workqueue: protect wq->saved_max_active with wq->mutex
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47
48 #include "workqueue_internal.h"
49
50 enum {
51 /*
52 * worker_pool flags
53 *
54 * A bound pool is either associated or disassociated with its CPU.
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
61 * be executing on any CPU. The pool behaves as an unbound one.
62 *
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
65 * create_worker() is in progress.
66 */
67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
69 POOL_FREEZING = 1 << 3, /* freeze in progress */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78 WORKER_REBOUND = 1 << 8, /* worker was rebound */
79
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
81 WORKER_UNBOUND | WORKER_REBOUND,
82
83 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
84
85 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
86 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
87
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
103 };
104
105 /*
106 * Structure fields follow one of the following exclusion rules.
107 *
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
110 *
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
114 * L: pool->lock protected. Access with pool->lock held.
115 *
116 * X: During normal operation, modification requires pool->lock and should
117 * be done only from local cpu. Either disabling preemption on local
118 * cpu or grabbing pool->lock is enough for read access. If
119 * POOL_DISASSOCIATED is set, it's identical to L.
120 *
121 * MG: pool->manager_mutex and pool->lock protected. Writes require both
122 * locks. Reads can happen under either lock.
123 *
124 * PL: wq_pool_mutex protected.
125 *
126 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
127 *
128 * PW: pwq_lock protected.
129 *
130 * WQ: wq->mutex protected.
131 *
132 * WR: wq->mutex and pwq_lock protected for writes. Sched-RCU protected
133 * for reads.
134 *
135 * MD: wq_mayday_lock protected.
136 */
137
138 /* struct worker is defined in workqueue_internal.h */
139
140 struct worker_pool {
141 spinlock_t lock; /* the pool lock */
142 int cpu; /* I: the associated cpu */
143 int id; /* I: pool ID */
144 unsigned int flags; /* X: flags */
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
148
149 /* nr_idle includes the ones off idle_list for rebinding */
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
156 /* a workers is either on busy_hash or idle_list, or the manager */
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
160 /* see manage_workers() for details on the two manager mutexes */
161 struct mutex manager_arb; /* manager arbitration */
162 struct mutex manager_mutex; /* manager exclusion */
163 struct idr worker_idr; /* MG: worker IDs and iteration */
164
165 struct workqueue_attrs *attrs; /* I: worker attributes */
166 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
167 int refcnt; /* PL: refcnt for unbound pools */
168
169 /*
170 * The current concurrency level. As it's likely to be accessed
171 * from other CPUs during try_to_wake_up(), put it in a separate
172 * cacheline.
173 */
174 atomic_t nr_running ____cacheline_aligned_in_smp;
175
176 /*
177 * Destruction of pool is sched-RCU protected to allow dereferences
178 * from get_work_pool().
179 */
180 struct rcu_head rcu;
181 } ____cacheline_aligned_in_smp;
182
183 /*
184 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
185 * of work_struct->data are used for flags and the remaining high bits
186 * point to the pwq; thus, pwqs need to be aligned at two's power of the
187 * number of flag bits.
188 */
189 struct pool_workqueue {
190 struct worker_pool *pool; /* I: the associated pool */
191 struct workqueue_struct *wq; /* I: the owning workqueue */
192 int work_color; /* L: current color */
193 int flush_color; /* L: flushing color */
194 int refcnt; /* L: reference count */
195 int nr_in_flight[WORK_NR_COLORS];
196 /* L: nr of in_flight works */
197 int nr_active; /* L: nr of active works */
198 int max_active; /* L: max active works */
199 struct list_head delayed_works; /* L: delayed works */
200 struct list_head pwqs_node; /* WR: node on wq->pwqs */
201 struct list_head mayday_node; /* MD: node on wq->maydays */
202
203 /*
204 * Release of unbound pwq is punted to system_wq. See put_pwq()
205 * and pwq_unbound_release_workfn() for details. pool_workqueue
206 * itself is also sched-RCU protected so that the first pwq can be
207 * determined without grabbing wq->mutex.
208 */
209 struct work_struct unbound_release_work;
210 struct rcu_head rcu;
211 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
212
213 /*
214 * Structure used to wait for workqueue flush.
215 */
216 struct wq_flusher {
217 struct list_head list; /* WQ: list of flushers */
218 int flush_color; /* WQ: flush color waiting for */
219 struct completion done; /* flush completion */
220 };
221
222 struct wq_device;
223
224 /*
225 * The externally visible workqueue. It relays the issued work items to
226 * the appropriate worker_pool through its pool_workqueues.
227 */
228 struct workqueue_struct {
229 unsigned int flags; /* WQ: WQ_* flags */
230 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
231 struct list_head pwqs; /* WR: all pwqs of this wq */
232 struct list_head list; /* PL: list of all workqueues */
233
234 struct mutex mutex; /* protects this wq */
235 int work_color; /* WQ: current work color */
236 int flush_color; /* WQ: current flush color */
237 atomic_t nr_pwqs_to_flush; /* flush in progress */
238 struct wq_flusher *first_flusher; /* WQ: first flusher */
239 struct list_head flusher_queue; /* WQ: flush waiters */
240 struct list_head flusher_overflow; /* WQ: flush overflow list */
241
242 struct list_head maydays; /* MD: pwqs requesting rescue */
243 struct worker *rescuer; /* I: rescue worker */
244
245 int nr_drainers; /* WQ: drain in progress */
246 int saved_max_active; /* WQ: saved pwq max_active */
247
248 #ifdef CONFIG_SYSFS
249 struct wq_device *wq_dev; /* I: for sysfs interface */
250 #endif
251 #ifdef CONFIG_LOCKDEP
252 struct lockdep_map lockdep_map;
253 #endif
254 char name[]; /* I: workqueue name */
255 };
256
257 static struct kmem_cache *pwq_cache;
258
259 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
260 static DEFINE_SPINLOCK(pwq_lock); /* protects pool_workqueues */
261 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
262
263 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
264 static bool workqueue_freezing; /* PL: have wqs started freezing? */
265
266 /* the per-cpu worker pools */
267 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
268 cpu_worker_pools);
269
270 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
271
272 /* PL: hash of all unbound pools keyed by pool->attrs */
273 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
274
275 /* I: attributes used when instantiating standard unbound pools on demand */
276 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
277
278 struct workqueue_struct *system_wq __read_mostly;
279 EXPORT_SYMBOL_GPL(system_wq);
280 struct workqueue_struct *system_highpri_wq __read_mostly;
281 EXPORT_SYMBOL_GPL(system_highpri_wq);
282 struct workqueue_struct *system_long_wq __read_mostly;
283 EXPORT_SYMBOL_GPL(system_long_wq);
284 struct workqueue_struct *system_unbound_wq __read_mostly;
285 EXPORT_SYMBOL_GPL(system_unbound_wq);
286 struct workqueue_struct *system_freezable_wq __read_mostly;
287 EXPORT_SYMBOL_GPL(system_freezable_wq);
288
289 static int worker_thread(void *__worker);
290 static void copy_workqueue_attrs(struct workqueue_attrs *to,
291 const struct workqueue_attrs *from);
292
293 #define CREATE_TRACE_POINTS
294 #include <trace/events/workqueue.h>
295
296 #define assert_rcu_or_pool_mutex() \
297 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
298 lockdep_is_held(&wq_pool_mutex), \
299 "sched RCU or wq_pool_mutex should be held")
300
301 #define assert_rcu_or_wq_mutex(wq) \
302 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
303 lockdep_is_held(&wq->mutex) || \
304 lockdep_is_held(&pwq_lock), \
305 "sched RCU or wq->mutex should be held")
306
307 #ifdef CONFIG_LOCKDEP
308 #define assert_manager_or_pool_lock(pool) \
309 WARN_ONCE(debug_locks && \
310 !lockdep_is_held(&(pool)->manager_mutex) && \
311 !lockdep_is_held(&(pool)->lock), \
312 "pool->manager_mutex or ->lock should be held")
313 #else
314 #define assert_manager_or_pool_lock(pool) do { } while (0)
315 #endif
316
317 #define for_each_cpu_worker_pool(pool, cpu) \
318 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
319 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
320 (pool)++)
321
322 /**
323 * for_each_pool - iterate through all worker_pools in the system
324 * @pool: iteration cursor
325 * @pi: integer used for iteration
326 *
327 * This must be called either with wq_pool_mutex held or sched RCU read
328 * locked. If the pool needs to be used beyond the locking in effect, the
329 * caller is responsible for guaranteeing that the pool stays online.
330 *
331 * The if/else clause exists only for the lockdep assertion and can be
332 * ignored.
333 */
334 #define for_each_pool(pool, pi) \
335 idr_for_each_entry(&worker_pool_idr, pool, pi) \
336 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
337 else
338
339 /**
340 * for_each_pool_worker - iterate through all workers of a worker_pool
341 * @worker: iteration cursor
342 * @wi: integer used for iteration
343 * @pool: worker_pool to iterate workers of
344 *
345 * This must be called with either @pool->manager_mutex or ->lock held.
346 *
347 * The if/else clause exists only for the lockdep assertion and can be
348 * ignored.
349 */
350 #define for_each_pool_worker(worker, wi, pool) \
351 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
352 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
353 else
354
355 /**
356 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
357 * @pwq: iteration cursor
358 * @wq: the target workqueue
359 *
360 * This must be called either with wq->mutex held or sched RCU read locked.
361 * If the pwq needs to be used beyond the locking in effect, the caller is
362 * responsible for guaranteeing that the pwq stays online.
363 *
364 * The if/else clause exists only for the lockdep assertion and can be
365 * ignored.
366 */
367 #define for_each_pwq(pwq, wq) \
368 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
369 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
370 else
371
372 #ifdef CONFIG_DEBUG_OBJECTS_WORK
373
374 static struct debug_obj_descr work_debug_descr;
375
376 static void *work_debug_hint(void *addr)
377 {
378 return ((struct work_struct *) addr)->func;
379 }
380
381 /*
382 * fixup_init is called when:
383 * - an active object is initialized
384 */
385 static int work_fixup_init(void *addr, enum debug_obj_state state)
386 {
387 struct work_struct *work = addr;
388
389 switch (state) {
390 case ODEBUG_STATE_ACTIVE:
391 cancel_work_sync(work);
392 debug_object_init(work, &work_debug_descr);
393 return 1;
394 default:
395 return 0;
396 }
397 }
398
399 /*
400 * fixup_activate is called when:
401 * - an active object is activated
402 * - an unknown object is activated (might be a statically initialized object)
403 */
404 static int work_fixup_activate(void *addr, enum debug_obj_state state)
405 {
406 struct work_struct *work = addr;
407
408 switch (state) {
409
410 case ODEBUG_STATE_NOTAVAILABLE:
411 /*
412 * This is not really a fixup. The work struct was
413 * statically initialized. We just make sure that it
414 * is tracked in the object tracker.
415 */
416 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
417 debug_object_init(work, &work_debug_descr);
418 debug_object_activate(work, &work_debug_descr);
419 return 0;
420 }
421 WARN_ON_ONCE(1);
422 return 0;
423
424 case ODEBUG_STATE_ACTIVE:
425 WARN_ON(1);
426
427 default:
428 return 0;
429 }
430 }
431
432 /*
433 * fixup_free is called when:
434 * - an active object is freed
435 */
436 static int work_fixup_free(void *addr, enum debug_obj_state state)
437 {
438 struct work_struct *work = addr;
439
440 switch (state) {
441 case ODEBUG_STATE_ACTIVE:
442 cancel_work_sync(work);
443 debug_object_free(work, &work_debug_descr);
444 return 1;
445 default:
446 return 0;
447 }
448 }
449
450 static struct debug_obj_descr work_debug_descr = {
451 .name = "work_struct",
452 .debug_hint = work_debug_hint,
453 .fixup_init = work_fixup_init,
454 .fixup_activate = work_fixup_activate,
455 .fixup_free = work_fixup_free,
456 };
457
458 static inline void debug_work_activate(struct work_struct *work)
459 {
460 debug_object_activate(work, &work_debug_descr);
461 }
462
463 static inline void debug_work_deactivate(struct work_struct *work)
464 {
465 debug_object_deactivate(work, &work_debug_descr);
466 }
467
468 void __init_work(struct work_struct *work, int onstack)
469 {
470 if (onstack)
471 debug_object_init_on_stack(work, &work_debug_descr);
472 else
473 debug_object_init(work, &work_debug_descr);
474 }
475 EXPORT_SYMBOL_GPL(__init_work);
476
477 void destroy_work_on_stack(struct work_struct *work)
478 {
479 debug_object_free(work, &work_debug_descr);
480 }
481 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
482
483 #else
484 static inline void debug_work_activate(struct work_struct *work) { }
485 static inline void debug_work_deactivate(struct work_struct *work) { }
486 #endif
487
488 /* allocate ID and assign it to @pool */
489 static int worker_pool_assign_id(struct worker_pool *pool)
490 {
491 int ret;
492
493 lockdep_assert_held(&wq_pool_mutex);
494
495 do {
496 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
497 return -ENOMEM;
498 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
499 } while (ret == -EAGAIN);
500
501 return ret;
502 }
503
504 /**
505 * first_pwq - return the first pool_workqueue of the specified workqueue
506 * @wq: the target workqueue
507 *
508 * This must be called either with wq->mutex held or sched RCU read locked.
509 * If the pwq needs to be used beyond the locking in effect, the caller is
510 * responsible for guaranteeing that the pwq stays online.
511 */
512 static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
513 {
514 assert_rcu_or_wq_mutex(wq);
515 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
516 pwqs_node);
517 }
518
519 static unsigned int work_color_to_flags(int color)
520 {
521 return color << WORK_STRUCT_COLOR_SHIFT;
522 }
523
524 static int get_work_color(struct work_struct *work)
525 {
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528 }
529
530 static int work_next_color(int color)
531 {
532 return (color + 1) % WORK_NR_COLORS;
533 }
534
535 /*
536 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
537 * contain the pointer to the queued pwq. Once execution starts, the flag
538 * is cleared and the high bits contain OFFQ flags and pool ID.
539 *
540 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
541 * and clear_work_data() can be used to set the pwq, pool or clear
542 * work->data. These functions should only be called while the work is
543 * owned - ie. while the PENDING bit is set.
544 *
545 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
546 * corresponding to a work. Pool is available once the work has been
547 * queued anywhere after initialization until it is sync canceled. pwq is
548 * available only while the work item is queued.
549 *
550 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
551 * canceled. While being canceled, a work item may have its PENDING set
552 * but stay off timer and worklist for arbitrarily long and nobody should
553 * try to steal the PENDING bit.
554 */
555 static inline void set_work_data(struct work_struct *work, unsigned long data,
556 unsigned long flags)
557 {
558 WARN_ON_ONCE(!work_pending(work));
559 atomic_long_set(&work->data, data | flags | work_static(work));
560 }
561
562 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
563 unsigned long extra_flags)
564 {
565 set_work_data(work, (unsigned long)pwq,
566 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
567 }
568
569 static void set_work_pool_and_keep_pending(struct work_struct *work,
570 int pool_id)
571 {
572 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
573 WORK_STRUCT_PENDING);
574 }
575
576 static void set_work_pool_and_clear_pending(struct work_struct *work,
577 int pool_id)
578 {
579 /*
580 * The following wmb is paired with the implied mb in
581 * test_and_set_bit(PENDING) and ensures all updates to @work made
582 * here are visible to and precede any updates by the next PENDING
583 * owner.
584 */
585 smp_wmb();
586 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
587 }
588
589 static void clear_work_data(struct work_struct *work)
590 {
591 smp_wmb(); /* see set_work_pool_and_clear_pending() */
592 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
593 }
594
595 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
596 {
597 unsigned long data = atomic_long_read(&work->data);
598
599 if (data & WORK_STRUCT_PWQ)
600 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
601 else
602 return NULL;
603 }
604
605 /**
606 * get_work_pool - return the worker_pool a given work was associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool @work was last associated with. %NULL if none.
610 *
611 * Pools are created and destroyed under wq_pool_mutex, and allows read
612 * access under sched-RCU read lock. As such, this function should be
613 * called under wq_pool_mutex or with preemption disabled.
614 *
615 * All fields of the returned pool are accessible as long as the above
616 * mentioned locking is in effect. If the returned pool needs to be used
617 * beyond the critical section, the caller is responsible for ensuring the
618 * returned pool is and stays online.
619 */
620 static struct worker_pool *get_work_pool(struct work_struct *work)
621 {
622 unsigned long data = atomic_long_read(&work->data);
623 int pool_id;
624
625 assert_rcu_or_pool_mutex();
626
627 if (data & WORK_STRUCT_PWQ)
628 return ((struct pool_workqueue *)
629 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
630
631 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
632 if (pool_id == WORK_OFFQ_POOL_NONE)
633 return NULL;
634
635 return idr_find(&worker_pool_idr, pool_id);
636 }
637
638 /**
639 * get_work_pool_id - return the worker pool ID a given work is associated with
640 * @work: the work item of interest
641 *
642 * Return the worker_pool ID @work was last associated with.
643 * %WORK_OFFQ_POOL_NONE if none.
