up_worker - wake up an idle worker
721 * @pool: worker pool to wake worker from
722 *
723 * Wake up the first idle worker of @pool.
724 *
725 * CONTEXT:
726 * spin_lock_irq(pool->lock).
727 */
728 static void wake_up_worker(struct worker_pool *pool)
729 {
730 struct worker *worker = first_worker(pool);
731
732 if (likely(worker))
733 wake_up_process(worker->task);
734 }
735
736 /**
737 * wq_worker_waking_up - a worker is waking up
738 * @task: task waking up
739 * @cpu: CPU @task is waking up to
740 *
741 * This function is called during try_to_wake_up() when a worker is
742 * being awoken.
743 *
744 * CONTEXT:
745 * spin_lock_irq(rq->lock)
746 */
747 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
748 {
749 struct worker *worker = kthread_data(task);
750
751 if (!(worker->flags & WORKER_NOT_RUNNING)) {
752 WARN_ON_ONCE(worker->pool->cpu != cpu);
753 atomic_inc(&worker->pool->nr_running);
754 }
755 }
756
757 /**
758 * wq_worker_sleeping - a worker is going to sleep
759 * @task: task going to sleep
760 * @cpu: CPU in question, must be the current CPU number
761 *
762 * This function is called during schedule() when a busy worker is
763 * going to sleep. Worker on the same cpu can be woken up by
764 * returning pointer to its task.
765 *
766 * CONTEXT:
767 * spin_lock_irq(rq->lock)
768 *
769 * RETURNS:
770 * Worker task on @cpu to wake up, %NULL if none.
771 */
772 struct task_struct *wq_worker_sleeping(struct task_struct *task,
773 unsigned int cpu)
774 {
775 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
776 struct worker_pool *pool;
777
778 /*
779 * Rescuers, which may not have all the fields set up like normal
780 * workers, also reach here, let's not access anything before
781 * checking NOT_RUNNING.
782 */
783 if (worker->flags & WORKER_NOT_RUNNING)
784 return NULL;
785
786 pool = worker->pool;
787
788 /* this can only happen on the local cpu */
789 BUG_ON(cpu != raw_smp_processor_id());
790
791 /*
792 * The counterpart of the following dec_and_test, implied mb,
793 * worklist not empty test sequence is in insert_work().
794 * Please read comment there.
795 *
796 * NOT_RUNNING is clear. This means that we're bound to and
797 * running on the local cpu w/ rq lock held and preemption
798 * disabled, which in turn means that none else could be
799 * manipulating idle_list, so dereferencing idle_list without pool
800 * lock is safe.
801 */
802 if (atomic_dec_and_test(&pool->nr_running) &&
803 !list_empty(&pool->worklist))
804 to_wakeup = first_worker(pool);
805 return to_wakeup ? to_wakeup->task : NULL;
806 }
807
808 /**
809 * worker_set_flags - set worker flags and adjust nr_running accordingly
810 * @worker: self
811 * @flags: flags to set
812 * @wakeup: wakeup an idle worker if necessary
813 *
814 * Set @flags in @worker->flags and adjust nr_running accordingly. If
815 * nr_running becomes zero and @wakeup is %true, an idle worker is
816 * woken up.
817 *
818 * CONTEXT:
819 * spin_lock_irq(pool->lock)
820 */
821 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
822 bool wakeup)
823 {
824 struct worker_pool *pool = worker->pool;
825
826 WARN_ON_ONCE(worker->task != current);
827
828 /*
829 * If transitioning into NOT_RUNNING, adjust nr_running and
830 * wake up an idle worker as necessary if requested by
831 * @wakeup.
832 */
833 if ((flags & WORKER_NOT_RUNNING) &&
834 !(worker->flags & WORKER_NOT_RUNNING)) {
835 if (wakeup) {
836 if (atomic_dec_and_test(&pool->nr_running) &&
837 !list_empty(&pool->worklist))
838 wake_up_worker(pool);
839 } else
840 atomic_dec(&pool->nr_running);
841 }
842
843 worker->flags |= flags;
844 }
845
846 /**
847 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
848 * @worker: self
849 * @flags: flags to clear
850 *
851 * Clear @flags in @worker->flags and adjust nr_running accordingly.
852 *
853 * CONTEXT:
854 * spin_lock_irq(pool->lock)
855 */
856 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
857 {
858 struct worker_pool *pool = worker->pool;
859 unsigned int oflags = worker->flags;
860
861 WARN_ON_ONCE(worker->task != current);
862
863 worker->flags &= ~flags;
864
865 /*
866 * If transitioning out of NOT_RUNNING, increment nr_running. Note
867 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
868 * of multiple flags, not a single flag.
869 */
870 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
871 if (!(worker->flags & WORKER_NOT_RUNNING))
872 atomic_inc(&pool->nr_running);
873 }
874
875 /**
876 * find_worker_executing_work - find worker which is executing a work
877 * @pool: pool of interest
878 * @work: work to find worker for
879 *
880 * Find a worker which is executing @work on @pool by searching
881 * @pool->busy_hash which is keyed by the address of @work. For a worker
882 * to match, its current execution should match the address of @work and
883 * its work function. This is to avoid unwanted dependency between
884 * unrelated work executions through a work item being recycled while still
885 * being executed.
886 *
887 * This is a bit tricky. A work item may be freed once its execution
888 * starts and nothing prevents the freed area from being recycled for
889 * another work item. If the same work item address ends up being reused
890 * before the original execution finishes, workqueue will identify the
891 * recycled work item as currently executing and make it wait until the
892 * current execution finishes, introducing an unwanted dependency.
893 *
894 * This function checks the work item address, work function and workqueue
895 * to avoid false positives. Note that this isn't complete as one may
896 * construct a work function which can introduce dependency onto itself
897 * through a recycled work item. Well, if somebody wants to shoot oneself
898 * in the foot that badly, there's only so much we can do, and if such
899 * deadlock actually occurs, it should be easy to locate the culprit work
900 * function.
901 *
902 * CONTEXT:
903 * spin_lock_irq(pool->lock).
904 *
905 * RETURNS:
906 * Pointer to worker which is executing @work if found, NULL
907 * otherwise.
908 */
909 static struct worker *find_worker_executing_work(struct worker_pool *pool,
910 struct work_struct *work)
911 {
912 struct worker *worker;
913
914 hash_for_each_possible(pool->busy_hash, worker, hentry,
915 (unsigned long)work)
916 if (worker->current_work == work &&
917 worker->current_func == work->func)
918 return worker;
919
920 return NULL;
921 }
922
923 /**
924 * move_linked_works - move linked works to a list
925 * @work: start of series of works to be scheduled
926 * @head: target list to append @work to
927 * @nextp: out paramter for nested worklist walking
928 *
929 * Schedule linked works starting from @work to @head. Work series to
930 * be scheduled starts at @work and includes any consecutive work with
931 * WORK_STRUCT_LINKED set in its predecessor.
932 *
933 * If @nextp is not NULL, it's updated to point to the next work of
934 * the last scheduled work. This allows move_linked_works() to be
935 * nested inside outer list_for_each_entry_safe().
936 *
937 * CONTEXT:
938 * spin_lock_irq(pool->lock).
939 */
940 static void move_linked_works(struct work_struct *work, struct list_head *head,
941 struct work_struct **nextp)
942 {
943 struct work_struct *n;
944
945 /*
946 * Linked worklist will always end before the end of the list,
947 * use NULL for list head.
948 */
949 list_for_each_entry_safe_from(work, n, NULL, entry) {
950 list_move_tail(&work->entry, head);
951 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
952 break;
953 }
954
955 /*
956 * If we're already inside safe list traversal and have moved
957 * multiple works to the scheduled queue, the next position
958 * needs to be updated.
959 */
960 if (nextp)
961 *nextp = n;
962 }
963
964 static void pwq_activate_delayed_work(struct work_struct *work)
965 {
966 struct pool_workqueue *pwq = get_work_pwq(work);
967
968 trace_workqueue_activate_work(work);
969 move_linked_works(work, &pwq->pool->worklist, NULL);
970 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
971 pwq->nr_active++;
972 }
973
974 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
975 {
976 struct work_struct *work = list_first_entry(&pwq->delayed_works,
977 struct work_struct, entry);
978
979 pwq_activate_delayed_work(work);
980 }
981
982 /**
983 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
984 * @pwq: pwq of interest
985 * @color: color of work which left the queue
986 *
987 * A work either has completed or is removed from pending queue,
988 * decrement nr_in_flight of its pwq and handle workqueue flushing.
989 *
990 * CONTEXT:
991 * spin_lock_irq(pool->lock).
992 */
993 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
994 {
995 /* ignore uncolored works */
996 if (color == WORK_NO_COLOR)
997 return;
998
999 pwq->nr_in_flight[color]--;
1000
1001 pwq->nr_active--;
1002 if (!list_empty(&pwq->delayed_works)) {
1003 /* one down, submit a delayed one */
1004 if (pwq->nr_active < pwq->max_active)
1005 pwq_activate_first_delayed(pwq);
1006 }
1007
1008 /* is flush in progress and are we at the flushing tip? */
1009 if (likely(pwq->flush_color != color))
1010 return;
1011
1012 /* are there still in-flight works? */
1013 if (pwq->nr_in_flight[color])
1014 return;
1015
1016 /* this pwq is done, clear flush_color */
1017 pwq->flush_color = -1;
1018
1019 /*
1020 * If this was the last pwq, wake up the first flusher. It
1021 * will handle the rest.
1022 */
1023 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1024 complete(&pwq->wq->first_flusher->done);
1025 }
1026
1027 /**
1028 * try_to_grab_pending - steal work item from worklist and disable irq
1029 * @work: work item to steal
1030 * @is_dwork: @work is a delayed_work
1031 * @flags: place to store irq state
1032 *
1033 * Try to grab PENDING bit of @work. This function can handle @work in any
1034 * stable state - idle, on timer or on worklist. Return values are
1035 *
1036 * 1 if @work was pending and we successfully stole PENDING
1037 * 0 if @work was idle and we claimed PENDING
1038 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1039 * -ENOENT if someone else is canceling @work, this state may persist
1040 * for arbitrarily long
1041 *
1042 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1043 * interrupted while holding PENDING and @work off queue, irq must be
1044 * disabled on entry. This, combined with delayed_work->timer being
1045 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1046 *
1047 * On successful return, >= 0, irq is disabled and the caller is
1048 * responsible for releasing it using local_irq_restore(*@flags).
1049 *
1050 * This function is safe to call from any context including IRQ handler.
1051 */
1052 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1053 unsigned long *flags)
1054 {
1055 struct worker_pool *pool;
1056 struct pool_workqueue *pwq;
1057
1058 local_irq_save(*flags);
1059
1060 /* try to steal the timer if it exists */
1061 if (is_dwork) {
1062 struct delayed_work *dwork = to_delayed_work(work);
1063
1064 /*
1065 * dwork->timer is irqsafe. If del_timer() fails, it's
1066 * guaranteed that the timer is not queued anywhere and not
1067 * running on the local CPU.
1068 */
1069 if (likely(del_timer(&dwork->timer)))
1070 return 1;
1071 }
1072
1073 /* try to claim PENDING the normal way */
1074 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1075 return 0;
1076
1077 /*
1078 * The queueing is in progress, or it is already queued. Try to
1079 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1080 */
1081 pool = get_work_pool(work);
1082 if (!pool)
1083 goto fail;
1084
1085 spin_lock(&pool->lock);
1086 /*
1087 * work->data is guaranteed to point to pwq only while the work
1088 * item is queued on pwq->wq, and both updating work->data to point
1089 * to pwq on queueing and to pool on dequeueing are done under
1090 * pwq->pool->lock. This in turn guarantees that, if work->data
1091 * points to pwq which is associated with a locked pool, the work
1092 * item is currently queued on that pool.
1093 */
1094 pwq = get_work_pwq(work);
1095 if (pwq && pwq->pool == pool) {
1096 debug_work_deactivate(work);
1097
1098 /*
1099 * A delayed work item cannot be grabbed directly because
1100 * it might have linked NO_COLOR work items which, if left
1101 * on the delayed_list, will confuse pwq->nr_active
1102 * management later on and cause stall. Make sure the work
1103 * item is activated before grabbing.
