ASoC: dapm: Make sure all dapm contexts are updated
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
54
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
64
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
74
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
78
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
81
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
83 /* call for help after 10ms
84 (min two ticks) */
85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
86 CREATE_COOLDOWN = HZ, /* time to breath after fail */
87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
88
89 /*
90 * Rescue workers are used only on emergencies and shared by
91 * all cpus. Give -20.
92 */
93 RESCUER_NICE_LEVEL = -20,
94 };
95
96 /*
97 * Structure fields follow one of the following exclusion rules.
98 *
99 * I: Modifiable by initialization/destruction paths and read-only for
100 * everyone else.
101 *
102 * P: Preemption protected. Disabling preemption is enough and should
103 * only be modified and accessed from the local cpu.
104 *
105 * L: gcwq->lock protected. Access with gcwq->lock held.
106 *
107 * X: During normal operation, modification requires gcwq->lock and
108 * should be done only from local cpu. Either disabling preemption
109 * on local cpu or grabbing gcwq->lock is enough for read access.
110 * If GCWQ_DISASSOCIATED is set, it's identical to L.
111 *
112 * F: wq->flush_mutex protected.
113 *
114 * W: workqueue_lock protected.
115 */
116
117 struct global_cwq;
118
119 /*
120 * The poor guys doing the actual heavy lifting. All on-duty workers
121 * are either serving the manager role, on idle list or on busy hash.
122 */
123 struct worker {
124 /* on idle list while idle, on busy hash table while busy */
125 union {
126 struct list_head entry; /* L: while idle */
127 struct hlist_node hentry; /* L: while busy */
128 };
129
130 struct work_struct *current_work; /* L: work being processed */
131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 struct list_head scheduled; /* L: scheduled works */
133 struct task_struct *task; /* I: worker task */
134 struct global_cwq *gcwq; /* I: the associated gcwq */
135 /* 64 bytes boundary on 64bit, 32 on 32bit */
136 unsigned long last_active; /* L: last active timestamp */
137 unsigned int flags; /* X: flags */
138 int id; /* I: worker id */
139 struct work_struct rebind_work; /* L: rebind worker to cpu */
140 };
141
142 /*
143 * Global per-cpu workqueue. There's one and only one for each cpu
144 * and all works are queued and processed here regardless of their
145 * target workqueues.
146 */
147 struct global_cwq {
148 spinlock_t lock; /* the gcwq lock */
149 struct list_head worklist; /* L: list of pending works */
150 unsigned int cpu; /* I: the associated cpu */
151 unsigned int flags; /* L: GCWQ_* flags */
152
153 int nr_workers; /* L: total number of workers */
154 int nr_idle; /* L: currently idle ones */
155
156 /* workers are chained either in the idle_list or busy_hash */
157 struct list_head idle_list; /* X: list of idle workers */
158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
159 /* L: hash of busy workers */
160
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
163
164 struct ida worker_ida; /* L: for worker IDs */
165
166 struct task_struct *trustee; /* L: for gcwq shutdown */
167 unsigned int trustee_state; /* L: trustee state */
168 wait_queue_head_t trustee_wait; /* trustee wait */
169 struct worker *first_idle; /* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
171
172 /*
173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
174 * work_struct->data are used for flags and thus cwqs need to be
175 * aligned at two's power of the number of flag bits.
176 */
177 struct cpu_workqueue_struct {
178 struct global_cwq *gcwq; /* I: the associated gcwq */
179 struct workqueue_struct *wq; /* I: the owning workqueue */
180 int work_color; /* L: current color */
181 int flush_color; /* L: flushing color */
182 int nr_in_flight[WORK_NR_COLORS];
183 /* L: nr of in_flight works */
184 int nr_active; /* L: nr of active works */
185 int max_active; /* L: max active works */
186 struct list_head delayed_works; /* L: delayed works */
187 };
188
189 /*
190 * Structure used to wait for workqueue flush.
191 */
192 struct wq_flusher {
193 struct list_head list; /* F: list of flushers */
194 int flush_color; /* F: flush color waiting for */
195 struct completion done; /* flush completion */
196 };
197
198 /*
199 * All cpumasks are assumed to be always set on UP and thus can't be
200 * used to determine whether there's something to be done.
201 */
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask) \
205 cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask) free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp) true
216 #define free_mayday_mask(mask) do { } while (0)
217 #endif
218
219 /*
220 * The externally visible workqueue abstraction is an array of
221 * per-CPU workqueues:
222 */
223 struct workqueue_struct {
224 unsigned int flags; /* W: WQ_* flags */
225 union {
226 struct cpu_workqueue_struct __percpu *pcpu;
227 struct cpu_workqueue_struct *single;
228 unsigned long v;
229 } cpu_wq; /* I: cwq's */
230 struct list_head list; /* W: list of all workqueues */
231
232 struct mutex flush_mutex; /* protects wq flushing */
233 int work_color; /* F: current work color */
234 int flush_color; /* F: current flush color */
235 atomic_t nr_cwqs_to_flush; /* flush in progress */
236 struct wq_flusher *first_flusher; /* F: first flusher */
237 struct list_head flusher_queue; /* F: flush waiters */
238 struct list_head flusher_overflow; /* F: flush overflow list */
239
240 mayday_mask_t mayday_mask; /* cpus requesting rescue */
241 struct worker *rescuer; /* I: rescue worker */
242
243 int nr_drainers; /* W: drain in progress */
244 int saved_max_active; /* W: saved cwq max_active */
245 #ifdef CONFIG_LOCKDEP
246 struct lockdep_map lockdep_map;
247 #endif
248 char name[]; /* I: workqueue name */
249 };
250
251 struct workqueue_struct *system_wq __read_mostly;
252 struct workqueue_struct *system_long_wq __read_mostly;
253 struct workqueue_struct *system_nrt_wq __read_mostly;
254 struct workqueue_struct *system_unbound_wq __read_mostly;
255 struct workqueue_struct *system_freezable_wq __read_mostly;
256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
257 EXPORT_SYMBOL_GPL(system_wq);
258 EXPORT_SYMBOL_GPL(system_long_wq);
259 EXPORT_SYMBOL_GPL(system_nrt_wq);
260 EXPORT_SYMBOL_GPL(system_unbound_wq);
261 EXPORT_SYMBOL_GPL(system_freezable_wq);
262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
263
264 #define CREATE_TRACE_POINTS
265 #include <trace/events/workqueue.h>
266
267 #define for_each_busy_worker(worker, i, pos, gcwq) \
268 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
269 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
270
271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
272 unsigned int sw)
273 {
274 if (cpu < nr_cpu_ids) {
275 if (sw & 1) {
276 cpu = cpumask_next(cpu, mask);
277 if (cpu < nr_cpu_ids)
278 return cpu;
279 }
280 if (sw & 2)
281 return WORK_CPU_UNBOUND;
282 }
283 return WORK_CPU_NONE;
284 }
285
286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
287 struct workqueue_struct *wq)
288 {
289 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
290 }
291
292 /*
293 * CPU iterators
294 *
295 * An extra gcwq is defined for an invalid cpu number
296 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
297 * specific CPU. The following iterators are similar to
298 * for_each_*_cpu() iterators but also considers the unbound gcwq.
299 *
300 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
301 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
302 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
303 * WORK_CPU_UNBOUND for unbound workqueues
304 */
305 #define for_each_gcwq_cpu(cpu) \
306 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
307 (cpu) < WORK_CPU_NONE; \
308 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
309
310 #define for_each_online_gcwq_cpu(cpu) \
311 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
312 (cpu) < WORK_CPU_NONE; \
313 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
314
315 #define for_each_cwq_cpu(cpu, wq) \
316 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
317 (cpu) < WORK_CPU_NONE; \
318 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
319
320 #ifdef CONFIG_DEBUG_OBJECTS_WORK
321
322 static struct debug_obj_descr work_debug_descr;
323
324 static void *work_debug_hint(void *addr)
325 {
326 return ((struct work_struct *) addr)->func;
327 }
328
329 /*
330 * fixup_init is called when:
331 * - an active object is initialized
332 */
333 static int work_fixup_init(void *addr, enum debug_obj_state state)
334 {
335 struct work_struct *work = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 cancel_work_sync(work);
340 debug_object_init(work, &work_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345 }
346
347 /*
348 * fixup_activate is called when:
349 * - an active object is activated
350 * - an unknown object is activated (might be a statically initialized object)
351 */
352 static int work_fixup_activate(void *addr, enum debug_obj_state state)
353 {
354 struct work_struct *work = addr;
355
356 switch (state) {
357
358 case ODEBUG_STATE_NOTAVAILABLE:
359 /*
360 * This is not really a fixup. The work struct was
361 * statically initialized. We just make sure that it
362 * is tracked in the object tracker.
363 */
364 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
365 debug_object_init(work, &work_debug_descr);
366 debug_object_activate(work, &work_debug_descr);
367 return 0;
368 }
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378 }
379
380 /*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384 static int work_fixup_free(void *addr, enum debug_obj_state state)
385 {
386 struct work_struct *work = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 cancel_work_sync(work);
391 debug_object_free(work, &work_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396 }
397
398 static struct debug_obj_descr work_debug_descr = {
399 .name = "work_struct",
400 .debug_hint = work_debug_hint,
401 .fixup_init = work_fixup_init,
402 .fixup_activate = work_fixup_activate,
403 .fixup_free = work_fixup_free,
404 };
405
406 static inline void debug_work_activate(struct work_struct *work)
407 {
408 debug_object_activate(work, &work_debug_descr);
409 }
410
411 static inline void debug_work_deactivate(struct work_struct *work)
412 {
413 debug_object_deactivate(work, &work_debug_descr);
414 }
415
416 void __init_work(struct work_struct *work, int onstack)
417 {
418 if (onstack)
419 debug_object_init_on_stack(work, &work_debug_descr);
420 else
421 debug_object_init(work, &work_debug_descr);
422 }
423 EXPORT_SYMBOL_GPL(__init_work);
424
425 void destroy_work_on_stack(struct work_struct *work)
426 {
427 debug_object_free(work, &work_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
430
431 #else
432 static inline void debug_work_activate(struct work_struct *work) { }
433 static inline void debug_work_deactivate(struct work_struct *work) { }
434 #endif
435
436 /* Serializes the accesses to the list of workqueues. */
437 static DEFINE_SPINLOCK(workqueue_lock);
438 static LIST_HEAD(workqueues);
439 static bool workqueue_freezing; /* W: have wqs started freezing? */
440
441 /*
442 * The almighty global cpu workqueues. nr_running is the only field
443 * which is expected to be used frequently by other cpus via
444 * try_to_wake_up(). Put it in a separate cacheline.
445 */
446 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
448
449 /*
450 * Global cpu workqueue and nr_running counter for unbound gcwq. The
451 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
452 * workers have WORKER_UNBOUND set.
453 */
454 static struct global_cwq unbound_global_cwq;
455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
456
457 static int worker_thread(void *__worker);
458
459 static struct global_cwq *get_gcwq(unsigned int cpu)
460 {
461 if (cpu != WORK_CPU_UNBOUND)
462 return &per_cpu(global_cwq, cpu);
463 else
464 return &unbound_global_cwq;
465 }
466
467 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
468 {
469 if (cpu != WORK_CPU_UNBOUND)
470 return &per_cpu(gcwq_nr_running, cpu);
471 else
472 return &unbound_gcwq_nr_running;
473 }
474
475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 struct workqueue_struct *wq)
477 {
478 if (!(wq->flags & WQ_UNBOUND)) {
479 if (likely(cpu < nr_cpu_ids))
480 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
481 } else if (likely(cpu == WORK_CPU_UNBOUND))
482 return wq->cpu_wq.single;
483 return NULL;
484 }
485
486 static unsigned int work_color_to_flags(int color)
487 {
488 return color << WORK_STRUCT_COLOR_SHIFT;
489 }
490
491 static int get_work_color(struct work_struct *work)
492 {
493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
495 }
496
497 static int work_next_color(int color)
498 {
499 return (color + 1) % WORK_NR_COLORS;
500 }
501
502 /*
503 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
504 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
505 * cleared and the work data contains the cpu number it was last on.
506 *
507 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
508 * cwq, cpu or clear work->data. These functions should only be
509 * called while the work is owned - ie. while the PENDING bit is set.
510 *
511 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
512 * corresponding to a work. gcwq is available once the work has been
513 * queued anywhere after initialization. cwq is available only from
514 * queueing until execution starts.
515 */
516 static inline void set_work_data(struct work_struct *work, unsigned long data,
517 unsigned long flags)
518 {
519 BUG_ON(!work_pending(work));
520 atomic_long_set(&work->data, data | flags | work_static(work));
521 }
522
523 static void set_work_cwq(struct work_struct *work,
524 struct cpu_workqueue_struct *cwq,
525 unsigned long extra_flags)
526 {
527 set_work_data(work, (unsigned long)cwq,
528 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
529 }
530
531 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
532 {
533 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
534 }
535
536 static void clear_work_data(struct work_struct *work)
537 {
538 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
539 }
540
541 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
542 {
543 unsigned long data = atomic_long_read(&work->data);
544
545 if (data & WORK_STRUCT_CWQ)
546 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
547 else
548 return NULL;
549 }
550
551 static struct global_cwq *get_work_gcwq(struct work_struct *work)
552 {
553 unsigned long data = atomic_long_read(&work->data);
554 unsigned int cpu;
555
556 if (data & WORK_STRUCT_CWQ)
557 return ((struct cpu_workqueue_struct *)
558 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
559
560 cpu = data >> WORK_STRUCT_FLAG_BITS;
561 if (cpu == WORK_CPU_NONE)
562 return NULL;
563
564 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
565 return get_gcwq(cpu);
566 }
567
568 /*
569 * Policy functions. These define the policies on how the global
570 * worker pool is managed. Unless noted otherwise, these functions
571 * assume that they're being called with gcwq->lock held.
572 */
573
574 static bool __need_more_worker(struct global_cwq *gcwq)
575 {
576 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
577 gcwq->flags & GCWQ_HIGHPRI_PENDING;
578 }
579
580 /*
581 * Need to wake up a worker? Called from anything but currently
582 * running workers.