644 */
645 static int get_work_pool_id(struct work_struct *work)
646 {
647 unsigned long data = atomic_long_read(&work->data);
648
649 if (data & WORK_STRUCT_PWQ)
650 return ((struct pool_workqueue *)
651 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
652
653 return data >> WORK_OFFQ_POOL_SHIFT;
654 }
655
656 static void mark_work_canceling(struct work_struct *work)
657 {
658 unsigned long pool_id = get_work_pool_id(work);
659
660 pool_id <<= WORK_OFFQ_POOL_SHIFT;
661 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
662 }
663
664 static bool work_is_canceling(struct work_struct *work)
665 {
666 unsigned long data = atomic_long_read(&work->data);
667
668 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
669 }
670
671 /*
672 * Policy functions. These define the policies on how the global worker
673 * pools are managed. Unless noted otherwise, these functions assume that
674 * they're being called with pool->lock held.
675 */
676
677 static bool __need_more_worker(struct worker_pool *pool)
678 {
679 return !atomic_read(&pool->nr_running);
680 }
681
682 /*
683 * Need to wake up a worker? Called from anything but currently
684 * running workers.
685 *
686 * Note that, because unbound workers never contribute to nr_running, this
687 * function will always return %true for unbound pools as long as the
688 * worklist isn't empty.
689 */
690 static bool need_more_worker(struct worker_pool *pool)
691 {
692 return !list_empty(&pool->worklist) && __need_more_worker(pool);
693 }
694
695 /* Can I start working? Called from busy but !running workers. */
696 static bool may_start_working(struct worker_pool *pool)
697 {
698 return pool->nr_idle;
699 }
700
701 /* Do I need to keep working? Called from currently running workers. */
702 static bool keep_working(struct worker_pool *pool)
703 {
704 return !list_empty(&pool->worklist) &&
705 atomic_read(&pool->nr_running) <= 1;
706 }
707
708 /* Do we need a new worker? Called from manager. */
709 static bool need_to_create_worker(struct worker_pool *pool)
710 {
711 return need_more_worker(pool) && !may_start_working(pool);
712 }
713
714 /* Do I need to be the manager? */
715 static bool need_to_manage_workers(struct worker_pool *pool)
716 {
717 return need_to_create_worker(pool) ||
718 (pool->flags & POOL_MANAGE_WORKERS);
719 }
720
721 /* Do we have too many workers and should some go away? */
722 static bool too_many_workers(struct worker_pool *pool)
723 {
724 bool managing = mutex_is_locked(&pool->manager_arb);
725 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
726 int nr_busy = pool->nr_workers - nr_idle;
727
728 /*
729 * nr_idle and idle_list may disagree if idle rebinding is in
730 * progress. Never return %true if idle_list is empty.
731 */
732 if (list_empty(&pool->idle_list))
733 return false;
734
735 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
736 }
737
738 /*
739 * Wake up functions.
740 */
741
742 /* Return the first worker. Safe with preemption disabled */
743 static struct worker *first_worker(struct worker_pool *pool)
744 {
745 if (unlikely(list_empty(&pool->idle_list)))
746 return NULL;
747
748 return list_first_entry(&pool->idle_list, struct worker, entry);
749 }
750
751 /**
752 * wake_up_worker - wake up an idle worker
753 * @pool: worker pool to wake worker from
754 *
755 * Wake up the first idle worker of @pool.
756 *
757 * CONTEXT:
758 * spin_lock_irq(pool->lock).
759 */
760 static void wake_up_worker(struct worker_pool *pool)
761 {
762 struct worker *worker = first_worker(pool);
763
764 if (likely(worker))
765 wake_up_process(worker->task);
766 }
767
768 /**
769 * wq_worker_waking_up - a worker is waking up
770 * @task: task waking up
771 * @cpu: CPU @task is waking up to
772 *
773 * This function is called during try_to_wake_up() when a worker is
774 * being awoken.
775 *
776 * CONTEXT:
777 * spin_lock_irq(rq->lock)
778 */
779 void wq_worker_waking_up(struct task_struct *task, int cpu)
780 {
781 struct worker *worker = kthread_data(task);
782
783 if (!(worker->flags & WORKER_NOT_RUNNING)) {
784 WARN_ON_ONCE(worker->pool->cpu != cpu);
785 atomic_inc(&worker->pool->nr_running);
786 }
787 }
788
789 /**
790 * wq_worker_sleeping - a worker is going to sleep
791 * @task: task going to sleep
792 * @cpu: CPU in question, must be the current CPU number
793 *
794 * This function is called during schedule() when a busy worker is
795 * going to sleep. Worker on the same cpu can be woken up by
796 * returning pointer to its task.
797 *
798 * CONTEXT:
799 * spin_lock_irq(rq->lock)
800 *
801 * RETURNS:
802 * Worker task on @cpu to wake up, %NULL if none.
803 */
804 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
805 {
806 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
807 struct worker_pool *pool;
808
809 /*
810 * Rescuers, which may not have all the fields set up like normal
811 * workers, also reach here, let's not access anything before
812 * checking NOT_RUNNING.
813 */
814 if (worker->flags & WORKER_NOT_RUNNING)
815 return NULL;
816
817 pool = worker->pool;
818
819 /* this can only happen on the local cpu */
820 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
821 return NULL;
822
823 /*
824 * The counterpart of the following dec_and_test, implied mb,
825 * worklist not empty test sequence is in insert_work().
826 * Please read comment there.
827 *
828 * NOT_RUNNING is clear. This means that we're bound to and
829 * running on the local cpu w/ rq lock held and preemption
830 * disabled, which in turn means that none else could be
831 * manipulating idle_list, so dereferencing idle_list without pool
832 * lock is safe.
833 */
834 if (atomic_dec_and_test(&pool->nr_running) &&
835 !list_empty(&pool->worklist))
836 to_wakeup = first_worker(pool);
837 return to_wakeup ? to_wakeup->task : NULL;
838 }
839
840 /**
841 * worker_set_flags - set worker flags and adjust nr_running accordingly
842 * @worker: self
843 * @flags: flags to set
844 * @wakeup: wakeup an idle worker if necessary
845 *
846 * Set @flags in @worker->flags and adjust nr_running accordingly. If
847 * nr_running becomes zero and @wakeup is %true, an idle worker is
848 * woken up.
849 *
850 * CONTEXT:
851 * spin_lock_irq(pool->lock)
852 */
853 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
854 bool wakeup)
855 {
856 struct worker_pool *pool = worker->pool;
857
858 WARN_ON_ONCE(worker->task != current);
859
860 /*
861 * If transitioning into NOT_RUNNING, adjust nr_running and
862 * wake up an idle worker as necessary if requested by
863 * @wakeup.
864 */
865 if ((flags & WORKER_NOT_RUNNING) &&
866 !(worker->flags & WORKER_NOT_RUNNING)) {
867 if (wakeup) {
868 if (atomic_dec_and_test(&pool->nr_running) &&
869 !list_empty(&pool->worklist))
870 wake_up_worker(pool);
871 } else
872 atomic_dec(&pool->nr_running);
873 }
874
875 worker->flags |= flags;
876 }
877
878 /**
879 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
880 * @worker: self
881 * @flags: flags to clear
882 *
883 * Clear @flags in @worker->flags and adjust nr_running accordingly.
884 *
885 * CONTEXT:
886 * spin_lock_irq(pool->lock)
887 */
888 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
889 {
890 struct worker_pool *pool = worker->pool;
891 unsigned int oflags = worker->flags;
892
893 WARN_ON_ONCE(worker->task != current);
894
895 worker->flags &= ~flags;
896
897 /*
898 * If transitioning out of NOT_RUNNING, increment nr_running. Note
899 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
900 * of multiple flags, not a single flag.
901 */
902 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
903 if (!(worker->flags & WORKER_NOT_RUNNING))
904 atomic_inc(&pool->nr_running);
905 }
906
907 /**
908 * find_worker_executing_work - find worker which is executing a work
909 * @pool: pool of interest
910 * @work: work to find worker for
911 *
912 * Find a worker which is executing @work on @pool by searching
913 * @pool->busy_hash which is keyed by the address of @work. For a worker
914 * to match, its current execution should match the address of @work and
915 * its work function. This is to avoid unwanted dependency between
916 * unrelated work executions through a work item being recycled while still
917 * being executed.
918 *
919 * This is a bit tricky. A work item may be freed once its execution
920 * starts and nothing prevents the freed area from being recycled for
921 * another work item. If the same work item address ends up being reused
922 * before the original execution finishes, workqueue will identify the
923 * recycled work item as currently executing and make it wait until the
924 * current execution finishes, introducing an unwanted dependency.
925 *
926 * This function checks the work item address and work function to avoid
927 * false positives. Note that this isn't complete as one may construct a
928 * work function which can introduce dependency onto itself through a
929 * recycled work item. Well, if somebody wants to shoot oneself in the
930 * foot that badly, there's only so much we can do, and if such deadlock
931 * actually occurs, it should be easy to locate the culprit work function.
932 *
933 * CONTEXT:
934 * spin_lock_irq(pool->lock).
935 *
936 * RETURNS:
937 * Pointer to worker which is executing @work if found, NULL
938 * otherwise.
939 */
940 static struct worker *find_worker_executing_work(struct worker_pool *pool,
941 struct work_struct *work)
942 {
943 struct worker *worker;
944
945 hash_for_each_possible(pool->busy_hash, worker, hentry,
946 (unsigned long)work)
947 if (worker->current_work == work &&
948 worker->current_func == work->func)
949 return worker;
950
951 return NULL;
952 }
953
954 /**
955 * move_linked_works - move linked works to a list
956 * @work: start of series of works to be scheduled
957 * @head: target list to append @work to
958 * @nextp: out paramter for nested worklist walking
959 *
960 * Schedule linked works starting from @work to @head. Work series to
961 * be scheduled starts at @work and includes any consecutive work with
962 * WORK_STRUCT_LINKED set in its predecessor.
963 *
964 * If @nextp is not NULL, it's updated to point to the next work of
965 * the last scheduled work. This allows move_linked_works() to be
966 * nested inside outer list_for_each_entry_safe().
967 *
968 * CONTEXT:
969 * spin_lock_irq(pool->lock).
970 */
971 static void move_linked_works(struct work_struct *work, struct list_head *head,
972 struct work_struct **nextp)
973 {
974 struct work_struct *n;
975
976 /*
977 * Linked worklist will always end before the end of the list,
978 * use NULL for list head.
979 */
980 list_for_each_entry_safe_from(work, n, NULL, entry) {
981 list_move_tail(&work->entry, head);
982 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
983 break;
984 }
985
986 /*
987 * If we're already inside safe list traversal and have moved
988 * multiple works to the scheduled queue, the next position
989 * needs to be updated.
990 */
991 if (nextp)
992 *nextp = n;
993 }
994
995 /**
996 * get_pwq - get an extra reference on the specified pool_workqueue
997 * @pwq: pool_workqueue to get
998 *
999 * Obtain an extra reference on @pwq. The caller should guarantee that
1000 * @pwq has positive refcnt and be holding the matching pool->lock.
1001 */
1002 static void get_pwq(struct pool_workqueue *pwq)
1003 {
1004 lockdep_assert_held(&pwq->pool->lock);
1005 WARN_ON_ONCE(pwq->refcnt <= 0);
1006 pwq->refcnt++;
1007 }
1008
1009 /**
1010 * put_pwq - put a pool_workqueue reference
1011 * @pwq: pool_workqueue to put
1012 *
1013 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1014 * destruction. The caller should be holding the matching pool->lock.
1015 */
1016 static void put_pwq(struct pool_workqueue *pwq)
1017 {
1018 lockdep_assert_held(&pwq->pool->lock);
1019 if (likely(--pwq->refcnt))
1020 return;
1021 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1022 return;
1023 /*
1024 * @pwq can't be released under pool->lock, bounce to
1025 * pwq_unbound_release_workfn(). This never recurses on the same
1026 * pool->lock as this path is taken only for unbound workqueues and
1027 * the release work item is scheduled on a per-cpu workqueue. To
1028 * avoid lockdep warning, unbound pool->locks are given lockdep
1029 * subclass of 1 in get_unbound_pool().
1030 */
1031 schedule_work(&pwq->unbound_release_work);
1032 }
1033
1034 static void pwq_activate_delayed_work(struct work_struct *work)
1035 {
1036 struct pool_workqueue *pwq = get_work_pwq(work);
1037
1038 trace_workqueue_activate_work(work);
1039 move_linked_works(work, &pwq->pool->worklist, NULL);
1040 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1041 pwq->nr_active++;
1042 }
1043
1044 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1045 {
1046 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1047 struct work_struct, entry);
1048
1049 pwq_activate_delayed_work(work);
1050 }
1051
1052 /**
1053 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1054 * @pwq: pwq of interest
1055 * @color: color of work which left the queue
1056 *
1057 * A work either has completed or is removed from pending queue,
1058 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1059 *
1060 * CONTEXT:
1061 * spin_lock_irq(pool->lock).
1062 */
1063 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1064 {
1065 /* uncolored work items don't participate in flushing or nr_active */
1066 if (color == WORK_NO_COLOR)
1067 goto out_put;
1068
1069 pwq->nr_in_flight[color]--;
1070
1071 pwq->nr_active--;
1072 if (!list_empty(&pwq->delayed_works)) {
1073 /* one down, submit a delayed one */
1074 if (pwq->nr_active < pwq->max_active)
1075 pwq_activate_first_delayed(pwq);
1076 }
1077
1078 /* is flush in progress and are we at the flushing tip? */
1079 if (likely(pwq->flush_color != color))
1080 goto out_put;
1081
1082 /* are there still in-flight works? */
1083 if (pwq->nr_in_flight[color])
1084 goto out_put;
1085
1086 /* this pwq is done, clear flush_color */
1087 pwq->flush_color = -1;
1088
1089 /*
1090 * If this was the last pwq, wake up the first flusher. It
1091 * will handle the rest.
1092 */
1093 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1094 complete(&pwq->wq->first_flusher->done);
1095 out_put:
1096 put_pwq(pwq);
1097 }
1098
1099 /**
1100 * try_to_grab_pending - steal work item from worklist and disable irq
1101 * @work: work item to steal
1102 * @is_dwork: @work is a delayed_work
1103 * @flags: place to store irq state
1104 *
1105 * Try to grab PENDING bit of @work. This function can handle @work in any
1106 * stable state - idle, on timer or on worklist. Return values are
1107 *
1108 * 1 if @work was pending and we successfully stole PENDING
1109 * 0 if @work was idle and we claimed PENDING
1110 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1111 * -ENOENT if someone else is canceling @work, this state may persist
1112 * for arbitrarily long
1113 *
1114 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1115 * interrupted while holding PENDING and @work off queue, irq must be
1116 * disabled on entry. This, combined with delayed_work->timer being
1117 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1118 *
1119 * On successful return, >= 0, irq is disabled and the caller is
1120 * responsible for releasing it using local_irq_restore(*@flags).
1121 *
1122 * This function is safe to call from any context including IRQ handler.
1123 */
1124 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1125 unsigned long *flags)
1126 {
1127 struct worker_pool *pool;
1128 struct pool_workqueue *pwq;
1129
1130 local_irq_save(*flags);
1131
1132 /* try to steal the timer if it exists */
1133 if (is_dwork) {
1134 struct delayed_work *dwork = to_delayed_work(work);
1135
1136 /*
1137 * dwork->timer is irqsafe. If del_timer() fails, it's
1138 * guaranteed that the timer is not queued anywhere and not
1139 * running on the local CPU.
1140 */
1141 if (likely(del_timer(&dwork->timer)))
1142 return 1;
1143 }
1144
1145 /* try to claim PENDING the normal way */
1146 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1147 return 0;
1148
1149 /*
1150 * The queueing is in progress, or it is already queued. Try to
1151 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1152 */
1153 pool = get_work_pool(work);
1154 if (!pool)
1155 goto fail;
1156
1157 spin_lock(&pool->lock);
1158 /*
1159 * work->data is guaranteed to point to pwq only while the work
1160 * item is queued on pwq->wq, and both updating work->data to point
1161 * to pwq on queueing and to pool on dequeueing are done under
1162 * pwq->pool->lock. This in turn guarantees that, if work->data
1163 * points to pwq which is associated with a locked pool, the work
1164 * item is currently queued on that pool.
1165 */
1166 pwq = get_work_pwq(work);
1167 if (pwq && pwq->pool == pool) {
1168 debug_work_deactivate(work);
1169
1170 /*
1171 * A delayed work item cannot be grabbed directly because
1172 * it might have linked NO_COLOR work items which, if left
1173 * on the delayed_list, will confuse pwq->nr_active
1174 * management later on and cause stall. Make sure the work
1175 * item is activated before grabbing.