1104 */
1105 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1106 pwq_activate_delayed_work(work);
1107
1108 list_del_init(&work->entry);
1109 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1110
1111 /* work->data points to pwq iff queued, point to pool */
1112 set_work_pool_and_keep_pending(work, pool->id);
1113
1114 spin_unlock(&pool->lock);
1115 return 1;
1116 }
1117 spin_unlock(&pool->lock);
1118 fail:
1119 local_irq_restore(*flags);
1120 if (work_is_canceling(work))
1121 return -ENOENT;
1122 cpu_relax();
1123 return -EAGAIN;
1124 }
1125
1126 /**
1127 * insert_work - insert a work into a pool
1128 * @pwq: pwq @work belongs to
1129 * @work: work to insert
1130 * @head: insertion point
1131 * @extra_flags: extra WORK_STRUCT_* flags to set
1132 *
1133 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1134 * work_struct flags.
1135 *
1136 * CONTEXT:
1137 * spin_lock_irq(pool->lock).
1138 */
1139 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1140 struct list_head *head, unsigned int extra_flags)
1141 {
1142 struct worker_pool *pool = pwq->pool;
1143
1144 /* we own @work, set data and link */
1145 set_work_pwq(work, pwq, extra_flags);
1146 list_add_tail(&work->entry, head);
1147
1148 /*
1149 * Ensure either worker_sched_deactivated() sees the above
1150 * list_add_tail() or we see zero nr_running to avoid workers
1151 * lying around lazily while there are works to be processed.
1152 */
1153 smp_mb();
1154
1155 if (__need_more_worker(pool))
1156 wake_up_worker(pool);
1157 }
1158
1159 /*
1160 * Test whether @work is being queued from another work executing on the
1161 * same workqueue.
1162 */
1163 static bool is_chained_work(struct workqueue_struct *wq)
1164 {
1165 struct worker *worker;
1166
1167 worker = current_wq_worker();
1168 /*
1169 * Return %true iff I'm a worker execuing a work item on @wq. If
1170 * I'm @worker, it's safe to dereference it without locking.
1171 */
1172 return worker && worker->current_pwq->wq == wq;
1173 }
1174
1175 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1176 struct work_struct *work)
1177 {
1178 struct pool_workqueue *pwq;
1179 struct list_head *worklist;
1180 unsigned int work_flags;
1181 unsigned int req_cpu = cpu;
1182
1183 /*
1184 * While a work item is PENDING && off queue, a task trying to
1185 * steal the PENDING will busy-loop waiting for it to either get
1186 * queued or lose PENDING. Grabbing PENDING and queueing should
1187 * happen with IRQ disabled.
1188 */
1189 WARN_ON_ONCE(!irqs_disabled());
1190
1191 debug_work_activate(work);
1192
1193 /* if dying, only works from the same workqueue are allowed */
1194 if (unlikely(wq->flags & WQ_DRAINING) &&
1195 WARN_ON_ONCE(!is_chained_work(wq)))
1196 return;
1197
1198 /* determine the pwq to use */
1199 if (!(wq->flags & WQ_UNBOUND)) {
1200 struct worker_pool *last_pool;
1201
1202 if (cpu == WORK_CPU_UNBOUND)
1203 cpu = raw_smp_processor_id();
1204
1205 /*
1206 * It's multi cpu. If @work was previously on a different
1207 * cpu, it might still be running there, in which case the
1208 * work needs to be queued on that cpu to guarantee
1209 * non-reentrancy.
1210 */
1211 pwq = get_pwq(cpu, wq);
1212 last_pool = get_work_pool(work);
1213
1214 if (last_pool && last_pool != pwq->pool) {
1215 struct worker *worker;
1216
1217 spin_lock(&last_pool->lock);
1218
1219 worker = find_worker_executing_work(last_pool, work);
1220
1221 if (worker && worker->current_pwq->wq == wq) {
1222 pwq = get_pwq(last_pool->cpu, wq);
1223 } else {
1224 /* meh... not running there, queue here */
1225 spin_unlock(&last_pool->lock);
1226 spin_lock(&pwq->pool->lock);
1227 }
1228 } else {
1229 spin_lock(&pwq->pool->lock);
1230 }
1231 } else {
1232 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1233 spin_lock(&pwq->pool->lock);
1234 }
1235
1236 /* pwq determined, queue */
1237 trace_workqueue_queue_work(req_cpu, pwq, work);
1238
1239 if (WARN_ON(!list_empty(&work->entry))) {
1240 spin_unlock(&pwq->pool->lock);
1241 return;
1242 }
1243
1244 pwq->nr_in_flight[pwq->work_color]++;
1245 work_flags = work_color_to_flags(pwq->work_color);
1246
1247 if (likely(pwq->nr_active < pwq->max_active)) {
1248 trace_workqueue_activate_work(work);
1249 pwq->nr_active++;
1250 worklist = &pwq->pool->worklist;
1251 } else {
1252 work_flags |= WORK_STRUCT_DELAYED;
1253 worklist = &pwq->delayed_works;
1254 }
1255
1256 insert_work(pwq, work, worklist, work_flags);
1257
1258 spin_unlock(&pwq->pool->lock);
1259 }
1260
1261 /**
1262 * queue_work_on - queue work on specific cpu
1263 * @cpu: CPU number to execute work on
1264 * @wq: workqueue to use
1265 * @work: work to queue
1266 *
1267 * Returns %false if @work was already on a queue, %true otherwise.
1268 *
1269 * We queue the work to a specific CPU, the caller must ensure it
1270 * can't go away.
1271 */
1272 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1273 struct work_struct *work)
1274 {
1275 bool ret = false;
1276 unsigned long flags;
1277
1278 local_irq_save(flags);
1279
1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1281 __queue_work(cpu, wq, work);
1282 ret = true;
1283 }
1284
1285 local_irq_restore(flags);
1286 return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(queue_work_on);
1289
1290 /**
1291 * queue_work - queue work on a workqueue
1292 * @wq: workqueue to use
1293 * @work: work to queue
1294 *
1295 * Returns %false if @work was already on a queue, %true otherwise.
1296 *
1297 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1298 * it can be processed by another CPU.
1299 */
1300 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1301 {
1302 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1303 }
1304 EXPORT_SYMBOL_GPL(queue_work);
1305
1306 void delayed_work_timer_fn(unsigned long __data)
1307 {
1308 struct delayed_work *dwork = (struct delayed_work *)__data;
1309
1310 /* should have been called from irqsafe timer with irq already off */
1311 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1312 }
1313 EXPORT_SYMBOL(delayed_work_timer_fn);
1314
1315 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1316 struct delayed_work *dwork, unsigned long delay)
1317 {
1318 struct timer_list *timer = &dwork->timer;
1319 struct work_struct *work = &dwork->work;
1320
1321 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1322 timer->data != (unsigned long)dwork);
1323 WARN_ON_ONCE(timer_pending(timer));
1324 WARN_ON_ONCE(!list_empty(&work->entry));
1325
1326 /*
1327 * If @delay is 0, queue @dwork->work immediately. This is for
1328 * both optimization and correctness. The earliest @timer can
1329 * expire is on the closest next tick and delayed_work users depend
1330 * on that there's no such delay when @delay is 0.
1331 */
1332 if (!delay) {
1333 __queue_work(cpu, wq, &dwork->work);
1334 return;
1335 }
1336
1337 timer_stats_timer_set_start_info(&dwork->timer);
1338
1339 dwork->wq = wq;
1340 dwork->cpu = cpu;
1341 timer->expires = jiffies + delay;
1342
1343 if (unlikely(cpu != WORK_CPU_UNBOUND))
1344 add_timer_on(timer, cpu);
1345 else
1346 add_timer(timer);
1347 }
1348
1349 /**
1350 * queue_delayed_work_on - queue work on specific CPU after delay
1351 * @cpu: CPU number to execute work on
1352 * @wq: workqueue to use
1353 * @dwork: work to queue
1354 * @delay: number of jiffies to wait before queueing
1355 *
1356 * Returns %false if @work was already on a queue, %true otherwise. If
1357 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1358 * execution.
1359 */
1360 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1361 struct delayed_work *dwork, unsigned long delay)
1362 {
1363 struct work_struct *work = &dwork->work;
1364 bool ret = false;
1365 unsigned long flags;
1366
1367 /* read the comment in __queue_work() */
1368 local_irq_save(flags);
1369
1370 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1371 __queue_delayed_work(cpu, wq, dwork, delay);
1372 ret = true;
1373 }
1374
1375 local_irq_restore(flags);
1376 return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1379
1380 /**
1381 * queue_delayed_work - queue work on a workqueue after delay
1382 * @wq: workqueue to use
1383 * @dwork: delayable work to queue
1384 * @delay: number of jiffies to wait before queueing
1385 *
1386 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1387 */
1388 bool queue_delayed_work(struct workqueue_struct *wq,
1389 struct delayed_work *dwork, unsigned long delay)
1390 {
1391 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1392 }
1393 EXPORT_SYMBOL_GPL(queue_delayed_work);
1394
1395 /**
1396 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1397 * @cpu: CPU number to execute work on
1398 * @wq: workqueue to use
1399 * @dwork: work to queue
1400 * @delay: number of jiffies to wait before queueing
1401 *
1402 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1403 * modify @dwork's timer so that it expires after @delay. If @delay is
1404 * zero, @work is guaranteed to be scheduled immediately regardless of its
1405 * current state.
1406 *
1407 * Returns %false if @dwork was idle and queued, %true if @dwork was
1408 * pending and its timer was modified.
1409 *
1410 * This function is safe to call from any context including IRQ handler.
1411 * See try_to_grab_pending() for details.
1412 */
1413 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 struct delayed_work *dwork, unsigned long delay)
1415 {
1416 unsigned long flags;
1417 int ret;
1418
1419 do {
1420 ret = try_to_grab_pending(&dwork->work, true, &flags);
1421 } while (unlikely(ret == -EAGAIN));
1422
1423 if (likely(ret >= 0)) {
1424 __queue_delayed_work(cpu, wq, dwork, delay);
1425 local_irq_restore(flags);
1426 }
1427
1428 /* -ENOENT from try_to_grab_pending() becomes %true */
1429 return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1432
1433 /**
1434 * mod_delayed_work - modify delay of or queue a delayed work
1435 * @wq: workqueue to use
1436 * @dwork: work to queue
1437 * @delay: number of jiffies to wait before queueing
1438 *
1439 * mod_delayed_work_on() on local CPU.
1440 */
1441 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1442 unsigned long delay)
1443 {
1444 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1445 }
1446 EXPORT_SYMBOL_GPL(mod_delayed_work);
1447
1448 /**
1449 * worker_enter_idle - enter idle state
1450 * @worker: worker which is entering idle state
1451 *
1452 * @worker is entering idle state. Update stats and idle timer if
1453 * necessary.
1454 *
1455 * LOCKING:
1456 * spin_lock_irq(pool->lock).
1457 */
1458 static void worker_enter_idle(struct worker *worker)
1459 {
1460 struct worker_pool *pool = worker->pool;
1461
1462 BUG_ON(worker->flags & WORKER_IDLE);
1463 BUG_ON(!list_empty(&worker->entry) &&
1464 (worker->hentry.next || worker->hentry.pprev));
1465
1466 /* can't use worker_set_flags(), also called from start_worker() */
1467 worker->flags |= WORKER_IDLE;
1468 pool->nr_idle++;
1469 worker->last_active = jiffies;
1470
1471 /* idle_list is LIFO */
1472 list_add(&worker->entry, &pool->idle_list);
1473
1474 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1475 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1476
1477 /*
1478 * Sanity check nr_running. Because wq_unbind_fn() releases
1479 * pool->lock between setting %WORKER_UNBOUND and zapping
1480 * nr_running, the warning may trigger spuriously. Check iff
1481 * unbind is not in progress.
1482 */
1483 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1484 pool->nr_workers == pool->nr_idle &&
1485 atomic_read(&pool->nr_running));
1486 }
1487
1488 /**
1489 * worker_leave_idle - leave idle state
1490 * @worker: worker which is leaving idle state
1491 *
1492 * @worker is leaving idle state. Update stats.
1493 *
1494 * LOCKING:
1495 * spin_lock_irq(pool->lock).