583 */
584 static bool need_more_worker(struct global_cwq *gcwq)
585 {
586 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
587 }
588
589 /* Can I start working? Called from busy but !running workers. */
590 static bool may_start_working(struct global_cwq *gcwq)
591 {
592 return gcwq->nr_idle;
593 }
594
595 /* Do I need to keep working? Called from currently running workers. */
596 static bool keep_working(struct global_cwq *gcwq)
597 {
598 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
599
600 return !list_empty(&gcwq->worklist) &&
601 (atomic_read(nr_running) <= 1 ||
602 gcwq->flags & GCWQ_HIGHPRI_PENDING);
603 }
604
605 /* Do we need a new worker? Called from manager. */
606 static bool need_to_create_worker(struct global_cwq *gcwq)
607 {
608 return need_more_worker(gcwq) && !may_start_working(gcwq);
609 }
610
611 /* Do I need to be the manager? */
612 static bool need_to_manage_workers(struct global_cwq *gcwq)
613 {
614 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
615 }
616
617 /* Do we have too many workers and should some go away? */
618 static bool too_many_workers(struct global_cwq *gcwq)
619 {
620 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
621 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
622 int nr_busy = gcwq->nr_workers - nr_idle;
623
624 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
625 }
626
627 /*
628 * Wake up functions.
629 */
630
631 /* Return the first worker. Safe with preemption disabled */
632 static struct worker *first_worker(struct global_cwq *gcwq)
633 {
634 if (unlikely(list_empty(&gcwq->idle_list)))
635 return NULL;
636
637 return list_first_entry(&gcwq->idle_list, struct worker, entry);
638 }
639
640 /**
641 * wake_up_worker - wake up an idle worker
642 * @gcwq: gcwq to wake worker for
643 *
644 * Wake up the first idle worker of @gcwq.
645 *
646 * CONTEXT:
647 * spin_lock_irq(gcwq->lock).
648 */
649 static void wake_up_worker(struct global_cwq *gcwq)
650 {
651 struct worker *worker = first_worker(gcwq);
652
653 if (likely(worker))
654 wake_up_process(worker->task);
655 }
656
657 /**
658 * wq_worker_waking_up - a worker is waking up
659 * @task: task waking up
660 * @cpu: CPU @task is waking up to
661 *
662 * This function is called during try_to_wake_up() when a worker is
663 * being awoken.
664 *
665 * CONTEXT:
666 * spin_lock_irq(rq->lock)
667 */
668 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
669 {
670 struct worker *worker = kthread_data(task);
671
672 if (!(worker->flags & WORKER_NOT_RUNNING))
673 atomic_inc(get_gcwq_nr_running(cpu));
674 }
675
676 /**
677 * wq_worker_sleeping - a worker is going to sleep
678 * @task: task going to sleep
679 * @cpu: CPU in question, must be the current CPU number
680 *
681 * This function is called during schedule() when a busy worker is
682 * going to sleep. Worker on the same cpu can be woken up by
683 * returning pointer to its task.
684 *
685 * CONTEXT:
686 * spin_lock_irq(rq->lock)
687 *
688 * RETURNS:
689 * Worker task on @cpu to wake up, %NULL if none.
690 */
691 struct task_struct *wq_worker_sleeping(struct task_struct *task,
692 unsigned int cpu)
693 {
694 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
695 struct global_cwq *gcwq = get_gcwq(cpu);
696 atomic_t *nr_running = get_gcwq_nr_running(cpu);
697
698 if (worker->flags & WORKER_NOT_RUNNING)
699 return NULL;
700
701 /* this can only happen on the local cpu */
702 BUG_ON(cpu != raw_smp_processor_id());
703
704 /*
705 * The counterpart of the following dec_and_test, implied mb,
706 * worklist not empty test sequence is in insert_work().
707 * Please read comment there.
708 *
709 * NOT_RUNNING is clear. This means that trustee is not in
710 * charge and we're running on the local cpu w/ rq lock held
711 * and preemption disabled, which in turn means that none else
712 * could be manipulating idle_list, so dereferencing idle_list
713 * without gcwq lock is safe.
714 */
715 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
716 to_wakeup = first_worker(gcwq);
717 return to_wakeup ? to_wakeup->task : NULL;
718 }
719
720 /**
721 * worker_set_flags - set worker flags and adjust nr_running accordingly
722 * @worker: self
723 * @flags: flags to set
724 * @wakeup: wakeup an idle worker if necessary
725 *
726 * Set @flags in @worker->flags and adjust nr_running accordingly. If
727 * nr_running becomes zero and @wakeup is %true, an idle worker is
728 * woken up.
729 *
730 * CONTEXT:
731 * spin_lock_irq(gcwq->lock)
732 */
733 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
734 bool wakeup)
735 {
736 struct global_cwq *gcwq = worker->gcwq;
737
738 WARN_ON_ONCE(worker->task != current);
739
740 /*
741 * If transitioning into NOT_RUNNING, adjust nr_running and
742 * wake up an idle worker as necessary if requested by
743 * @wakeup.
744 */
745 if ((flags & WORKER_NOT_RUNNING) &&
746 !(worker->flags & WORKER_NOT_RUNNING)) {
747 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
748
749 if (wakeup) {
750 if (atomic_dec_and_test(nr_running) &&
751 !list_empty(&gcwq->worklist))
752 wake_up_worker(gcwq);
753 } else
754 atomic_dec(nr_running);
755 }
756
757 worker->flags |= flags;
758 }
759
760 /**
761 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
762 * @worker: self
763 * @flags: flags to clear
764 *
765 * Clear @flags in @worker->flags and adjust nr_running accordingly.
766 *
767 * CONTEXT:
768 * spin_lock_irq(gcwq->lock)
769 */
770 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
771 {
772 struct global_cwq *gcwq = worker->gcwq;
773 unsigned int oflags = worker->flags;
774
775 WARN_ON_ONCE(worker->task != current);
776
777 worker->flags &= ~flags;
778
779 /*
780 * If transitioning out of NOT_RUNNING, increment nr_running. Note
781 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
782 * of multiple flags, not a single flag.
783 */
784 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
785 if (!(worker->flags & WORKER_NOT_RUNNING))
786 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
787 }
788
789 /**
790 * busy_worker_head - return the busy hash head for a work
791 * @gcwq: gcwq of interest
792 * @work: work to be hashed
793 *
794 * Return hash head of @gcwq for @work.
795 *
796 * CONTEXT:
797 * spin_lock_irq(gcwq->lock).
798 *
799 * RETURNS:
800 * Pointer to the hash head.
801 */
802 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
803 struct work_struct *work)
804 {
805 const int base_shift = ilog2(sizeof(struct work_struct));
806 unsigned long v = (unsigned long)work;
807
808 /* simple shift and fold hash, do we need something better? */
809 v >>= base_shift;
810 v += v >> BUSY_WORKER_HASH_ORDER;
811 v &= BUSY_WORKER_HASH_MASK;
812
813 return &gcwq->busy_hash[v];
814 }
815
816 /**
817 * __find_worker_executing_work - find worker which is executing a work
818 * @gcwq: gcwq of interest
819 * @bwh: hash head as returned by busy_worker_head()
820 * @work: work to find worker for
821 *
822 * Find a worker which is executing @work on @gcwq. @bwh should be
823 * the hash head obtained by calling busy_worker_head() with the same
824 * work.
825 *
826 * CONTEXT:
827 * spin_lock_irq(gcwq->lock).
828 *
829 * RETURNS:
830 * Pointer to worker which is executing @work if found, NULL
831 * otherwise.
832 */
833 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
834 struct hlist_head *bwh,
835 struct work_struct *work)
836 {
837 struct worker *worker;
838 struct hlist_node *tmp;
839
840 hlist_for_each_entry(worker, tmp, bwh, hentry)
841 if (worker->current_work == work)
842 return worker;
843 return NULL;
844 }
845
846 /**
847 * find_worker_executing_work - find worker which is executing a work
848 * @gcwq: gcwq of interest
849 * @work: work to find worker for
850 *
851 * Find a worker which is executing @work on @gcwq. This function is
852 * identical to __find_worker_executing_work() except that this
853 * function calculates @bwh itself.
854 *
855 * CONTEXT:
856 * spin_lock_irq(gcwq->lock).
857 *
858 * RETURNS:
859 * Pointer to worker which is executing @work if found, NULL
860 * otherwise.
861 */
862 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
863 struct work_struct *work)
864 {
865 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
866 work);
867 }
868
869 /**
870 * gcwq_determine_ins_pos - find insertion position
871 * @gcwq: gcwq of interest
872 * @cwq: cwq a work is being queued for
873 *
874 * A work for @cwq is about to be queued on @gcwq, determine insertion
875 * position for the work. If @cwq is for HIGHPRI wq, the work is
876 * queued at the head of the queue but in FIFO order with respect to
877 * other HIGHPRI works; otherwise, at the end of the queue. This
878 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
879 * there are HIGHPRI works pending.
880 *
881 * CONTEXT:
882 * spin_lock_irq(gcwq->lock).
883 *
884 * RETURNS:
885 * Pointer to inserstion position.
886 */
887 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
888 struct cpu_workqueue_struct *cwq)
889 {
890 struct work_struct *twork;
891
892 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
893 return &gcwq->worklist;
894
895 list_for_each_entry(twork, &gcwq->worklist, entry) {
896 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
897
898 if (!(tcwq->wq->flags & WQ_HIGHPRI))
899 break;
900 }
901
902 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
903 return &twork->entry;
904 }
905
906 /**
907 * insert_work - insert a work into gcwq
908 * @cwq: cwq @work belongs to
909 * @work: work to insert
910 * @head: insertion point
911 * @extra_flags: extra WORK_STRUCT_* flags to set
912 *
913 * Insert @work which belongs to @cwq into @gcwq after @head.
914 * @extra_flags is or'd to work_struct flags.
915 *
916 * CONTEXT:
917 * spin_lock_irq(gcwq->lock).
918 */
919 static void insert_work(struct cpu_workqueue_struct *cwq,
920 struct work_struct *work, struct list_head *head,
921 unsigned int extra_flags)
922 {
923 struct global_cwq *gcwq = cwq->gcwq;
924
925 /* we own @work, set data and link */
926 set_work_cwq(work, cwq, extra_flags);
927
928 /*
929 * Ensure that we get the right work->data if we see the
930 * result of list_add() below, see try_to_grab_pending().
931 */
932 smp_wmb();
933
934 list_add_tail(&work->entry, head);
935
936 /*
937 * Ensure either worker_sched_deactivated() sees the above
938 * list_add_tail() or we see zero nr_running to avoid workers
939 * lying around lazily while there are works to be processed.
940 */
941 smp_mb();
942
943 if (__need_more_worker(gcwq))
944 wake_up_worker(gcwq);
945 }
946
947 /*
948 * Test whether @work is being queued from another work executing on the
949 * same workqueue. This is rather expensive and should only be used from
950 * cold paths.
951 */
952 static bool is_chained_work(struct workqueue_struct *wq)
953 {
954 unsigned long flags;
955 unsigned int cpu;
956
957 for_each_gcwq_cpu(cpu) {
958 struct global_cwq *gcwq = get_gcwq(cpu);
959 struct worker *worker;
960 struct hlist_node *pos;
961 int i;
962
963 spin_lock_irqsave(&gcwq->lock, flags);
964 for_each_busy_worker(worker, i, pos, gcwq) {
965 if (worker->task != current)
966 continue;
967 spin_unlock_irqrestore(&gcwq->lock, flags);
968 /*
969 * I'm @worker, no locking necessary. See if @work
970 * is headed to the same workqueue.
971 */
972 return worker->current_cwq->wq == wq;
973 }
974 spin_unlock_irqrestore(&gcwq->lock, flags);
975 }
976 return false;
977 }
978
979 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
980 struct work_struct *work)
981 {
982 struct global_cwq *gcwq;
983 struct cpu_workqueue_struct *cwq;
984 struct list_head *worklist;
985 unsigned int work_flags;
986 unsigned long flags;
987
988 debug_work_activate(work);
989
990 /* if dying, only works from the same workqueue are allowed */
991 if (unlikely(wq->flags & WQ_DRAINING) &&
992 WARN_ON_ONCE(!is_chained_work(wq)))
993 return;
994
995 /* determine gcwq to use */
996 if (!(wq->flags & WQ_UNBOUND)) {
997 struct global_cwq *last_gcwq;
998
999 if (unlikely(cpu == WORK_CPU_UNBOUND))
1000 cpu = raw_smp_processor_id();
1001
1002 /*
1003 * It's multi cpu. If @wq is non-reentrant and @work
1004 * was previously on a different cpu, it might still
1005 * be running there, in which case the work needs to
1006 * be queued on that cpu to guarantee non-reentrance.
1007 */
1008 gcwq = get_gcwq(cpu);
1009 if (wq->flags & WQ_NON_REENTRANT &&
1010 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1011 struct worker *worker;
1012
1013 spin_lock_irqsave(&last_gcwq->lock, flags);
1014
1015 worker = find_worker_executing_work(last_gcwq, work);
1016
1017 if (worker && worker->current_cwq->wq == wq)
1018 gcwq = last_gcwq;
1019 else {
1020 /* meh... not running there, queue here */
1021 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1022 spin_lock_irqsave(&gcwq->lock, flags);
1023 }
1024 } else
1025 spin_lock_irqsave(&gcwq->lock, flags);
1026 } else {
1027 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1028 spin_lock_irqsave(&gcwq->lock, flags);
1029 }
1030
1031 /* gcwq determined, get cwq and queue */
1032 cwq = get_cwq(gcwq->cpu, wq);
1033 trace_workqueue_queue_work(cpu, cwq, work);
1034
1035 if (WARN_ON(!list_empty(&work->entry))) {
1036 spin_unlock_irqrestore(&gcwq->lock, flags);
1037 return;
1038 }
1039
1040 cwq->nr_in_flight[cwq->work_color]++;
1041 work_flags = work_color_to_flags(cwq->work_color);
1042
1043 if (likely(cwq->nr_active < cwq->max_active)) {
1044 trace_workqueue_activate_work(work);
1045 cwq->nr_active++;
1046 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1047 } else {
1048 work_flags |= WORK_STRUCT_DELAYED;
1049 worklist = &cwq->delayed_works;
1050 }
1051
1052 insert_work(cwq, work, worklist, work_flags);
1053
1054 spin_unlock_irqrestore(&gcwq->lock, flags);
1055 }
1056
1057 /**
1058 * queue_work - queue work on a workqueue
1059 * @wq: workqueue to use
1060 * @work: work to queue
1061 *
1062 * Returns 0 if @work was already on a queue, non-zero otherwise.
1063 *
1064 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1065 * it can be processed by another CPU.
1066 */
1067 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1068 {
1069 int ret;
1070
1071 ret = queue_work_on(get_cpu(), wq, work);
1072 put_cpu();
1073
1074 return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(queue_work);
1077
1078 /**
1079 * queue_work_on - queue work on specific cpu
1080 * @cpu: CPU number to execute work on
1081 * @wq: workqueue to use
1082 * @work: work to queue
1083 *
1084 * Returns 0 if @work was already on a queue, non-zero otherwise.
1085 *
1086 * We queue the work to a specific CPU, the caller must ensure it
1087 * can't go away.