1176 */
1177 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1178 pwq_activate_delayed_work(work);
1179
1180 list_del_init(&work->entry);
1181 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1182
1183 /* work->data points to pwq iff queued, point to pool */
1184 set_work_pool_and_keep_pending(work, pool->id);
1185
1186 spin_unlock(&pool->lock);
1187 return 1;
1188 }
1189 spin_unlock(&pool->lock);
1190 fail:
1191 local_irq_restore(*flags);
1192 if (work_is_canceling(work))
1193 return -ENOENT;
1194 cpu_relax();
1195 return -EAGAIN;
1196 }
1197
1198 /**
1199 * insert_work - insert a work into a pool
1200 * @pwq: pwq @work belongs to
1201 * @work: work to insert
1202 * @head: insertion point
1203 * @extra_flags: extra WORK_STRUCT_* flags to set
1204 *
1205 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1206 * work_struct flags.
1207 *
1208 * CONTEXT:
1209 * spin_lock_irq(pool->lock).
1210 */
1211 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1212 struct list_head *head, unsigned int extra_flags)
1213 {
1214 struct worker_pool *pool = pwq->pool;
1215
1216 /* we own @work, set data and link */
1217 set_work_pwq(work, pwq, extra_flags);
1218 list_add_tail(&work->entry, head);
1219 get_pwq(pwq);
1220
1221 /*
1222 * Ensure either wq_worker_sleeping() sees the above
1223 * list_add_tail() or we see zero nr_running to avoid workers lying
1224 * around lazily while there are works to be processed.
1225 */
1226 smp_mb();
1227
1228 if (__need_more_worker(pool))
1229 wake_up_worker(pool);
1230 }
1231
1232 /*
1233 * Test whether @work is being queued from another work executing on the
1234 * same workqueue.
1235 */
1236 static bool is_chained_work(struct workqueue_struct *wq)
1237 {
1238 struct worker *worker;
1239
1240 worker = current_wq_worker();
1241 /*
1242 * Return %true iff I'm a worker execuing a work item on @wq. If
1243 * I'm @worker, it's safe to dereference it without locking.
1244 */
1245 return worker && worker->current_pwq->wq == wq;
1246 }
1247
1248 static void __queue_work(int cpu, struct workqueue_struct *wq,
1249 struct work_struct *work)
1250 {
1251 struct pool_workqueue *pwq;
1252 struct worker_pool *last_pool;
1253 struct list_head *worklist;
1254 unsigned int work_flags;
1255 unsigned int req_cpu = cpu;
1256
1257 /*
1258 * While a work item is PENDING && off queue, a task trying to
1259 * steal the PENDING will busy-loop waiting for it to either get
1260 * queued or lose PENDING. Grabbing PENDING and queueing should
1261 * happen with IRQ disabled.
1262 */
1263 WARN_ON_ONCE(!irqs_disabled());
1264
1265 debug_work_activate(work);
1266
1267 /* if dying, only works from the same workqueue are allowed */
1268 if (unlikely(wq->flags & __WQ_DRAINING) &&
1269 WARN_ON_ONCE(!is_chained_work(wq)))
1270 return;
1271 retry:
1272 /* pwq which will be used unless @work is executing elsewhere */
1273 if (!(wq->flags & WQ_UNBOUND)) {
1274 if (cpu == WORK_CPU_UNBOUND)
1275 cpu = raw_smp_processor_id();
1276 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1277 } else {
1278 pwq = first_pwq(wq);
1279 }
1280
1281 /*
1282 * If @work was previously on a different pool, it might still be
1283 * running there, in which case the work needs to be queued on that
1284 * pool to guarantee non-reentrancy.
1285 */
1286 last_pool = get_work_pool(work);
1287 if (last_pool && last_pool != pwq->pool) {
1288 struct worker *worker;
1289
1290 spin_lock(&last_pool->lock);
1291
1292 worker = find_worker_executing_work(last_pool, work);
1293
1294 if (worker && worker->current_pwq->wq == wq) {
1295 pwq = worker->current_pwq;
1296 } else {
1297 /* meh... not running there, queue here */
1298 spin_unlock(&last_pool->lock);
1299 spin_lock(&pwq->pool->lock);
1300 }
1301 } else {
1302 spin_lock(&pwq->pool->lock);
1303 }
1304
1305 /*
1306 * pwq is determined and locked. For unbound pools, we could have
1307 * raced with pwq release and it could already be dead. If its
1308 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1309 * without another pwq replacing it as the first pwq or while a
1310 * work item is executing on it, so the retying is guaranteed to
1311 * make forward-progress.
1312 */
1313 if (unlikely(!pwq->refcnt)) {
1314 if (wq->flags & WQ_UNBOUND) {
1315 spin_unlock(&pwq->pool->lock);
1316 cpu_relax();
1317 goto retry;
1318 }
1319 /* oops */
1320 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1321 wq->name, cpu);
1322 }
1323
1324 /* pwq determined, queue */
1325 trace_workqueue_queue_work(req_cpu, pwq, work);
1326
1327 if (WARN_ON(!list_empty(&work->entry))) {
1328 spin_unlock(&pwq->pool->lock);
1329 return;
1330 }
1331
1332 pwq->nr_in_flight[pwq->work_color]++;
1333 work_flags = work_color_to_flags(pwq->work_color);
1334
1335 if (likely(pwq->nr_active < pwq->max_active)) {
1336 trace_workqueue_activate_work(work);
1337 pwq->nr_active++;
1338 worklist = &pwq->pool->worklist;
1339 } else {
1340 work_flags |= WORK_STRUCT_DELAYED;
1341 worklist = &pwq->delayed_works;
1342 }
1343
1344 insert_work(pwq, work, worklist, work_flags);
1345
1346 spin_unlock(&pwq->pool->lock);
1347 }
1348
1349 /**
1350 * queue_work_on - queue work on specific cpu
1351 * @cpu: CPU number to execute work on
1352 * @wq: workqueue to use
1353 * @work: work to queue
1354 *
1355 * Returns %false if @work was already on a queue, %true otherwise.
1356 *
1357 * We queue the work to a specific CPU, the caller must ensure it
1358 * can't go away.
1359 */
1360 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1361 struct work_struct *work)
1362 {
1363 bool ret = false;
1364 unsigned long flags;
1365
1366 local_irq_save(flags);
1367
1368 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1369 __queue_work(cpu, wq, work);
1370 ret = true;
1371 }
1372
1373 local_irq_restore(flags);
1374 return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(queue_work_on);
1377
1378 void delayed_work_timer_fn(unsigned long __data)
1379 {
1380 struct delayed_work *dwork = (struct delayed_work *)__data;
1381
1382 /* should have been called from irqsafe timer with irq already off */
1383 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1384 }
1385 EXPORT_SYMBOL(delayed_work_timer_fn);
1386
1387 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1388 struct delayed_work *dwork, unsigned long delay)
1389 {
1390 struct timer_list *timer = &dwork->timer;
1391 struct work_struct *work = &dwork->work;
1392
1393 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1394 timer->data != (unsigned long)dwork);
1395 WARN_ON_ONCE(timer_pending(timer));
1396 WARN_ON_ONCE(!list_empty(&work->entry));
1397
1398 /*
1399 * If @delay is 0, queue @dwork->work immediately. This is for
1400 * both optimization and correctness. The earliest @timer can
1401 * expire is on the closest next tick and delayed_work users depend
1402 * on that there's no such delay when @delay is 0.
1403 */
1404 if (!delay) {
1405 __queue_work(cpu, wq, &dwork->work);
1406 return;
1407 }
1408
1409 timer_stats_timer_set_start_info(&dwork->timer);
1410
1411 dwork->wq = wq;
1412 dwork->cpu = cpu;
1413 timer->expires = jiffies + delay;
1414
1415 if (unlikely(cpu != WORK_CPU_UNBOUND))
1416 add_timer_on(timer, cpu);
1417 else
1418 add_timer(timer);
1419 }
1420
1421 /**
1422 * queue_delayed_work_on - queue work on specific CPU after delay
1423 * @cpu: CPU number to execute work on
1424 * @wq: workqueue to use
1425 * @dwork: work to queue
1426 * @delay: number of jiffies to wait before queueing
1427 *
1428 * Returns %false if @work was already on a queue, %true otherwise. If
1429 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1430 * execution.
1431 */
1432 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1433 struct delayed_work *dwork, unsigned long delay)
1434 {
1435 struct work_struct *work = &dwork->work;
1436 bool ret = false;
1437 unsigned long flags;
1438
1439 /* read the comment in __queue_work() */
1440 local_irq_save(flags);
1441
1442 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1443 __queue_delayed_work(cpu, wq, dwork, delay);
1444 ret = true;
1445 }
1446
1447 local_irq_restore(flags);
1448 return ret;
1449 }
1450 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1451
1452 /**
1453 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1454 * @cpu: CPU number to execute work on
1455 * @wq: workqueue to use
1456 * @dwork: work to queue
1457 * @delay: number of jiffies to wait before queueing
1458 *
1459 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1460 * modify @dwork's timer so that it expires after @delay. If @delay is
1461 * zero, @work is guaranteed to be scheduled immediately regardless of its
1462 * current state.
1463 *
1464 * Returns %false if @dwork was idle and queued, %true if @dwork was
1465 * pending and its timer was modified.
1466 *
1467 * This function is safe to call from any context including IRQ handler.
1468 * See try_to_grab_pending() for details.
1469 */
1470 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1471 struct delayed_work *dwork, unsigned long delay)
1472 {
1473 unsigned long flags;
1474 int ret;
1475
1476 do {
1477 ret = try_to_grab_pending(&dwork->work, true, &flags);
1478 } while (unlikely(ret == -EAGAIN));
1479
1480 if (likely(ret >= 0)) {
1481 __queue_delayed_work(cpu, wq, dwork, delay);
1482 local_irq_restore(flags);
1483 }
1484
1485 /* -ENOENT from try_to_grab_pending() becomes %true */
1486 return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1489
1490 /**
1491 * worker_enter_idle - enter idle state
1492 * @worker: worker which is entering idle state
1493 *
1494 * @worker is entering idle state. Update stats and idle timer if
1495 * necessary.
1496 *
1497 * LOCKING:
1498 * spin_lock_irq(pool->lock).
1499 */
1500 static void worker_enter_idle(struct worker *worker)
1501 {
1502 struct worker_pool *pool = worker->pool;
1503
1504 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1505 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1506 (worker->hentry.next || worker->hentry.pprev)))
1507 return;
1508
1509 /* can't use worker_set_flags(), also called from start_worker() */
1510 worker->flags |= WORKER_IDLE;
1511 pool->nr_idle++;
1512 worker->last_active = jiffies;
1513
1514 /* idle_list is LIFO */
1515 list_add(&worker->entry, &pool->idle_list);
1516
1517 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1518 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1519
1520 /*
1521 * Sanity check nr_running. Because wq_unbind_fn() releases
1522 * pool->lock between setting %WORKER_UNBOUND and zapping
1523 * nr_running, the warning may trigger spuriously. Check iff
1524 * unbind is not in progress.
1525 */
1526 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1527 pool->nr_workers == pool->nr_idle &&
1528 atomic_read(&pool->nr_running));
1529 }
1530
1531 /**
1532 * worker_leave_idle - leave idle state
1533 * @worker: worker which is leaving idle state
1534 *
1535 * @worker is leaving idle state. Update stats.
1536 *
1537 * LOCKING:
1538 * spin_lock_irq(pool->lock).
1539 */
1540 static void worker_leave_idle(struct worker *worker)
1541 {
1542 struct worker_pool *pool = worker->pool;
1543
1544 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1545 return;
1546 worker_clr_flags(worker, WORKER_IDLE);
1547 pool->nr_idle--;
1548 list_del_init(&worker->entry);
1549 }
1550
1551 /**
1552 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1553 * @pool: target worker_pool
1554 *
1555 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1556 *
1557 * Works which are scheduled while the cpu is online must at least be
1558 * scheduled to a worker which is bound to the cpu so that if they are
1559 * flushed from cpu callbacks while cpu is going down, they are
1560 * guaranteed to execute on the cpu.
1561 *
1562 * This function is to be used by unbound workers and rescuers to bind
1563 * themselves to the target cpu and may race with cpu going down or
1564 * coming online. kthread_bind() can't be used because it may put the
1565 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1566 * verbatim as it's best effort and blocking and pool may be
1567 * [dis]associated in the meantime.
1568 *
1569 * This function tries set_cpus_allowed() and locks pool and verifies the
1570 * binding against %POOL_DISASSOCIATED which is set during
1571 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1572 * enters idle state or fetches works without dropping lock, it can
1573 * guarantee the scheduling requirement described in the first paragraph.
1574 *
1575 * CONTEXT:
1576 * Might sleep. Called without any lock but returns with pool->lock
1577 * held.
1578 *
1579 * RETURNS:
1580 * %true if the associated pool is online (@worker is successfully
1581 * bound), %false if offline.
1582 */
1583 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1584 __acquires(&pool->lock)
1585 {
1586 while (true) {
1587 /*
1588 * The following call may fail, succeed or succeed
1589 * without actually migrating the task to the cpu if
1590 * it races with cpu hotunplug operation. Verify
1591 * against POOL_DISASSOCIATED.
1592 */
1593 if (!(pool->flags & POOL_DISASSOCIATED))
1594 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1595
1596 spin_lock_irq(&pool->lock);
1597 if (pool->flags & POOL_DISASSOCIATED)
1598 return false;
1599 if (task_cpu(current) == pool->cpu &&
1600 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1601 return true;
1602 spin_unlock_irq(&pool->lock);
1603
1604 /*
1605 * We've raced with CPU hot[un]plug. Give it a breather
1606 * and retry migration. cond_resched() is required here;
1607 * otherwise, we might deadlock against cpu_stop trying to
1608 * bring down the CPU on non-preemptive kernel.
1609 */
1610 cpu_relax();
1611 cond_resched();
1612 }
1613 }
1614
1615 static struct worker *alloc_worker(void)
1616 {
1617 struct worker *worker;
1618
1619 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1620 if (worker) {
1621 INIT_LIST_HEAD(&worker->entry);
1622 INIT_LIST_HEAD(&worker->scheduled);
1623 /* on creation a worker is in !idle && prep state */
1624 worker->flags = WORKER_PREP;
1625 }
1626 return worker;
1627 }
1628
1629 /**
1630 * create_worker - create a new workqueue worker
1631 * @pool: pool the new worker will belong to
1632 *
1633 * Create a new worker which is bound to @pool. The returned worker
1634 * can be started by calling start_worker() or destroyed using
1635 * destroy_worker().
1636 *
1637 * CONTEXT:
1638 * Might sleep. Does GFP_KERNEL allocations.
1639 *
1640 * RETURNS:
1641 * Pointer to the newly created worker.
1642 */
1643 static struct worker *create_worker(struct worker_pool *pool)
1644 {
1645 const char *pri = pool->attrs->nice < 0 ? "H" : "";
1646 struct worker *worker = NULL;
1647 int id = -1;
1648
1649 lockdep_assert_held(&pool->manager_mutex);
1650
1651 /*
1652 * ID is needed to determine kthread name. Allocate ID first
1653 * without installing the pointer.
1654 */
1655 idr_preload(GFP_KERNEL);
1656 spin_lock_irq(&pool->lock);
1657
1658 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1659
1660 spin_unlock_irq(&pool->lock);
1661 idr_preload_end();
1662 if (id < 0)
1663 goto fail;
1664
1665 worker = alloc_worker();
1666 if (!worker)
1667 goto fail;
1668
1669 worker->pool = pool;
1670 worker->id = id;
1671
1672 if (pool->cpu >= 0)
1673 worker->task = kthread_create_on_node(worker_thread,
1674 worker, cpu_to_node(pool->cpu),
1675 "kworker/%d:%d%s", pool->cpu, id, pri);
1676 else
1677 worker->task = kthread_create(worker_thread, worker,
1678 "kworker/u%d:%d%s",
1679 pool->id, id, pri);
1680 if (IS_ERR(worker->task))
1681 goto fail;
1682
1683 /*
1684 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1685 * online CPUs. It'll be re-applied when any of the CPUs come up.
1686 */
1687 set_user_nice(worker->task, pool->attrs->nice);
1688 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1689
1690 /* prevent userland from meddling with cpumask of workqueue workers */
1691 worker->task->flags |= PF_NO_SETAFFINITY;
1692
1693 /*
1694 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1695 * remains stable across this function. See the comments above the
1696 * flag definition for details.
1697 */
1698 if (pool->flags & POOL_DISASSOCIATED)
1699 worker->flags |= WORKER_UNBOUND;
1700
1701 /* successful, commit the pointer to idr */
1702 spin_lock_irq(&pool->lock);
1703 idr_replace(&pool->worker_idr, worker, worker->id);
1704 spin_unlock_irq(&pool->lock);
1705
1706 return worker;
1707
1708 fail:
1709 if (id >= 0) {
1710 spin_lock_irq(&pool->lock);
1711 idr_remove(&pool->worker_idr, id);
1712 spin_unlock_irq(&pool->lock);
1713 }
1714 kfree(worker);
1715 return NULL;
1716 }
1717
1718 /**
1719 * start_worker - start a newly created worker
1720 * @worker: worker to start
1721 *
1722 * Make the pool aware of @worker and start it.
1723 *
1724 * CONTEXT:
1725 * spin_lock_irq(pool->lock).