1496 */
1497 static void worker_leave_idle(struct worker *worker)
1498 {
1499 struct worker_pool *pool = worker->pool;
1500
1501 BUG_ON(!(worker->flags & WORKER_IDLE));
1502 worker_clr_flags(worker, WORKER_IDLE);
1503 pool->nr_idle--;
1504 list_del_init(&worker->entry);
1505 }
1506
1507 /**
1508 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1509 * @worker: self
1510 *
1511 * Works which are scheduled while the cpu is online must at least be
1512 * scheduled to a worker which is bound to the cpu so that if they are
1513 * flushed from cpu callbacks while cpu is going down, they are
1514 * guaranteed to execute on the cpu.
1515 *
1516 * This function is to be used by rogue workers and rescuers to bind
1517 * themselves to the target cpu and may race with cpu going down or
1518 * coming online. kthread_bind() can't be used because it may put the
1519 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1520 * verbatim as it's best effort and blocking and pool may be
1521 * [dis]associated in the meantime.
1522 *
1523 * This function tries set_cpus_allowed() and locks pool and verifies the
1524 * binding against %POOL_DISASSOCIATED which is set during
1525 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1526 * enters idle state or fetches works without dropping lock, it can
1527 * guarantee the scheduling requirement described in the first paragraph.
1528 *
1529 * CONTEXT:
1530 * Might sleep. Called without any lock but returns with pool->lock
1531 * held.
1532 *
1533 * RETURNS:
1534 * %true if the associated pool is online (@worker is successfully
1535 * bound), %false if offline.
1536 */
1537 static bool worker_maybe_bind_and_lock(struct worker *worker)
1538 __acquires(&pool->lock)
1539 {
1540 struct worker_pool *pool = worker->pool;
1541 struct task_struct *task = worker->task;
1542
1543 while (true) {
1544 /*
1545 * The following call may fail, succeed or succeed
1546 * without actually migrating the task to the cpu if
1547 * it races with cpu hotunplug operation. Verify
1548 * against POOL_DISASSOCIATED.
1549 */
1550 if (!(pool->flags & POOL_DISASSOCIATED))
1551 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1552
1553 spin_lock_irq(&pool->lock);
1554 if (pool->flags & POOL_DISASSOCIATED)
1555 return false;
1556 if (task_cpu(task) == pool->cpu &&
1557 cpumask_equal(&current->cpus_allowed,
1558 get_cpu_mask(pool->cpu)))
1559 return true;
1560 spin_unlock_irq(&pool->lock);
1561
1562 /*
1563 * We've raced with CPU hot[un]plug. Give it a breather
1564 * and retry migration. cond_resched() is required here;
1565 * otherwise, we might deadlock against cpu_stop trying to
1566 * bring down the CPU on non-preemptive kernel.
1567 */
1568 cpu_relax();
1569 cond_resched();
1570 }
1571 }
1572
1573 /*
1574 * Rebind an idle @worker to its CPU. worker_thread() will test
1575 * list_empty(@worker->entry) before leaving idle and call this function.
1576 */
1577 static void idle_worker_rebind(struct worker *worker)
1578 {
1579 /* CPU may go down again inbetween, clear UNBOUND only on success */
1580 if (worker_maybe_bind_and_lock(worker))
1581 worker_clr_flags(worker, WORKER_UNBOUND);
1582
1583 /* rebind complete, become available again */
1584 list_add(&worker->entry, &worker->pool->idle_list);
1585 spin_unlock_irq(&worker->pool->lock);
1586 }
1587
1588 /*
1589 * Function for @worker->rebind.work used to rebind unbound busy workers to
1590 * the associated cpu which is coming back online. This is scheduled by
1591 * cpu up but can race with other cpu hotplug operations and may be
1592 * executed twice without intervening cpu down.
1593 */
1594 static void busy_worker_rebind_fn(struct work_struct *work)
1595 {
1596 struct worker *worker = container_of(work, struct worker, rebind_work);
1597
1598 if (worker_maybe_bind_and_lock(worker))
1599 worker_clr_flags(worker, WORKER_UNBOUND);
1600
1601 spin_unlock_irq(&worker->pool->lock);
1602 }
1603
1604 /**
1605 * rebind_workers - rebind all workers of a pool to the associated CPU
1606 * @pool: pool of interest
1607 *
1608 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1609 * is different for idle and busy ones.
1610 *
1611 * Idle ones will be removed from the idle_list and woken up. They will
1612 * add themselves back after completing rebind. This ensures that the
1613 * idle_list doesn't contain any unbound workers when re-bound busy workers
1614 * try to perform local wake-ups for concurrency management.
1615 *
1616 * Busy workers can rebind after they finish their current work items.
1617 * Queueing the rebind work item at the head of the scheduled list is
1618 * enough. Note that nr_running will be properly bumped as busy workers
1619 * rebind.
1620 *
1621 * On return, all non-manager workers are scheduled for rebind - see
1622 * manage_workers() for the manager special case. Any idle worker
1623 * including the manager will not appear on @idle_list until rebind is
1624 * complete, making local wake-ups safe.
1625 */
1626 static void rebind_workers(struct worker_pool *pool)
1627 {
1628 struct worker *worker, *n;
1629 int i;
1630
1631 lockdep_assert_held(&pool->assoc_mutex);
1632 lockdep_assert_held(&pool->lock);
1633
1634 /* dequeue and kick idle ones */
1635 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1636 /*
1637 * idle workers should be off @pool->idle_list until rebind
1638 * is complete to avoid receiving premature local wake-ups.
1639 */
1640 list_del_init(&worker->entry);
1641
1642 /*
1643 * worker_thread() will see the above dequeuing and call
1644 * idle_worker_rebind().
1645 */
1646 wake_up_process(worker->task);
1647 }
1648
1649 /* rebind busy workers */
1650 for_each_busy_worker(worker, i, pool) {
1651 struct work_struct *rebind_work = &worker->rebind_work;
1652 struct workqueue_struct *wq;
1653
1654 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1655 work_data_bits(rebind_work)))
1656 continue;
1657
1658 debug_work_activate(rebind_work);
1659
1660 /*
1661 * wq doesn't really matter but let's keep @worker->pool
1662 * and @pwq->pool consistent for sanity.
1663 */
1664 if (std_worker_pool_pri(worker->pool))
1665 wq = system_highpri_wq;
1666 else
1667 wq = system_wq;
1668
1669 insert_work(get_pwq(pool->cpu, wq), rebind_work,
1670 worker->scheduled.next,
1671 work_color_to_flags(WORK_NO_COLOR));
1672 }
1673 }
1674
1675 static struct worker *alloc_worker(void)
1676 {
1677 struct worker *worker;
1678
1679 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1680 if (worker) {
1681 INIT_LIST_HEAD(&worker->entry);
1682 INIT_LIST_HEAD(&worker->scheduled);
1683 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1684 /* on creation a worker is in !idle && prep state */
1685 worker->flags = WORKER_PREP;
1686 }
1687 return worker;
1688 }
1689
1690 /**
1691 * create_worker - create a new workqueue worker
1692 * @pool: pool the new worker will belong to
1693 *
1694 * Create a new worker which is bound to @pool. The returned worker
1695 * can be started by calling start_worker() or destroyed using
1696 * destroy_worker().
1697 *
1698 * CONTEXT:
1699 * Might sleep. Does GFP_KERNEL allocations.
1700 *
1701 * RETURNS:
1702 * Pointer to the newly created worker.
1703 */
1704 static struct worker *create_worker(struct worker_pool *pool)
1705 {
1706 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1707 struct worker *worker = NULL;
1708 int id = -1;
1709
1710 spin_lock_irq(&pool->lock);
1711 while (ida_get_new(&pool->worker_ida, &id)) {
1712 spin_unlock_irq(&pool->lock);
1713 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1714 goto fail;
1715 spin_lock_irq(&pool->lock);
1716 }
1717 spin_unlock_irq(&pool->lock);
1718
1719 worker = alloc_worker();
1720 if (!worker)
1721 goto fail;
1722
1723 worker->pool = pool;
1724 worker->id = id;
1725
1726 if (pool->cpu != WORK_CPU_UNBOUND)
1727 worker->task = kthread_create_on_node(worker_thread,
1728 worker, cpu_to_node(pool->cpu),
1729 "kworker/%u:%d%s", pool->cpu, id, pri);
1730 else
1731 worker->task = kthread_create(worker_thread, worker,
1732 "kworker/u:%d%s", id, pri);
1733 if (IS_ERR(worker->task))
1734 goto fail;
1735
1736 if (std_worker_pool_pri(pool))
1737 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1738
1739 /*
1740 * Determine CPU binding of the new worker depending on
1741 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1742 * flag remains stable across this function. See the comments
1743 * above the flag definition for details.
1744 *
1745 * As an unbound worker may later become a regular one if CPU comes
1746 * online, make sure every worker has %PF_THREAD_BOUND set.
1747 */
1748 if (!(pool->flags & POOL_DISASSOCIATED)) {
1749 kthread_bind(worker->task, pool->cpu);
1750 } else {
1751 worker->task->flags |= PF_THREAD_BOUND;
1752 worker->flags |= WORKER_UNBOUND;
1753 }
1754
1755 return worker;
1756 fail:
1757 if (id >= 0) {
1758 spin_lock_irq(&pool->lock);
1759 ida_remove(&pool->worker_ida, id);
1760 spin_unlock_irq(&pool->lock);
1761 }
1762 kfree(worker);
1763 return NULL;
1764 }
1765
1766 /**
1767 * start_worker - start a newly created worker
1768 * @worker: worker to start
1769 *
1770 * Make the pool aware of @worker and start it.
1771 *
1772 * CONTEXT:
1773 * spin_lock_irq(pool->lock).
1774 */
1775 static void start_worker(struct worker *worker)
1776 {
1777 worker->flags |= WORKER_STARTED;
1778 worker->pool->nr_workers++;
1779 worker_enter_idle(worker);
1780 wake_up_process(worker->task);
1781 }
1782
1783 /**
1784 * destroy_worker - destroy a workqueue worker
1785 * @worker: worker to be destroyed
1786 *
1787 * Destroy @worker and adjust @pool stats accordingly.
1788 *
1789 * CONTEXT:
1790 * spin_lock_irq(pool->lock) which is released and regrabbed.
1791 */
1792 static void destroy_worker(struct worker *worker)
1793 {
1794 struct worker_pool *pool = worker->pool;
1795 int id = worker->id;
1796
1797 /* sanity check frenzy */
1798 BUG_ON(worker->current_work);
1799 BUG_ON(!list_empty(&worker->scheduled));
1800
1801 if (worker->flags & WORKER_STARTED)
1802 pool->nr_workers--;
1803 if (worker->flags & WORKER_IDLE)
1804 pool->nr_idle--;
1805
1806 list_del_init(&worker->entry);
1807 worker->flags |= WORKER_DIE;
1808
1809 spin_unlock_irq(&pool->lock);
1810
1811 kthread_stop(worker->task);
1812 kfree(worker);
1813
1814 spin_lock_irq(&pool->lock);
1815 ida_remove(&pool->worker_ida, id);
1816 }
1817
1818 static void idle_worker_timeout(unsigned long __pool)
1819 {
1820 struct worker_pool *pool = (void *)__pool;
1821
1822 spin_lock_irq(&pool->lock);
1823
1824 if (too_many_workers(pool)) {
1825 struct worker *worker;
1826 unsigned long expires;
1827
1828 /* idle_list is kept in LIFO order, check the last one */
1829 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1830 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1831
1832 if (time_before(jiffies, expires))
1833 mod_timer(&pool->idle_timer, expires);
1834 else {
1835 /* it's been idle for too long, wake up manager */
1836 pool->flags |= POOL_MANAGE_WORKERS;
1837 wake_up_worker(pool);
1838 }
1839 }
1840
1841 spin_unlock_irq(&pool->lock);
1842 }
1843
1844 static bool send_mayday(struct work_struct *work)
1845 {
1846 struct pool_workqueue *pwq = get_work_pwq(work);
1847 struct workqueue_struct *wq = pwq->wq;
1848 unsigned int cpu;
1849
1850 if (!(wq->flags & WQ_RESCUER))
1851 return false;
1852
1853 /* mayday mayday mayday */
1854 cpu = pwq->pool->cpu;
1855 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1856 if (cpu == WORK_CPU_UNBOUND)
1857 cpu = 0;
1858 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1859 wake_up_process(wq->rescuer->task);
1860 return true;
1861 }
1862
1863 static void pool_mayday_timeout(unsigned long __pool)
1864 {
1865 struct worker_pool *pool = (void *)__pool;
1866 struct work_struct *work;
1867
1868 spin_lock_irq(&pool->lock);
1869
1870 if (need_to_create_worker(pool)) {
1871 /*
1872 * We've been trying to create a new worker but
1873 * haven't been successful. We might be hitting an
1874 * allocation deadlock. Send distress signals to
1875 * rescuers.