1088 */
1089 int
1090 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1091 {
1092 int ret = 0;
1093
1094 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1095 __queue_work(cpu, wq, work);
1096 ret = 1;
1097 }
1098 return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(queue_work_on);
1101
1102 static void delayed_work_timer_fn(unsigned long __data)
1103 {
1104 struct delayed_work *dwork = (struct delayed_work *)__data;
1105 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1106
1107 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1108 }
1109
1110 /**
1111 * queue_delayed_work - queue work on a workqueue after delay
1112 * @wq: workqueue to use
1113 * @dwork: delayable work to queue
1114 * @delay: number of jiffies to wait before queueing
1115 *
1116 * Returns 0 if @work was already on a queue, non-zero otherwise.
1117 */
1118 int queue_delayed_work(struct workqueue_struct *wq,
1119 struct delayed_work *dwork, unsigned long delay)
1120 {
1121 if (delay == 0)
1122 return queue_work(wq, &dwork->work);
1123
1124 return queue_delayed_work_on(-1, wq, dwork, delay);
1125 }
1126 EXPORT_SYMBOL_GPL(queue_delayed_work);
1127
1128 /**
1129 * queue_delayed_work_on - queue work on specific CPU after delay
1130 * @cpu: CPU number to execute work on
1131 * @wq: workqueue to use
1132 * @dwork: work to queue
1133 * @delay: number of jiffies to wait before queueing
1134 *
1135 * Returns 0 if @work was already on a queue, non-zero otherwise.
1136 */
1137 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1138 struct delayed_work *dwork, unsigned long delay)
1139 {
1140 int ret = 0;
1141 struct timer_list *timer = &dwork->timer;
1142 struct work_struct *work = &dwork->work;
1143
1144 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1145 unsigned int lcpu;
1146
1147 BUG_ON(timer_pending(timer));
1148 BUG_ON(!list_empty(&work->entry));
1149
1150 timer_stats_timer_set_start_info(&dwork->timer);
1151
1152 /*
1153 * This stores cwq for the moment, for the timer_fn.
1154 * Note that the work's gcwq is preserved to allow
1155 * reentrance detection for delayed works.
1156 */
1157 if (!(wq->flags & WQ_UNBOUND)) {
1158 struct global_cwq *gcwq = get_work_gcwq(work);
1159
1160 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1161 lcpu = gcwq->cpu;
1162 else
1163 lcpu = raw_smp_processor_id();
1164 } else
1165 lcpu = WORK_CPU_UNBOUND;
1166
1167 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1168
1169 timer->expires = jiffies + delay;
1170 timer->data = (unsigned long)dwork;
1171 timer->function = delayed_work_timer_fn;
1172
1173 if (unlikely(cpu >= 0))
1174 add_timer_on(timer, cpu);
1175 else
1176 add_timer(timer);
1177 ret = 1;
1178 }
1179 return ret;
1180 }
1181 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1182
1183 /**
1184 * worker_enter_idle - enter idle state
1185 * @worker: worker which is entering idle state
1186 *
1187 * @worker is entering idle state. Update stats and idle timer if
1188 * necessary.
1189 *
1190 * LOCKING:
1191 * spin_lock_irq(gcwq->lock).
1192 */
1193 static void worker_enter_idle(struct worker *worker)
1194 {
1195 struct global_cwq *gcwq = worker->gcwq;
1196
1197 BUG_ON(worker->flags & WORKER_IDLE);
1198 BUG_ON(!list_empty(&worker->entry) &&
1199 (worker->hentry.next || worker->hentry.pprev));
1200
1201 /* can't use worker_set_flags(), also called from start_worker() */
1202 worker->flags |= WORKER_IDLE;
1203 gcwq->nr_idle++;
1204 worker->last_active = jiffies;
1205
1206 /* idle_list is LIFO */
1207 list_add(&worker->entry, &gcwq->idle_list);
1208
1209 if (likely(!(worker->flags & WORKER_ROGUE))) {
1210 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1211 mod_timer(&gcwq->idle_timer,
1212 jiffies + IDLE_WORKER_TIMEOUT);
1213 } else
1214 wake_up_all(&gcwq->trustee_wait);
1215
1216 /*
1217 * Sanity check nr_running. Because trustee releases gcwq->lock
1218 * between setting %WORKER_ROGUE and zapping nr_running, the
1219 * warning may trigger spuriously. Check iff trustee is idle.
1220 */
1221 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1222 gcwq->nr_workers == gcwq->nr_idle &&
1223 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1224 }
1225
1226 /**
1227 * worker_leave_idle - leave idle state
1228 * @worker: worker which is leaving idle state
1229 *
1230 * @worker is leaving idle state. Update stats.
1231 *
1232 * LOCKING:
1233 * spin_lock_irq(gcwq->lock).
1234 */
1235 static void worker_leave_idle(struct worker *worker)
1236 {
1237 struct global_cwq *gcwq = worker->gcwq;
1238
1239 BUG_ON(!(worker->flags & WORKER_IDLE));
1240 worker_clr_flags(worker, WORKER_IDLE);
1241 gcwq->nr_idle--;
1242 list_del_init(&worker->entry);
1243 }
1244
1245 /**
1246 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1247 * @worker: self
1248 *
1249 * Works which are scheduled while the cpu is online must at least be
1250 * scheduled to a worker which is bound to the cpu so that if they are
1251 * flushed from cpu callbacks while cpu is going down, they are
1252 * guaranteed to execute on the cpu.
1253 *
1254 * This function is to be used by rogue workers and rescuers to bind
1255 * themselves to the target cpu and may race with cpu going down or
1256 * coming online. kthread_bind() can't be used because it may put the
1257 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1258 * verbatim as it's best effort and blocking and gcwq may be
1259 * [dis]associated in the meantime.
1260 *
1261 * This function tries set_cpus_allowed() and locks gcwq and verifies
1262 * the binding against GCWQ_DISASSOCIATED which is set during
1263 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1264 * idle state or fetches works without dropping lock, it can guarantee
1265 * the scheduling requirement described in the first paragraph.
1266 *
1267 * CONTEXT:
1268 * Might sleep. Called without any lock but returns with gcwq->lock
1269 * held.
1270 *
1271 * RETURNS:
1272 * %true if the associated gcwq is online (@worker is successfully
1273 * bound), %false if offline.
1274 */
1275 static bool worker_maybe_bind_and_lock(struct worker *worker)
1276 __acquires(&gcwq->lock)
1277 {
1278 struct global_cwq *gcwq = worker->gcwq;
1279 struct task_struct *task = worker->task;
1280
1281 while (true) {
1282 /*
1283 * The following call may fail, succeed or succeed
1284 * without actually migrating the task to the cpu if
1285 * it races with cpu hotunplug operation. Verify
1286 * against GCWQ_DISASSOCIATED.
1287 */
1288 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1289 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1290
1291 spin_lock_irq(&gcwq->lock);
1292 if (gcwq->flags & GCWQ_DISASSOCIATED)
1293 return false;
1294 if (task_cpu(task) == gcwq->cpu &&
1295 cpumask_equal(&current->cpus_allowed,
1296 get_cpu_mask(gcwq->cpu)))
1297 return true;
1298 spin_unlock_irq(&gcwq->lock);
1299
1300 /*
1301 * We've raced with CPU hot[un]plug. Give it a breather
1302 * and retry migration. cond_resched() is required here;
1303 * otherwise, we might deadlock against cpu_stop trying to
1304 * bring down the CPU on non-preemptive kernel.
1305 */
1306 cpu_relax();
1307 cond_resched();
1308 }
1309 }
1310
1311 /*
1312 * Function for worker->rebind_work used to rebind rogue busy workers
1313 * to the associated cpu which is coming back online. This is
1314 * scheduled by cpu up but can race with other cpu hotplug operations
1315 * and may be executed twice without intervening cpu down.
1316 */
1317 static void worker_rebind_fn(struct work_struct *work)
1318 {
1319 struct worker *worker = container_of(work, struct worker, rebind_work);
1320 struct global_cwq *gcwq = worker->gcwq;
1321
1322 if (worker_maybe_bind_and_lock(worker))
1323 worker_clr_flags(worker, WORKER_REBIND);
1324
1325 spin_unlock_irq(&gcwq->lock);
1326 }
1327
1328 static struct worker *alloc_worker(void)
1329 {
1330 struct worker *worker;
1331
1332 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1333 if (worker) {
1334 INIT_LIST_HEAD(&worker->entry);
1335 INIT_LIST_HEAD(&worker->scheduled);
1336 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1337 /* on creation a worker is in !idle && prep state */
1338 worker->flags = WORKER_PREP;
1339 }
1340 return worker;
1341 }
1342
1343 /**
1344 * create_worker - create a new workqueue worker
1345 * @gcwq: gcwq the new worker will belong to
1346 * @bind: whether to set affinity to @cpu or not
1347 *
1348 * Create a new worker which is bound to @gcwq. The returned worker
1349 * can be started by calling start_worker() or destroyed using
1350 * destroy_worker().
1351 *
1352 * CONTEXT:
1353 * Might sleep. Does GFP_KERNEL allocations.
1354 *
1355 * RETURNS:
1356 * Pointer to the newly created worker.
1357 */
1358 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1359 {
1360 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1361 struct worker *worker = NULL;
1362 int id = -1;
1363
1364 spin_lock_irq(&gcwq->lock);
1365 while (ida_get_new(&gcwq->worker_ida, &id)) {
1366 spin_unlock_irq(&gcwq->lock);
1367 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1368 goto fail;
1369 spin_lock_irq(&gcwq->lock);
1370 }
1371 spin_unlock_irq(&gcwq->lock);
1372
1373 worker = alloc_worker();
1374 if (!worker)
1375 goto fail;
1376
1377 worker->gcwq = gcwq;
1378 worker->id = id;
1379
1380 if (!on_unbound_cpu)
1381 worker->task = kthread_create_on_node(worker_thread,
1382 worker,
1383 cpu_to_node(gcwq->cpu),
1384 "kworker/%u:%d", gcwq->cpu, id);
1385 else
1386 worker->task = kthread_create(worker_thread, worker,
1387 "kworker/u:%d", id);
1388 if (IS_ERR(worker->task))
1389 goto fail;
1390
1391 /*
1392 * A rogue worker will become a regular one if CPU comes
1393 * online later on. Make sure every worker has
1394 * PF_THREAD_BOUND set.
1395 */
1396 if (bind && !on_unbound_cpu)
1397 kthread_bind(worker->task, gcwq->cpu);
1398 else {
1399 worker->task->flags |= PF_THREAD_BOUND;
1400 if (on_unbound_cpu)
1401 worker->flags |= WORKER_UNBOUND;
1402 }
1403
1404 return worker;
1405 fail:
1406 if (id >= 0) {
1407 spin_lock_irq(&gcwq->lock);
1408 ida_remove(&gcwq->worker_ida, id);
1409 spin_unlock_irq(&gcwq->lock);
1410 }
1411 kfree(worker);
1412 return NULL;
1413 }
1414
1415 /**
1416 * start_worker - start a newly created worker
1417 * @worker: worker to start
1418 *
1419 * Make the gcwq aware of @worker and start it.
1420 *
1421 * CONTEXT:
1422 * spin_lock_irq(gcwq->lock).
1423 */
1424 static void start_worker(struct worker *worker)
1425 {
1426 worker->flags |= WORKER_STARTED;
1427 worker->gcwq->nr_workers++;
1428 worker_enter_idle(worker);
1429 wake_up_process(worker->task);
1430 }
1431
1432 /**
1433 * destroy_worker - destroy a workqueue worker
1434 * @worker: worker to be destroyed
1435 *
1436 * Destroy @worker and adjust @gcwq stats accordingly.
1437 *
1438 * CONTEXT:
1439 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1440 */
1441 static void destroy_worker(struct worker *worker)
1442 {
1443 struct global_cwq *gcwq = worker->gcwq;
1444 int id = worker->id;
1445
1446 /* sanity check frenzy */
1447 BUG_ON(worker->current_work);
1448 BUG_ON(!list_empty(&worker->scheduled));
1449
1450 if (worker->flags & WORKER_STARTED)
1451 gcwq->nr_workers--;
1452 if (worker->flags & WORKER_IDLE)
1453 gcwq->nr_idle--;
1454
1455 list_del_init(&worker->entry);
1456 worker->flags |= WORKER_DIE;
1457
1458 spin_unlock_irq(&gcwq->lock);
1459
1460 kthread_stop(worker->task);
1461 kfree(worker);
1462
1463 spin_lock_irq(&gcwq->lock);
1464 ida_remove(&gcwq->worker_ida, id);
1465 }
1466
1467 static void idle_worker_timeout(unsigned long __gcwq)
1468 {
1469 struct global_cwq *gcwq = (void *)__gcwq;
1470
1471 spin_lock_irq(&gcwq->lock);
1472
1473 if (too_many_workers(gcwq)) {
1474 struct worker *worker;
1475 unsigned long expires;
1476
1477 /* idle_list is kept in LIFO order, check the last one */
1478 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1479 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1480
1481 if (time_before(jiffies, expires))
1482 mod_timer(&gcwq->idle_timer, expires);
1483 else {
1484 /* it's been idle for too long, wake up manager */
1485 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1486 wake_up_worker(gcwq);
1487 }
1488 }
1489
1490 spin_unlock_irq(&gcwq->lock);
1491 }
1492
1493 static bool send_mayday(struct work_struct *work)
1494 {
1495 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1496 struct workqueue_struct *wq = cwq->wq;
1497 unsigned int cpu;
1498
1499 if (!(wq->flags & WQ_RESCUER))
1500 return false;
1501
1502 /* mayday mayday mayday */
1503 cpu = cwq->gcwq->cpu;
1504 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1505 if (cpu == WORK_CPU_UNBOUND)
1506 cpu = 0;
1507 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1508 wake_up_process(wq->rescuer->task);
1509 return true;
1510 }
1511
1512 static void gcwq_mayday_timeout(unsigned long __gcwq)
1513 {
1514 struct global_cwq *gcwq = (void *)__gcwq;
1515 struct work_struct *work;
1516
1517 spin_lock_irq(&gcwq->lock);
1518
1519 if (need_to_create_worker(gcwq)) {
1520 /*
1521 * We've been trying to create a new worker but
1522 * haven't been successful. We might be hitting an
1523 * allocation deadlock. Send distress signals to
1524 * rescuers.
1525 */
1526 list_for_each_entry(work, &gcwq->worklist, entry)
1527 send_mayday(work);
1528 }
1529
1530 spin_unlock_irq(&gcwq->lock);
1531
1532 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1533 }
1534
1535 /**
1536 * maybe_create_worker - create a new worker if necessary
1537 * @gcwq: gcwq to create a new worker for
1538 *
1539 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1540 * have at least one idle worker on return from this function. If
1541 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1542 * sent to all rescuers with works scheduled on @gcwq to resolve
1543 * possible allocation deadlock.