1726 */
1727 static void start_worker(struct worker *worker)
1728 {
1729 worker->flags |= WORKER_STARTED;
1730 worker->pool->nr_workers++;
1731 worker_enter_idle(worker);
1732 wake_up_process(worker->task);
1733 }
1734
1735 /**
1736 * create_and_start_worker - create and start a worker for a pool
1737 * @pool: the target pool
1738 *
1739 * Grab the managership of @pool and create and start a new worker for it.
1740 */
1741 static int create_and_start_worker(struct worker_pool *pool)
1742 {
1743 struct worker *worker;
1744
1745 mutex_lock(&pool->manager_mutex);
1746
1747 worker = create_worker(pool);
1748 if (worker) {
1749 spin_lock_irq(&pool->lock);
1750 start_worker(worker);
1751 spin_unlock_irq(&pool->lock);
1752 }
1753
1754 mutex_unlock(&pool->manager_mutex);
1755
1756 return worker ? 0 : -ENOMEM;
1757 }
1758
1759 /**
1760 * destroy_worker - destroy a workqueue worker
1761 * @worker: worker to be destroyed
1762 *
1763 * Destroy @worker and adjust @pool stats accordingly.
1764 *
1765 * CONTEXT:
1766 * spin_lock_irq(pool->lock) which is released and regrabbed.
1767 */
1768 static void destroy_worker(struct worker *worker)
1769 {
1770 struct worker_pool *pool = worker->pool;
1771
1772 lockdep_assert_held(&pool->manager_mutex);
1773 lockdep_assert_held(&pool->lock);
1774
1775 /* sanity check frenzy */
1776 if (WARN_ON(worker->current_work) ||
1777 WARN_ON(!list_empty(&worker->scheduled)))
1778 return;
1779
1780 if (worker->flags & WORKER_STARTED)
1781 pool->nr_workers--;
1782 if (worker->flags & WORKER_IDLE)
1783 pool->nr_idle--;
1784
1785 list_del_init(&worker->entry);
1786 worker->flags |= WORKER_DIE;
1787
1788 idr_remove(&pool->worker_idr, worker->id);
1789
1790 spin_unlock_irq(&pool->lock);
1791
1792 kthread_stop(worker->task);
1793 kfree(worker);
1794
1795 spin_lock_irq(&pool->lock);
1796 }
1797
1798 static void idle_worker_timeout(unsigned long __pool)
1799 {
1800 struct worker_pool *pool = (void *)__pool;
1801
1802 spin_lock_irq(&pool->lock);
1803
1804 if (too_many_workers(pool)) {
1805 struct worker *worker;
1806 unsigned long expires;
1807
1808 /* idle_list is kept in LIFO order, check the last one */
1809 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1810 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1811
1812 if (time_before(jiffies, expires))
1813 mod_timer(&pool->idle_timer, expires);
1814 else {
1815 /* it's been idle for too long, wake up manager */
1816 pool->flags |= POOL_MANAGE_WORKERS;
1817 wake_up_worker(pool);
1818 }
1819 }
1820
1821 spin_unlock_irq(&pool->lock);
1822 }
1823
1824 static void send_mayday(struct work_struct *work)
1825 {
1826 struct pool_workqueue *pwq = get_work_pwq(work);
1827 struct workqueue_struct *wq = pwq->wq;
1828
1829 lockdep_assert_held(&wq_mayday_lock);
1830
1831 if (!wq->rescuer)
1832 return;
1833
1834 /* mayday mayday mayday */
1835 if (list_empty(&pwq->mayday_node)) {
1836 list_add_tail(&pwq->mayday_node, &wq->maydays);
1837 wake_up_process(wq->rescuer->task);
1838 }
1839 }
1840
1841 static void pool_mayday_timeout(unsigned long __pool)
1842 {
1843 struct worker_pool *pool = (void *)__pool;
1844 struct work_struct *work;
1845
1846 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1847 spin_lock(&pool->lock);
1848
1849 if (need_to_create_worker(pool)) {
1850 /*
1851 * We've been trying to create a new worker but
1852 * haven't been successful. We might be hitting an
1853 * allocation deadlock. Send distress signals to
1854 * rescuers.
1855 */
1856 list_for_each_entry(work, &pool->worklist, entry)
1857 send_mayday(work);
1858 }
1859
1860 spin_unlock(&pool->lock);
1861 spin_unlock_irq(&wq_mayday_lock);
1862
1863 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1864 }
1865
1866 /**
1867 * maybe_create_worker - create a new worker if necessary
1868 * @pool: pool to create a new worker for
1869 *
1870 * Create a new worker for @pool if necessary. @pool is guaranteed to
1871 * have at least one idle worker on return from this function. If
1872 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1873 * sent to all rescuers with works scheduled on @pool to resolve
1874 * possible allocation deadlock.
1875 *
1876 * On return, need_to_create_worker() is guaranteed to be %false and
1877 * may_start_working() %true.
1878 *
1879 * LOCKING:
1880 * spin_lock_irq(pool->lock) which may be released and regrabbed
1881 * multiple times. Does GFP_KERNEL allocations. Called only from
1882 * manager.
1883 *
1884 * RETURNS:
1885 * %false if no action was taken and pool->lock stayed locked, %true
1886 * otherwise.
1887 */
1888 static bool maybe_create_worker(struct worker_pool *pool)
1889 __releases(&pool->lock)
1890 __acquires(&pool->lock)
1891 {
1892 if (!need_to_create_worker(pool))
1893 return false;
1894 restart:
1895 spin_unlock_irq(&pool->lock);
1896
1897 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1898 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1899
1900 while (true) {
1901 struct worker *worker;
1902
1903 worker = create_worker(pool);
1904 if (worker) {
1905 del_timer_sync(&pool->mayday_timer);
1906 spin_lock_irq(&pool->lock);
1907 start_worker(worker);
1908 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1909 goto restart;
1910 return true;
1911 }
1912
1913 if (!need_to_create_worker(pool))
1914 break;
1915
1916 __set_current_state(TASK_INTERRUPTIBLE);
1917 schedule_timeout(CREATE_COOLDOWN);
1918
1919 if (!need_to_create_worker(pool))
1920 break;
1921 }
1922
1923 del_timer_sync(&pool->mayday_timer);
1924 spin_lock_irq(&pool->lock);
1925 if (need_to_create_worker(pool))
1926 goto restart;
1927 return true;
1928 }
1929
1930 /**
1931 * maybe_destroy_worker - destroy workers which have been idle for a while
1932 * @pool: pool to destroy workers for
1933 *
1934 * Destroy @pool workers which have been idle for longer than
1935 * IDLE_WORKER_TIMEOUT.
1936 *
1937 * LOCKING:
1938 * spin_lock_irq(pool->lock) which may be released and regrabbed
1939 * multiple times. Called only from manager.
1940 *
1941 * RETURNS:
1942 * %false if no action was taken and pool->lock stayed locked, %true
1943 * otherwise.
1944 */
1945 static bool maybe_destroy_workers(struct worker_pool *pool)
1946 {
1947 bool ret = false;
1948
1949 while (too_many_workers(pool)) {
1950 struct worker *worker;
1951 unsigned long expires;
1952
1953 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1954 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1955
1956 if (time_before(jiffies, expires)) {
1957 mod_timer(&pool->idle_timer, expires);
1958 break;
1959 }
1960
1961 destroy_worker(worker);
1962 ret = true;
1963 }
1964
1965 return ret;
1966 }
1967
1968 /**
1969 * manage_workers - manage worker pool
1970 * @worker: self
1971 *
1972 * Assume the manager role and manage the worker pool @worker belongs
1973 * to. At any given time, there can be only zero or one manager per
1974 * pool. The exclusion is handled automatically by this function.
1975 *
1976 * The caller can safely start processing works on false return. On
1977 * true return, it's guaranteed that need_to_create_worker() is false
1978 * and may_start_working() is true.
1979 *
1980 * CONTEXT:
1981 * spin_lock_irq(pool->lock) which may be released and regrabbed
1982 * multiple times. Does GFP_KERNEL allocations.
1983 *
1984 * RETURNS:
1985 * spin_lock_irq(pool->lock) which may be released and regrabbed
1986 * multiple times. Does GFP_KERNEL allocations.
1987 */
1988 static bool manage_workers(struct worker *worker)
1989 {
1990 struct worker_pool *pool = worker->pool;
1991 bool ret = false;
1992
1993 /*
1994 * Managership is governed by two mutexes - manager_arb and
1995 * manager_mutex. manager_arb handles arbitration of manager role.
1996 * Anyone who successfully grabs manager_arb wins the arbitration
1997 * and becomes the manager. mutex_trylock() on pool->manager_arb
1998 * failure while holding pool->lock reliably indicates that someone
1999 * else is managing the pool and the worker which failed trylock
2000 * can proceed to executing work items. This means that anyone
2001 * grabbing manager_arb is responsible for actually performing
2002 * manager duties. If manager_arb is grabbed and released without
2003 * actual management, the pool may stall indefinitely.
2004 *
2005 * manager_mutex is used for exclusion of actual management
2006 * operations. The holder of manager_mutex can be sure that none
2007 * of management operations, including creation and destruction of
2008 * workers, won't take place until the mutex is released. Because
2009 * manager_mutex doesn't interfere with manager role arbitration,
2010 * it is guaranteed that the pool's management, while may be
2011 * delayed, won't be disturbed by someone else grabbing
2012 * manager_mutex.
2013 */
2014 if (!mutex_trylock(&pool->manager_arb))
2015 return ret;
2016
2017 /*
2018 * With manager arbitration won, manager_mutex would be free in
2019 * most cases. trylock first without dropping @pool->lock.
2020 */
2021 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2022 spin_unlock_irq(&pool->lock);
2023 mutex_lock(&pool->manager_mutex);
2024 ret = true;
2025 }
2026
2027 pool->flags &= ~POOL_MANAGE_WORKERS;
2028
2029 /*
2030 * Destroy and then create so that may_start_working() is true
2031 * on return.
2032 */
2033 ret |= maybe_destroy_workers(pool);
2034 ret |= maybe_create_worker(pool);
2035
2036 mutex_unlock(&pool->manager_mutex);
2037 mutex_unlock(&pool->manager_arb);
2038 return ret;
2039 }
2040
2041 /**
2042 * process_one_work - process single work
2043 * @worker: self
2044 * @work: work to process
2045 *
2046 * Process @work. This function contains all the logics necessary to
2047 * process a single work including synchronization against and
2048 * interaction with other workers on the same cpu, queueing and
2049 * flushing. As long as context requirement is met, any worker can
2050 * call this function to process a work.
2051 *
2052 * CONTEXT:
2053 * spin_lock_irq(pool->lock) which is released and regrabbed.
2054 */
2055 static void process_one_work(struct worker *worker, struct work_struct *work)
2056 __releases(&pool->lock)
2057 __acquires(&pool->lock)
2058 {
2059 struct pool_workqueue *pwq = get_work_pwq(work);
2060 struct worker_pool *pool = worker->pool;
2061 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2062 int work_color;
2063 struct worker *collision;
2064 #ifdef CONFIG_LOCKDEP
2065 /*
2066 * It is permissible to free the struct work_struct from
2067 * inside the function that is called from it, this we need to
2068 * take into account for lockdep too. To avoid bogus "held
2069 * lock freed" warnings as well as problems when looking into
2070 * work->lockdep_map, make a copy and use that here.
2071 */
2072 struct lockdep_map lockdep_map;
2073
2074 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2075 #endif
2076 /*
2077 * Ensure we're on the correct CPU. DISASSOCIATED test is
2078 * necessary to avoid spurious warnings from rescuers servicing the
2079 * unbound or a disassociated pool.
2080 */
2081 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2082 !(pool->flags & POOL_DISASSOCIATED) &&
2083 raw_smp_processor_id() != pool->cpu);
2084
2085 /*
2086 * A single work shouldn't be executed concurrently by
2087 * multiple workers on a single cpu. Check whether anyone is
2088 * already processing the work. If so, defer the work to the
2089 * currently executing one.
2090 */
2091 collision = find_worker_executing_work(pool, work);
2092 if (unlikely(collision)) {
2093 move_linked_works(work, &collision->scheduled, NULL);
2094 return;
2095 }
2096
2097 /* claim and dequeue */
2098 debug_work_deactivate(work);
2099 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2100 worker->current_work = work;
2101 worker->current_func = work->func;
2102 worker->current_pwq = pwq;
2103 work_color = get_work_color(work);
2104
2105 list_del_init(&work->entry);
2106
2107 /*
2108 * CPU intensive works don't participate in concurrency
2109 * management. They're the scheduler's responsibility.
2110 */
2111 if (unlikely(cpu_intensive))
2112 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2113
2114 /*
2115 * Unbound pool isn't concurrency managed and work items should be
2116 * executed ASAP. Wake up another worker if necessary.
2117 */
2118 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2119 wake_up_worker(pool);
2120
2121 /*
2122 * Record the last pool and clear PENDING which should be the last
2123 * update to @work. Also, do this inside @pool->lock so that
2124 * PENDING and queued state changes happen together while IRQ is
2125 * disabled.
2126 */
2127 set_work_pool_and_clear_pending(work, pool->id);
2128
2129 spin_unlock_irq(&pool->lock);
2130
2131 lock_map_acquire_read(&pwq->wq->lockdep_map);
2132 lock_map_acquire(&lockdep_map);
2133 trace_workqueue_execute_start(work);
2134 worker->current_func(work);
2135 /*
2136 * While we must be careful to not use "work" after this, the trace
2137 * point will only record its address.
2138 */
2139 trace_workqueue_execute_end(work);
2140 lock_map_release(&lockdep_map);
2141 lock_map_release(&pwq->wq->lockdep_map);
2142
2143 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2144 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2145 " last function: %pf\n",
2146 current->comm, preempt_count(), task_pid_nr(current),
2147 worker->current_func);
2148 debug_show_held_locks(current);
2149 dump_stack();
2150 }
2151
2152 spin_lock_irq(&pool->lock);
2153
2154 /* clear cpu intensive status */
2155 if (unlikely(cpu_intensive))
2156 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2157
2158 /* we're done with it, release */
2159 hash_del(&worker->hentry);
2160 worker->current_work = NULL;
2161 worker->current_func = NULL;
2162 worker->current_pwq = NULL;
2163 pwq_dec_nr_in_flight(pwq, work_color);
2164 }
2165
2166 /**
2167 * process_scheduled_works - process scheduled works
2168 * @worker: self
2169 *
2170 * Process all scheduled works. Please note that the scheduled list
2171 * may change while processing a work, so this function repeatedly
2172 * fetches a work from the top and executes it.
2173 *
2174 * CONTEXT:
2175 * spin_lock_irq(pool->lock) which may be released and regrabbed
2176 * multiple times.
2177 */
2178 static void process_scheduled_works(struct worker *worker)
2179 {
2180 while (!list_empty(&worker->scheduled)) {
2181 struct work_struct *work = list_first_entry(&worker->scheduled,
2182 struct work_struct, entry);
2183 process_one_work(worker, work);
2184 }
2185 }
2186
2187 /**
2188 * worker_thread - the worker thread function
2189 * @__worker: self
2190 *
2191 * The worker thread function. All workers belong to a worker_pool -
2192 * either a per-cpu one or dynamic unbound one. These workers process all
2193 * work items regardless of their specific target workqueue. The only
2194 * exception is work items which belong to workqueues with a rescuer which
2195 * will be explained in rescuer_thread().
2196 */
2197 static int worker_thread(void *__worker)
2198 {
2199 struct worker *worker = __worker;
2200 struct worker_pool *pool = worker->pool;
2201
2202 /* tell the scheduler that this is a workqueue worker */
2203 worker->task->flags |= PF_WQ_WORKER;
2204 woke_up:
2205 spin_lock_irq(&pool->lock);
2206
2207 /* am I supposed to die? */
2208 if (unlikely(worker->flags & WORKER_DIE)) {
2209 spin_unlock_irq(&pool->lock);
2210 WARN_ON_ONCE(!list_empty(&worker->entry));
2211 worker->task->flags &= ~PF_WQ_WORKER;
2212 return 0;
2213 }
2214
2215 worker_leave_idle(worker);
2216 recheck:
2217 /* no more worker necessary? */
2218 if (!need_more_worker(pool))
2219 goto sleep;
2220
2221 /* do we need to manage? */
2222 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2223 goto recheck;
2224
2225 /*
2226 * ->scheduled list can only be filled while a worker is
2227 * preparing to process a work or actually processing it.
2228 * Make sure nobody diddled with it while I was sleeping.
2229 */
2230 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2231
2232 /*
2233 * Finish PREP stage. We're guaranteed to have at least one idle
2234 * worker or that someone else has already assumed the manager
2235 * role. This is where @worker starts participating in concurrency
2236 * management if applicable and concurrency management is restored
2237 * after being rebound. See rebind_workers() for details.