1876 */
1877 list_for_each_entry(work, &pool->worklist, entry)
1878 send_mayday(work);
1879 }
1880
1881 spin_unlock_irq(&pool->lock);
1882
1883 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1884 }
1885
1886 /**
1887 * maybe_create_worker - create a new worker if necessary
1888 * @pool: pool to create a new worker for
1889 *
1890 * Create a new worker for @pool if necessary. @pool is guaranteed to
1891 * have at least one idle worker on return from this function. If
1892 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1893 * sent to all rescuers with works scheduled on @pool to resolve
1894 * possible allocation deadlock.
1895 *
1896 * On return, need_to_create_worker() is guaranteed to be false and
1897 * may_start_working() true.
1898 *
1899 * LOCKING:
1900 * spin_lock_irq(pool->lock) which may be released and regrabbed
1901 * multiple times. Does GFP_KERNEL allocations. Called only from
1902 * manager.
1903 *
1904 * RETURNS:
1905 * false if no action was taken and pool->lock stayed locked, true
1906 * otherwise.
1907 */
1908 static bool maybe_create_worker(struct worker_pool *pool)
1909 __releases(&pool->lock)
1910 __acquires(&pool->lock)
1911 {
1912 if (!need_to_create_worker(pool))
1913 return false;
1914 restart:
1915 spin_unlock_irq(&pool->lock);
1916
1917 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1918 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1919
1920 while (true) {
1921 struct worker *worker;
1922
1923 worker = create_worker(pool);
1924 if (worker) {
1925 del_timer_sync(&pool->mayday_timer);
1926 spin_lock_irq(&pool->lock);
1927 start_worker(worker);
1928 BUG_ON(need_to_create_worker(pool));
1929 return true;
1930 }
1931
1932 if (!need_to_create_worker(pool))
1933 break;
1934
1935 __set_current_state(TASK_INTERRUPTIBLE);
1936 schedule_timeout(CREATE_COOLDOWN);
1937
1938 if (!need_to_create_worker(pool))
1939 break;
1940 }
1941
1942 del_timer_sync(&pool->mayday_timer);
1943 spin_lock_irq(&pool->lock);
1944 if (need_to_create_worker(pool))
1945 goto restart;
1946 return true;
1947 }
1948
1949 /**
1950 * maybe_destroy_worker - destroy workers which have been idle for a while
1951 * @pool: pool to destroy workers for
1952 *
1953 * Destroy @pool workers which have been idle for longer than
1954 * IDLE_WORKER_TIMEOUT.
1955 *
1956 * LOCKING:
1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
1958 * multiple times. Called only from manager.
1959 *
1960 * RETURNS:
1961 * false if no action was taken and pool->lock stayed locked, true
1962 * otherwise.
1963 */
1964 static bool maybe_destroy_workers(struct worker_pool *pool)
1965 {
1966 bool ret = false;
1967
1968 while (too_many_workers(pool)) {
1969 struct worker *worker;
1970 unsigned long expires;
1971
1972 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1973 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1974
1975 if (time_before(jiffies, expires)) {
1976 mod_timer(&pool->idle_timer, expires);
1977 break;
1978 }
1979
1980 destroy_worker(worker);
1981 ret = true;
1982 }
1983
1984 return ret;
1985 }
1986
1987 /**
1988 * manage_workers - manage worker pool
1989 * @worker: self
1990 *
1991 * Assume the manager role and manage the worker pool @worker belongs
1992 * to. At any given time, there can be only zero or one manager per
1993 * pool. The exclusion is handled automatically by this function.
1994 *
1995 * The caller can safely start processing works on false return. On
1996 * true return, it's guaranteed that need_to_create_worker() is false
1997 * and may_start_working() is true.
1998 *
1999 * CONTEXT:
2000 * spin_lock_irq(pool->lock) which may be released and regrabbed
2001 * multiple times. Does GFP_KERNEL allocations.
2002 *
2003 * RETURNS:
2004 * spin_lock_irq(pool->lock) which may be released and regrabbed
2005 * multiple times. Does GFP_KERNEL allocations.
2006 */
2007 static bool manage_workers(struct worker *worker)
2008 {
2009 struct worker_pool *pool = worker->pool;
2010 bool ret = false;
2011
2012 if (pool->flags & POOL_MANAGING_WORKERS)
2013 return ret;
2014
2015 pool->flags |= POOL_MANAGING_WORKERS;
2016
2017 /*
2018 * To simplify both worker management and CPU hotplug, hold off
2019 * management while hotplug is in progress. CPU hotplug path can't
2020 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2021 * lead to idle worker depletion (all become busy thinking someone
2022 * else is managing) which in turn can result in deadlock under
2023 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2024 * manager against CPU hotplug.
2025 *
2026 * assoc_mutex would always be free unless CPU hotplug is in
2027 * progress. trylock first without dropping @pool->lock.
2028 */
2029 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2030 spin_unlock_irq(&pool->lock);
2031 mutex_lock(&pool->assoc_mutex);
2032 /*
2033 * CPU hotplug could have happened while we were waiting
2034 * for assoc_mutex. Hotplug itself can't handle us
2035 * because manager isn't either on idle or busy list, and
2036 * @pool's state and ours could have deviated.
2037 *
2038 * As hotplug is now excluded via assoc_mutex, we can
2039 * simply try to bind. It will succeed or fail depending
2040 * on @pool's current state. Try it and adjust
2041 * %WORKER_UNBOUND accordingly.
2042 */
2043 if (worker_maybe_bind_and_lock(worker))
2044 worker->flags &= ~WORKER_UNBOUND;
2045 else
2046 worker->flags |= WORKER_UNBOUND;
2047
2048 ret = true;
2049 }
2050
2051 pool->flags &= ~POOL_MANAGE_WORKERS;
2052
2053 /*
2054 * Destroy and then create so that may_start_working() is true
2055 * on return.
2056 */
2057 ret |= maybe_destroy_workers(pool);
2058 ret |= maybe_create_worker(pool);
2059
2060 pool->flags &= ~POOL_MANAGING_WORKERS;
2061 mutex_unlock(&pool->assoc_mutex);
2062 return ret;
2063 }
2064
2065 /**
2066 * process_one_work - process single work
2067 * @worker: self
2068 * @work: work to process
2069 *
2070 * Process @work. This function contains all the logics necessary to
2071 * process a single work including synchronization against and
2072 * interaction with other workers on the same cpu, queueing and
2073 * flushing. As long as context requirement is met, any worker can
2074 * call this function to process a work.
2075 *
2076 * CONTEXT:
2077 * spin_lock_irq(pool->lock) which is released and regrabbed.
2078 */
2079 static void process_one_work(struct worker *worker, struct work_struct *work)
2080 __releases(&pool->lock)
2081 __acquires(&pool->lock)
2082 {
2083 struct pool_workqueue *pwq = get_work_pwq(work);
2084 struct worker_pool *pool = worker->pool;
2085 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2086 int work_color;
2087 struct worker *collision;
2088 #ifdef CONFIG_LOCKDEP
2089 /*
2090 * It is permissible to free the struct work_struct from
2091 * inside the function that is called from it, this we need to
2092 * take into account for lockdep too. To avoid bogus "held
2093 * lock freed" warnings as well as problems when looking into
2094 * work->lockdep_map, make a copy and use that here.
2095 */
2096 struct lockdep_map lockdep_map;
2097
2098 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2099 #endif
2100 /*
2101 * Ensure we're on the correct CPU. DISASSOCIATED test is
2102 * necessary to avoid spurious warnings from rescuers servicing the
2103 * unbound or a disassociated pool.
2104 */
2105 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2106 !(pool->flags & POOL_DISASSOCIATED) &&
2107 raw_smp_processor_id() != pool->cpu);
2108
2109 /*
2110 * A single work shouldn't be executed concurrently by
2111 * multiple workers on a single cpu. Check whether anyone is
2112 * already processing the work. If so, defer the work to the
2113 * currently executing one.
2114 */
2115 collision = find_worker_executing_work(pool, work);
2116 if (unlikely(collision)) {
2117 move_linked_works(work, &collision->scheduled, NULL);
2118 return;
2119 }
2120
2121 /* claim and dequeue */
2122 debug_work_deactivate(work);
2123 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2124 worker->current_work = work;
2125 worker->current_func = work->func;
2126 worker->current_pwq = pwq;
2127 work_color = get_work_color(work);
2128
2129 list_del_init(&work->entry);
2130
2131 /*
2132 * CPU intensive works don't participate in concurrency
2133 * management. They're the scheduler's responsibility.
2134 */
2135 if (unlikely(cpu_intensive))
2136 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2137
2138 /*
2139 * Unbound pool isn't concurrency managed and work items should be
2140 * executed ASAP. Wake up another worker if necessary.
2141 */
2142 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2143 wake_up_worker(pool);
2144
2145 /*
2146 * Record the last pool and clear PENDING which should be the last
2147 * update to @work. Also, do this inside @pool->lock so that
2148 * PENDING and queued state changes happen together while IRQ is
2149 * disabled.
2150 */
2151 set_work_pool_and_clear_pending(work, pool->id);
2152
2153 spin_unlock_irq(&pool->lock);
2154
2155 lock_map_acquire_read(&pwq->wq->lockdep_map);
2156 lock_map_acquire(&lockdep_map);
2157 trace_workqueue_execute_start(work);
2158 worker->current_func(work);
2159 /*
2160 * While we must be careful to not use "work" after this, the trace
2161 * point will only record its address.
2162 */
2163 trace_workqueue_execute_end(work);
2164 lock_map_release(&lockdep_map);
2165 lock_map_release(&pwq->wq->lockdep_map);
2166
2167 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2168 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2169 " last function: %pf\n",
2170 current->comm, preempt_count(), task_pid_nr(current),
2171 worker->current_func);
2172 debug_show_held_locks(current);
2173 dump_stack();
2174 }
2175
2176 spin_lock_irq(&pool->lock);
2177
2178 /* clear cpu intensive status */
2179 if (unlikely(cpu_intensive))
2180 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2181
2182 /* we're done with it, release */
2183 hash_del(&worker->hentry);
2184 worker->current_work = NULL;
2185 worker->current_func = NULL;
2186 worker->current_pwq = NULL;
2187 pwq_dec_nr_in_flight(pwq, work_color);
2188 }
2189
2190 /**
2191 * process_scheduled_works - process scheduled works
2192 * @worker: self
2193 *
2194 * Process all scheduled works. Please note that the scheduled list
2195 * may change while processing a work, so this function repeatedly
2196 * fetches a work from the top and executes it.
2197 *
2198 * CONTEXT:
2199 * spin_lock_irq(pool->lock) which may be released and regrabbed
2200 * multiple times.
2201 */
2202 static void process_scheduled_works(struct worker *worker)
2203 {
2204 while (!list_empty(&worker->scheduled)) {
2205 struct work_struct *work = list_first_entry(&worker->scheduled,
2206 struct work_struct, entry);
2207 process_one_work(worker, work);
2208 }
2209 }
2210
2211 /**
2212 * worker_thread - the worker thread function
2213 * @__worker: self
2214 *
2215 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2216 * of these per each cpu. These workers process all works regardless of
2217 * their specific target workqueue. The only exception is works which
2218 * belong to workqueues with a rescuer which will be explained in
2219 * rescuer_thread().
2220 */
2221 static int worker_thread(void *__worker)
2222 {
2223 struct worker *worker = __worker;
2224 struct worker_pool *pool = worker->pool;
2225
2226 /* tell the scheduler that this is a workqueue worker */
2227 worker->task->flags |= PF_WQ_WORKER;
2228 woke_up:
2229 spin_lock_irq(&pool->lock);
2230
2231 /* we are off idle list if destruction or rebind is requested */
2232 if (unlikely(list_empty(&worker->entry))) {
2233 spin_unlock_irq(&pool->lock);
2234
2235 /* if DIE is set, destruction is requested */
2236 if (worker->flags & WORKER_DIE) {
2237 worker->task->flags &= ~PF_WQ_WORKER;
2238 return 0;
2239 }
2240
2241 /* otherwise, rebind */
2242 idle_worker_rebind(worker);
2243 goto woke_up;
2244 }
2245
2246 worker_leave_idle(worker);
2247 recheck:
2248 /* no more worker necessary? */
2249 if (!need_more_worker(pool))
2250 goto sleep;
2251
2252 /* do we need to manage? */
2253 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2254 goto recheck;
2255
2256 /*
2257 * ->scheduled list can only be filled while a worker is
2258 * preparing to process a work or actually processing it.