1544 *
1545 * On return, need_to_create_worker() is guaranteed to be false and
1546 * may_start_working() true.
1547 *
1548 * LOCKING:
1549 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1550 * multiple times. Does GFP_KERNEL allocations. Called only from
1551 * manager.
1552 *
1553 * RETURNS:
1554 * false if no action was taken and gcwq->lock stayed locked, true
1555 * otherwise.
1556 */
1557 static bool maybe_create_worker(struct global_cwq *gcwq)
1558 __releases(&gcwq->lock)
1559 __acquires(&gcwq->lock)
1560 {
1561 if (!need_to_create_worker(gcwq))
1562 return false;
1563 restart:
1564 spin_unlock_irq(&gcwq->lock);
1565
1566 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1567 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1568
1569 while (true) {
1570 struct worker *worker;
1571
1572 worker = create_worker(gcwq, true);
1573 if (worker) {
1574 del_timer_sync(&gcwq->mayday_timer);
1575 spin_lock_irq(&gcwq->lock);
1576 start_worker(worker);
1577 BUG_ON(need_to_create_worker(gcwq));
1578 return true;
1579 }
1580
1581 if (!need_to_create_worker(gcwq))
1582 break;
1583
1584 __set_current_state(TASK_INTERRUPTIBLE);
1585 schedule_timeout(CREATE_COOLDOWN);
1586
1587 if (!need_to_create_worker(gcwq))
1588 break;
1589 }
1590
1591 del_timer_sync(&gcwq->mayday_timer);
1592 spin_lock_irq(&gcwq->lock);
1593 if (need_to_create_worker(gcwq))
1594 goto restart;
1595 return true;
1596 }
1597
1598 /**
1599 * maybe_destroy_worker - destroy workers which have been idle for a while
1600 * @gcwq: gcwq to destroy workers for
1601 *
1602 * Destroy @gcwq workers which have been idle for longer than
1603 * IDLE_WORKER_TIMEOUT.
1604 *
1605 * LOCKING:
1606 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1607 * multiple times. Called only from manager.
1608 *
1609 * RETURNS:
1610 * false if no action was taken and gcwq->lock stayed locked, true
1611 * otherwise.
1612 */
1613 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1614 {
1615 bool ret = false;
1616
1617 while (too_many_workers(gcwq)) {
1618 struct worker *worker;
1619 unsigned long expires;
1620
1621 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1622 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1623
1624 if (time_before(jiffies, expires)) {
1625 mod_timer(&gcwq->idle_timer, expires);
1626 break;
1627 }
1628
1629 destroy_worker(worker);
1630 ret = true;
1631 }
1632
1633 return ret;
1634 }
1635
1636 /**
1637 * manage_workers - manage worker pool
1638 * @worker: self
1639 *
1640 * Assume the manager role and manage gcwq worker pool @worker belongs
1641 * to. At any given time, there can be only zero or one manager per
1642 * gcwq. The exclusion is handled automatically by this function.
1643 *
1644 * The caller can safely start processing works on false return. On
1645 * true return, it's guaranteed that need_to_create_worker() is false
1646 * and may_start_working() is true.
1647 *
1648 * CONTEXT:
1649 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1650 * multiple times. Does GFP_KERNEL allocations.
1651 *
1652 * RETURNS:
1653 * false if no action was taken and gcwq->lock stayed locked, true if
1654 * some action was taken.
1655 */
1656 static bool manage_workers(struct worker *worker)
1657 {
1658 struct global_cwq *gcwq = worker->gcwq;
1659 bool ret = false;
1660
1661 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1662 return ret;
1663
1664 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1665 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1666
1667 /*
1668 * Destroy and then create so that may_start_working() is true
1669 * on return.
1670 */
1671 ret |= maybe_destroy_workers(gcwq);
1672 ret |= maybe_create_worker(gcwq);
1673
1674 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1675
1676 /*
1677 * The trustee might be waiting to take over the manager
1678 * position, tell it we're done.
1679 */
1680 if (unlikely(gcwq->trustee))
1681 wake_up_all(&gcwq->trustee_wait);
1682
1683 return ret;
1684 }
1685
1686 /**
1687 * move_linked_works - move linked works to a list
1688 * @work: start of series of works to be scheduled
1689 * @head: target list to append @work to
1690 * @nextp: out paramter for nested worklist walking
1691 *
1692 * Schedule linked works starting from @work to @head. Work series to
1693 * be scheduled starts at @work and includes any consecutive work with
1694 * WORK_STRUCT_LINKED set in its predecessor.
1695 *
1696 * If @nextp is not NULL, it's updated to point to the next work of
1697 * the last scheduled work. This allows move_linked_works() to be
1698 * nested inside outer list_for_each_entry_safe().
1699 *
1700 * CONTEXT:
1701 * spin_lock_irq(gcwq->lock).
1702 */
1703 static void move_linked_works(struct work_struct *work, struct list_head *head,
1704 struct work_struct **nextp)
1705 {
1706 struct work_struct *n;
1707
1708 /*
1709 * Linked worklist will always end before the end of the list,
1710 * use NULL for list head.
1711 */
1712 list_for_each_entry_safe_from(work, n, NULL, entry) {
1713 list_move_tail(&work->entry, head);
1714 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1715 break;
1716 }
1717
1718 /*
1719 * If we're already inside safe list traversal and have moved
1720 * multiple works to the scheduled queue, the next position
1721 * needs to be updated.
1722 */
1723 if (nextp)
1724 *nextp = n;
1725 }
1726
1727 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1728 {
1729 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1730 struct work_struct, entry);
1731 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1732
1733 trace_workqueue_activate_work(work);
1734 move_linked_works(work, pos, NULL);
1735 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1736 cwq->nr_active++;
1737 }
1738
1739 /**
1740 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1741 * @cwq: cwq of interest
1742 * @color: color of work which left the queue
1743 * @delayed: for a delayed work
1744 *
1745 * A work either has completed or is removed from pending queue,
1746 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1747 *
1748 * CONTEXT:
1749 * spin_lock_irq(gcwq->lock).
1750 */
1751 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1752 bool delayed)
1753 {
1754 /* ignore uncolored works */
1755 if (color == WORK_NO_COLOR)
1756 return;
1757
1758 cwq->nr_in_flight[color]--;
1759
1760 if (!delayed) {
1761 cwq->nr_active--;
1762 if (!list_empty(&cwq->delayed_works)) {
1763 /* one down, submit a delayed one */
1764 if (cwq->nr_active < cwq->max_active)
1765 cwq_activate_first_delayed(cwq);
1766 }
1767 }
1768
1769 /* is flush in progress and are we at the flushing tip? */
1770 if (likely(cwq->flush_color != color))
1771 return;
1772
1773 /* are there still in-flight works? */
1774 if (cwq->nr_in_flight[color])
1775 return;
1776
1777 /* this cwq is done, clear flush_color */
1778 cwq->flush_color = -1;
1779
1780 /*
1781 * If this was the last cwq, wake up the first flusher. It
1782 * will handle the rest.
1783 */
1784 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1785 complete(&cwq->wq->first_flusher->done);
1786 }
1787
1788 /**
1789 * process_one_work - process single work
1790 * @worker: self
1791 * @work: work to process
1792 *
1793 * Process @work. This function contains all the logics necessary to
1794 * process a single work including synchronization against and
1795 * interaction with other workers on the same cpu, queueing and
1796 * flushing. As long as context requirement is met, any worker can
1797 * call this function to process a work.
1798 *
1799 * CONTEXT:
1800 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1801 */
1802 static void process_one_work(struct worker *worker, struct work_struct *work)
1803 __releases(&gcwq->lock)
1804 __acquires(&gcwq->lock)
1805 {
1806 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1807 struct global_cwq *gcwq = cwq->gcwq;
1808 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1809 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1810 work_func_t f = work->func;
1811 int work_color;
1812 struct worker *collision;
1813 #ifdef CONFIG_LOCKDEP
1814 /*
1815 * It is permissible to free the struct work_struct from
1816 * inside the function that is called from it, this we need to
1817 * take into account for lockdep too. To avoid bogus "held
1818 * lock freed" warnings as well as problems when looking into
1819 * work->lockdep_map, make a copy and use that here.
1820 */
1821 struct lockdep_map lockdep_map;
1822
1823 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1824 #endif
1825 /*
1826 * A single work shouldn't be executed concurrently by
1827 * multiple workers on a single cpu. Check whether anyone is
1828 * already processing the work. If so, defer the work to the
1829 * currently executing one.
1830 */
1831 collision = __find_worker_executing_work(gcwq, bwh, work);
1832 if (unlikely(collision)) {
1833 move_linked_works(work, &collision->scheduled, NULL);
1834 return;
1835 }
1836
1837 /* claim and process */
1838 debug_work_deactivate(work);
1839 hlist_add_head(&worker->hentry, bwh);
1840 worker->current_work = work;
1841 worker->current_cwq = cwq;
1842 work_color = get_work_color(work);
1843
1844 /* record the current cpu number in the work data and dequeue */
1845 set_work_cpu(work, gcwq->cpu);
1846 list_del_init(&work->entry);
1847
1848 /*
1849 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1850 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1851 */
1852 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1853 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1854 struct work_struct, entry);
1855
1856 if (!list_empty(&gcwq->worklist) &&
1857 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1858 wake_up_worker(gcwq);
1859 else
1860 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1861 }
1862
1863 /*
1864 * CPU intensive works don't participate in concurrency
1865 * management. They're the scheduler's responsibility.
1866 */
1867 if (unlikely(cpu_intensive))
1868 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1869
1870 spin_unlock_irq(&gcwq->lock);
1871
1872 work_clear_pending(work);
1873 lock_map_acquire_read(&cwq->wq->lockdep_map);
1874 lock_map_acquire(&lockdep_map);
1875 trace_workqueue_execute_start(work);
1876 f(work);
1877 /*
1878 * While we must be careful to not use "work" after this, the trace
1879 * point will only record its address.
1880 */
1881 trace_workqueue_execute_end(work);
1882 lock_map_release(&lockdep_map);
1883 lock_map_release(&cwq->wq->lockdep_map);
1884
1885 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1886 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1887 "%s/0x%08x/%d\n",
1888 current->comm, preempt_count(), task_pid_nr(current));
1889 printk(KERN_ERR " last function: ");
1890 print_symbol("%s\n", (unsigned long)f);
1891 debug_show_held_locks(current);
1892 dump_stack();
1893 }
1894
1895 spin_lock_irq(&gcwq->lock);
1896
1897 /* clear cpu intensive status */
1898 if (unlikely(cpu_intensive))
1899 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1900
1901 /* we're done with it, release */
1902 hlist_del_init(&worker->hentry);
1903 worker->current_work = NULL;
1904 worker->current_cwq = NULL;
1905 cwq_dec_nr_in_flight(cwq, work_color, false);
1906 }
1907
1908 /**
1909 * process_scheduled_works - process scheduled works
1910 * @worker: self
1911 *
1912 * Process all scheduled works. Please note that the scheduled list
1913 * may change while processing a work, so this function repeatedly
1914 * fetches a work from the top and executes it.
1915 *
1916 * CONTEXT:
1917 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1918 * multiple times.
1919 */
1920 static void process_scheduled_works(struct worker *worker)
1921 {
1922 while (!list_empty(&worker->scheduled)) {
1923 struct work_struct *work = list_first_entry(&worker->scheduled,
1924 struct work_struct, entry);
1925 process_one_work(worker, work);
1926 }
1927 }
1928
1929 /**
1930 * worker_thread - the worker thread function
1931 * @__worker: self
1932 *
1933 * The gcwq worker thread function. There's a single dynamic pool of
1934 * these per each cpu. These workers process all works regardless of
1935 * their specific target workqueue. The only exception is works which
1936 * belong to workqueues with a rescuer which will be explained in
1937 * rescuer_thread().
1938 */
1939 static int worker_thread(void *__worker)
1940 {
1941 struct worker *worker = __worker;
1942 struct global_cwq *gcwq = worker->gcwq;
1943
1944 /* tell the scheduler that this is a workqueue worker */
1945 worker->task->flags |= PF_WQ_WORKER;
1946 woke_up:
1947 spin_lock_irq(&gcwq->lock);
1948
1949 /* DIE can be set only while we're idle, checking here is enough */
1950 if (worker->flags & WORKER_DIE) {
1951 spin_unlock_irq(&gcwq->lock);
1952 worker->task->flags &= ~PF_WQ_WORKER;
1953 return 0;
1954 }
1955
1956 worker_leave_idle(worker);
1957 recheck:
1958 /* no more worker necessary? */
1959 if (!need_more_worker(gcwq))
1960 goto sleep;
1961
1962 /* do we need to manage? */
1963 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1964 goto recheck;
1965
1966 /*
1967 * ->scheduled list can only be filled while a worker is
1968 * preparing to process a work or actually processing it.
1969 * Make sure nobody diddled with it while I was sleeping.
1970 */
1971 BUG_ON(!list_empty(&worker->scheduled));
1972
1973 /*
1974 * When control reaches this point, we're guaranteed to have
1975 * at least one idle worker or that someone else has already
1976 * assumed the manager role.
1977 */
1978 worker_clr_flags(worker, WORKER_PREP);
1979
1980 do {
1981 struct work_struct *work =
1982 list_first_entry(&gcwq->worklist,
1983 struct work_struct, entry);
1984
1985 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1986 /* optimization path, not strictly necessary */
1987 process_one_work(worker, work);
1988 if (unlikely(!list_empty(&worker->scheduled)))
1989 process_scheduled_works(worker);
1990 } else {
1991 move_linked_works(work, &worker->scheduled, NULL);
1992 process_scheduled_works(worker);
1993 }
1994 } while (keep_working(gcwq));
1995
1996 worker_set_flags(worker, WORKER_PREP, false);
1997 sleep:
1998 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1999 goto recheck;
2000
2001 /*
2002 * gcwq->lock is held and there's no work to process and no
2003 * need to manage, sleep. Workers are woken up only while
2004 * holding gcwq->lock or from local cpu, so setting the
2005 * current state before releasing gcwq->lock is enough to
2006 * prevent losing any event.
2007 */
2008 worker_enter_idle(worker);
2009 __set_current_state(TASK_INTERRUPTIBLE);
2010 spin_unlock_irq(&gcwq->lock);
2011 schedule();
2012 goto woke_up;
2013 }
2014
2015 /**
2016 * rescuer_thread - the rescuer thread function
2017 * @__wq: the associated workqueue
2018 *
2019 * Workqueue rescuer thread function. There's one rescuer for each
2020 * workqueue which has WQ_RESCUER set.