2238 */
2239 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2240
2241 do {
2242 struct work_struct *work =
2243 list_first_entry(&pool->worklist,
2244 struct work_struct, entry);
2245
2246 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2247 /* optimization path, not strictly necessary */
2248 process_one_work(worker, work);
2249 if (unlikely(!list_empty(&worker->scheduled)))
2250 process_scheduled_works(worker);
2251 } else {
2252 move_linked_works(work, &worker->scheduled, NULL);
2253 process_scheduled_works(worker);
2254 }
2255 } while (keep_working(pool));
2256
2257 worker_set_flags(worker, WORKER_PREP, false);
2258 sleep:
2259 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2260 goto recheck;
2261
2262 /*
2263 * pool->lock is held and there's no work to process and no need to
2264 * manage, sleep. Workers are woken up only while holding
2265 * pool->lock or from local cpu, so setting the current state
2266 * before releasing pool->lock is enough to prevent losing any
2267 * event.
2268 */
2269 worker_enter_idle(worker);
2270 __set_current_state(TASK_INTERRUPTIBLE);
2271 spin_unlock_irq(&pool->lock);
2272 schedule();
2273 goto woke_up;
2274 }
2275
2276 /**
2277 * rescuer_thread - the rescuer thread function
2278 * @__rescuer: self
2279 *
2280 * Workqueue rescuer thread function. There's one rescuer for each
2281 * workqueue which has WQ_MEM_RECLAIM set.
2282 *
2283 * Regular work processing on a pool may block trying to create a new
2284 * worker which uses GFP_KERNEL allocation which has slight chance of
2285 * developing into deadlock if some works currently on the same queue
2286 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2287 * the problem rescuer solves.
2288 *
2289 * When such condition is possible, the pool summons rescuers of all
2290 * workqueues which have works queued on the pool and let them process
2291 * those works so that forward progress can be guaranteed.
2292 *
2293 * This should happen rarely.
2294 */
2295 static int rescuer_thread(void *__rescuer)
2296 {
2297 struct worker *rescuer = __rescuer;
2298 struct workqueue_struct *wq = rescuer->rescue_wq;
2299 struct list_head *scheduled = &rescuer->scheduled;
2300
2301 set_user_nice(current, RESCUER_NICE_LEVEL);
2302
2303 /*
2304 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2305 * doesn't participate in concurrency management.
2306 */
2307 rescuer->task->flags |= PF_WQ_WORKER;
2308 repeat:
2309 set_current_state(TASK_INTERRUPTIBLE);
2310
2311 if (kthread_should_stop()) {
2312 __set_current_state(TASK_RUNNING);
2313 rescuer->task->flags &= ~PF_WQ_WORKER;
2314 return 0;
2315 }
2316
2317 /* see whether any pwq is asking for help */
2318 spin_lock_irq(&wq_mayday_lock);
2319
2320 while (!list_empty(&wq->maydays)) {
2321 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2322 struct pool_workqueue, mayday_node);
2323 struct worker_pool *pool = pwq->pool;
2324 struct work_struct *work, *n;
2325
2326 __set_current_state(TASK_RUNNING);
2327 list_del_init(&pwq->mayday_node);
2328
2329 spin_unlock_irq(&wq_mayday_lock);
2330
2331 /* migrate to the target cpu if possible */
2332 worker_maybe_bind_and_lock(pool);
2333 rescuer->pool = pool;
2334
2335 /*
2336 * Slurp in all works issued via this workqueue and
2337 * process'em.
2338 */
2339 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2340 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2341 if (get_work_pwq(work) == pwq)
2342 move_linked_works(work, scheduled, &n);
2343
2344 process_scheduled_works(rescuer);
2345
2346 /*
2347 * Leave this pool. If keep_working() is %true, notify a
2348 * regular worker; otherwise, we end up with 0 concurrency
2349 * and stalling the execution.
2350 */
2351 if (keep_working(pool))
2352 wake_up_worker(pool);
2353
2354 rescuer->pool = NULL;
2355 spin_unlock(&pool->lock);
2356 spin_lock(&wq_mayday_lock);
2357 }
2358
2359 spin_unlock_irq(&wq_mayday_lock);
2360
2361 /* rescuers should never participate in concurrency management */
2362 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2363 schedule();
2364 goto repeat;
2365 }
2366
2367 struct wq_barrier {
2368 struct work_struct work;
2369 struct completion done;
2370 };
2371
2372 static void wq_barrier_func(struct work_struct *work)
2373 {
2374 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2375 complete(&barr->done);
2376 }
2377
2378 /**
2379 * insert_wq_barrier - insert a barrier work
2380 * @pwq: pwq to insert barrier into
2381 * @barr: wq_barrier to insert
2382 * @target: target work to attach @barr to
2383 * @worker: worker currently executing @target, NULL if @target is not executing
2384 *
2385 * @barr is linked to @target such that @barr is completed only after
2386 * @target finishes execution. Please note that the ordering
2387 * guarantee is observed only with respect to @target and on the local
2388 * cpu.
2389 *
2390 * Currently, a queued barrier can't be canceled. This is because
2391 * try_to_grab_pending() can't determine whether the work to be
2392 * grabbed is at the head of the queue and thus can't clear LINKED
2393 * flag of the previous work while there must be a valid next work
2394 * after a work with LINKED flag set.
2395 *
2396 * Note that when @worker is non-NULL, @target may be modified
2397 * underneath us, so we can't reliably determine pwq from @target.
2398 *
2399 * CONTEXT:
2400 * spin_lock_irq(pool->lock).
2401 */
2402 static void insert_wq_barrier(struct pool_workqueue *pwq,
2403 struct wq_barrier *barr,
2404 struct work_struct *target, struct worker *worker)
2405 {
2406 struct list_head *head;
2407 unsigned int linked = 0;
2408
2409 /*
2410 * debugobject calls are safe here even with pool->lock locked
2411 * as we know for sure that this will not trigger any of the
2412 * checks and call back into the fixup functions where we
2413 * might deadlock.
2414 */
2415 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2416 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2417 init_completion(&barr->done);
2418
2419 /*
2420 * If @target is currently being executed, schedule the
2421 * barrier to the worker; otherwise, put it after @target.
2422 */
2423 if (worker)
2424 head = worker->scheduled.next;
2425 else {
2426 unsigned long *bits = work_data_bits(target);
2427
2428 head = target->entry.next;
2429 /* there can already be other linked works, inherit and set */
2430 linked = *bits & WORK_STRUCT_LINKED;
2431 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2432 }
2433
2434 debug_work_activate(&barr->work);
2435 insert_work(pwq, &barr->work, head,
2436 work_color_to_flags(WORK_NO_COLOR) | linked);
2437 }
2438
2439 /**
2440 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2441 * @wq: workqueue being flushed
2442 * @flush_color: new flush color, < 0 for no-op
2443 * @work_color: new work color, < 0 for no-op
2444 *
2445 * Prepare pwqs for workqueue flushing.
2446 *
2447 * If @flush_color is non-negative, flush_color on all pwqs should be
2448 * -1. If no pwq has in-flight commands at the specified color, all
2449 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2450 * has in flight commands, its pwq->flush_color is set to
2451 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2452 * wakeup logic is armed and %true is returned.
2453 *
2454 * The caller should have initialized @wq->first_flusher prior to
2455 * calling this function with non-negative @flush_color. If
2456 * @flush_color is negative, no flush color update is done and %false
2457 * is returned.
2458 *
2459 * If @work_color is non-negative, all pwqs should have the same
2460 * work_color which is previous to @work_color and all will be
2461 * advanced to @work_color.
2462 *
2463 * CONTEXT:
2464 * mutex_lock(wq->mutex).
2465 *
2466 * RETURNS:
2467 * %true if @flush_color >= 0 and there's something to flush. %false
2468 * otherwise.
2469 */
2470 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2471 int flush_color, int work_color)
2472 {
2473 bool wait = false;
2474 struct pool_workqueue *pwq;
2475
2476 if (flush_color >= 0) {
2477 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2478 atomic_set(&wq->nr_pwqs_to_flush, 1);
2479 }
2480
2481 for_each_pwq(pwq, wq) {
2482 struct worker_pool *pool = pwq->pool;
2483
2484 spin_lock_irq(&pool->lock);
2485
2486 if (flush_color >= 0) {
2487 WARN_ON_ONCE(pwq->flush_color != -1);
2488
2489 if (pwq->nr_in_flight[flush_color]) {
2490 pwq->flush_color = flush_color;
2491 atomic_inc(&wq->nr_pwqs_to_flush);
2492 wait = true;
2493 }
2494 }
2495
2496 if (work_color >= 0) {
2497 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2498 pwq->work_color = work_color;
2499 }
2500
2501 spin_unlock_irq(&pool->lock);
2502 }
2503
2504 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2505 complete(&wq->first_flusher->done);
2506
2507 return wait;
2508 }
2509
2510 /**
2511 * flush_workqueue - ensure that any scheduled work has run to completion.
2512 * @wq: workqueue to flush
2513 *
2514 * This function sleeps until all work items which were queued on entry
2515 * have finished execution, but it is not livelocked by new incoming ones.
2516 */
2517 void flush_workqueue(struct workqueue_struct *wq)
2518 {
2519 struct wq_flusher this_flusher = {
2520 .list = LIST_HEAD_INIT(this_flusher.list),
2521 .flush_color = -1,
2522 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2523 };
2524 int next_color;
2525
2526 lock_map_acquire(&wq->lockdep_map);
2527 lock_map_release(&wq->lockdep_map);
2528
2529 mutex_lock(&wq->mutex);
2530
2531 /*
2532 * Start-to-wait phase
2533 */
2534 next_color = work_next_color(wq->work_color);
2535
2536 if (next_color != wq->flush_color) {
2537 /*
2538 * Color space is not full. The current work_color
2539 * becomes our flush_color and work_color is advanced
2540 * by one.
2541 */
2542 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2543 this_flusher.flush_color = wq->work_color;
2544 wq->work_color = next_color;
2545
2546 if (!wq->first_flusher) {
2547 /* no flush in progress, become the first flusher */
2548 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2549
2550 wq->first_flusher = &this_flusher;
2551
2552 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2553 wq->work_color)) {
2554 /* nothing to flush, done */
2555 wq->flush_color = next_color;
2556 wq->first_flusher = NULL;
2557 goto out_unlock;
2558 }
2559 } else {
2560 /* wait in queue */
2561 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2562 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2563 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2564 }
2565 } else {
2566 /*
2567 * Oops, color space is full, wait on overflow queue.
2568 * The next flush completion will assign us
2569 * flush_color and transfer to flusher_queue.
2570 */
2571 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2572 }
2573
2574 mutex_unlock(&wq->mutex);
2575
2576 wait_for_completion(&this_flusher.done);
2577
2578 /*
2579 * Wake-up-and-cascade phase
2580 *
2581 * First flushers are responsible for cascading flushes and
2582 * handling overflow. Non-first flushers can simply return.
2583 */
2584 if (wq->first_flusher != &this_flusher)
2585 return;
2586
2587 mutex_lock(&wq->mutex);
2588
2589 /* we might have raced, check again with mutex held */
2590 if (wq->first_flusher != &this_flusher)
2591 goto out_unlock;
2592
2593 wq->first_flusher = NULL;
2594
2595 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2596 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2597
2598 while (true) {
2599 struct wq_flusher *next, *tmp;
2600
2601 /* complete all the flushers sharing the current flush color */
2602 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2603 if (next->flush_color != wq->flush_color)
2604 break;
2605 list_del_init(&next->list);
2606 complete(&next->done);
2607 }
2608
2609 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2610 wq->flush_color != work_next_color(wq->work_color));
2611
2612 /* this flush_color is finished, advance by one */
2613 wq->flush_color = work_next_color(wq->flush_color);
2614
2615 /* one color has been freed, handle overflow queue */
2616 if (!list_empty(&wq->flusher_overflow)) {
2617 /*
2618 * Assign the same color to all overflowed
2619 * flushers, advance work_color and append to
2620 * flusher_queue. This is the start-to-wait
2621 * phase for these overflowed flushers.
2622 */
2623 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2624 tmp->flush_color = wq->work_color;
2625
2626 wq->work_color = work_next_color(wq->work_color);
2627
2628 list_splice_tail_init(&wq->flusher_overflow,
2629 &wq->flusher_queue);
2630 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2631 }
2632
2633 if (list_empty(&wq->flusher_queue)) {
2634 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2635 break;
2636 }
2637
2638 /*
2639 * Need to flush more colors. Make the next flusher
2640 * the new first flusher and arm pwqs.
2641 */
2642 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2643 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2644
2645 list_del_init(&next->list);
2646 wq->first_flusher = next;
2647
2648 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2649 break;
2650
2651 /*
2652 * Meh... this color is already done, clear first
2653 * flusher and repeat cascading.
2654 */
2655 wq->first_flusher = NULL;
2656 }
2657
2658 out_unlock:
2659 mutex_unlock(&wq->mutex);
2660 }
2661 EXPORT_SYMBOL_GPL(flush_workqueue);
2662
2663 /**
2664 * drain_workqueue - drain a workqueue
2665 * @wq: workqueue to drain
2666 *
2667 * Wait until the workqueue becomes empty. While draining is in progress,
2668 * only chain queueing is allowed. IOW, only currently pending or running
2669 * work items on @wq can queue further work items on it. @wq is flushed
2670 * repeatedly until it becomes empty. The number of flushing is detemined
2671 * by the depth of chaining and should be relatively short. Whine if it
2672 * takes too long.
2673 */
2674 void drain_workqueue(struct workqueue_struct *wq)
2675 {
2676 unsigned int flush_cnt = 0;
2677 struct pool_workqueue *pwq;
2678
2679 /*
2680 * __queue_work() needs to test whether there are drainers, is much
2681 * hotter than drain_workqueue() and already looks at @wq->flags.
2682 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2683 */
2684 mutex_lock(&wq->mutex);
2685 if (!wq->nr_drainers++)
2686 wq->flags |= __WQ_DRAINING;
2687 mutex_unlock(&wq->mutex);
2688 reflush:
2689 flush_workqueue(wq);
2690
2691 mutex_lock(&wq->mutex);
2692
2693 for_each_pwq(pwq, wq) {
2694 bool drained;
2695
2696 spin_lock_irq(&pwq->pool->lock);
2697 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2698 spin_unlock_irq(&pwq->pool->lock);
2699
2700 if (drained)
2701 continue;
2702
2703 if (++flush_cnt == 10 ||
2704 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2705 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2706 wq->name, flush_cnt);
2707
2708 mutex_unlock(&wq->mutex);
2709 goto reflush;
2710 }
2711
2712 if (!--wq->nr_drainers)
2713 wq->flags &= ~__WQ_DRAINING;
2714 mutex_unlock(&wq->mutex);
2715 }
2716 EXPORT_SYMBOL_GPL(drain_workqueue);
2717
2718 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2719 {
2720 struct worker *worker = NULL;
2721 struct worker_pool *pool;
2722 struct pool_workqueue *pwq;
2723
2724 might_sleep();
2725
2726 local_irq_disable();
2727 pool = get_work_pool(work);
2728 if (!pool) {
2729 local_irq_enable();
2730 return false;
2731 }
2732
2733 spin_lock(&pool->lock);
2734 /* see the comment in try_to_grab_pending() with the same code */
2735 pwq = get_work_pwq(work);
2736 if (pwq) {
2737 if (unlikely(pwq->pool != pool))
2738 goto already_gone;
2739 } else {
2740 worker = find_worker_executing_work(pool, work);
2741 if (!worker)
2742 goto already_gone;
2743 pwq = worker->current_pwq;
2744 }
2745
2746 insert_wq_barrier(pwq, barr, work, worker);
2747 spin_unlock_irq(&pool->lock);
2748
2749 /*
2750 * If @max_active is 1 or rescuer is in use, flushing another work
2751 * item on the same workqueue may lead to deadlock. Make sure the
2752 * flusher is not running on the same workqueue by verifying write
2753 * access.
2754 */
2755 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2756 lock_map_acquire(&pwq->wq->lockdep_map);
2757 else
2758 lock_map_acquire_read(&pwq->wq->lockdep_map);
2759 lock_map_release(&pwq->wq->lockdep_map);
2760
2761 return true;
2762 already_gone:
2763 spin_unlock_irq(&pool->lock);
2764 return false;
2765 }
2766
2767 /**
2768 * flush_work - wait for a work to finish executing the last queueing instance
2769 * @work: the work to flush
2770 *
2771 * Wait until @work has finished execution. @work is guaranteed to be idle
2772 * on return if it hasn't been requeued since flush started.
2773 *
2774 * RETURNS:
2775 * %true if flush_work() waited for the work to finish execution,
2776 * %false if it was already idle.
2777 */
2778 bool flush_work(struct work_struct *work)
2779 {
2780 struct wq_barrier barr;
2781
2782 lock_map_acquire(&work->lockdep_map);
2783 lock_map_release(&work->lockdep_map);
2784
2785 if (start_flush_work(work, &barr)) {
2786 wait_for_completion(&barr.done);
2787 destroy_work_on_stack(&barr.work);
2788 return true;
2789 } else {
2790 return false;
2791 }
2792 }
2793 EXPORT_SYMBOL_GPL(flush_work);
2794
2795 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2796 {
2797 unsigned long flags;
2798 int ret;
2799
2800 do {
2801 ret = try_to_grab_pending(work, is_dwork, &flags);
2802 /*
2803 * If someone else is canceling, wait for the same event it
2804 * would be waiting for before retrying.