2259 * Make sure nobody diddled with it while I was sleeping.
2260 */
2261 BUG_ON(!list_empty(&worker->scheduled));
2262
2263 /*
2264 * When control reaches this point, we're guaranteed to have
2265 * at least one idle worker or that someone else has already
2266 * assumed the manager role.
2267 */
2268 worker_clr_flags(worker, WORKER_PREP);
2269
2270 do {
2271 struct work_struct *work =
2272 list_first_entry(&pool->worklist,
2273 struct work_struct, entry);
2274
2275 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2276 /* optimization path, not strictly necessary */
2277 process_one_work(worker, work);
2278 if (unlikely(!list_empty(&worker->scheduled)))
2279 process_scheduled_works(worker);
2280 } else {
2281 move_linked_works(work, &worker->scheduled, NULL);
2282 process_scheduled_works(worker);
2283 }
2284 } while (keep_working(pool));
2285
2286 worker_set_flags(worker, WORKER_PREP, false);
2287 sleep:
2288 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2289 goto recheck;
2290
2291 /*
2292 * pool->lock is held and there's no work to process and no need to
2293 * manage, sleep. Workers are woken up only while holding
2294 * pool->lock or from local cpu, so setting the current state
2295 * before releasing pool->lock is enough to prevent losing any
2296 * event.
2297 */
2298 worker_enter_idle(worker);
2299 __set_current_state(TASK_INTERRUPTIBLE);
2300 spin_unlock_irq(&pool->lock);
2301 schedule();
2302 goto woke_up;
2303 }
2304
2305 /**
2306 * rescuer_thread - the rescuer thread function
2307 * @__rescuer: self
2308 *
2309 * Workqueue rescuer thread function. There's one rescuer for each
2310 * workqueue which has WQ_RESCUER set.
2311 *
2312 * Regular work processing on a pool may block trying to create a new
2313 * worker which uses GFP_KERNEL allocation which has slight chance of
2314 * developing into deadlock if some works currently on the same queue
2315 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2316 * the problem rescuer solves.
2317 *
2318 * When such condition is possible, the pool summons rescuers of all
2319 * workqueues which have works queued on the pool and let them process
2320 * those works so that forward progress can be guaranteed.
2321 *
2322 * This should happen rarely.
2323 */
2324 static int rescuer_thread(void *__rescuer)
2325 {
2326 struct worker *rescuer = __rescuer;
2327 struct workqueue_struct *wq = rescuer->rescue_wq;
2328 struct list_head *scheduled = &rescuer->scheduled;
2329 bool is_unbound = wq->flags & WQ_UNBOUND;
2330 unsigned int cpu;
2331
2332 set_user_nice(current, RESCUER_NICE_LEVEL);
2333
2334 /*
2335 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2336 * doesn't participate in concurrency management.
2337 */
2338 rescuer->task->flags |= PF_WQ_WORKER;
2339 repeat:
2340 set_current_state(TASK_INTERRUPTIBLE);
2341
2342 if (kthread_should_stop()) {
2343 __set_current_state(TASK_RUNNING);
2344 rescuer->task->flags &= ~PF_WQ_WORKER;
2345 return 0;
2346 }
2347
2348 /*
2349 * See whether any cpu is asking for help. Unbounded
2350 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2351 */
2352 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2353 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2354 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2355 struct worker_pool *pool = pwq->pool;
2356 struct work_struct *work, *n;
2357
2358 __set_current_state(TASK_RUNNING);
2359 mayday_clear_cpu(cpu, wq->mayday_mask);
2360
2361 /* migrate to the target cpu if possible */
2362 rescuer->pool = pool;
2363 worker_maybe_bind_and_lock(rescuer);
2364
2365 /*
2366 * Slurp in all works issued via this workqueue and
2367 * process'em.
2368 */
2369 BUG_ON(!list_empty(&rescuer->scheduled));
2370 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2371 if (get_work_pwq(work) == pwq)
2372 move_linked_works(work, scheduled, &n);
2373
2374 process_scheduled_works(rescuer);
2375
2376 /*
2377 * Leave this pool. If keep_working() is %true, notify a
2378 * regular worker; otherwise, we end up with 0 concurrency
2379 * and stalling the execution.
2380 */
2381 if (keep_working(pool))
2382 wake_up_worker(pool);
2383
2384 spin_unlock_irq(&pool->lock);
2385 }
2386
2387 /* rescuers should never participate in concurrency management */
2388 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2389 schedule();
2390 goto repeat;
2391 }
2392
2393 struct wq_barrier {
2394 struct work_struct work;
2395 struct completion done;
2396 };
2397
2398 static void wq_barrier_func(struct work_struct *work)
2399 {
2400 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2401 complete(&barr->done);
2402 }
2403
2404 /**
2405 * insert_wq_barrier - insert a barrier work
2406 * @pwq: pwq to insert barrier into
2407 * @barr: wq_barrier to insert
2408 * @target: target work to attach @barr to
2409 * @worker: worker currently executing @target, NULL if @target is not executing
2410 *
2411 * @barr is linked to @target such that @barr is completed only after
2412 * @target finishes execution. Please note that the ordering
2413 * guarantee is observed only with respect to @target and on the local
2414 * cpu.
2415 *
2416 * Currently, a queued barrier can't be canceled. This is because
2417 * try_to_grab_pending() can't determine whether the work to be
2418 * grabbed is at the head of the queue and thus can't clear LINKED
2419 * flag of the previous work while there must be a valid next work
2420 * after a work with LINKED flag set.
2421 *
2422 * Note that when @worker is non-NULL, @target may be modified
2423 * underneath us, so we can't reliably determine pwq from @target.
2424 *
2425 * CONTEXT:
2426 * spin_lock_irq(pool->lock).
2427 */
2428 static void insert_wq_barrier(struct pool_workqueue *pwq,
2429 struct wq_barrier *barr,
2430 struct work_struct *target, struct worker *worker)
2431 {
2432 struct list_head *head;
2433 unsigned int linked = 0;
2434
2435 /*
2436 * debugobject calls are safe here even with pool->lock locked
2437 * as we know for sure that this will not trigger any of the
2438 * checks and call back into the fixup functions where we
2439 * might deadlock.
2440 */
2441 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2442 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2443 init_completion(&barr->done);
2444
2445 /*
2446 * If @target is currently being executed, schedule the
2447 * barrier to the worker; otherwise, put it after @target.
2448 */
2449 if (worker)
2450 head = worker->scheduled.next;
2451 else {
2452 unsigned long *bits = work_data_bits(target);
2453
2454 head = target->entry.next;
2455 /* there can already be other linked works, inherit and set */
2456 linked = *bits & WORK_STRUCT_LINKED;
2457 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2458 }
2459
2460 debug_work_activate(&barr->work);
2461 insert_work(pwq, &barr->work, head,
2462 work_color_to_flags(WORK_NO_COLOR) | linked);
2463 }
2464
2465 /**
2466 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2467 * @wq: workqueue being flushed
2468 * @flush_color: new flush color, < 0 for no-op
2469 * @work_color: new work color, < 0 for no-op
2470 *
2471 * Prepare pwqs for workqueue flushing.
2472 *
2473 * If @flush_color is non-negative, flush_color on all pwqs should be
2474 * -1. If no pwq has in-flight commands at the specified color, all
2475 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2476 * has in flight commands, its pwq->flush_color is set to
2477 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2478 * wakeup logic is armed and %true is returned.
2479 *
2480 * The caller should have initialized @wq->first_flusher prior to
2481 * calling this function with non-negative @flush_color. If
2482 * @flush_color is negative, no flush color update is done and %false
2483 * is returned.
2484 *
2485 * If @work_color is non-negative, all pwqs should have the same
2486 * work_color which is previous to @work_color and all will be
2487 * advanced to @work_color.
2488 *
2489 * CONTEXT:
2490 * mutex_lock(wq->flush_mutex).
2491 *
2492 * RETURNS:
2493 * %true if @flush_color >= 0 and there's something to flush. %false
2494 * otherwise.
2495 */
2496 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2497 int flush_color, int work_color)
2498 {
2499 bool wait = false;
2500 unsigned int cpu;
2501
2502 if (flush_color >= 0) {
2503 BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
2504 atomic_set(&wq->nr_pwqs_to_flush, 1);
2505 }
2506
2507 for_each_pwq_cpu(cpu, wq) {
2508 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2509 struct worker_pool *pool = pwq->pool;
2510
2511 spin_lock_irq(&pool->lock);
2512
2513 if (flush_color >= 0) {
2514 BUG_ON(pwq->flush_color != -1);
2515
2516 if (pwq->nr_in_flight[flush_color]) {
2517 pwq->flush_color = flush_color;
2518 atomic_inc(&wq->nr_pwqs_to_flush);
2519 wait = true;
2520 }
2521 }
2522
2523 if (work_color >= 0) {
2524 BUG_ON(work_color != work_next_color(pwq->work_color));
2525 pwq->work_color = work_color;
2526 }
2527
2528 spin_unlock_irq(&pool->lock);
2529 }
2530
2531 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2532 complete(&wq->first_flusher->done);
2533
2534 return wait;
2535 }
2536
2537 /**
2538 * flush_workqueue - ensure that any scheduled work has run to completion.
2539 * @wq: workqueue to flush
2540 *
2541 * Forces execution of the workqueue and blocks until its completion.
2542 * This is typically used in driver shutdown handlers.
2543 *
2544 * We sleep until all works which were queued on entry have been handled,
2545 * but we are not livelocked by new incoming ones.
2546 */
2547 void flush_workqueue(struct workqueue_struct *wq)
2548 {
2549 struct wq_flusher this_flusher = {
2550 .list = LIST_HEAD_INIT(this_flusher.list),
2551 .flush_color = -1,
2552 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2553 };
2554 int next_color;
2555
2556 lock_map_acquire(&wq->lockdep_map);
2557 lock_map_release(&wq->lockdep_map);
2558
2559 mutex_lock(&wq->flush_mutex);
2560
2561 /*
2562 * Start-to-wait phase
2563 */
2564 next_color = work_next_color(wq->work_color);
2565
2566 if (next_color != wq->flush_color) {
2567 /*
2568 * Color space is not full. The current work_color
2569 * becomes our flush_color and work_color is advanced
2570 * by one.
2571 */
2572 BUG_ON(!list_empty(&wq->flusher_overflow));
2573 this_flusher.flush_color = wq->work_color;
2574 wq->work_color = next_color;
2575
2576 if (!wq->first_flusher) {
2577 /* no flush in progress, become the first flusher */
2578 BUG_ON(wq->flush_color != this_flusher.flush_color);
2579
2580 wq->first_flusher = &this_flusher;
2581
2582 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2583 wq->work_color)) {
2584 /* nothing to flush, done */
2585 wq->flush_color = next_color;
2586 wq->first_flusher = NULL;
2587 goto out_unlock;
2588 }
2589 } else {
2590 /* wait in queue */
2591 BUG_ON(wq->flush_color == this_flusher.flush_color);
2592 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2593 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2594 }
2595 } else {
2596 /*
2597 * Oops, color space is full, wait on overflow queue.
2598 * The next flush completion will assign us
2599 * flush_color and transfer to flusher_queue.
2600 */
2601 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2602 }
2603
2604 mutex_unlock(&wq->flush_mutex);
2605
2606 wait_for_completion(&this_flusher.done);
2607
2608 /*
2609 * Wake-up-and-cascade phase
2610 *
2611 * First flushers are responsible for cascading flushes and
2612 * handling overflow. Non-first flushers can simply return.