2021 *
2022 * Regular work processing on a gcwq may block trying to create a new
2023 * worker which uses GFP_KERNEL allocation which has slight chance of
2024 * developing into deadlock if some works currently on the same queue
2025 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2026 * the problem rescuer solves.
2027 *
2028 * When such condition is possible, the gcwq summons rescuers of all
2029 * workqueues which have works queued on the gcwq and let them process
2030 * those works so that forward progress can be guaranteed.
2031 *
2032 * This should happen rarely.
2033 */
2034 static int rescuer_thread(void *__wq)
2035 {
2036 struct workqueue_struct *wq = __wq;
2037 struct worker *rescuer = wq->rescuer;
2038 struct list_head *scheduled = &rescuer->scheduled;
2039 bool is_unbound = wq->flags & WQ_UNBOUND;
2040 unsigned int cpu;
2041
2042 set_user_nice(current, RESCUER_NICE_LEVEL);
2043 repeat:
2044 set_current_state(TASK_INTERRUPTIBLE);
2045
2046 if (kthread_should_stop())
2047 return 0;
2048
2049 /*
2050 * See whether any cpu is asking for help. Unbounded
2051 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2052 */
2053 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2054 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2055 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2056 struct global_cwq *gcwq = cwq->gcwq;
2057 struct work_struct *work, *n;
2058
2059 __set_current_state(TASK_RUNNING);
2060 mayday_clear_cpu(cpu, wq->mayday_mask);
2061
2062 /* migrate to the target cpu if possible */
2063 rescuer->gcwq = gcwq;
2064 worker_maybe_bind_and_lock(rescuer);
2065
2066 /*
2067 * Slurp in all works issued via this workqueue and
2068 * process'em.
2069 */
2070 BUG_ON(!list_empty(&rescuer->scheduled));
2071 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2072 if (get_work_cwq(work) == cwq)
2073 move_linked_works(work, scheduled, &n);
2074
2075 process_scheduled_works(rescuer);
2076
2077 /*
2078 * Leave this gcwq. If keep_working() is %true, notify a
2079 * regular worker; otherwise, we end up with 0 concurrency
2080 * and stalling the execution.
2081 */
2082 if (keep_working(gcwq))
2083 wake_up_worker(gcwq);
2084
2085 spin_unlock_irq(&gcwq->lock);
2086 }
2087
2088 schedule();
2089 goto repeat;
2090 }
2091
2092 struct wq_barrier {
2093 struct work_struct work;
2094 struct completion done;
2095 };
2096
2097 static void wq_barrier_func(struct work_struct *work)
2098 {
2099 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2100 complete(&barr->done);
2101 }
2102
2103 /**
2104 * insert_wq_barrier - insert a barrier work
2105 * @cwq: cwq to insert barrier into
2106 * @barr: wq_barrier to insert
2107 * @target: target work to attach @barr to
2108 * @worker: worker currently executing @target, NULL if @target is not executing
2109 *
2110 * @barr is linked to @target such that @barr is completed only after
2111 * @target finishes execution. Please note that the ordering
2112 * guarantee is observed only with respect to @target and on the local
2113 * cpu.
2114 *
2115 * Currently, a queued barrier can't be canceled. This is because
2116 * try_to_grab_pending() can't determine whether the work to be
2117 * grabbed is at the head of the queue and thus can't clear LINKED
2118 * flag of the previous work while there must be a valid next work
2119 * after a work with LINKED flag set.
2120 *
2121 * Note that when @worker is non-NULL, @target may be modified
2122 * underneath us, so we can't reliably determine cwq from @target.
2123 *
2124 * CONTEXT:
2125 * spin_lock_irq(gcwq->lock).
2126 */
2127 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2128 struct wq_barrier *barr,
2129 struct work_struct *target, struct worker *worker)
2130 {
2131 struct list_head *head;
2132 unsigned int linked = 0;
2133
2134 /*
2135 * debugobject calls are safe here even with gcwq->lock locked
2136 * as we know for sure that this will not trigger any of the
2137 * checks and call back into the fixup functions where we
2138 * might deadlock.
2139 */
2140 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2141 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2142 init_completion(&barr->done);
2143
2144 /*
2145 * If @target is currently being executed, schedule the
2146 * barrier to the worker; otherwise, put it after @target.
2147 */
2148 if (worker)
2149 head = worker->scheduled.next;
2150 else {
2151 unsigned long *bits = work_data_bits(target);
2152
2153 head = target->entry.next;
2154 /* there can already be other linked works, inherit and set */
2155 linked = *bits & WORK_STRUCT_LINKED;
2156 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2157 }
2158
2159 debug_work_activate(&barr->work);
2160 insert_work(cwq, &barr->work, head,
2161 work_color_to_flags(WORK_NO_COLOR) | linked);
2162 }
2163
2164 /**
2165 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2166 * @wq: workqueue being flushed
2167 * @flush_color: new flush color, < 0 for no-op
2168 * @work_color: new work color, < 0 for no-op
2169 *
2170 * Prepare cwqs for workqueue flushing.
2171 *
2172 * If @flush_color is non-negative, flush_color on all cwqs should be
2173 * -1. If no cwq has in-flight commands at the specified color, all
2174 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2175 * has in flight commands, its cwq->flush_color is set to
2176 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2177 * wakeup logic is armed and %true is returned.
2178 *
2179 * The caller should have initialized @wq->first_flusher prior to
2180 * calling this function with non-negative @flush_color. If
2181 * @flush_color is negative, no flush color update is done and %false
2182 * is returned.
2183 *
2184 * If @work_color is non-negative, all cwqs should have the same
2185 * work_color which is previous to @work_color and all will be
2186 * advanced to @work_color.
2187 *
2188 * CONTEXT:
2189 * mutex_lock(wq->flush_mutex).
2190 *
2191 * RETURNS:
2192 * %true if @flush_color >= 0 and there's something to flush. %false
2193 * otherwise.
2194 */
2195 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2196 int flush_color, int work_color)
2197 {
2198 bool wait = false;
2199 unsigned int cpu;
2200
2201 if (flush_color >= 0) {
2202 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2203 atomic_set(&wq->nr_cwqs_to_flush, 1);
2204 }
2205
2206 for_each_cwq_cpu(cpu, wq) {
2207 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2208 struct global_cwq *gcwq = cwq->gcwq;
2209
2210 spin_lock_irq(&gcwq->lock);
2211
2212 if (flush_color >= 0) {
2213 BUG_ON(cwq->flush_color != -1);
2214
2215 if (cwq->nr_in_flight[flush_color]) {
2216 cwq->flush_color = flush_color;
2217 atomic_inc(&wq->nr_cwqs_to_flush);
2218 wait = true;
2219 }
2220 }
2221
2222 if (work_color >= 0) {
2223 BUG_ON(work_color != work_next_color(cwq->work_color));
2224 cwq->work_color = work_color;
2225 }
2226
2227 spin_unlock_irq(&gcwq->lock);
2228 }
2229
2230 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2231 complete(&wq->first_flusher->done);
2232
2233 return wait;
2234 }
2235
2236 /**
2237 * flush_workqueue - ensure that any scheduled work has run to completion.
2238 * @wq: workqueue to flush
2239 *
2240 * Forces execution of the workqueue and blocks until its completion.
2241 * This is typically used in driver shutdown handlers.
2242 *
2243 * We sleep until all works which were queued on entry have been handled,
2244 * but we are not livelocked by new incoming ones.
2245 */
2246 void flush_workqueue(struct workqueue_struct *wq)
2247 {
2248 struct wq_flusher this_flusher = {
2249 .list = LIST_HEAD_INIT(this_flusher.list),
2250 .flush_color = -1,
2251 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2252 };
2253 int next_color;
2254
2255 lock_map_acquire(&wq->lockdep_map);
2256 lock_map_release(&wq->lockdep_map);
2257
2258 mutex_lock(&wq->flush_mutex);
2259
2260 /*
2261 * Start-to-wait phase
2262 */
2263 next_color = work_next_color(wq->work_color);
2264
2265 if (next_color != wq->flush_color) {
2266 /*
2267 * Color space is not full. The current work_color
2268 * becomes our flush_color and work_color is advanced
2269 * by one.
2270 */
2271 BUG_ON(!list_empty(&wq->flusher_overflow));
2272 this_flusher.flush_color = wq->work_color;
2273 wq->work_color = next_color;
2274
2275 if (!wq->first_flusher) {
2276 /* no flush in progress, become the first flusher */
2277 BUG_ON(wq->flush_color != this_flusher.flush_color);
2278
2279 wq->first_flusher = &this_flusher;
2280
2281 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2282 wq->work_color)) {
2283 /* nothing to flush, done */
2284 wq->flush_color = next_color;
2285 wq->first_flusher = NULL;
2286 goto out_unlock;
2287 }
2288 } else {
2289 /* wait in queue */
2290 BUG_ON(wq->flush_color == this_flusher.flush_color);
2291 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2292 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2293 }
2294 } else {
2295 /*
2296 * Oops, color space is full, wait on overflow queue.
2297 * The next flush completion will assign us
2298 * flush_color and transfer to flusher_queue.
2299 */
2300 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2301 }
2302
2303 mutex_unlock(&wq->flush_mutex);
2304
2305 wait_for_completion(&this_flusher.done);
2306
2307 /*
2308 * Wake-up-and-cascade phase
2309 *
2310 * First flushers are responsible for cascading flushes and
2311 * handling overflow. Non-first flushers can simply return.
2312 */
2313 if (wq->first_flusher != &this_flusher)
2314 return;
2315
2316 mutex_lock(&wq->flush_mutex);
2317
2318 /* we might have raced, check again with mutex held */
2319 if (wq->first_flusher != &this_flusher)
2320 goto out_unlock;
2321
2322 wq->first_flusher = NULL;
2323
2324 BUG_ON(!list_empty(&this_flusher.list));
2325 BUG_ON(wq->flush_color != this_flusher.flush_color);
2326
2327 while (true) {
2328 struct wq_flusher *next, *tmp;
2329
2330 /* complete all the flushers sharing the current flush color */
2331 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2332 if (next->flush_color != wq->flush_color)
2333 break;
2334 list_del_init(&next->list);
2335 complete(&next->done);
2336 }
2337
2338 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2339 wq->flush_color != work_next_color(wq->work_color));
2340
2341 /* this flush_color is finished, advance by one */
2342 wq->flush_color = work_next_color(wq->flush_color);
2343
2344 /* one color has been freed, handle overflow queue */
2345 if (!list_empty(&wq->flusher_overflow)) {
2346 /*
2347 * Assign the same color to all overflowed
2348 * flushers, advance work_color and append to
2349 * flusher_queue. This is the start-to-wait
2350 * phase for these overflowed flushers.
2351 */
2352 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2353 tmp->flush_color = wq->work_color;
2354
2355 wq->work_color = work_next_color(wq->work_color);
2356
2357 list_splice_tail_init(&wq->flusher_overflow,
2358 &wq->flusher_queue);
2359 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2360 }
2361
2362 if (list_empty(&wq->flusher_queue)) {
2363 BUG_ON(wq->flush_color != wq->work_color);
2364 break;
2365 }
2366
2367 /*
2368 * Need to flush more colors. Make the next flusher
2369 * the new first flusher and arm cwqs.
2370 */
2371 BUG_ON(wq->flush_color == wq->work_color);
2372 BUG_ON(wq->flush_color != next->flush_color);
2373
2374 list_del_init(&next->list);
2375 wq->first_flusher = next;
2376
2377 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2378 break;
2379
2380 /*
2381 * Meh... this color is already done, clear first
2382 * flusher and repeat cascading.
2383 */
2384 wq->first_flusher = NULL;
2385 }
2386
2387 out_unlock:
2388 mutex_unlock(&wq->flush_mutex);
2389 }
2390 EXPORT_SYMBOL_GPL(flush_workqueue);
2391
2392 /**
2393 * drain_workqueue - drain a workqueue
2394 * @wq: workqueue to drain
2395 *
2396 * Wait until the workqueue becomes empty. While draining is in progress,
2397 * only chain queueing is allowed. IOW, only currently pending or running
2398 * work items on @wq can queue further work items on it. @wq is flushed
2399 * repeatedly until it becomes empty. The number of flushing is detemined
2400 * by the depth of chaining and should be relatively short. Whine if it
2401 * takes too long.
2402 */
2403 void drain_workqueue(struct workqueue_struct *wq)
2404 {
2405 unsigned int flush_cnt = 0;
2406 unsigned int cpu;
2407
2408 /*
2409 * __queue_work() needs to test whether there are drainers, is much
2410 * hotter than drain_workqueue() and already looks at @wq->flags.
2411 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2412 */
2413 spin_lock(&workqueue_lock);
2414 if (!wq->nr_drainers++)
2415 wq->flags |= WQ_DRAINING;
2416 spin_unlock(&workqueue_lock);
2417 reflush:
2418 flush_workqueue(wq);
2419
2420 for_each_cwq_cpu(cpu, wq) {
2421 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2422 bool drained;
2423
2424 spin_lock_irq(&cwq->gcwq->lock);
2425 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2426 spin_unlock_irq(&cwq->gcwq->lock);
2427
2428 if (drained)
2429 continue;
2430
2431 if (++flush_cnt == 10 ||
2432 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2433 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2434 wq->name, flush_cnt);
2435 goto reflush;
2436 }
2437
2438 spin_lock(&workqueue_lock);
2439 if (!--wq->nr_drainers)
2440 wq->flags &= ~WQ_DRAINING;
2441 spin_unlock(&workqueue_lock);
2442 }
2443 EXPORT_SYMBOL_GPL(drain_workqueue);
2444
2445 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2446 bool wait_executing)
2447 {
2448 struct worker *worker = NULL;
2449 struct global_cwq *gcwq;
2450 struct cpu_workqueue_struct *cwq;
2451
2452 might_sleep();
2453 gcwq = get_work_gcwq(work);
2454 if (!gcwq)
2455 return false;
2456
2457 spin_lock_irq(&gcwq->lock);
2458 if (!list_empty(&work->entry)) {
2459 /*
2460 * See the comment near try_to_grab_pending()->smp_rmb().
2461 * If it was re-queued to a different gcwq under us, we
2462 * are not going to wait.
2463 */
2464 smp_rmb();
2465 cwq = get_work_cwq(work);
2466 if (unlikely(!cwq || gcwq != cwq->gcwq))
2467 goto already_gone;
2468 } else if (wait_executing) {
2469 worker = find_worker_executing_work(gcwq, work);
2470 if (!worker)
2471 goto already_gone;
2472 cwq = worker->current_cwq;
2473 } else
2474 goto already_gone;
2475
2476 insert_wq_barrier(cwq, barr, work, worker);
2477 spin_unlock_irq(&gcwq->lock);
2478
2479 /*
2480 * If @max_active is 1 or rescuer is in use, flushing another work
2481 * item on the same workqueue may lead to deadlock. Make sure the
2482 * flusher is not running on the same workqueue by verifying write
2483 * access.