2805 */
2806 if (unlikely(ret == -ENOENT))
2807 flush_work(work);
2808 } while (unlikely(ret < 0));
2809
2810 /* tell other tasks trying to grab @work to back off */
2811 mark_work_canceling(work);
2812 local_irq_restore(flags);
2813
2814 flush_work(work);
2815 clear_work_data(work);
2816 return ret;
2817 }
2818
2819 /**
2820 * cancel_work_sync - cancel a work and wait for it to finish
2821 * @work: the work to cancel
2822 *
2823 * Cancel @work and wait for its execution to finish. This function
2824 * can be used even if the work re-queues itself or migrates to
2825 * another workqueue. On return from this function, @work is
2826 * guaranteed to be not pending or executing on any CPU.
2827 *
2828 * cancel_work_sync(&delayed_work->work) must not be used for
2829 * delayed_work's. Use cancel_delayed_work_sync() instead.
2830 *
2831 * The caller must ensure that the workqueue on which @work was last
2832 * queued can't be destroyed before this function returns.
2833 *
2834 * RETURNS:
2835 * %true if @work was pending, %false otherwise.
2836 */
2837 bool cancel_work_sync(struct work_struct *work)
2838 {
2839 return __cancel_work_timer(work, false);
2840 }
2841 EXPORT_SYMBOL_GPL(cancel_work_sync);
2842
2843 /**
2844 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2845 * @dwork: the delayed work to flush
2846 *
2847 * Delayed timer is cancelled and the pending work is queued for
2848 * immediate execution. Like flush_work(), this function only
2849 * considers the last queueing instance of @dwork.
2850 *
2851 * RETURNS:
2852 * %true if flush_work() waited for the work to finish execution,
2853 * %false if it was already idle.
2854 */
2855 bool flush_delayed_work(struct delayed_work *dwork)
2856 {
2857 local_irq_disable();
2858 if (del_timer_sync(&dwork->timer))
2859 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2860 local_irq_enable();
2861 return flush_work(&dwork->work);
2862 }
2863 EXPORT_SYMBOL(flush_delayed_work);
2864
2865 /**
2866 * cancel_delayed_work - cancel a delayed work
2867 * @dwork: delayed_work to cancel
2868 *
2869 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2870 * and canceled; %false if wasn't pending. Note that the work callback
2871 * function may still be running on return, unless it returns %true and the
2872 * work doesn't re-arm itself. Explicitly flush or use
2873 * cancel_delayed_work_sync() to wait on it.
2874 *
2875 * This function is safe to call from any context including IRQ handler.
2876 */
2877 bool cancel_delayed_work(struct delayed_work *dwork)
2878 {
2879 unsigned long flags;
2880 int ret;
2881
2882 do {
2883 ret = try_to_grab_pending(&dwork->work, true, &flags);
2884 } while (unlikely(ret == -EAGAIN));
2885
2886 if (unlikely(ret < 0))
2887 return false;
2888
2889 set_work_pool_and_clear_pending(&dwork->work,
2890 get_work_pool_id(&dwork->work));
2891 local_irq_restore(flags);
2892 return ret;
2893 }
2894 EXPORT_SYMBOL(cancel_delayed_work);
2895
2896 /**
2897 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2898 * @dwork: the delayed work cancel
2899 *
2900 * This is cancel_work_sync() for delayed works.
2901 *
2902 * RETURNS:
2903 * %true if @dwork was pending, %false otherwise.
2904 */
2905 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2906 {
2907 return __cancel_work_timer(&dwork->work, true);
2908 }
2909 EXPORT_SYMBOL(cancel_delayed_work_sync);
2910
2911 /**
2912 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2913 * @func: the function to call
2914 *
2915 * schedule_on_each_cpu() executes @func on each online CPU using the
2916 * system workqueue and blocks until all CPUs have completed.
2917 * schedule_on_each_cpu() is very slow.
2918 *
2919 * RETURNS:
2920 * 0 on success, -errno on failure.
2921 */
2922 int schedule_on_each_cpu(work_func_t func)
2923 {
2924 int cpu;
2925 struct work_struct __percpu *works;
2926
2927 works = alloc_percpu(struct work_struct);
2928 if (!works)
2929 return -ENOMEM;
2930
2931 get_online_cpus();
2932
2933 for_each_online_cpu(cpu) {
2934 struct work_struct *work = per_cpu_ptr(works, cpu);
2935
2936 INIT_WORK(work, func);
2937 schedule_work_on(cpu, work);
2938 }
2939
2940 for_each_online_cpu(cpu)
2941 flush_work(per_cpu_ptr(works, cpu));
2942
2943 put_online_cpus();
2944 free_percpu(works);
2945 return 0;
2946 }
2947
2948 /**
2949 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2950 *
2951 * Forces execution of the kernel-global workqueue and blocks until its
2952 * completion.
2953 *
2954 * Think twice before calling this function! It's very easy to get into
2955 * trouble if you don't take great care. Either of the following situations
2956 * will lead to deadlock:
2957 *
2958 * One of the work items currently on the workqueue needs to acquire
2959 * a lock held by your code or its caller.
2960 *
2961 * Your code is running in the context of a work routine.
2962 *
2963 * They will be detected by lockdep when they occur, but the first might not
2964 * occur very often. It depends on what work items are on the workqueue and
2965 * what locks they need, which you have no control over.
2966 *
2967 * In most situations flushing the entire workqueue is overkill; you merely
2968 * need to know that a particular work item isn't queued and isn't running.
2969 * In such cases you should use cancel_delayed_work_sync() or
2970 * cancel_work_sync() instead.
2971 */
2972 void flush_scheduled_work(void)
2973 {
2974 flush_workqueue(system_wq);
2975 }
2976 EXPORT_SYMBOL(flush_scheduled_work);
2977
2978 /**
2979 * execute_in_process_context - reliably execute the routine with user context
2980 * @fn: the function to execute
2981 * @ew: guaranteed storage for the execute work structure (must
2982 * be available when the work executes)
2983 *
2984 * Executes the function immediately if process context is available,
2985 * otherwise schedules the function for delayed execution.
2986 *
2987 * Returns: 0 - function was executed
2988 * 1 - function was scheduled for execution
2989 */
2990 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2991 {
2992 if (!in_interrupt()) {
2993 fn(&ew->work);
2994 return 0;
2995 }
2996
2997 INIT_WORK(&ew->work, fn);
2998 schedule_work(&ew->work);
2999
3000 return 1;
3001 }
3002 EXPORT_SYMBOL_GPL(execute_in_process_context);
3003
3004 #ifdef CONFIG_SYSFS
3005 /*
3006 * Workqueues with WQ_SYSFS flag set is visible to userland via
3007 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3008 * following attributes.
3009 *
3010 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3011 * max_active RW int : maximum number of in-flight work items
3012 *
3013 * Unbound workqueues have the following extra attributes.
3014 *
3015 * id RO int : the associated pool ID
3016 * nice RW int : nice value of the workers
3017 * cpumask RW mask : bitmask of allowed CPUs for the workers
3018 */
3019 struct wq_device {
3020 struct workqueue_struct *wq;
3021 struct device dev;
3022 };
3023
3024 static struct workqueue_struct *dev_to_wq(struct device *dev)
3025 {
3026 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3027
3028 return wq_dev->wq;
3029 }
3030
3031 static ssize_t wq_per_cpu_show(struct device *dev,
3032 struct device_attribute *attr, char *buf)
3033 {
3034 struct workqueue_struct *wq = dev_to_wq(dev);
3035
3036 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3037 }
3038
3039 static ssize_t wq_max_active_show(struct device *dev,
3040 struct device_attribute *attr, char *buf)
3041 {
3042 struct workqueue_struct *wq = dev_to_wq(dev);
3043
3044 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3045 }
3046
3047 static ssize_t wq_max_active_store(struct device *dev,
3048 struct device_attribute *attr,
3049 const char *buf, size_t count)
3050 {
3051 struct workqueue_struct *wq = dev_to_wq(dev);
3052 int val;
3053
3054 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3055 return -EINVAL;
3056
3057 workqueue_set_max_active(wq, val);
3058 return count;
3059 }
3060
3061 static struct device_attribute wq_sysfs_attrs[] = {
3062 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3063 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3064 __ATTR_NULL,
3065 };
3066
3067 static ssize_t wq_pool_id_show(struct device *dev,
3068 struct device_attribute *attr, char *buf)
3069 {
3070 struct workqueue_struct *wq = dev_to_wq(dev);
3071 struct worker_pool *pool;
3072 int written;
3073
3074 rcu_read_lock_sched();
3075 pool = first_pwq(wq)->pool;
3076 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3077 rcu_read_unlock_sched();
3078
3079 return written;
3080 }
3081
3082 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3083 char *buf)
3084 {
3085 struct workqueue_struct *wq = dev_to_wq(dev);
3086 int written;
3087
3088 rcu_read_lock_sched();
3089 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3090 first_pwq(wq)->pool->attrs->nice);
3091 rcu_read_unlock_sched();
3092
3093 return written;
3094 }
3095
3096 /* prepare workqueue_attrs for sysfs store operations */
3097 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3098 {
3099 struct workqueue_attrs *attrs;
3100
3101 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3102 if (!attrs)
3103 return NULL;
3104
3105 rcu_read_lock_sched();
3106 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3107 rcu_read_unlock_sched();
3108 return attrs;
3109 }
3110
3111 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3112 const char *buf, size_t count)
3113 {
3114 struct workqueue_struct *wq = dev_to_wq(dev);
3115 struct workqueue_attrs *attrs;
3116 int ret;
3117
3118 attrs = wq_sysfs_prep_attrs(wq);
3119 if (!attrs)
3120 return -ENOMEM;
3121
3122 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3123 attrs->nice >= -20 && attrs->nice <= 19)
3124 ret = apply_workqueue_attrs(wq, attrs);
3125 else
3126 ret = -EINVAL;
3127
3128 free_workqueue_attrs(attrs);
3129 return ret ?: count;
3130 }
3131
3132 static ssize_t wq_cpumask_show(struct device *dev,
3133 struct device_attribute *attr, char *buf)
3134 {
3135 struct workqueue_struct *wq = dev_to_wq(dev);
3136 int written;
3137
3138 rcu_read_lock_sched();
3139 written = cpumask_scnprintf(buf, PAGE_SIZE,
3140 first_pwq(wq)->pool->attrs->cpumask);
3141 rcu_read_unlock_sched();
3142
3143 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3144 return written;
3145 }
3146
3147 static ssize_t wq_cpumask_store(struct device *dev,
3148 struct device_attribute *attr,
3149 const char *buf, size_t count)
3150 {
3151 struct workqueue_struct *wq = dev_to_wq(dev);
3152 struct workqueue_attrs *attrs;
3153 int ret;
3154
3155 attrs = wq_sysfs_prep_attrs(wq);
3156 if (!attrs)
3157 return -ENOMEM;
3158
3159 ret = cpumask_parse(buf, attrs->cpumask);
3160 if (!ret)
3161 ret = apply_workqueue_attrs(wq, attrs);
3162
3163 free_workqueue_attrs(attrs);
3164 return ret ?: count;
3165 }
3166
3167 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3168 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3169 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3170 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3171 __ATTR_NULL,
3172 };
3173
3174 static struct bus_type wq_subsys = {
3175 .name = "workqueue",
3176 .dev_attrs = wq_sysfs_attrs,
3177 };
3178
3179 static int __init wq_sysfs_init(void)
3180 {
3181 return subsys_virtual_register(&wq_subsys, NULL);
3182 }
3183 core_initcall(wq_sysfs_init);
3184
3185 static void wq_device_release(struct device *dev)
3186 {
3187 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3188
3189 kfree(wq_dev);
3190 }
3191
3192 /**
3193 * workqueue_sysfs_register - make a workqueue visible in sysfs
3194 * @wq: the workqueue to register
3195 *
3196 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3197 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3198 * which is the preferred method.
3199 *
3200 * Workqueue user should use this function directly iff it wants to apply
3201 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3202 * apply_workqueue_attrs() may race against userland updating the
3203 * attributes.
3204 *
3205 * Returns 0 on success, -errno on failure.
3206 */
3207 int workqueue_sysfs_register(struct workqueue_struct *wq)
3208 {
3209 struct wq_device *wq_dev;
3210 int ret;
3211
3212 /*
3213 * Adjusting max_active or creating new pwqs by applyting
3214 * attributes breaks ordering guarantee. Disallow exposing ordered
3215 * workqueues.
3216 */
3217 if (WARN_ON(wq->flags & __WQ_ORDERED))
3218 return -EINVAL;
3219
3220 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3221 if (!wq_dev)
3222 return -ENOMEM;
3223
3224 wq_dev->wq = wq;
3225 wq_dev->dev.bus = &wq_subsys;
3226 wq_dev->dev.init_name = wq->name;
3227 wq_dev->dev.release = wq_device_release;
3228
3229 /*
3230 * unbound_attrs are created separately. Suppress uevent until
3231 * everything is ready.
3232 */
3233 dev_set_uevent_suppress(&wq_dev->dev, true);
3234
3235 ret = device_register(&wq_dev->dev);
3236 if (ret) {
3237 kfree(wq_dev);
3238 wq->wq_dev = NULL;
3239 return ret;
3240 }
3241
3242 if (wq->flags & WQ_UNBOUND) {
3243 struct device_attribute *attr;
3244
3245 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3246 ret = device_create_file(&wq_dev->dev, attr);
3247 if (ret) {
3248 device_unregister(&wq_dev->dev);
3249 wq->wq_dev = NULL;
3250 return ret;
3251 }
3252 }
3253 }
3254
3255 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3256 return 0;
3257 }
3258
3259 /**
3260 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3261 * @wq: the workqueue to unregister
3262 *
3263 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3264 */
3265 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3266 {
3267 struct wq_device *wq_dev = wq->wq_dev;
3268
3269 if (!wq->wq_dev)
3270 return;
3271
3272 wq->wq_dev = NULL;
3273 device_unregister(&wq_dev->dev);
3274 }
3275 #else /* CONFIG_SYSFS */
3276 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3277 #endif /* CONFIG_SYSFS */
3278
3279 /**
3280 * free_workqueue_attrs - free a workqueue_attrs
3281 * @attrs: workqueue_attrs to free
3282 *
3283 * Undo alloc_workqueue_attrs().
3284 */
3285 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3286 {
3287 if (attrs) {
3288 free_cpumask_var(attrs->cpumask);
3289 kfree(attrs);
3290 }
3291 }
3292
3293 /**
3294 * alloc_workqueue_attrs - allocate a workqueue_attrs
3295 * @gfp_mask: allocation mask to use
3296 *
3297 * Allocate a new workqueue_attrs, initialize with default settings and
3298 * return it. Returns NULL on failure.
3299 */
3300 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3301 {
3302 struct workqueue_attrs *attrs;
3303
3304 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3305 if (!attrs)
3306 goto fail;
3307 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3308 goto fail;
3309
3310 cpumask_setall(attrs->cpumask);
3311 return attrs;
3312 fail:
3313 free_workqueue_attrs(attrs);
3314 return NULL;
3315 }
3316
3317 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3318 const struct workqueue_attrs *from)
3319 {
3320 to->nice = from->nice;
3321 cpumask_copy(to->cpumask, from->cpumask);
3322 }
3323
3324 /*
3325 * Hacky implementation of jhash of bitmaps which only considers the
3326 * specified number of bits. We probably want a proper implementation in
3327 * include/linux/jhash.h.
3328 */
3329 static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3330 {
3331 int nr_longs = bits / BITS_PER_LONG;
3332 int nr_leftover = bits % BITS_PER_LONG;
3333 unsigned long leftover = 0;
3334
3335 if (nr_longs)
3336 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3337 if (nr_leftover) {
3338 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3339 hash = jhash(&leftover, sizeof(long), hash);
3340 }
3341 return hash;
3342 }
3343
3344 /* hash value of the content of @attr */
3345 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3346 {
3347 u32 hash = 0;
3348
3349 hash = jhash_1word(attrs->nice, hash);
3350 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3351 return hash;
3352 }
3353
3354 /* content equality test */
3355 static bool wqattrs_equal(const struct workqueue_attrs *a,
3356 const struct workqueue_attrs *b)
3357 {
3358 if (a->nice != b->nice)
3359 return false;
3360 if (!cpumask_equal(a->cpumask, b->cpumask))
3361 return false;
3362 return true;
3363 }
3364
3365 /**
3366 * init_worker_pool - initialize a newly zalloc'd worker_pool
3367 * @pool: worker_pool to initialize
3368 *
3369 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3370 * Returns 0 on success, -errno on failure. Even on failure, all fields
3371 * inside @pool proper are initialized and put_unbound_pool() can be called
3372 * on @pool safely to release it.