2613 */
2614 if (wq->first_flusher != &this_flusher)
2615 return;
2616
2617 mutex_lock(&wq->flush_mutex);
2618
2619 /* we might have raced, check again with mutex held */
2620 if (wq->first_flusher != &this_flusher)
2621 goto out_unlock;
2622
2623 wq->first_flusher = NULL;
2624
2625 BUG_ON(!list_empty(&this_flusher.list));
2626 BUG_ON(wq->flush_color != this_flusher.flush_color);
2627
2628 while (true) {
2629 struct wq_flusher *next, *tmp;
2630
2631 /* complete all the flushers sharing the current flush color */
2632 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2633 if (next->flush_color != wq->flush_color)
2634 break;
2635 list_del_init(&next->list);
2636 complete(&next->done);
2637 }
2638
2639 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2640 wq->flush_color != work_next_color(wq->work_color));
2641
2642 /* this flush_color is finished, advance by one */
2643 wq->flush_color = work_next_color(wq->flush_color);
2644
2645 /* one color has been freed, handle overflow queue */
2646 if (!list_empty(&wq->flusher_overflow)) {
2647 /*
2648 * Assign the same color to all overflowed
2649 * flushers, advance work_color and append to
2650 * flusher_queue. This is the start-to-wait
2651 * phase for these overflowed flushers.
2652 */
2653 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2654 tmp->flush_color = wq->work_color;
2655
2656 wq->work_color = work_next_color(wq->work_color);
2657
2658 list_splice_tail_init(&wq->flusher_overflow,
2659 &wq->flusher_queue);
2660 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2661 }
2662
2663 if (list_empty(&wq->flusher_queue)) {
2664 BUG_ON(wq->flush_color != wq->work_color);
2665 break;
2666 }
2667
2668 /*
2669 * Need to flush more colors. Make the next flusher
2670 * the new first flusher and arm pwqs.
2671 */
2672 BUG_ON(wq->flush_color == wq->work_color);
2673 BUG_ON(wq->flush_color != next->flush_color);
2674
2675 list_del_init(&next->list);
2676 wq->first_flusher = next;
2677
2678 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2679 break;
2680
2681 /*
2682 * Meh... this color is already done, clear first
2683 * flusher and repeat cascading.
2684 */
2685 wq->first_flusher = NULL;
2686 }
2687
2688 out_unlock:
2689 mutex_unlock(&wq->flush_mutex);
2690 }
2691 EXPORT_SYMBOL_GPL(flush_workqueue);
2692
2693 /**
2694 * drain_workqueue - drain a workqueue
2695 * @wq: workqueue to drain
2696 *
2697 * Wait until the workqueue becomes empty. While draining is in progress,
2698 * only chain queueing is allowed. IOW, only currently pending or running
2699 * work items on @wq can queue further work items on it. @wq is flushed
2700 * repeatedly until it becomes empty. The number of flushing is detemined
2701 * by the depth of chaining and should be relatively short. Whine if it
2702 * takes too long.
2703 */
2704 void drain_workqueue(struct workqueue_struct *wq)
2705 {
2706 unsigned int flush_cnt = 0;
2707 unsigned int cpu;
2708
2709 /*
2710 * __queue_work() needs to test whether there are drainers, is much
2711 * hotter than drain_workqueue() and already looks at @wq->flags.
2712 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2713 */
2714 spin_lock(&workqueue_lock);
2715 if (!wq->nr_drainers++)
2716 wq->flags |= WQ_DRAINING;
2717 spin_unlock(&workqueue_lock);
2718 reflush:
2719 flush_workqueue(wq);
2720
2721 for_each_pwq_cpu(cpu, wq) {
2722 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2723 bool drained;
2724
2725 spin_lock_irq(&pwq->pool->lock);
2726 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2727 spin_unlock_irq(&pwq->pool->lock);
2728
2729 if (drained)
2730 continue;
2731
2732 if (++flush_cnt == 10 ||
2733 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2734 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2735 wq->name, flush_cnt);
2736 goto reflush;
2737 }
2738
2739 spin_lock(&workqueue_lock);
2740 if (!--wq->nr_drainers)
2741 wq->flags &= ~WQ_DRAINING;
2742 spin_unlock(&workqueue_lock);
2743 }
2744 EXPORT_SYMBOL_GPL(drain_workqueue);
2745
2746 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2747 {
2748 struct worker *worker = NULL;
2749 struct worker_pool *pool;
2750 struct pool_workqueue *pwq;
2751
2752 might_sleep();
2753 pool = get_work_pool(work);
2754 if (!pool)
2755 return false;
2756
2757 spin_lock_irq(&pool->lock);
2758 /* see the comment in try_to_grab_pending() with the same code */
2759 pwq = get_work_pwq(work);
2760 if (pwq) {
2761 if (unlikely(pwq->pool != pool))
2762 goto already_gone;
2763 } else {
2764 worker = find_worker_executing_work(pool, work);
2765 if (!worker)
2766 goto already_gone;
2767 pwq = worker->current_pwq;
2768 }
2769
2770 insert_wq_barrier(pwq, barr, work, worker);
2771 spin_unlock_irq(&pool->lock);
2772
2773 /*
2774 * If @max_active is 1 or rescuer is in use, flushing another work
2775 * item on the same workqueue may lead to deadlock. Make sure the
2776 * flusher is not running on the same workqueue by verifying write
2777 * access.
2778 */
2779 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2780 lock_map_acquire(&pwq->wq->lockdep_map);
2781 else
2782 lock_map_acquire_read(&pwq->wq->lockdep_map);
2783 lock_map_release(&pwq->wq->lockdep_map);
2784
2785 return true;
2786 already_gone:
2787 spin_unlock_irq(&pool->lock);
2788 return false;
2789 }
2790
2791 /**
2792 * flush_work - wait for a work to finish executing the last queueing instance
2793 * @work: the work to flush
2794 *
2795 * Wait until @work has finished execution. @work is guaranteed to be idle
2796 * on return if it hasn't been requeued since flush started.
2797 *
2798 * RETURNS:
2799 * %true if flush_work() waited for the work to finish execution,
2800 * %false if it was already idle.
2801 */
2802 bool flush_work(struct work_struct *work)
2803 {
2804 struct wq_barrier barr;
2805
2806 lock_map_acquire(&work->lockdep_map);
2807 lock_map_release(&work->lockdep_map);
2808
2809 if (start_flush_work(work, &barr)) {
2810 wait_for_completion(&barr.done);
2811 destroy_work_on_stack(&barr.work);
2812 return true;
2813 } else {
2814 return false;
2815 }
2816 }
2817 EXPORT_SYMBOL_GPL(flush_work);
2818
2819 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2820 {
2821 unsigned long flags;
2822 int ret;
2823
2824 do {
2825 ret = try_to_grab_pending(work, is_dwork, &flags);
2826 /*
2827 * If someone else is canceling, wait for the same event it
2828 * would be waiting for before retrying.
2829 */
2830 if (unlikely(ret == -ENOENT))
2831 flush_work(work);
2832 } while (unlikely(ret < 0));
2833
2834 /* tell other tasks trying to grab @work to back off */
2835 mark_work_canceling(work);
2836 local_irq_restore(flags);
2837
2838 flush_work(work);
2839 clear_work_data(work);
2840 return ret;
2841 }
2842
2843 /**
2844 * cancel_work_sync - cancel a work and wait for it to finish
2845 * @work: the work to cancel
2846 *
2847 * Cancel @work and wait for its execution to finish. This function
2848 * can be used even if the work re-queues itself or migrates to
2849 * another workqueue. On return from this function, @work is
2850 * guaranteed to be not pending or executing on any CPU.
2851 *
2852 * cancel_work_sync(&delayed_work->work) must not be used for
2853 * delayed_work's. Use cancel_delayed_work_sync() instead.
2854 *
2855 * The caller must ensure that the workqueue on which @work was last
2856 * queued can't be destroyed before this function returns.
2857 *
2858 * RETURNS:
2859 * %true if @work was pending, %false otherwise.
2860 */
2861 bool cancel_work_sync(struct work_struct *work)
2862 {
2863 return __cancel_work_timer(work, false);
2864 }
2865 EXPORT_SYMBOL_GPL(cancel_work_sync);
2866
2867 /**
2868 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2869 * @dwork: the delayed work to flush
2870 *
2871 * Delayed timer is cancelled and the pending work is queued for
2872 * immediate execution. Like flush_work(), this function only
2873 * considers the last queueing instance of @dwork.
2874 *
2875 * RETURNS:
2876 * %true if flush_work() waited for the work to finish execution,
2877 * %false if it was already idle.
2878 */
2879 bool flush_delayed_work(struct delayed_work *dwork)
2880 {
2881 local_irq_disable();
2882 if (del_timer_sync(&dwork->timer))
2883 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2884 local_irq_enable();
2885 return flush_work(&dwork->work);
2886 }
2887 EXPORT_SYMBOL(flush_delayed_work);
2888
2889 /**
2890 * cancel_delayed_work - cancel a delayed work
2891 * @dwork: delayed_work to cancel
2892 *
2893 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2894 * and canceled; %false if wasn't pending. Note that the work callback
2895 * function may still be running on return, unless it returns %true and the
2896 * work doesn't re-arm itself. Explicitly flush or use
2897 * cancel_delayed_work_sync() to wait on it.
2898 *
2899 * This function is safe to call from any context including IRQ handler.
2900 */
2901 bool cancel_delayed_work(struct delayed_work *dwork)
2902 {
2903 unsigned long flags;
2904 int ret;
2905
2906 do {
2907 ret = try_to_grab_pending(&dwork->work, true, &flags);
2908 } while (unlikely(ret == -EAGAIN));
2909
2910 if (unlikely(ret < 0))
2911 return false;
2912
2913 set_work_pool_and_clear_pending(&dwork->work,
2914 get_work_pool_id(&dwork->work));
2915 local_irq_restore(flags);
2916 return ret;
2917 }
2918 EXPORT_SYMBOL(cancel_delayed_work);
2919
2920 /**
2921 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2922 * @dwork: the delayed work cancel
2923 *
2924 * This is cancel_work_sync() for delayed works.
2925 *
2926 * RETURNS:
2927 * %true if @dwork was pending, %false otherwise.
2928 */
2929 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2930 {
2931 return __cancel_work_timer(&dwork->work, true);
2932 }
2933 EXPORT_SYMBOL(cancel_delayed_work_sync);
2934
2935 /**
2936 * schedule_work_on - put work task on a specific cpu
2937 * @cpu: cpu to put the work task on
2938 * @work: job to be done
2939 *
2940 * This puts a job on a specific cpu
2941 */
2942 bool schedule_work_on(int cpu, struct work_struct *work)
2943 {
2944 return queue_work_on(cpu, system_wq, work);
2945 }
2946 EXPORT_SYMBOL(schedule_work_on);
2947
2948 /**
2949 * schedule_work - put work task in global workqueue
2950 * @work: job to be done
2951 *
2952 * Returns %false if @work was already on the kernel-global workqueue and
2953 * %true otherwise.
2954 *
2955 * This puts a job in the kernel-global workqueue if it was not already
2956 * queued and leaves it in the same position on the kernel-global
2957 * workqueue otherwise.
2958 */
2959 bool schedule_work(struct work_struct *work)
2960 {
2961 return queue_work(system_wq, work);
2962 }
2963 EXPORT_SYMBOL(schedule_work);
2964
2965 /**
2966 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2967 * @cpu: cpu to use
2968 * @dwork: job to be done
2969 * @delay: number of jiffies to wait
2970 *
2971 * After waiting for a given time this puts a job in the kernel-global
2972 * workqueue on the specified CPU.
2973 */
2974 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2975 unsigned long delay)
2976 {
2977 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2978 }
2979 EXPORT_SYMBOL(schedule_delayed_work_on);
2980
2981 /**
2982 * schedule_delayed_work - put work task in global workqueue after delay
2983 * @dwork: job to be done
2984 * @delay: number of jiffies to wait or 0 for immediate execution
2985 *
2986 * After waiting for a given time this puts a job in the kernel-global
2987 * workqueue.
2988 */
2989 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2990 {
2991 return queue_delayed_work(system_wq, dwork, delay);
2992 }
2993 EXPORT_SYMBOL(schedule_delayed_work);
2994
2995 /**
2996 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2997 * @func: the function to call
2998 *
2999 * schedule_on_each_cpu() executes @func on each online CPU using the
3000 * system workqueue and blocks until all CPUs have completed.
3001 * schedule_on_each_cpu() is very slow.
3002 *
3003 * RETURNS:
3004 * 0 on success, -errno on failure.