2484 */
2485 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2486 lock_map_acquire(&cwq->wq->lockdep_map);
2487 else
2488 lock_map_acquire_read(&cwq->wq->lockdep_map);
2489 lock_map_release(&cwq->wq->lockdep_map);
2490
2491 return true;
2492 already_gone:
2493 spin_unlock_irq(&gcwq->lock);
2494 return false;
2495 }
2496
2497 /**
2498 * flush_work - wait for a work to finish executing the last queueing instance
2499 * @work: the work to flush
2500 *
2501 * Wait until @work has finished execution. This function considers
2502 * only the last queueing instance of @work. If @work has been
2503 * enqueued across different CPUs on a non-reentrant workqueue or on
2504 * multiple workqueues, @work might still be executing on return on
2505 * some of the CPUs from earlier queueing.
2506 *
2507 * If @work was queued only on a non-reentrant, ordered or unbound
2508 * workqueue, @work is guaranteed to be idle on return if it hasn't
2509 * been requeued since flush started.
2510 *
2511 * RETURNS:
2512 * %true if flush_work() waited for the work to finish execution,
2513 * %false if it was already idle.
2514 */
2515 bool flush_work(struct work_struct *work)
2516 {
2517 struct wq_barrier barr;
2518
2519 lock_map_acquire(&work->lockdep_map);
2520 lock_map_release(&work->lockdep_map);
2521
2522 if (start_flush_work(work, &barr, true)) {
2523 wait_for_completion(&barr.done);
2524 destroy_work_on_stack(&barr.work);
2525 return true;
2526 } else
2527 return false;
2528 }
2529 EXPORT_SYMBOL_GPL(flush_work);
2530
2531 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2532 {
2533 struct wq_barrier barr;
2534 struct worker *worker;
2535
2536 spin_lock_irq(&gcwq->lock);
2537
2538 worker = find_worker_executing_work(gcwq, work);
2539 if (unlikely(worker))
2540 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2541
2542 spin_unlock_irq(&gcwq->lock);
2543
2544 if (unlikely(worker)) {
2545 wait_for_completion(&barr.done);
2546 destroy_work_on_stack(&barr.work);
2547 return true;
2548 } else
2549 return false;
2550 }
2551
2552 static bool wait_on_work(struct work_struct *work)
2553 {
2554 bool ret = false;
2555 int cpu;
2556
2557 might_sleep();
2558
2559 lock_map_acquire(&work->lockdep_map);
2560 lock_map_release(&work->lockdep_map);
2561
2562 for_each_gcwq_cpu(cpu)
2563 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2564 return ret;
2565 }
2566
2567 /**
2568 * flush_work_sync - wait until a work has finished execution
2569 * @work: the work to flush
2570 *
2571 * Wait until @work has finished execution. On return, it's
2572 * guaranteed that all queueing instances of @work which happened
2573 * before this function is called are finished. In other words, if
2574 * @work hasn't been requeued since this function was called, @work is
2575 * guaranteed to be idle on return.
2576 *
2577 * RETURNS:
2578 * %true if flush_work_sync() waited for the work to finish execution,
2579 * %false if it was already idle.
2580 */
2581 bool flush_work_sync(struct work_struct *work)
2582 {
2583 struct wq_barrier barr;
2584 bool pending, waited;
2585
2586 /* we'll wait for executions separately, queue barr only if pending */
2587 pending = start_flush_work(work, &barr, false);
2588
2589 /* wait for executions to finish */
2590 waited = wait_on_work(work);
2591
2592 /* wait for the pending one */
2593 if (pending) {
2594 wait_for_completion(&barr.done);
2595 destroy_work_on_stack(&barr.work);
2596 }
2597
2598 return pending || waited;
2599 }
2600 EXPORT_SYMBOL_GPL(flush_work_sync);
2601
2602 /*
2603 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2604 * so this work can't be re-armed in any way.
2605 */
2606 static int try_to_grab_pending(struct work_struct *work)
2607 {
2608 struct global_cwq *gcwq;
2609 int ret = -1;
2610
2611 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2612 return 0;
2613
2614 /*
2615 * The queueing is in progress, or it is already queued. Try to
2616 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2617 */
2618 gcwq = get_work_gcwq(work);
2619 if (!gcwq)
2620 return ret;
2621
2622 spin_lock_irq(&gcwq->lock);
2623 if (!list_empty(&work->entry)) {
2624 /*
2625 * This work is queued, but perhaps we locked the wrong gcwq.
2626 * In that case we must see the new value after rmb(), see
2627 * insert_work()->wmb().
2628 */
2629 smp_rmb();
2630 if (gcwq == get_work_gcwq(work)) {
2631 debug_work_deactivate(work);
2632 list_del_init(&work->entry);
2633 cwq_dec_nr_in_flight(get_work_cwq(work),
2634 get_work_color(work),
2635 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2636 ret = 1;
2637 }
2638 }
2639 spin_unlock_irq(&gcwq->lock);
2640
2641 return ret;
2642 }
2643
2644 static bool __cancel_work_timer(struct work_struct *work,
2645 struct timer_list* timer)
2646 {
2647 int ret;
2648
2649 do {
2650 ret = (timer && likely(del_timer(timer)));
2651 if (!ret)
2652 ret = try_to_grab_pending(work);
2653 wait_on_work(work);
2654 } while (unlikely(ret < 0));
2655
2656 clear_work_data(work);
2657 return ret;
2658 }
2659
2660 /**
2661 * cancel_work_sync - cancel a work and wait for it to finish
2662 * @work: the work to cancel
2663 *
2664 * Cancel @work and wait for its execution to finish. This function
2665 * can be used even if the work re-queues itself or migrates to
2666 * another workqueue. On return from this function, @work is
2667 * guaranteed to be not pending or executing on any CPU.
2668 *
2669 * cancel_work_sync(&delayed_work->work) must not be used for
2670 * delayed_work's. Use cancel_delayed_work_sync() instead.
2671 *
2672 * The caller must ensure that the workqueue on which @work was last
2673 * queued can't be destroyed before this function returns.
2674 *
2675 * RETURNS:
2676 * %true if @work was pending, %false otherwise.
2677 */
2678 bool cancel_work_sync(struct work_struct *work)
2679 {
2680 return __cancel_work_timer(work, NULL);
2681 }
2682 EXPORT_SYMBOL_GPL(cancel_work_sync);
2683
2684 /**
2685 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2686 * @dwork: the delayed work to flush
2687 *
2688 * Delayed timer is cancelled and the pending work is queued for
2689 * immediate execution. Like flush_work(), this function only
2690 * considers the last queueing instance of @dwork.
2691 *
2692 * RETURNS:
2693 * %true if flush_work() waited for the work to finish execution,
2694 * %false if it was already idle.
2695 */
2696 bool flush_delayed_work(struct delayed_work *dwork)
2697 {
2698 if (del_timer_sync(&dwork->timer))
2699 __queue_work(raw_smp_processor_id(),
2700 get_work_cwq(&dwork->work)->wq, &dwork->work);
2701 return flush_work(&dwork->work);
2702 }
2703 EXPORT_SYMBOL(flush_delayed_work);
2704
2705 /**
2706 * flush_delayed_work_sync - wait for a dwork to finish
2707 * @dwork: the delayed work to flush
2708 *
2709 * Delayed timer is cancelled and the pending work is queued for
2710 * execution immediately. Other than timer handling, its behavior
2711 * is identical to flush_work_sync().
2712 *
2713 * RETURNS:
2714 * %true if flush_work_sync() waited for the work to finish execution,
2715 * %false if it was already idle.
2716 */
2717 bool flush_delayed_work_sync(struct delayed_work *dwork)
2718 {
2719 if (del_timer_sync(&dwork->timer))
2720 __queue_work(raw_smp_processor_id(),
2721 get_work_cwq(&dwork->work)->wq, &dwork->work);
2722 return flush_work_sync(&dwork->work);
2723 }
2724 EXPORT_SYMBOL(flush_delayed_work_sync);
2725
2726 /**
2727 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2728 * @dwork: the delayed work cancel
2729 *
2730 * This is cancel_work_sync() for delayed works.
2731 *
2732 * RETURNS:
2733 * %true if @dwork was pending, %false otherwise.
2734 */
2735 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2736 {
2737 return __cancel_work_timer(&dwork->work, &dwork->timer);
2738 }
2739 EXPORT_SYMBOL(cancel_delayed_work_sync);
2740
2741 /**
2742 * schedule_work - put work task in global workqueue
2743 * @work: job to be done
2744 *
2745 * Returns zero if @work was already on the kernel-global workqueue and
2746 * non-zero otherwise.
2747 *
2748 * This puts a job in the kernel-global workqueue if it was not already
2749 * queued and leaves it in the same position on the kernel-global
2750 * workqueue otherwise.
2751 */
2752 int schedule_work(struct work_struct *work)
2753 {
2754 return queue_work(system_wq, work);
2755 }
2756 EXPORT_SYMBOL(schedule_work);
2757
2758 /*
2759 * schedule_work_on - put work task on a specific cpu
2760 * @cpu: cpu to put the work task on
2761 * @work: job to be done
2762 *
2763 * This puts a job on a specific cpu
2764 */
2765 int schedule_work_on(int cpu, struct work_struct *work)
2766 {
2767 return queue_work_on(cpu, system_wq, work);
2768 }
2769 EXPORT_SYMBOL(schedule_work_on);
2770
2771 /**
2772 * schedule_delayed_work - put work task in global workqueue after delay
2773 * @dwork: job to be done
2774 * @delay: number of jiffies to wait or 0 for immediate execution
2775 *
2776 * After waiting for a given time this puts a job in the kernel-global
2777 * workqueue.
2778 */
2779 int schedule_delayed_work(struct delayed_work *dwork,
2780 unsigned long delay)
2781 {
2782 return queue_delayed_work(system_wq, dwork, delay);
2783 }
2784 EXPORT_SYMBOL(schedule_delayed_work);
2785
2786 /**
2787 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2788 * @cpu: cpu to use
2789 * @dwork: job to be done
2790 * @delay: number of jiffies to wait
2791 *
2792 * After waiting for a given time this puts a job in the kernel-global
2793 * workqueue on the specified CPU.
2794 */
2795 int schedule_delayed_work_on(int cpu,
2796 struct delayed_work *dwork, unsigned long delay)
2797 {
2798 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2799 }
2800 EXPORT_SYMBOL(schedule_delayed_work_on);
2801
2802 /**
2803 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2804 * @func: the function to call
2805 *
2806 * schedule_on_each_cpu() executes @func on each online CPU using the
2807 * system workqueue and blocks until all CPUs have completed.
2808 * schedule_on_each_cpu() is very slow.
2809 *
2810 * RETURNS:
2811 * 0 on success, -errno on failure.
2812 */
2813 int schedule_on_each_cpu(work_func_t func)
2814 {
2815 int cpu;
2816 struct work_struct __percpu *works;
2817
2818 works = alloc_percpu(struct work_struct);
2819 if (!works)
2820 return -ENOMEM;
2821
2822 get_online_cpus();
2823
2824 for_each_online_cpu(cpu) {
2825 struct work_struct *work = per_cpu_ptr(works, cpu);
2826
2827 INIT_WORK(work, func);
2828 schedule_work_on(cpu, work);
2829 }
2830
2831 for_each_online_cpu(cpu)
2832 flush_work(per_cpu_ptr(works, cpu));
2833
2834 put_online_cpus();
2835 free_percpu(works);
2836 return 0;
2837 }
2838
2839 /**
2840 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2841 *
2842 * Forces execution of the kernel-global workqueue and blocks until its
2843 * completion.
2844 *
2845 * Think twice before calling this function! It's very easy to get into
2846 * trouble if you don't take great care. Either of the following situations
2847 * will lead to deadlock:
2848 *
2849 * One of the work items currently on the workqueue needs to acquire
2850 * a lock held by your code or its caller.
2851 *
2852 * Your code is running in the context of a work routine.
2853 *
2854 * They will be detected by lockdep when they occur, but the first might not
2855 * occur very often. It depends on what work items are on the workqueue and
2856 * what locks they need, which you have no control over.
2857 *
2858 * In most situations flushing the entire workqueue is overkill; you merely
2859 * need to know that a particular work item isn't queued and isn't running.
2860 * In such cases you should use cancel_delayed_work_sync() or
2861 * cancel_work_sync() instead.
2862 */
2863 void flush_scheduled_work(void)
2864 {
2865 flush_workqueue(system_wq);
2866 }
2867 EXPORT_SYMBOL(flush_scheduled_work);
2868
2869 /**
2870 * execute_in_process_context - reliably execute the routine with user context
2871 * @fn: the function to execute
2872 * @ew: guaranteed storage for the execute work structure (must
2873 * be available when the work executes)
2874 *
2875 * Executes the function immediately if process context is available,
2876 * otherwise schedules the function for delayed execution.
2877 *
2878 * Returns: 0 - function was executed
2879 * 1 - function was scheduled for execution
2880 */
2881 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2882 {
2883 if (!in_interrupt()) {
2884 fn(&ew->work);
2885 return 0;
2886 }
2887
2888 INIT_WORK(&ew->work, fn);
2889 schedule_work(&ew->work);
2890
2891 return 1;
2892 }
2893 EXPORT_SYMBOL_GPL(execute_in_process_context);
2894
2895 int keventd_up(void)
2896 {
2897 return system_wq != NULL;
2898 }
2899
2900 static int alloc_cwqs(struct workqueue_struct *wq)
2901 {
2902 /*
2903 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2904 * Make sure that the alignment isn't lower than that of
2905 * unsigned long long.
2906 */
2907 const size_t size = sizeof(struct cpu_workqueue_struct);
2908 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2909 __alignof__(unsigned long long));
2910
2911 if (!(wq->flags & WQ_UNBOUND))
2912 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2913 else {
2914 void *ptr;
2915
2916 /*
2917 * Allocate enough room to align cwq and put an extra
2918 * pointer at the end pointing back to the originally
2919 * allocated pointer which will be used for free.