3373 */
3374 static int init_worker_pool(struct worker_pool *pool)
3375 {
3376 spin_lock_init(&pool->lock);
3377 pool->id = -1;
3378 pool->cpu = -1;
3379 pool->flags |= POOL_DISASSOCIATED;
3380 INIT_LIST_HEAD(&pool->worklist);
3381 INIT_LIST_HEAD(&pool->idle_list);
3382 hash_init(pool->busy_hash);
3383
3384 init_timer_deferrable(&pool->idle_timer);
3385 pool->idle_timer.function = idle_worker_timeout;
3386 pool->idle_timer.data = (unsigned long)pool;
3387
3388 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3389 (unsigned long)pool);
3390
3391 mutex_init(&pool->manager_arb);
3392 mutex_init(&pool->manager_mutex);
3393 idr_init(&pool->worker_idr);
3394
3395 INIT_HLIST_NODE(&pool->hash_node);
3396 pool->refcnt = 1;
3397
3398 /* shouldn't fail above this point */
3399 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3400 if (!pool->attrs)
3401 return -ENOMEM;
3402 return 0;
3403 }
3404
3405 static void rcu_free_pool(struct rcu_head *rcu)
3406 {
3407 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3408
3409 idr_destroy(&pool->worker_idr);
3410 free_workqueue_attrs(pool->attrs);
3411 kfree(pool);
3412 }
3413
3414 /**
3415 * put_unbound_pool - put a worker_pool
3416 * @pool: worker_pool to put
3417 *
3418 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3419 * safe manner. get_unbound_pool() calls this function on its failure path
3420 * and this function should be able to release pools which went through,
3421 * successfully or not, init_worker_pool().
3422 */
3423 static void put_unbound_pool(struct worker_pool *pool)
3424 {
3425 struct worker *worker;
3426
3427 mutex_lock(&wq_pool_mutex);
3428 if (--pool->refcnt) {
3429 mutex_unlock(&wq_pool_mutex);
3430 return;
3431 }
3432
3433 /* sanity checks */
3434 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3435 WARN_ON(!list_empty(&pool->worklist))) {
3436 mutex_unlock(&wq_pool_mutex);
3437 return;
3438 }
3439
3440 /* release id and unhash */
3441 if (pool->id >= 0)
3442 idr_remove(&worker_pool_idr, pool->id);
3443 hash_del(&pool->hash_node);
3444
3445 mutex_unlock(&wq_pool_mutex);
3446
3447 /*
3448 * Become the manager and destroy all workers. Grabbing
3449 * manager_arb prevents @pool's workers from blocking on
3450 * manager_mutex.
3451 */
3452 mutex_lock(&pool->manager_arb);
3453 mutex_lock(&pool->manager_mutex);
3454 spin_lock_irq(&pool->lock);
3455
3456 while ((worker = first_worker(pool)))
3457 destroy_worker(worker);
3458 WARN_ON(pool->nr_workers || pool->nr_idle);
3459
3460 spin_unlock_irq(&pool->lock);
3461 mutex_unlock(&pool->manager_mutex);
3462 mutex_unlock(&pool->manager_arb);
3463
3464 /* shut down the timers */
3465 del_timer_sync(&pool->idle_timer);
3466 del_timer_sync(&pool->mayday_timer);
3467
3468 /* sched-RCU protected to allow dereferences from get_work_pool() */
3469 call_rcu_sched(&pool->rcu, rcu_free_pool);
3470 }
3471
3472 /**
3473 * get_unbound_pool - get a worker_pool with the specified attributes
3474 * @attrs: the attributes of the worker_pool to get
3475 *
3476 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3477 * reference count and return it. If there already is a matching
3478 * worker_pool, it will be used; otherwise, this function attempts to
3479 * create a new one. On failure, returns NULL.
3480 */
3481 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3482 {
3483 u32 hash = wqattrs_hash(attrs);
3484 struct worker_pool *pool;
3485
3486 mutex_lock(&wq_pool_mutex);
3487
3488 /* do we already have a matching pool? */
3489 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3490 if (wqattrs_equal(pool->attrs, attrs)) {
3491 pool->refcnt++;
3492 goto out_unlock;
3493 }
3494 }
3495
3496 /* nope, create a new one */
3497 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3498 if (!pool || init_worker_pool(pool) < 0)
3499 goto fail;
3500
3501 if (workqueue_freezing)
3502 pool->flags |= POOL_FREEZING;
3503
3504 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3505 copy_workqueue_attrs(pool->attrs, attrs);
3506
3507 if (worker_pool_assign_id(pool) < 0)
3508 goto fail;
3509
3510 /* create and start the initial worker */
3511 if (create_and_start_worker(pool) < 0)
3512 goto fail;
3513
3514 /* install */
3515 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3516 out_unlock:
3517 mutex_unlock(&wq_pool_mutex);
3518 return pool;
3519 fail:
3520 mutex_unlock(&wq_pool_mutex);
3521 if (pool)
3522 put_unbound_pool(pool);
3523 return NULL;
3524 }
3525
3526 static void rcu_free_pwq(struct rcu_head *rcu)
3527 {
3528 kmem_cache_free(pwq_cache,
3529 container_of(rcu, struct pool_workqueue, rcu));
3530 }
3531
3532 /*
3533 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3534 * and needs to be destroyed.
3535 */
3536 static void pwq_unbound_release_workfn(struct work_struct *work)
3537 {
3538 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3539 unbound_release_work);
3540 struct workqueue_struct *wq = pwq->wq;
3541 struct worker_pool *pool = pwq->pool;
3542
3543 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3544 return;
3545
3546 /*
3547 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3548 * necessary on release but do it anyway. It's easier to verify
3549 * and consistent with the linking path.
3550 */
3551 mutex_lock(&wq->mutex);
3552 spin_lock_irq(&pwq_lock);
3553 list_del_rcu(&pwq->pwqs_node);
3554 spin_unlock_irq(&pwq_lock);
3555 mutex_unlock(&wq->mutex);
3556
3557 put_unbound_pool(pool);
3558 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3559
3560 /*
3561 * If we're the last pwq going away, @wq is already dead and no one
3562 * is gonna access it anymore. Free it.
3563 */
3564 if (list_empty(&wq->pwqs))
3565 kfree(wq);
3566 }
3567
3568 /**
3569 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3570 * @pwq: target pool_workqueue
3571 *
3572 * If @pwq isn't freezing, set @pwq->max_active to the associated
3573 * workqueue's saved_max_active and activate delayed work items
3574 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3575 */
3576 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3577 {
3578 struct workqueue_struct *wq = pwq->wq;
3579 bool freezable = wq->flags & WQ_FREEZABLE;
3580
3581 /* for @wq->saved_max_active */
3582 lockdep_assert_held(&wq->mutex);
3583
3584 /* fast exit for non-freezable wqs */
3585 if (!freezable && pwq->max_active == wq->saved_max_active)
3586 return;
3587
3588 spin_lock_irq(&pwq->pool->lock);
3589
3590 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3591 pwq->max_active = wq->saved_max_active;
3592
3593 while (!list_empty(&pwq->delayed_works) &&
3594 pwq->nr_active < pwq->max_active)
3595 pwq_activate_first_delayed(pwq);
3596
3597 /*
3598 * Need to kick a worker after thawed or an unbound wq's
3599 * max_active is bumped. It's a slow path. Do it always.
3600 */
3601 wake_up_worker(pwq->pool);
3602 } else {
3603 pwq->max_active = 0;
3604 }
3605
3606 spin_unlock_irq(&pwq->pool->lock);
3607 }
3608
3609 static void init_and_link_pwq(struct pool_workqueue *pwq,
3610 struct workqueue_struct *wq,
3611 struct worker_pool *pool,
3612 struct pool_workqueue **p_last_pwq)
3613 {
3614 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3615
3616 pwq->pool = pool;
3617 pwq->wq = wq;
3618 pwq->flush_color = -1;
3619 pwq->refcnt = 1;
3620 INIT_LIST_HEAD(&pwq->delayed_works);
3621 INIT_LIST_HEAD(&pwq->mayday_node);
3622 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3623
3624 mutex_lock(&wq->mutex);
3625
3626 /*
3627 * Set the matching work_color. This is synchronized with
3628 * wq->mutex to avoid confusing flush_workqueue().
3629 */
3630 if (p_last_pwq)
3631 *p_last_pwq = first_pwq(wq);
3632 pwq->work_color = wq->work_color;
3633
3634 /* sync max_active to the current setting */
3635 pwq_adjust_max_active(pwq);
3636
3637 /* link in @pwq */
3638 spin_lock_irq(&pwq_lock);
3639 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3640 spin_unlock_irq(&pwq_lock);
3641
3642 mutex_unlock(&wq->mutex);
3643 }
3644
3645 /**
3646 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3647 * @wq: the target workqueue
3648 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3649 *
3650 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3651 * current attributes, a new pwq is created and made the first pwq which
3652 * will serve all new work items. Older pwqs are released as in-flight
3653 * work items finish. Note that a work item which repeatedly requeues
3654 * itself back-to-back will stay on its current pwq.
3655 *
3656 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3657 * failure.
3658 */
3659 int apply_workqueue_attrs(struct workqueue_struct *wq,
3660 const struct workqueue_attrs *attrs)
3661 {
3662 struct pool_workqueue *pwq, *last_pwq;
3663 struct worker_pool *pool;
3664
3665 /* only unbound workqueues can change attributes */
3666 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3667 return -EINVAL;
3668
3669 /* creating multiple pwqs breaks ordering guarantee */
3670 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3671 return -EINVAL;
3672
3673 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3674 if (!pwq)
3675 return -ENOMEM;
3676
3677 pool = get_unbound_pool(attrs);
3678 if (!pool) {
3679 kmem_cache_free(pwq_cache, pwq);
3680 return -ENOMEM;
3681 }
3682
3683 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3684 if (last_pwq) {
3685 spin_lock_irq(&last_pwq->pool->lock);
3686 put_pwq(last_pwq);
3687 spin_unlock_irq(&last_pwq->pool->lock);
3688 }
3689
3690 return 0;
3691 }
3692
3693 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3694 {
3695 bool highpri = wq->flags & WQ_HIGHPRI;
3696 int cpu;
3697
3698 if (!(wq->flags & WQ_UNBOUND)) {
3699 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3700 if (!wq->cpu_pwqs)
3701 return -ENOMEM;
3702
3703 for_each_possible_cpu(cpu) {
3704 struct pool_workqueue *pwq =
3705 per_cpu_ptr(wq->cpu_pwqs, cpu);
3706 struct worker_pool *cpu_pools =
3707 per_cpu(cpu_worker_pools, cpu);
3708
3709 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3710 }
3711 return 0;
3712 } else {
3713 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3714 }
3715 }
3716
3717 static int wq_clamp_max_active(int max_active, unsigned int flags,
3718 const char *name)
3719 {
3720 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3721
3722 if (max_active < 1 || max_active > lim)
3723 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3724 max_active, name, 1, lim);
3725
3726 return clamp_val(max_active, 1, lim);
3727 }
3728
3729 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3730 unsigned int flags,
3731 int max_active,
3732 struct lock_class_key *key,
3733 const char *lock_name, ...)
3734 {
3735 va_list args, args1;
3736 struct workqueue_struct *wq;
3737 struct pool_workqueue *pwq;
3738 size_t namelen;
3739
3740 /* determine namelen, allocate wq and format name */
3741 va_start(args, lock_name);
3742 va_copy(args1, args);
3743 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3744
3745 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3746 if (!wq)
3747 return NULL;
3748
3749 vsnprintf(wq->name, namelen, fmt, args1);
3750 va_end(args);
3751 va_end(args1);
3752
3753 max_active = max_active ?: WQ_DFL_ACTIVE;
3754 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3755
3756 /* init wq */
3757 wq->flags = flags;
3758 wq->saved_max_active = max_active;
3759 mutex_init(&wq->mutex);
3760 atomic_set(&wq->nr_pwqs_to_flush, 0);
3761 INIT_LIST_HEAD(&wq->pwqs);
3762 INIT_LIST_HEAD(&wq->flusher_queue);
3763 INIT_LIST_HEAD(&wq->flusher_overflow);
3764 INIT_LIST_HEAD(&wq->maydays);
3765
3766 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3767 INIT_LIST_HEAD(&wq->list);
3768
3769 if (alloc_and_link_pwqs(wq) < 0)
3770 goto err_free_wq;
3771
3772 /*
3773 * Workqueues which may be used during memory reclaim should
3774 * have a rescuer to guarantee forward progress.
3775 */
3776 if (flags & WQ_MEM_RECLAIM) {
3777 struct worker *rescuer;
3778
3779 rescuer = alloc_worker();
3780 if (!rescuer)
3781 goto err_destroy;
3782
3783 rescuer->rescue_wq = wq;
3784 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3785 wq->name);
3786 if (IS_ERR(rescuer->task)) {
3787 kfree(rescuer);
3788 goto err_destroy;
3789 }
3790
3791 wq->rescuer = rescuer;
3792 rescuer->task->flags |= PF_NO_SETAFFINITY;
3793 wake_up_process(rescuer->task);
3794 }
3795
3796 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3797 goto err_destroy;
3798
3799 /*
3800 * wq_pool_mutex protects global freeze state and workqueues list.
3801 * Grab it, adjust max_active and add the new @wq to workqueues
3802 * list.
3803 */
3804 mutex_lock(&wq_pool_mutex);
3805
3806 mutex_lock(&wq->mutex);
3807 for_each_pwq(pwq, wq)
3808 pwq_adjust_max_active(pwq);
3809 mutex_unlock(&wq->mutex);
3810
3811 list_add(&wq->list, &workqueues);
3812
3813 mutex_unlock(&wq_pool_mutex);
3814
3815 return wq;
3816
3817 err_free_wq:
3818 kfree(wq);
3819 return NULL;
3820 err_destroy:
3821 destroy_workqueue(wq);
3822 return NULL;
3823 }
3824 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3825
3826 /**
3827 * destroy_workqueue - safely terminate a workqueue
3828 * @wq: target workqueue
3829 *
3830 * Safely destroy a workqueue. All work currently pending will be done first.
3831 */
3832 void destroy_workqueue(struct workqueue_struct *wq)
3833 {
3834 struct pool_workqueue *pwq;
3835
3836 /* drain it before proceeding with destruction */
3837 drain_workqueue(wq);
3838
3839 /* sanity checks */
3840 mutex_lock(&wq->mutex);
3841 for_each_pwq(pwq, wq) {
3842 int i;
3843
3844 for (i = 0; i < WORK_NR_COLORS; i++) {
3845 if (WARN_ON(pwq->nr_in_flight[i])) {
3846 mutex_unlock(&wq->mutex);
3847 return;
3848 }
3849 }
3850
3851 if (WARN_ON(pwq->refcnt > 1) ||
3852 WARN_ON(pwq->nr_active) ||
3853 WARN_ON(!list_empty(&pwq->delayed_works))) {
3854 mutex_unlock(&wq->mutex);
3855 return;
3856 }
3857 }
3858 mutex_unlock(&wq->mutex);
3859
3860 /*
3861 * wq list is used to freeze wq, remove from list after
3862 * flushing is complete in case freeze races us.
3863 */
3864 mutex_lock(&wq_pool_mutex);
3865 list_del_init(&wq->list);
3866 mutex_unlock(&wq_pool_mutex);
3867
3868 workqueue_sysfs_unregister(wq);
3869
3870 if (wq->rescuer) {
3871 kthread_stop(wq->rescuer->task);
3872 kfree(wq->rescuer);
3873 wq->rescuer = NULL;
3874 }
3875
3876 if (!(wq->flags & WQ_UNBOUND)) {
3877 /*
3878 * The base ref is never dropped on per-cpu pwqs. Directly
3879 * free the pwqs and wq.
3880 */
3881 free_percpu(wq->cpu_pwqs);
3882 kfree(wq);
3883 } else {
3884 /*
3885 * We're the sole accessor of @wq at this point. Directly
3886 * access the first pwq and put the base ref. As both pwqs
3887 * and pools are sched-RCU protected, the lock operations
3888 * are safe. @wq will be freed when the last pwq is
3889 * released.
3890 */
3891 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3892 pwqs_node);
3893 spin_lock_irq(&pwq->pool->lock);
3894 put_pwq(pwq);
3895 spin_unlock_irq(&pwq->pool->lock);
3896 }
3897 }
3898 EXPORT_SYMBOL_GPL(destroy_workqueue);
3899
3900 /**
3901 * workqueue_set_max_active - adjust max_active of a workqueue
3902 * @wq: target workqueue
3903 * @max_active: new max_active value.
3904 *
3905 * Set max_active of @wq to @max_active.
3906 *
3907 * CONTEXT:
3908 * Don't call from IRQ context.
3909 */
3910 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3911 {
3912 struct pool_workqueue *pwq;
3913
3914 /* disallow meddling with max_active for ordered workqueues */
3915 if (WARN_ON(wq->flags & __WQ_ORDERED))
3916 return;
3917
3918 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3919
3920 mutex_lock(&wq->mutex);
3921
3922 wq->saved_max_active = max_active;
3923
3924 for_each_pwq(pwq, wq)
3925 pwq_adjust_max_active(pwq);
3926
3927 mutex_unlock(&wq->mutex);
3928 }
3929 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3930
3931 /**
3932 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3933 *
3934 * Determine whether %current is a workqueue rescuer. Can be used from
3935 * work functions to determine whether it's being run off the rescuer task.