3005 */
3006 int schedule_on_each_cpu(work_func_t func)
3007 {
3008 int cpu;
3009 struct work_struct __percpu *works;
3010
3011 works = alloc_percpu(struct work_struct);
3012 if (!works)
3013 return -ENOMEM;
3014
3015 get_online_cpus();
3016
3017 for_each_online_cpu(cpu) {
3018 struct work_struct *work = per_cpu_ptr(works, cpu);
3019
3020 INIT_WORK(work, func);
3021 schedule_work_on(cpu, work);
3022 }
3023
3024 for_each_online_cpu(cpu)
3025 flush_work(per_cpu_ptr(works, cpu));
3026
3027 put_online_cpus();
3028 free_percpu(works);
3029 return 0;
3030 }
3031
3032 /**
3033 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3034 *
3035 * Forces execution of the kernel-global workqueue and blocks until its
3036 * completion.
3037 *
3038 * Think twice before calling this function! It's very easy to get into
3039 * trouble if you don't take great care. Either of the following situations
3040 * will lead to deadlock:
3041 *
3042 * One of the work items currently on the workqueue needs to acquire
3043 * a lock held by your code or its caller.
3044 *
3045 * Your code is running in the context of a work routine.
3046 *
3047 * They will be detected by lockdep when they occur, but the first might not
3048 * occur very often. It depends on what work items are on the workqueue and
3049 * what locks they need, which you have no control over.
3050 *
3051 * In most situations flushing the entire workqueue is overkill; you merely
3052 * need to know that a particular work item isn't queued and isn't running.
3053 * In such cases you should use cancel_delayed_work_sync() or
3054 * cancel_work_sync() instead.
3055 */
3056 void flush_scheduled_work(void)
3057 {
3058 flush_workqueue(system_wq);
3059 }
3060 EXPORT_SYMBOL(flush_scheduled_work);
3061
3062 /**
3063 * execute_in_process_context - reliably execute the routine with user context
3064 * @fn: the function to execute
3065 * @ew: guaranteed storage for the execute work structure (must
3066 * be available when the work executes)
3067 *
3068 * Executes the function immediately if process context is available,
3069 * otherwise schedules the function for delayed execution.
3070 *
3071 * Returns: 0 - function was executed
3072 * 1 - function was scheduled for execution
3073 */
3074 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3075 {
3076 if (!in_interrupt()) {
3077 fn(&ew->work);
3078 return 0;
3079 }
3080
3081 INIT_WORK(&ew->work, fn);
3082 schedule_work(&ew->work);
3083
3084 return 1;
3085 }
3086 EXPORT_SYMBOL_GPL(execute_in_process_context);
3087
3088 int keventd_up(void)
3089 {
3090 return system_wq != NULL;
3091 }
3092
3093 static int alloc_pwqs(struct workqueue_struct *wq)
3094 {
3095 /*
3096 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3097 * Make sure that the alignment isn't lower than that of
3098 * unsigned long long.
3099 */
3100 const size_t size = sizeof(struct pool_workqueue);
3101 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3102 __alignof__(unsigned long long));
3103
3104 if (!(wq->flags & WQ_UNBOUND))
3105 wq->pool_wq.pcpu = __alloc_percpu(size, align);
3106 else {
3107 void *ptr;
3108
3109 /*
3110 * Allocate enough room to align pwq and put an extra
3111 * pointer at the end pointing back to the originally
3112 * allocated pointer which will be used for free.
3113 */
3114 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3115 if (ptr) {
3116 wq->pool_wq.single = PTR_ALIGN(ptr, align);
3117 *(void **)(wq->pool_wq.single + 1) = ptr;
3118 }
3119 }
3120
3121 /* just in case, make sure it's actually aligned */
3122 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3123 return wq->pool_wq.v ? 0 : -ENOMEM;
3124 }
3125
3126 static void free_pwqs(struct workqueue_struct *wq)
3127 {
3128 if (!(wq->flags & WQ_UNBOUND))
3129 free_percpu(wq->pool_wq.pcpu);
3130 else if (wq->pool_wq.single) {
3131 /* the pointer to free is stored right after the pwq */
3132 kfree(*(void **)(wq->pool_wq.single + 1));
3133 }
3134 }
3135
3136 static int wq_clamp_max_active(int max_active, unsigned int flags,
3137 const char *name)
3138 {
3139 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3140
3141 if (max_active < 1 || max_active > lim)
3142 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3143 max_active, name, 1, lim);
3144
3145 return clamp_val(max_active, 1, lim);
3146 }
3147
3148 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3149 unsigned int flags,
3150 int max_active,
3151 struct lock_class_key *key,
3152 const char *lock_name, ...)
3153 {
3154 va_list args, args1;
3155 struct workqueue_struct *wq;
3156 unsigned int cpu;
3157 size_t namelen;
3158
3159 /* determine namelen, allocate wq and format name */
3160 va_start(args, lock_name);
3161 va_copy(args1, args);
3162 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3163
3164 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3165 if (!wq)
3166 goto err;
3167
3168 vsnprintf(wq->name, namelen, fmt, args1);
3169 va_end(args);
3170 va_end(args1);
3171
3172 /*
3173 * Workqueues which may be used during memory reclaim should
3174 * have a rescuer to guarantee forward progress.
3175 */
3176 if (flags & WQ_MEM_RECLAIM)
3177 flags |= WQ_RESCUER;
3178
3179 max_active = max_active ?: WQ_DFL_ACTIVE;
3180 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3181
3182 /* init wq */
3183 wq->flags = flags;
3184 wq->saved_max_active = max_active;
3185 mutex_init(&wq->flush_mutex);
3186 atomic_set(&wq->nr_pwqs_to_flush, 0);
3187 INIT_LIST_HEAD(&wq->flusher_queue);
3188 INIT_LIST_HEAD(&wq->flusher_overflow);
3189
3190 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3191 INIT_LIST_HEAD(&wq->list);
3192
3193 if (alloc_pwqs(wq) < 0)
3194 goto err;
3195
3196 for_each_pwq_cpu(cpu, wq) {
3197 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3198
3199 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3200 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3201 pwq->wq = wq;
3202 pwq->flush_color = -1;
3203 pwq->max_active = max_active;
3204 INIT_LIST_HEAD(&pwq->delayed_works);
3205 }
3206
3207 if (flags & WQ_RESCUER) {
3208 struct worker *rescuer;
3209
3210 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3211 goto err;
3212
3213 wq->rescuer = rescuer = alloc_worker();
3214 if (!rescuer)
3215 goto err;
3216
3217 rescuer->rescue_wq = wq;
3218 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3219 wq->name);
3220 if (IS_ERR(rescuer->task))
3221 goto err;
3222
3223 rescuer->task->flags |= PF_THREAD_BOUND;
3224 wake_up_process(rescuer->task);
3225 }
3226
3227 /*
3228 * workqueue_lock protects global freeze state and workqueues
3229 * list. Grab it, set max_active accordingly and add the new
3230 * workqueue to workqueues list.
3231 */
3232 spin_lock(&workqueue_lock);
3233
3234 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3235 for_each_pwq_cpu(cpu, wq)
3236 get_pwq(cpu, wq)->max_active = 0;
3237
3238 list_add(&wq->list, &workqueues);
3239
3240 spin_unlock(&workqueue_lock);
3241
3242 return wq;
3243 err:
3244 if (wq) {
3245 free_pwqs(wq);
3246 free_mayday_mask(wq->mayday_mask);
3247 kfree(wq->rescuer);
3248 kfree(wq);
3249 }
3250 return NULL;
3251 }
3252 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3253
3254 /**
3255 * destroy_workqueue - safely terminate a workqueue
3256 * @wq: target workqueue
3257 *
3258 * Safely destroy a workqueue. All work currently pending will be done first.
3259 */
3260 void destroy_workqueue(struct workqueue_struct *wq)
3261 {
3262 unsigned int cpu;
3263
3264 /* drain it before proceeding with destruction */
3265 drain_workqueue(wq);
3266
3267 /*
3268 * wq list is used to freeze wq, remove from list after
3269 * flushing is complete in case freeze races us.
3270 */
3271 spin_lock(&workqueue_lock);
3272 list_del(&wq->list);
3273 spin_unlock(&workqueue_lock);
3274
3275 /* sanity check */
3276 for_each_pwq_cpu(cpu, wq) {
3277 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3278 int i;
3279
3280 for (i = 0; i < WORK_NR_COLORS; i++)
3281 BUG_ON(pwq->nr_in_flight[i]);
3282 BUG_ON(pwq->nr_active);
3283 BUG_ON(!list_empty(&pwq->delayed_works));
3284 }
3285
3286 if (wq->flags & WQ_RESCUER) {
3287 kthread_stop(wq->rescuer->task);
3288 free_mayday_mask(wq->mayday_mask);
3289 kfree(wq->rescuer);
3290 }
3291
3292 free_pwqs(wq);
3293 kfree(wq);
3294 }
3295 EXPORT_SYMBOL_GPL(destroy_workqueue);
3296
3297 /**
3298 * pwq_set_max_active - adjust max_active of a pwq
3299 * @pwq: target pool_workqueue
3300 * @max_active: new max_active value.
3301 *
3302 * Set @pwq->max_active to @max_active and activate delayed works if
3303 * increased.
3304 *
3305 * CONTEXT:
3306 * spin_lock_irq(pool->lock).
3307 */
3308 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3309 {
3310 pwq->max_active = max_active;
3311
3312 while (!list_empty(&pwq->delayed_works) &&
3313 pwq->nr_active < pwq->max_active)
3314 pwq_activate_first_delayed(pwq);
3315 }
3316
3317 /**
3318 * workqueue_set_max_active - adjust max_active of a workqueue
3319 * @wq: target workqueue
3320 * @max_active: new max_active value.
3321 *
3322 * Set max_active of @wq to @max_active.
3323 *
3324 * CONTEXT:
3325 * Don't call from IRQ context.
3326 */
3327 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3328 {
3329 unsigned int cpu;
3330
3331 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3332
3333 spin_lock(&workqueue_lock);
3334
3335 wq->saved_max_active = max_active;
3336
3337 for_each_pwq_cpu(cpu, wq) {
3338 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3339 struct worker_pool *pool = pwq->pool;
3340
3341 spin_lock_irq(&pool->lock);
3342
3343 if (!(wq->flags & WQ_FREEZABLE) ||
3344 !(pool->flags & POOL_FREEZING))
3345 pwq_set_max_active(pwq, max_active);
3346
3347 spin_unlock_irq(&pool->lock);
3348 }
3349
3350 spin_unlock(&workqueue_lock);
3351 }
3352 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3353
3354 /**
3355 * workqueue_congested - test whether a workqueue is congested
3356 * @cpu: CPU in question
3357 * @wq: target workqueue
3358 *
3359 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3360 * no synchronization around this function and the test result is
3361 * unreliable and only useful as advisory hints or for debugging.
3362 *
3363 * RETURNS:
3364 * %true if congested, %false otherwise.
3365 */
3366 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3367 {
3368 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3369
3370 return !list_empty(&pwq->delayed_works);
3371 }
3372 EXPORT_SYMBOL_GPL(workqueue_congested);
3373
3374 /**
3375 * work_busy - test whether a work is currently pending or running
3376 * @work: the work to be tested
3377 *
3378 * Test whether @work is currently pending or running. There is no
3379 * synchronization around this function and the test result is
3380 * unreliable and only useful as advisory hints or for debugging.
3381 *
3382 * RETURNS:
3383 * OR'd bitmask of WORK_BUSY_* bits.
3384 */
3385 unsigned int work_busy(struct work_struct *work)
3386 {
3387 struct worker_pool *pool = get_work_pool(work);
3388 unsigned long flags;
3389 unsigned int ret = 0;
3390
3391 if (work_pending(work))
3392 ret |= WORK_BUSY_PENDING;
3393
3394 if (pool) {
3395 spin_lock_irqsave(&pool->lock, flags);
3396 if (find_worker_executing_work(pool, work))
3397 ret |= WORK_BUSY_RUNNING;
3398 spin_unlock_irqrestore(&pool->lock, flags);
3399 }
3400
3401 return ret;
3402 }
3403 EXPORT_SYMBOL_GPL(work_busy);
3404
3405 /*
3406 * CPU hotplug.