2920 */
2921 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2922 if (ptr) {
2923 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2924 *(void **)(wq->cpu_wq.single + 1) = ptr;
2925 }
2926 }
2927
2928 /* just in case, make sure it's actually aligned */
2929 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2930 return wq->cpu_wq.v ? 0 : -ENOMEM;
2931 }
2932
2933 static void free_cwqs(struct workqueue_struct *wq)
2934 {
2935 if (!(wq->flags & WQ_UNBOUND))
2936 free_percpu(wq->cpu_wq.pcpu);
2937 else if (wq->cpu_wq.single) {
2938 /* the pointer to free is stored right after the cwq */
2939 kfree(*(void **)(wq->cpu_wq.single + 1));
2940 }
2941 }
2942
2943 static int wq_clamp_max_active(int max_active, unsigned int flags,
2944 const char *name)
2945 {
2946 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2947
2948 if (max_active < 1 || max_active > lim)
2949 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2950 "is out of range, clamping between %d and %d\n",
2951 max_active, name, 1, lim);
2952
2953 return clamp_val(max_active, 1, lim);
2954 }
2955
2956 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2957 unsigned int flags,
2958 int max_active,
2959 struct lock_class_key *key,
2960 const char *lock_name, ...)
2961 {
2962 va_list args, args1;
2963 struct workqueue_struct *wq;
2964 unsigned int cpu;
2965 size_t namelen;
2966
2967 /* determine namelen, allocate wq and format name */
2968 va_start(args, lock_name);
2969 va_copy(args1, args);
2970 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2971
2972 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2973 if (!wq)
2974 goto err;
2975
2976 vsnprintf(wq->name, namelen, fmt, args1);
2977 va_end(args);
2978 va_end(args1);
2979
2980 /*
2981 * Workqueues which may be used during memory reclaim should
2982 * have a rescuer to guarantee forward progress.
2983 */
2984 if (flags & WQ_MEM_RECLAIM)
2985 flags |= WQ_RESCUER;
2986
2987 /*
2988 * Unbound workqueues aren't concurrency managed and should be
2989 * dispatched to workers immediately.
2990 */
2991 if (flags & WQ_UNBOUND)
2992 flags |= WQ_HIGHPRI;
2993
2994 max_active = max_active ?: WQ_DFL_ACTIVE;
2995 max_active = wq_clamp_max_active(max_active, flags, wq->name);
2996
2997 /* init wq */
2998 wq->flags = flags;
2999 wq->saved_max_active = max_active;
3000 mutex_init(&wq->flush_mutex);
3001 atomic_set(&wq->nr_cwqs_to_flush, 0);
3002 INIT_LIST_HEAD(&wq->flusher_queue);
3003 INIT_LIST_HEAD(&wq->flusher_overflow);
3004
3005 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3006 INIT_LIST_HEAD(&wq->list);
3007
3008 if (alloc_cwqs(wq) < 0)
3009 goto err;
3010
3011 for_each_cwq_cpu(cpu, wq) {
3012 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3013 struct global_cwq *gcwq = get_gcwq(cpu);
3014
3015 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3016 cwq->gcwq = gcwq;
3017 cwq->wq = wq;
3018 cwq->flush_color = -1;
3019 cwq->max_active = max_active;
3020 INIT_LIST_HEAD(&cwq->delayed_works);
3021 }
3022
3023 if (flags & WQ_RESCUER) {
3024 struct worker *rescuer;
3025
3026 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3027 goto err;
3028
3029 wq->rescuer = rescuer = alloc_worker();
3030 if (!rescuer)
3031 goto err;
3032
3033 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3034 wq->name);
3035 if (IS_ERR(rescuer->task))
3036 goto err;
3037
3038 rescuer->task->flags |= PF_THREAD_BOUND;
3039 wake_up_process(rescuer->task);
3040 }
3041
3042 /*
3043 * workqueue_lock protects global freeze state and workqueues
3044 * list. Grab it, set max_active accordingly and add the new
3045 * workqueue to workqueues list.
3046 */
3047 spin_lock(&workqueue_lock);
3048
3049 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3050 for_each_cwq_cpu(cpu, wq)
3051 get_cwq(cpu, wq)->max_active = 0;
3052
3053 list_add(&wq->list, &workqueues);
3054
3055 spin_unlock(&workqueue_lock);
3056
3057 return wq;
3058 err:
3059 if (wq) {
3060 free_cwqs(wq);
3061 free_mayday_mask(wq->mayday_mask);
3062 kfree(wq->rescuer);
3063 kfree(wq);
3064 }
3065 return NULL;
3066 }
3067 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3068
3069 /**
3070 * destroy_workqueue - safely terminate a workqueue
3071 * @wq: target workqueue
3072 *
3073 * Safely destroy a workqueue. All work currently pending will be done first.
3074 */
3075 void destroy_workqueue(struct workqueue_struct *wq)
3076 {
3077 unsigned int cpu;
3078
3079 /* drain it before proceeding with destruction */
3080 drain_workqueue(wq);
3081
3082 /*
3083 * wq list is used to freeze wq, remove from list after
3084 * flushing is complete in case freeze races us.
3085 */
3086 spin_lock(&workqueue_lock);
3087 list_del(&wq->list);
3088 spin_unlock(&workqueue_lock);
3089
3090 /* sanity check */
3091 for_each_cwq_cpu(cpu, wq) {
3092 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3093 int i;
3094
3095 for (i = 0; i < WORK_NR_COLORS; i++)
3096 BUG_ON(cwq->nr_in_flight[i]);
3097 BUG_ON(cwq->nr_active);
3098 BUG_ON(!list_empty(&cwq->delayed_works));
3099 }
3100
3101 if (wq->flags & WQ_RESCUER) {
3102 kthread_stop(wq->rescuer->task);
3103 free_mayday_mask(wq->mayday_mask);
3104 kfree(wq->rescuer);
3105 }
3106
3107 free_cwqs(wq);
3108 kfree(wq);
3109 }
3110 EXPORT_SYMBOL_GPL(destroy_workqueue);
3111
3112 /**
3113 * workqueue_set_max_active - adjust max_active of a workqueue
3114 * @wq: target workqueue
3115 * @max_active: new max_active value.
3116 *
3117 * Set max_active of @wq to @max_active.
3118 *
3119 * CONTEXT:
3120 * Don't call from IRQ context.
3121 */
3122 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3123 {
3124 unsigned int cpu;
3125
3126 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3127
3128 spin_lock(&workqueue_lock);
3129
3130 wq->saved_max_active = max_active;
3131
3132 for_each_cwq_cpu(cpu, wq) {
3133 struct global_cwq *gcwq = get_gcwq(cpu);
3134
3135 spin_lock_irq(&gcwq->lock);
3136
3137 if (!(wq->flags & WQ_FREEZABLE) ||
3138 !(gcwq->flags & GCWQ_FREEZING))
3139 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3140
3141 spin_unlock_irq(&gcwq->lock);
3142 }
3143
3144 spin_unlock(&workqueue_lock);
3145 }
3146 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3147
3148 /**
3149 * workqueue_congested - test whether a workqueue is congested
3150 * @cpu: CPU in question
3151 * @wq: target workqueue
3152 *
3153 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3154 * no synchronization around this function and the test result is
3155 * unreliable and only useful as advisory hints or for debugging.
3156 *
3157 * RETURNS:
3158 * %true if congested, %false otherwise.
3159 */
3160 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3161 {
3162 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3163
3164 return !list_empty(&cwq->delayed_works);
3165 }
3166 EXPORT_SYMBOL_GPL(workqueue_congested);
3167
3168 /**
3169 * work_cpu - return the last known associated cpu for @work
3170 * @work: the work of interest
3171 *
3172 * RETURNS:
3173 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3174 */
3175 unsigned int work_cpu(struct work_struct *work)
3176 {
3177 struct global_cwq *gcwq = get_work_gcwq(work);
3178
3179 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3180 }
3181 EXPORT_SYMBOL_GPL(work_cpu);
3182
3183 /**
3184 * work_busy - test whether a work is currently pending or running
3185 * @work: the work to be tested
3186 *
3187 * Test whether @work is currently pending or running. There is no
3188 * synchronization around this function and the test result is
3189 * unreliable and only useful as advisory hints or for debugging.
3190 * Especially for reentrant wqs, the pending state might hide the
3191 * running state.
3192 *
3193 * RETURNS:
3194 * OR'd bitmask of WORK_BUSY_* bits.
3195 */
3196 unsigned int work_busy(struct work_struct *work)
3197 {
3198 struct global_cwq *gcwq = get_work_gcwq(work);
3199 unsigned long flags;
3200 unsigned int ret = 0;
3201
3202 if (!gcwq)
3203 return false;
3204
3205 spin_lock_irqsave(&gcwq->lock, flags);
3206
3207 if (work_pending(work))
3208 ret |= WORK_BUSY_PENDING;
3209 if (find_worker_executing_work(gcwq, work))
3210 ret |= WORK_BUSY_RUNNING;
3211
3212 spin_unlock_irqrestore(&gcwq->lock, flags);
3213
3214 return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(work_busy);
3217
3218 /*
3219 * CPU hotplug.
3220 *
3221 * There are two challenges in supporting CPU hotplug. Firstly, there
3222 * are a lot of assumptions on strong associations among work, cwq and
3223 * gcwq which make migrating pending and scheduled works very
3224 * difficult to implement without impacting hot paths. Secondly,
3225 * gcwqs serve mix of short, long and very long running works making
3226 * blocked draining impractical.
3227 *
3228 * This is solved by allowing a gcwq to be detached from CPU, running
3229 * it with unbound (rogue) workers and allowing it to be reattached
3230 * later if the cpu comes back online. A separate thread is created
3231 * to govern a gcwq in such state and is called the trustee of the
3232 * gcwq.
3233 *
3234 * Trustee states and their descriptions.
3235 *
3236 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3237 * new trustee is started with this state.
3238 *
3239 * IN_CHARGE Once started, trustee will enter this state after
3240 * assuming the manager role and making all existing
3241 * workers rogue. DOWN_PREPARE waits for trustee to
3242 * enter this state. After reaching IN_CHARGE, trustee
3243 * tries to execute the pending worklist until it's empty
3244 * and the state is set to BUTCHER, or the state is set
3245 * to RELEASE.
3246 *
3247 * BUTCHER Command state which is set by the cpu callback after
3248 * the cpu has went down. Once this state is set trustee
3249 * knows that there will be no new works on the worklist
3250 * and once the worklist is empty it can proceed to
3251 * killing idle workers.
3252 *
3253 * RELEASE Command state which is set by the cpu callback if the
3254 * cpu down has been canceled or it has come online
3255 * again. After recognizing this state, trustee stops
3256 * trying to drain or butcher and clears ROGUE, rebinds
3257 * all remaining workers back to the cpu and releases
3258 * manager role.
3259 *
3260 * DONE Trustee will enter this state after BUTCHER or RELEASE
3261 * is complete.
3262 *
3263 * trustee CPU draining
3264 * took over down complete
3265 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3266 * | | ^
3267 * | CPU is back online v return workers |
3268 * ----------------> RELEASE --------------
3269 */
3270
3271 /**
3272 * trustee_wait_event_timeout - timed event wait for trustee
3273 * @cond: condition to wait for
3274 * @timeout: timeout in jiffies
3275 *
3276 * wait_event_timeout() for trustee to use. Handles locking and
3277 * checks for RELEASE request.
3278 *
3279 * CONTEXT:
3280 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3281 * multiple times. To be used by trustee.
3282 *
3283 * RETURNS:
3284 * Positive indicating left time if @cond is satisfied, 0 if timed
3285 * out, -1 if canceled.
3286 */
3287 #define trustee_wait_event_timeout(cond, timeout) ({ \
3288 long __ret = (timeout); \
3289 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3290 __ret) { \
3291 spin_unlock_irq(&gcwq->lock); \
3292 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3293 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3294 __ret); \
3295 spin_lock_irq(&gcwq->lock); \
3296 } \
3297 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3298 })
3299
3300 /**
3301 * trustee_wait_event - event wait for trustee
3302 * @cond: condition to wait for
3303 *
3304 * wait_event() for trustee to use. Automatically handles locking and
3305 * checks for CANCEL request.
3306 *
3307 * CONTEXT:
3308 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3309 * multiple times. To be used by trustee.
3310 *
3311 * RETURNS:
3312 * 0 if @cond is satisfied, -1 if canceled.
3313 */
3314 #define trustee_wait_event(cond) ({ \
3315 long __ret1; \
3316 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3317 __ret1 < 0 ? -1 : 0; \
3318 })
3319
3320 static int __cpuinit trustee_thread(void *__gcwq)
3321 {
3322 struct global_cwq *gcwq = __gcwq;
3323 struct worker *worker;
3324 struct work_struct *work;
3325 struct hlist_node *pos;
3326 long rc;
3327 int i;
3328
3329 BUG_ON(gcwq->cpu != smp_processor_id());
3330
3331 spin_lock_irq(&gcwq->lock);
3332 /*
3333 * Claim the manager position and make all workers rogue.
3334 * Trustee must be bound to the target cpu and can't be
3335 * cancelled.
3336 */
3337 BUG_ON(gcwq->cpu != smp_processor_id());
3338 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3339 BUG_ON(rc < 0);
3340
3341 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3342
3343 list_for_each_entry(worker, &gcwq->idle_list, entry)
3344 worker->flags |= WORKER_ROGUE;
3345
3346 for_each_busy_worker(worker, i, pos, gcwq)
3347 worker->flags |= WORKER_ROGUE;
3348
3349 /*
3350 * Call schedule() so that we cross rq->lock and thus can
3351 * guarantee sched callbacks see the rogue flag. This is
3352 * necessary as scheduler callbacks may be invoked from other
3353 * cpus.
3354 */
3355 spin_unlock_irq(&gcwq->lock);
3356 schedule();
3357 spin_lock_irq(&gcwq->lock);
3358
3359 /*
3360 * Sched callbacks are disabled now. Zap nr_running. After
3361 * this, nr_running stays zero and need_more_worker() and
3362 * keep_working() are always true as long as the worklist is
3363 * not empty.
3364 */
3365 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3366
3367 spin_unlock_irq(&gcwq->lock);
3368 del_timer_sync(&gcwq->idle_timer);
3369 spin_lock_irq(&gcwq->lock);
3370
3371 /*
3372 * We're now in charge. Notify and proceed to drain. We need
3373 * to keep the gcwq running during the whole CPU down
3374 * procedure as other cpu hotunplug callbacks may need to
3375 * flush currently running tasks.
3376 */
3377 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3378 wake_up_all(&gcwq->trustee_wait);
3379
3380 /*
3381 * The original cpu is in the process of dying and may go away
3382 * anytime now. When that happens, we and all workers would
3383 * be migrated to other cpus. Try draining any left work. We
3384 * want to get it over with ASAP - spam rescuers, wake up as
3385 * many idlers as necessary and create new ones till the
3386 * worklist is empty. Note that if the gcwq is frozen, there
3387 * may be frozen works in freezable cwqs. Don't declare
3388 * completion while frozen.