3936 */
3937 bool current_is_workqueue_rescuer(void)
3938 {
3939 struct worker *worker = current_wq_worker();
3940
3941 return worker && worker->rescue_wq;
3942 }
3943
3944 /**
3945 * workqueue_congested - test whether a workqueue is congested
3946 * @cpu: CPU in question
3947 * @wq: target workqueue
3948 *
3949 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3950 * no synchronization around this function and the test result is
3951 * unreliable and only useful as advisory hints or for debugging.
3952 *
3953 * RETURNS:
3954 * %true if congested, %false otherwise.
3955 */
3956 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
3957 {
3958 struct pool_workqueue *pwq;
3959 bool ret;
3960
3961 rcu_read_lock_sched();
3962
3963 if (!(wq->flags & WQ_UNBOUND))
3964 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3965 else
3966 pwq = first_pwq(wq);
3967
3968 ret = !list_empty(&pwq->delayed_works);
3969 rcu_read_unlock_sched();
3970
3971 return ret;
3972 }
3973 EXPORT_SYMBOL_GPL(workqueue_congested);
3974
3975 /**
3976 * work_busy - test whether a work is currently pending or running
3977 * @work: the work to be tested
3978 *
3979 * Test whether @work is currently pending or running. There is no
3980 * synchronization around this function and the test result is
3981 * unreliable and only useful as advisory hints or for debugging.
3982 *
3983 * RETURNS:
3984 * OR'd bitmask of WORK_BUSY_* bits.
3985 */
3986 unsigned int work_busy(struct work_struct *work)
3987 {
3988 struct worker_pool *pool;
3989 unsigned long flags;
3990 unsigned int ret = 0;
3991
3992 if (work_pending(work))
3993 ret |= WORK_BUSY_PENDING;
3994
3995 local_irq_save(flags);
3996 pool = get_work_pool(work);
3997 if (pool) {
3998 spin_lock(&pool->lock);
3999 if (find_worker_executing_work(pool, work))
4000 ret |= WORK_BUSY_RUNNING;
4001 spin_unlock(&pool->lock);
4002 }
4003 local_irq_restore(flags);
4004
4005 return ret;
4006 }
4007 EXPORT_SYMBOL_GPL(work_busy);
4008
4009 /*
4010 * CPU hotplug.
4011 *
4012 * There are two challenges in supporting CPU hotplug. Firstly, there
4013 * are a lot of assumptions on strong associations among work, pwq and
4014 * pool which make migrating pending and scheduled works very
4015 * difficult to implement without impacting hot paths. Secondly,
4016 * worker pools serve mix of short, long and very long running works making
4017 * blocked draining impractical.
4018 *
4019 * This is solved by allowing the pools to be disassociated from the CPU
4020 * running as an unbound one and allowing it to be reattached later if the
4021 * cpu comes back online.
4022 */
4023
4024 static void wq_unbind_fn(struct work_struct *work)
4025 {
4026 int cpu = smp_processor_id();
4027 struct worker_pool *pool;
4028 struct worker *worker;
4029 int wi;
4030
4031 for_each_cpu_worker_pool(pool, cpu) {
4032 WARN_ON_ONCE(cpu != smp_processor_id());
4033
4034 mutex_lock(&pool->manager_mutex);
4035 spin_lock_irq(&pool->lock);
4036
4037 /*
4038 * We've blocked all manager operations. Make all workers
4039 * unbound and set DISASSOCIATED. Before this, all workers
4040 * except for the ones which are still executing works from
4041 * before the last CPU down must be on the cpu. After
4042 * this, they may become diasporas.
4043 */
4044 for_each_pool_worker(worker, wi, pool)
4045 worker->flags |= WORKER_UNBOUND;
4046
4047 pool->flags |= POOL_DISASSOCIATED;
4048
4049 spin_unlock_irq(&pool->lock);
4050 mutex_unlock(&pool->manager_mutex);
4051 }
4052
4053 /*
4054 * Call schedule() so that we cross rq->lock and thus can guarantee
4055 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4056 * as scheduler callbacks may be invoked from other cpus.
4057 */
4058 schedule();
4059
4060 /*
4061 * Sched callbacks are disabled now. Zap nr_running. After this,
4062 * nr_running stays zero and need_more_worker() and keep_working()
4063 * are always true as long as the worklist is not empty. Pools on
4064 * @cpu now behave as unbound (in terms of concurrency management)
4065 * pools which are served by workers tied to the CPU.
4066 *
4067 * On return from this function, the current worker would trigger
4068 * unbound chain execution of pending work items if other workers
4069 * didn't already.
4070 */
4071 for_each_cpu_worker_pool(pool, cpu)
4072 atomic_set(&pool->nr_running, 0);
4073 }
4074
4075 /**
4076 * rebind_workers - rebind all workers of a pool to the associated CPU
4077 * @pool: pool of interest
4078 *
4079 * @pool->cpu is coming online. Rebind all workers to the CPU.
4080 */
4081 static void rebind_workers(struct worker_pool *pool)
4082 {
4083 struct worker *worker;
4084 int wi;
4085
4086 lockdep_assert_held(&pool->manager_mutex);
4087
4088 /*
4089 * Restore CPU affinity of all workers. As all idle workers should
4090 * be on the run-queue of the associated CPU before any local
4091 * wake-ups for concurrency management happen, restore CPU affinty
4092 * of all workers first and then clear UNBOUND. As we're called
4093 * from CPU_ONLINE, the following shouldn't fail.
4094 */
4095 for_each_pool_worker(worker, wi, pool)
4096 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4097 pool->attrs->cpumask) < 0);
4098
4099 spin_lock_irq(&pool->lock);
4100
4101 for_each_pool_worker(worker, wi, pool) {
4102 unsigned int worker_flags = worker->flags;
4103
4104 /*
4105 * A bound idle worker should actually be on the runqueue
4106 * of the associated CPU for local wake-ups targeting it to
4107 * work. Kick all idle workers so that they migrate to the
4108 * associated CPU. Doing this in the same loop as
4109 * replacing UNBOUND with REBOUND is safe as no worker will
4110 * be bound before @pool->lock is released.
4111 */
4112 if (worker_flags & WORKER_IDLE)
4113 wake_up_process(worker->task);
4114
4115 /*
4116 * We want to clear UNBOUND but can't directly call
4117 * worker_clr_flags() or adjust nr_running. Atomically
4118 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4119 * @worker will clear REBOUND using worker_clr_flags() when
4120 * it initiates the next execution cycle thus restoring
4121 * concurrency management. Note that when or whether
4122 * @worker clears REBOUND doesn't affect correctness.
4123 *
4124 * ACCESS_ONCE() is necessary because @worker->flags may be
4125 * tested without holding any lock in
4126 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4127 * fail incorrectly leading to premature concurrency
4128 * management operations.
4129 */
4130 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4131 worker_flags |= WORKER_REBOUND;
4132 worker_flags &= ~WORKER_UNBOUND;
4133 ACCESS_ONCE(worker->flags) = worker_flags;
4134 }
4135
4136 spin_unlock_irq(&pool->lock);
4137 }
4138
4139 /**
4140 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4141 * @pool: unbound pool of interest
4142 * @cpu: the CPU which is coming up
4143 *
4144 * An unbound pool may end up with a cpumask which doesn't have any online
4145 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4146 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4147 * online CPU before, cpus_allowed of all its workers should be restored.
4148 */
4149 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4150 {
4151 static cpumask_t cpumask;
4152 struct worker *worker;
4153 int wi;
4154
4155 lockdep_assert_held(&pool->manager_mutex);
4156
4157 /* is @cpu allowed for @pool? */
4158 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4159 return;
4160
4161 /* is @cpu the only online CPU? */
4162 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4163 if (cpumask_weight(&cpumask) != 1)
4164 return;
4165
4166 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4167 for_each_pool_worker(worker, wi, pool)
4168 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4169 pool->attrs->cpumask) < 0);
4170 }
4171
4172 /*
4173 * Workqueues should be brought up before normal priority CPU notifiers.
4174 * This will be registered high priority CPU notifier.
4175 */
4176 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4177 unsigned long action,
4178 void *hcpu)
4179 {
4180 int cpu = (unsigned long)hcpu;
4181 struct worker_pool *pool;
4182 int pi;
4183
4184 switch (action & ~CPU_TASKS_FROZEN) {
4185 case CPU_UP_PREPARE:
4186 for_each_cpu_worker_pool(pool, cpu) {
4187 if (pool->nr_workers)
4188 continue;
4189 if (create_and_start_worker(pool) < 0)
4190 return NOTIFY_BAD;
4191 }
4192 break;
4193
4194 case CPU_DOWN_FAILED:
4195 case CPU_ONLINE:
4196 mutex_lock(&wq_pool_mutex);
4197
4198 for_each_pool(pool, pi) {
4199 mutex_lock(&pool->manager_mutex);
4200
4201 if (pool->cpu == cpu) {
4202 spin_lock_irq(&pool->lock);
4203 pool->flags &= ~POOL_DISASSOCIATED;
4204 spin_unlock_irq(&pool->lock);
4205
4206 rebind_workers(pool);
4207 } else if (pool->cpu < 0) {
4208 restore_unbound_workers_cpumask(pool, cpu);
4209 }
4210
4211 mutex_unlock(&pool->manager_mutex);
4212 }
4213
4214 mutex_unlock(&wq_pool_mutex);
4215 break;
4216 }
4217 return NOTIFY_OK;
4218 }
4219
4220 /*
4221 * Workqueues should be brought down after normal priority CPU notifiers.
4222 * This will be registered as low priority CPU notifier.
4223 */
4224 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4225 unsigned long action,
4226 void *hcpu)
4227 {
4228 int cpu = (unsigned long)hcpu;
4229 struct work_struct unbind_work;
4230
4231 switch (action & ~CPU_TASKS_FROZEN) {
4232 case CPU_DOWN_PREPARE:
4233 /* unbinding should happen on the local CPU */
4234 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4235 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4236 flush_work(&unbind_work);
4237 break;
4238 }
4239 return NOTIFY_OK;
4240 }
4241
4242 #ifdef CONFIG_SMP
4243
4244 struct work_for_cpu {
4245 struct work_struct work;
4246 long (*fn)(void *);
4247 void *arg;
4248 long ret;
4249 };
4250
4251 static void work_for_cpu_fn(struct work_struct *work)
4252 {
4253 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4254
4255 wfc->ret = wfc->fn(wfc->arg);
4256 }
4257
4258 /**
4259 * work_on_cpu - run a function in user context on a particular cpu
4260 * @cpu: the cpu to run on
4261 * @fn: the function to run
4262 * @arg: the function arg
4263 *
4264 * This will return the value @fn returns.
4265 * It is up to the caller to ensure that the cpu doesn't go offline.
4266 * The caller must not hold any locks which would prevent @fn from completing.
4267 */
4268 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4269 {
4270 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4271
4272 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4273 schedule_work_on(cpu, &wfc.work);
4274 flush_work(&wfc.work);
4275 return wfc.ret;
4276 }
4277 EXPORT_SYMBOL_GPL(work_on_cpu);
4278 #endif /* CONFIG_SMP */
4279
4280 #ifdef CONFIG_FREEZER
4281
4282 /**
4283 * freeze_workqueues_begin - begin freezing workqueues
4284 *
4285 * Start freezing workqueues. After this function returns, all freezable
4286 * workqueues will queue new works to their delayed_works list instead of
4287 * pool->worklist.
4288 *
4289 * CONTEXT:
4290 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4291 */
4292 void freeze_workqueues_begin(void)
4293 {
4294 struct worker_pool *pool;
4295 struct workqueue_struct *wq;
4296 struct pool_workqueue *pwq;
4297 int pi;
4298
4299 mutex_lock(&wq_pool_mutex);
4300
4301 WARN_ON_ONCE(workqueue_freezing);
4302 workqueue_freezing = true;
4303
4304 /* set FREEZING */
4305 for_each_pool(pool, pi) {
4306 spin_lock_irq(&pool->lock);
4307 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4308 pool->flags |= POOL_FREEZING;
4309 spin_unlock_irq(&pool->lock);
4310 }
4311
4312 list_for_each_entry(wq, &workqueues, list) {
4313 mutex_lock(&wq->mutex);
4314 for_each_pwq(pwq, wq)
4315 pwq_adjust_max_active(pwq);
4316 mutex_unlock(&wq->mutex);
4317 }
4318
4319 mutex_unlock(&wq_pool_mutex);
4320 }
4321
4322 /**
4323 * freeze_workqueues_busy - are freezable workqueues still busy?
4324 *
4325 * Check whether freezing is complete. This function must be called
4326 * between freeze_workqueues_begin() and thaw_workqueues().
4327 *
4328 * CONTEXT:
4329 * Grabs and releases wq_pool_mutex.
4330 *
4331 * RETURNS:
4332 * %true if some freezable workqueues are still busy. %false if freezing
4333 * is complete.
4334 */
4335 bool freeze_workqueues_busy(void)
4336 {
4337 bool busy = false;
4338 struct workqueue_struct *wq;
4339 struct pool_workqueue *pwq;
4340
4341 mutex_lock(&wq_pool_mutex);
4342
4343 WARN_ON_ONCE(!workqueue_freezing);
4344
4345 list_for_each_entry(wq, &workqueues, list) {
4346 if (!(wq->flags & WQ_FREEZABLE))
4347 continue;
4348 /*
4349 * nr_active is monotonically decreasing. It's safe
4350 * to peek without lock.
4351 */
4352 rcu_read_lock_sched();
4353 for_each_pwq(pwq, wq) {
4354 WARN_ON_ONCE(pwq->nr_active < 0);
4355 if (pwq->nr_active) {
4356 busy = true;
4357 rcu_read_unlock_sched();
4358 goto out_unlock;
4359 }
4360 }
4361 rcu_read_unlock_sched();
4362 }
4363 out_unlock:
4364 mutex_unlock(&wq_pool_mutex);
4365 return busy;
4366 }
4367
4368 /**
4369 * thaw_workqueues - thaw workqueues
4370 *
4371 * Thaw workqueues. Normal queueing is restored and all collected
4372 * frozen works are transferred to their respective pool worklists.
4373 *
4374 * CONTEXT:
4375 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4376 */
4377 void thaw_workqueues(void)
4378 {
4379 struct workqueue_struct *wq;
4380 struct pool_workqueue *pwq;
4381 struct worker_pool *pool;
4382 int pi;
4383
4384 mutex_lock(&wq_pool_mutex);
4385
4386 if (!workqueue_freezing)
4387 goto out_unlock;
4388
4389 /* clear FREEZING */
4390 for_each_pool(pool, pi) {
4391 spin_lock_irq(&pool->lock);
4392 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4393 pool->flags &= ~POOL_FREEZING;
4394 spin_unlock_irq(&pool->lock);
4395 }
4396
4397 /* restore max_active and repopulate worklist */
4398 list_for_each_entry(wq, &workqueues, list) {
4399 mutex_lock(&wq->mutex);
4400 for_each_pwq(pwq, wq)
4401 pwq_adjust_max_active(pwq);
4402 mutex_unlock(&wq->mutex);
4403 }
4404
4405 workqueue_freezing = false;
4406 out_unlock:
4407 mutex_unlock(&wq_pool_mutex);
4408 }
4409 #endif /* CONFIG_FREEZER */
4410
4411 static int __init init_workqueues(void)
4412 {
4413 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4414 int i, cpu;
4415
4416 /* make sure we have enough bits for OFFQ pool ID */
4417 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4418 WORK_CPU_END * NR_STD_WORKER_POOLS);
4419
4420 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4421
4422 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4423
4424 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4425 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4426
4427 /* initialize CPU pools */
4428 for_each_possible_cpu(cpu) {
4429 struct worker_pool *pool;
4430
4431 i = 0;
4432 for_each_cpu_worker_pool(pool, cpu) {
4433 BUG_ON(init_worker_pool(pool));
4434 pool->cpu = cpu;
4435 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4436 pool->attrs->nice = std_nice[i++];
4437
4438 /* alloc pool ID */
4439 mutex_lock(&wq_pool_mutex);
4440 BUG_ON(worker_pool_assign_id(pool));
4441 mutex_unlock(&wq_pool_mutex);
4442 }
4443 }
4444
4445 /* create the initial worker */
4446 for_each_online_cpu(cpu) {
4447 struct worker_pool *pool;
4448
4449 for_each_cpu_worker_pool(pool, cpu) {
4450 pool->flags &= ~POOL_DISASSOCIATED;
4451 BUG_ON(create_and_start_worker(pool) < 0);
4452 }
4453 }
4454
4455 /* create default unbound wq attrs */
4456 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4457 struct workqueue_attrs *attrs;
4458
4459 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4460
4461 attrs->nice = std_nice[i];
4462 cpumask_setall(attrs->cpumask);
4463
4464 unbound_std_wq_attrs[i] = attrs;
4465 }
4466
4467 system_wq = alloc_workqueue("events", 0, 0);
4468 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4469 system_long_wq = alloc_workqueue("events_long", 0, 0);
4470 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4471 WQ_UNBOUND_MAX_ACTIVE);
4472 system_freezable_wq = alloc_workqueue("events_freezable",
4473 WQ_FREEZABLE, 0);
4474 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4475 !system_unbound_wq || !system_freezable_wq);
4476 return 0;
4477 }
4478 early_initcall(init_workqueues);