3407 *
3408 * There are two challenges in supporting CPU hotplug. Firstly, there
3409 * are a lot of assumptions on strong associations among work, pwq and
3410 * pool which make migrating pending and scheduled works very
3411 * difficult to implement without impacting hot paths. Secondly,
3412 * worker pools serve mix of short, long and very long running works making
3413 * blocked draining impractical.
3414 *
3415 * This is solved by allowing the pools to be disassociated from the CPU
3416 * running as an unbound one and allowing it to be reattached later if the
3417 * cpu comes back online.
3418 */
3419
3420 static void wq_unbind_fn(struct work_struct *work)
3421 {
3422 int cpu = smp_processor_id();
3423 struct worker_pool *pool;
3424 struct worker *worker;
3425 int i;
3426
3427 for_each_std_worker_pool(pool, cpu) {
3428 BUG_ON(cpu != smp_processor_id());
3429
3430 mutex_lock(&pool->assoc_mutex);
3431 spin_lock_irq(&pool->lock);
3432
3433 /*
3434 * We've claimed all manager positions. Make all workers
3435 * unbound and set DISASSOCIATED. Before this, all workers
3436 * except for the ones which are still executing works from
3437 * before the last CPU down must be on the cpu. After
3438 * this, they may become diasporas.
3439 */
3440 list_for_each_entry(worker, &pool->idle_list, entry)
3441 worker->flags |= WORKER_UNBOUND;
3442
3443 for_each_busy_worker(worker, i, pool)
3444 worker->flags |= WORKER_UNBOUND;
3445
3446 pool->flags |= POOL_DISASSOCIATED;
3447
3448 spin_unlock_irq(&pool->lock);
3449 mutex_unlock(&pool->assoc_mutex);
3450
3451 /*
3452 * Call schedule() so that we cross rq->lock and thus can
3453 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
3454 * This is necessary as scheduler callbacks may be invoked
3455 * from other cpus.
3456 */
3457 schedule();
3458
3459 /*
3460 * Sched callbacks are disabled now. Zap nr_running.
3461 * After this, nr_running stays zero and need_more_worker()
3462 * and keep_working() are always true as long as the
3463 * worklist is not empty. This pool now behaves as an
3464 * unbound (in terms of concurrency management) pool which
3465 * are served by workers tied to the pool.
3466 */
3467 atomic_set(&pool->nr_running, 0);
3468
3469 /*
3470 * With concurrency management just turned off, a busy
3471 * worker blocking could lead to lengthy stalls. Kick off
3472 * unbound chain execution of currently pending work items.
3473 */
3474 spin_lock_irq(&pool->lock);
3475 wake_up_worker(pool);
3476 spin_unlock_irq(&pool->lock);
3477 }
3478 }
3479
3480 /*
3481 * Workqueues should be brought up before normal priority CPU notifiers.
3482 * This will be registered high priority CPU notifier.
3483 */
3484 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3485 unsigned long action,
3486 void *hcpu)
3487 {
3488 unsigned int cpu = (unsigned long)hcpu;
3489 struct worker_pool *pool;
3490
3491 switch (action & ~CPU_TASKS_FROZEN) {
3492 case CPU_UP_PREPARE:
3493 for_each_std_worker_pool(pool, cpu) {
3494 struct worker *worker;
3495
3496 if (pool->nr_workers)
3497 continue;
3498
3499 worker = create_worker(pool);
3500 if (!worker)
3501 return NOTIFY_BAD;
3502
3503 spin_lock_irq(&pool->lock);
3504 start_worker(worker);
3505 spin_unlock_irq(&pool->lock);
3506 }
3507 break;
3508
3509 case CPU_DOWN_FAILED:
3510 case CPU_ONLINE:
3511 for_each_std_worker_pool(pool, cpu) {
3512 mutex_lock(&pool->assoc_mutex);
3513 spin_lock_irq(&pool->lock);
3514
3515 pool->flags &= ~POOL_DISASSOCIATED;
3516 rebind_workers(pool);
3517
3518 spin_unlock_irq(&pool->lock);
3519 mutex_unlock(&pool->assoc_mutex);
3520 }
3521 break;
3522 }
3523 return NOTIFY_OK;
3524 }
3525
3526 /*
3527 * Workqueues should be brought down after normal priority CPU notifiers.
3528 * This will be registered as low priority CPU notifier.
3529 */
3530 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3531 unsigned long action,
3532 void *hcpu)
3533 {
3534 unsigned int cpu = (unsigned long)hcpu;
3535 struct work_struct unbind_work;
3536
3537 switch (action & ~CPU_TASKS_FROZEN) {
3538 case CPU_DOWN_PREPARE:
3539 /* unbinding should happen on the local CPU */
3540 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3541 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3542 flush_work(&unbind_work);
3543 break;
3544 }
3545 return NOTIFY_OK;
3546 }
3547
3548 #ifdef CONFIG_SMP
3549
3550 struct work_for_cpu {
3551 struct work_struct work;
3552 long (*fn)(void *);
3553 void *arg;
3554 long ret;
3555 };
3556
3557 static void work_for_cpu_fn(struct work_struct *work)
3558 {
3559 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3560
3561 wfc->ret = wfc->fn(wfc->arg);
3562 }
3563
3564 /**
3565 * work_on_cpu - run a function in user context on a particular cpu
3566 * @cpu: the cpu to run on
3567 * @fn: the function to run
3568 * @arg: the function arg
3569 *
3570 * This will return the value @fn returns.
3571 * It is up to the caller to ensure that the cpu doesn't go offline.
3572 * The caller must not hold any locks which would prevent @fn from completing.
3573 */
3574 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3575 {
3576 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3577
3578 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3579 schedule_work_on(cpu, &wfc.work);
3580 flush_work(&wfc.work);
3581 return wfc.ret;
3582 }
3583 EXPORT_SYMBOL_GPL(work_on_cpu);
3584 #endif /* CONFIG_SMP */
3585
3586 #ifdef CONFIG_FREEZER
3587
3588 /**
3589 * freeze_workqueues_begin - begin freezing workqueues
3590 *
3591 * Start freezing workqueues. After this function returns, all freezable
3592 * workqueues will queue new works to their frozen_works list instead of
3593 * pool->worklist.
3594 *
3595 * CONTEXT:
3596 * Grabs and releases workqueue_lock and pool->lock's.
3597 */
3598 void freeze_workqueues_begin(void)
3599 {
3600 unsigned int cpu;
3601
3602 spin_lock(&workqueue_lock);
3603
3604 BUG_ON(workqueue_freezing);
3605 workqueue_freezing = true;
3606
3607 for_each_wq_cpu(cpu) {
3608 struct worker_pool *pool;
3609 struct workqueue_struct *wq;
3610
3611 for_each_std_worker_pool(pool, cpu) {
3612 spin_lock_irq(&pool->lock);
3613
3614 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3615 pool->flags |= POOL_FREEZING;
3616
3617 list_for_each_entry(wq, &workqueues, list) {
3618 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3619
3620 if (pwq && pwq->pool == pool &&
3621 (wq->flags & WQ_FREEZABLE))
3622 pwq->max_active = 0;
3623 }
3624
3625 spin_unlock_irq(&pool->lock);
3626 }
3627 }
3628
3629 spin_unlock(&workqueue_lock);
3630 }
3631
3632 /**
3633 * freeze_workqueues_busy - are freezable workqueues still busy?
3634 *
3635 * Check whether freezing is complete. This function must be called
3636 * between freeze_workqueues_begin() and thaw_workqueues().
3637 *
3638 * CONTEXT:
3639 * Grabs and releases workqueue_lock.
3640 *
3641 * RETURNS:
3642 * %true if some freezable workqueues are still busy. %false if freezing
3643 * is complete.
3644 */
3645 bool freeze_workqueues_busy(void)
3646 {
3647 unsigned int cpu;
3648 bool busy = false;
3649
3650 spin_lock(&workqueue_lock);
3651
3652 BUG_ON(!workqueue_freezing);
3653
3654 for_each_wq_cpu(cpu) {
3655 struct workqueue_struct *wq;
3656 /*
3657 * nr_active is monotonically decreasing. It's safe
3658 * to peek without lock.
3659 */
3660 list_for_each_entry(wq, &workqueues, list) {
3661 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3662
3663 if (!pwq || !(wq->flags & WQ_FREEZABLE))
3664 continue;
3665
3666 BUG_ON(pwq->nr_active < 0);
3667 if (pwq->nr_active) {
3668 busy = true;
3669 goto out_unlock;
3670 }
3671 }
3672 }
3673 out_unlock:
3674 spin_unlock(&workqueue_lock);
3675 return busy;
3676 }
3677
3678 /**
3679 * thaw_workqueues - thaw workqueues
3680 *
3681 * Thaw workqueues. Normal queueing is restored and all collected
3682 * frozen works are transferred to their respective pool worklists.
3683 *
3684 * CONTEXT:
3685 * Grabs and releases workqueue_lock and pool->lock's.
3686 */
3687 void thaw_workqueues(void)
3688 {
3689 unsigned int cpu;
3690
3691 spin_lock(&workqueue_lock);
3692
3693 if (!workqueue_freezing)
3694 goto out_unlock;
3695
3696 for_each_wq_cpu(cpu) {
3697 struct worker_pool *pool;
3698 struct workqueue_struct *wq;
3699
3700 for_each_std_worker_pool(pool, cpu) {
3701 spin_lock_irq(&pool->lock);
3702
3703 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3704 pool->flags &= ~POOL_FREEZING;
3705
3706 list_for_each_entry(wq, &workqueues, list) {
3707 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3708
3709 if (!pwq || pwq->pool != pool ||
3710 !(wq->flags & WQ_FREEZABLE))
3711 continue;
3712
3713 /* restore max_active and repopulate worklist */
3714 pwq_set_max_active(pwq, wq->saved_max_active);
3715 }
3716
3717 wake_up_worker(pool);
3718
3719 spin_unlock_irq(&pool->lock);
3720 }
3721 }
3722
3723 workqueue_freezing = false;
3724 out_unlock:
3725 spin_unlock(&workqueue_lock);
3726 }
3727 #endif /* CONFIG_FREEZER */
3728
3729 static int __init init_workqueues(void)
3730 {
3731 unsigned int cpu;
3732
3733 /* make sure we have enough bits for OFFQ pool ID */
3734 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3735 WORK_CPU_END * NR_STD_WORKER_POOLS);
3736
3737 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3738 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3739
3740 /* initialize CPU pools */
3741 for_each_wq_cpu(cpu) {
3742 struct worker_pool *pool;
3743
3744 for_each_std_worker_pool(pool, cpu) {
3745 spin_lock_init(&pool->lock);
3746 pool->cpu = cpu;
3747 pool->flags |= POOL_DISASSOCIATED;
3748 INIT_LIST_HEAD(&pool->worklist);
3749 INIT_LIST_HEAD(&pool->idle_list);
3750 hash_init(pool->busy_hash);
3751
3752 init_timer_deferrable(&pool->idle_timer);
3753 pool->idle_timer.function = idle_worker_timeout;
3754 pool->idle_timer.data = (unsigned long)pool;
3755
3756 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3757 (unsigned long)pool);
3758
3759 mutex_init(&pool->assoc_mutex);
3760 ida_init(&pool->worker_ida);
3761
3762 /* alloc pool ID */
3763 BUG_ON(worker_pool_assign_id(pool));
3764 }
3765 }
3766
3767 /* create the initial worker */
3768 for_each_online_wq_cpu(cpu) {
3769 struct worker_pool *pool;
3770
3771 for_each_std_worker_pool(pool, cpu) {
3772 struct worker *worker;
3773
3774 if (cpu != WORK_CPU_UNBOUND)
3775 pool->flags &= ~POOL_DISASSOCIATED;
3776
3777 worker = create_worker(pool);
3778 BUG_ON(!worker);
3779 spin_lock_irq(&pool->lock);
3780 start_worker(worker);
3781 spin_unlock_irq(&pool->lock);
3782 }
3783 }
3784
3785 system_wq = alloc_workqueue("events", 0, 0);
3786 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3787 system_long_wq = alloc_workqueue("events_long", 0, 0);
3788 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3789 WQ_UNBOUND_MAX_ACTIVE);
3790 system_freezable_wq = alloc_workqueue("events_freezable",
3791 WQ_FREEZABLE, 0);
3792 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3793 !system_unbound_wq || !system_freezable_wq);
3794 return 0;
3795 }
3796 early_initcall(init_workqueues);