3389 */
3390 while (gcwq->nr_workers != gcwq->nr_idle ||
3391 gcwq->flags & GCWQ_FREEZING ||
3392 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3393 int nr_works = 0;
3394
3395 list_for_each_entry(work, &gcwq->worklist, entry) {
3396 send_mayday(work);
3397 nr_works++;
3398 }
3399
3400 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3401 if (!nr_works--)
3402 break;
3403 wake_up_process(worker->task);
3404 }
3405
3406 if (need_to_create_worker(gcwq)) {
3407 spin_unlock_irq(&gcwq->lock);
3408 worker = create_worker(gcwq, false);
3409 spin_lock_irq(&gcwq->lock);
3410 if (worker) {
3411 worker->flags |= WORKER_ROGUE;
3412 start_worker(worker);
3413 }
3414 }
3415
3416 /* give a breather */
3417 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3418 break;
3419 }
3420
3421 /*
3422 * Either all works have been scheduled and cpu is down, or
3423 * cpu down has already been canceled. Wait for and butcher
3424 * all workers till we're canceled.
3425 */
3426 do {
3427 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3428 while (!list_empty(&gcwq->idle_list))
3429 destroy_worker(list_first_entry(&gcwq->idle_list,
3430 struct worker, entry));
3431 } while (gcwq->nr_workers && rc >= 0);
3432
3433 /*
3434 * At this point, either draining has completed and no worker
3435 * is left, or cpu down has been canceled or the cpu is being
3436 * brought back up. There shouldn't be any idle one left.
3437 * Tell the remaining busy ones to rebind once it finishes the
3438 * currently scheduled works by scheduling the rebind_work.
3439 */
3440 WARN_ON(!list_empty(&gcwq->idle_list));
3441
3442 for_each_busy_worker(worker, i, pos, gcwq) {
3443 struct work_struct *rebind_work = &worker->rebind_work;
3444
3445 /*
3446 * Rebind_work may race with future cpu hotplug
3447 * operations. Use a separate flag to mark that
3448 * rebinding is scheduled.
3449 */
3450 worker->flags |= WORKER_REBIND;
3451 worker->flags &= ~WORKER_ROGUE;
3452
3453 /* queue rebind_work, wq doesn't matter, use the default one */
3454 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3455 work_data_bits(rebind_work)))
3456 continue;
3457
3458 debug_work_activate(rebind_work);
3459 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3460 worker->scheduled.next,
3461 work_color_to_flags(WORK_NO_COLOR));
3462 }
3463
3464 /* relinquish manager role */
3465 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3466
3467 /* notify completion */
3468 gcwq->trustee = NULL;
3469 gcwq->trustee_state = TRUSTEE_DONE;
3470 wake_up_all(&gcwq->trustee_wait);
3471 spin_unlock_irq(&gcwq->lock);
3472 return 0;
3473 }
3474
3475 /**
3476 * wait_trustee_state - wait for trustee to enter the specified state
3477 * @gcwq: gcwq the trustee of interest belongs to
3478 * @state: target state to wait for
3479 *
3480 * Wait for the trustee to reach @state. DONE is already matched.
3481 *
3482 * CONTEXT:
3483 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3484 * multiple times. To be used by cpu_callback.
3485 */
3486 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3487 __releases(&gcwq->lock)
3488 __acquires(&gcwq->lock)
3489 {
3490 if (!(gcwq->trustee_state == state ||
3491 gcwq->trustee_state == TRUSTEE_DONE)) {
3492 spin_unlock_irq(&gcwq->lock);
3493 __wait_event(gcwq->trustee_wait,
3494 gcwq->trustee_state == state ||
3495 gcwq->trustee_state == TRUSTEE_DONE);
3496 spin_lock_irq(&gcwq->lock);
3497 }
3498 }
3499
3500 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3501 unsigned long action,
3502 void *hcpu)
3503 {
3504 unsigned int cpu = (unsigned long)hcpu;
3505 struct global_cwq *gcwq = get_gcwq(cpu);
3506 struct task_struct *new_trustee = NULL;
3507 struct worker *uninitialized_var(new_worker);
3508 unsigned long flags;
3509
3510 action &= ~CPU_TASKS_FROZEN;
3511
3512 switch (action) {
3513 case CPU_DOWN_PREPARE:
3514 new_trustee = kthread_create(trustee_thread, gcwq,
3515 "workqueue_trustee/%d\n", cpu);
3516 if (IS_ERR(new_trustee))
3517 return notifier_from_errno(PTR_ERR(new_trustee));
3518 kthread_bind(new_trustee, cpu);
3519 /* fall through */
3520 case CPU_UP_PREPARE:
3521 BUG_ON(gcwq->first_idle);
3522 new_worker = create_worker(gcwq, false);
3523 if (!new_worker) {
3524 if (new_trustee)
3525 kthread_stop(new_trustee);
3526 return NOTIFY_BAD;
3527 }
3528 }
3529
3530 /* some are called w/ irq disabled, don't disturb irq status */
3531 spin_lock_irqsave(&gcwq->lock, flags);
3532
3533 switch (action) {
3534 case CPU_DOWN_PREPARE:
3535 /* initialize trustee and tell it to acquire the gcwq */
3536 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3537 gcwq->trustee = new_trustee;
3538 gcwq->trustee_state = TRUSTEE_START;
3539 wake_up_process(gcwq->trustee);
3540 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3541 /* fall through */
3542 case CPU_UP_PREPARE:
3543 BUG_ON(gcwq->first_idle);
3544 gcwq->first_idle = new_worker;
3545 break;
3546
3547 case CPU_DYING:
3548 /*
3549 * Before this, the trustee and all workers except for
3550 * the ones which are still executing works from
3551 * before the last CPU down must be on the cpu. After
3552 * this, they'll all be diasporas.
3553 */
3554 gcwq->flags |= GCWQ_DISASSOCIATED;
3555 break;
3556
3557 case CPU_POST_DEAD:
3558 gcwq->trustee_state = TRUSTEE_BUTCHER;
3559 /* fall through */
3560 case CPU_UP_CANCELED:
3561 destroy_worker(gcwq->first_idle);
3562 gcwq->first_idle = NULL;
3563 break;
3564
3565 case CPU_DOWN_FAILED:
3566 case CPU_ONLINE:
3567 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3568 if (gcwq->trustee_state != TRUSTEE_DONE) {
3569 gcwq->trustee_state = TRUSTEE_RELEASE;
3570 wake_up_process(gcwq->trustee);
3571 wait_trustee_state(gcwq, TRUSTEE_DONE);
3572 }
3573
3574 /*
3575 * Trustee is done and there might be no worker left.
3576 * Put the first_idle in and request a real manager to
3577 * take a look.
3578 */
3579 spin_unlock_irq(&gcwq->lock);
3580 kthread_bind(gcwq->first_idle->task, cpu);
3581 spin_lock_irq(&gcwq->lock);
3582 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3583 start_worker(gcwq->first_idle);
3584 gcwq->first_idle = NULL;
3585 break;
3586 }
3587
3588 spin_unlock_irqrestore(&gcwq->lock, flags);
3589
3590 return notifier_from_errno(0);
3591 }
3592
3593 #ifdef CONFIG_SMP
3594
3595 struct work_for_cpu {
3596 struct completion completion;
3597 long (*fn)(void *);
3598 void *arg;
3599 long ret;
3600 };
3601
3602 static int do_work_for_cpu(void *_wfc)
3603 {
3604 struct work_for_cpu *wfc = _wfc;
3605 wfc->ret = wfc->fn(wfc->arg);
3606 complete(&wfc->completion);
3607 return 0;
3608 }
3609
3610 /**
3611 * work_on_cpu - run a function in user context on a particular cpu
3612 * @cpu: the cpu to run on
3613 * @fn: the function to run
3614 * @arg: the function arg
3615 *
3616 * This will return the value @fn returns.
3617 * It is up to the caller to ensure that the cpu doesn't go offline.
3618 * The caller must not hold any locks which would prevent @fn from completing.
3619 */
3620 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3621 {
3622 struct task_struct *sub_thread;
3623 struct work_for_cpu wfc = {
3624 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3625 .fn = fn,
3626 .arg = arg,
3627 };
3628
3629 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3630 if (IS_ERR(sub_thread))
3631 return PTR_ERR(sub_thread);
3632 kthread_bind(sub_thread, cpu);
3633 wake_up_process(sub_thread);
3634 wait_for_completion(&wfc.completion);
3635 return wfc.ret;
3636 }
3637 EXPORT_SYMBOL_GPL(work_on_cpu);
3638 #endif /* CONFIG_SMP */
3639
3640 #ifdef CONFIG_FREEZER
3641
3642 /**
3643 * freeze_workqueues_begin - begin freezing workqueues
3644 *
3645 * Start freezing workqueues. After this function returns, all freezable
3646 * workqueues will queue new works to their frozen_works list instead of
3647 * gcwq->worklist.
3648 *
3649 * CONTEXT:
3650 * Grabs and releases workqueue_lock and gcwq->lock's.
3651 */
3652 void freeze_workqueues_begin(void)
3653 {
3654 unsigned int cpu;
3655
3656 spin_lock(&workqueue_lock);
3657
3658 BUG_ON(workqueue_freezing);
3659 workqueue_freezing = true;
3660
3661 for_each_gcwq_cpu(cpu) {
3662 struct global_cwq *gcwq = get_gcwq(cpu);
3663 struct workqueue_struct *wq;
3664
3665 spin_lock_irq(&gcwq->lock);
3666
3667 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3668 gcwq->flags |= GCWQ_FREEZING;
3669
3670 list_for_each_entry(wq, &workqueues, list) {
3671 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3672
3673 if (cwq && wq->flags & WQ_FREEZABLE)
3674 cwq->max_active = 0;
3675 }
3676
3677 spin_unlock_irq(&gcwq->lock);
3678 }
3679
3680 spin_unlock(&workqueue_lock);
3681 }
3682
3683 /**
3684 * freeze_workqueues_busy - are freezable workqueues still busy?
3685 *
3686 * Check whether freezing is complete. This function must be called
3687 * between freeze_workqueues_begin() and thaw_workqueues().
3688 *
3689 * CONTEXT:
3690 * Grabs and releases workqueue_lock.
3691 *
3692 * RETURNS:
3693 * %true if some freezable workqueues are still busy. %false if freezing
3694 * is complete.
3695 */
3696 bool freeze_workqueues_busy(void)
3697 {
3698 unsigned int cpu;
3699 bool busy = false;
3700
3701 spin_lock(&workqueue_lock);
3702
3703 BUG_ON(!workqueue_freezing);
3704
3705 for_each_gcwq_cpu(cpu) {
3706 struct workqueue_struct *wq;
3707 /*
3708 * nr_active is monotonically decreasing. It's safe
3709 * to peek without lock.
3710 */
3711 list_for_each_entry(wq, &workqueues, list) {
3712 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3713
3714 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3715 continue;
3716
3717 BUG_ON(cwq->nr_active < 0);
3718 if (cwq->nr_active) {
3719 busy = true;
3720 goto out_unlock;
3721 }
3722 }
3723 }
3724 out_unlock:
3725 spin_unlock(&workqueue_lock);
3726 return busy;
3727 }
3728
3729 /**
3730 * thaw_workqueues - thaw workqueues
3731 *
3732 * Thaw workqueues. Normal queueing is restored and all collected
3733 * frozen works are transferred to their respective gcwq worklists.
3734 *
3735 * CONTEXT:
3736 * Grabs and releases workqueue_lock and gcwq->lock's.
3737 */
3738 void thaw_workqueues(void)
3739 {
3740 unsigned int cpu;
3741
3742 spin_lock(&workqueue_lock);
3743
3744 if (!workqueue_freezing)
3745 goto out_unlock;
3746
3747 for_each_gcwq_cpu(cpu) {
3748 struct global_cwq *gcwq = get_gcwq(cpu);
3749 struct workqueue_struct *wq;
3750
3751 spin_lock_irq(&gcwq->lock);
3752
3753 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3754 gcwq->flags &= ~GCWQ_FREEZING;
3755
3756 list_for_each_entry(wq, &workqueues, list) {
3757 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3758
3759 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3760 continue;
3761
3762 /* restore max_active and repopulate worklist */
3763 cwq->max_active = wq->saved_max_active;
3764
3765 while (!list_empty(&cwq->delayed_works) &&
3766 cwq->nr_active < cwq->max_active)
3767 cwq_activate_first_delayed(cwq);
3768 }
3769
3770 wake_up_worker(gcwq);
3771
3772 spin_unlock_irq(&gcwq->lock);
3773 }
3774
3775 workqueue_freezing = false;
3776 out_unlock:
3777 spin_unlock(&workqueue_lock);
3778 }
3779 #endif /* CONFIG_FREEZER */
3780
3781 static int __init init_workqueues(void)
3782 {
3783 unsigned int cpu;
3784 int i;
3785
3786 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3787
3788 /* initialize gcwqs */
3789 for_each_gcwq_cpu(cpu) {
3790 struct global_cwq *gcwq = get_gcwq(cpu);
3791
3792 spin_lock_init(&gcwq->lock);
3793 INIT_LIST_HEAD(&gcwq->worklist);
3794 gcwq->cpu = cpu;
3795 gcwq->flags |= GCWQ_DISASSOCIATED;
3796
3797 INIT_LIST_HEAD(&gcwq->idle_list);
3798 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3799 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3800
3801 init_timer_deferrable(&gcwq->idle_timer);
3802 gcwq->idle_timer.function = idle_worker_timeout;
3803 gcwq->idle_timer.data = (unsigned long)gcwq;
3804
3805 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3806 (unsigned long)gcwq);
3807
3808 ida_init(&gcwq->worker_ida);
3809
3810 gcwq->trustee_state = TRUSTEE_DONE;
3811 init_waitqueue_head(&gcwq->trustee_wait);
3812 }
3813
3814 /* create the initial worker */
3815 for_each_online_gcwq_cpu(cpu) {
3816 struct global_cwq *gcwq = get_gcwq(cpu);
3817 struct worker *worker;
3818
3819 if (cpu != WORK_CPU_UNBOUND)
3820 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3821 worker = create_worker(gcwq, true);
3822 BUG_ON(!worker);
3823 spin_lock_irq(&gcwq->lock);
3824 start_worker(worker);
3825 spin_unlock_irq(&gcwq->lock);
3826 }
3827
3828 system_wq = alloc_workqueue("events", 0, 0);
3829 system_long_wq = alloc_workqueue("events_long", 0, 0);
3830 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3831 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3832 WQ_UNBOUND_MAX_ACTIVE);
3833 system_freezable_wq = alloc_workqueue("events_freezable",
3834 WQ_FREEZABLE, 0);
3835 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3836 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3837 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3838 !system_unbound_wq || !system_freezable_wq ||
3839 !system_nrt_freezable_wq);
3840 return 0;
3841 }
3842 early_initcall(init_workqueues);