dm raid1: use per_bio_data
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * assoc_mutex of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
83
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
87
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
103 };
104
105 /*
106 * Structure fields follow one of the following exclusion rules.
107 *
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
110 *
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
114 * L: gcwq->lock protected. Access with gcwq->lock held.
115 *
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
120 *
121 * F: wq->flush_mutex protected.
122 *
123 * W: workqueue_lock protected.
124 */
125
126 struct global_cwq;
127 struct worker_pool;
128
129 /*
130 * The poor guys doing the actual heavy lifting. All on-duty workers
131 * are either serving the manager role, on idle list or on busy hash.
132 */
133 struct worker {
134 /* on idle list while idle, on busy hash table while busy */
135 union {
136 struct list_head entry; /* L: while idle */
137 struct hlist_node hentry; /* L: while busy */
138 };
139
140 struct work_struct *current_work; /* L: work being processed */
141 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142 struct list_head scheduled; /* L: scheduled works */
143 struct task_struct *task; /* I: worker task */
144 struct worker_pool *pool; /* I: the associated pool */
145 /* 64 bytes boundary on 64bit, 32 on 32bit */
146 unsigned long last_active; /* L: last active timestamp */
147 unsigned int flags; /* X: flags */
148 int id; /* I: worker id */
149
150 /* for rebinding worker to CPU */
151 struct work_struct rebind_work; /* L: for busy worker */
152 };
153
154 struct worker_pool {
155 struct global_cwq *gcwq; /* I: the owning gcwq */
156 unsigned int flags; /* X: flags */
157
158 struct list_head worklist; /* L: list of pending works */
159 int nr_workers; /* L: total number of workers */
160
161 /* nr_idle includes the ones off idle_list for rebinding */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
168 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
169 struct ida worker_ida; /* L: for worker IDs */
170 };
171
172 /*
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
176 */
177 struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
180 unsigned int flags; /* L: GCWQ_* flags */
181
182 /* workers are chained either in busy_hash or pool idle_list */
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
188 } ____cacheline_aligned_in_smp;
189
190 /*
191 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
192 * work_struct->data are used for flags and thus cwqs need to be
193 * aligned at two's power of the number of flag bits.
194 */
195 struct cpu_workqueue_struct {
196 struct worker_pool *pool; /* I: the associated pool */
197 struct workqueue_struct *wq; /* I: the owning workqueue */
198 int work_color; /* L: current color */
199 int flush_color; /* L: flushing color */
200 int nr_in_flight[WORK_NR_COLORS];
201 /* L: nr of in_flight works */
202 int nr_active; /* L: nr of active works */
203 int max_active; /* L: max active works */
204 struct list_head delayed_works; /* L: delayed works */
205 };
206
207 /*
208 * Structure used to wait for workqueue flush.
209 */
210 struct wq_flusher {
211 struct list_head list; /* F: list of flushers */
212 int flush_color; /* F: flush color waiting for */
213 struct completion done; /* flush completion */
214 };
215
216 /*
217 * All cpumasks are assumed to be always set on UP and thus can't be
218 * used to determine whether there's something to be done.
219 */
220 #ifdef CONFIG_SMP
221 typedef cpumask_var_t mayday_mask_t;
222 #define mayday_test_and_set_cpu(cpu, mask) \
223 cpumask_test_and_set_cpu((cpu), (mask))
224 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
225 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
226 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
227 #define free_mayday_mask(mask) free_cpumask_var((mask))
228 #else
229 typedef unsigned long mayday_mask_t;
230 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
231 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
232 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
233 #define alloc_mayday_mask(maskp, gfp) true
234 #define free_mayday_mask(mask) do { } while (0)
235 #endif
236
237 /*
238 * The externally visible workqueue abstraction is an array of
239 * per-CPU workqueues:
240 */
241 struct workqueue_struct {
242 unsigned int flags; /* W: WQ_* flags */
243 union {
244 struct cpu_workqueue_struct __percpu *pcpu;
245 struct cpu_workqueue_struct *single;
246 unsigned long v;
247 } cpu_wq; /* I: cwq's */
248 struct list_head list; /* W: list of all workqueues */
249
250 struct mutex flush_mutex; /* protects wq flushing */
251 int work_color; /* F: current work color */
252 int flush_color; /* F: current flush color */
253 atomic_t nr_cwqs_to_flush; /* flush in progress */
254 struct wq_flusher *first_flusher; /* F: first flusher */
255 struct list_head flusher_queue; /* F: flush waiters */
256 struct list_head flusher_overflow; /* F: flush overflow list */
257
258 mayday_mask_t mayday_mask; /* cpus requesting rescue */
259 struct worker *rescuer; /* I: rescue worker */
260
261 int nr_drainers; /* W: drain in progress */
262 int saved_max_active; /* W: saved cwq max_active */
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[]; /* I: workqueue name */
267 };
268
269 struct workqueue_struct *system_wq __read_mostly;
270 EXPORT_SYMBOL_GPL(system_wq);
271 struct workqueue_struct *system_highpri_wq __read_mostly;
272 EXPORT_SYMBOL_GPL(system_highpri_wq);
273 struct workqueue_struct *system_long_wq __read_mostly;
274 EXPORT_SYMBOL_GPL(system_long_wq);
275 struct workqueue_struct *system_unbound_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_unbound_wq);
277 struct workqueue_struct *system_freezable_wq __read_mostly;
278 EXPORT_SYMBOL_GPL(system_freezable_wq);
279
280 #define CREATE_TRACE_POINTS
281 #include <trace/events/workqueue.h>
282
283 #define for_each_worker_pool(pool, gcwq) \
284 for ((pool) = &(gcwq)->pools[0]; \
285 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
286
287 #define for_each_busy_worker(worker, i, pos, gcwq) \
288 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
289 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
290
291 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
292 unsigned int sw)
293 {
294 if (cpu < nr_cpu_ids) {
295 if (sw & 1) {
296 cpu = cpumask_next(cpu, mask);
297 if (cpu < nr_cpu_ids)
298 return cpu;
299 }
300 if (sw & 2)
301 return WORK_CPU_UNBOUND;
302 }
303 return WORK_CPU_NONE;
304 }
305
306 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
307 struct workqueue_struct *wq)
308 {
309 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
310 }
311
312 /*
313 * CPU iterators
314 *
315 * An extra gcwq is defined for an invalid cpu number
316 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
317 * specific CPU. The following iterators are similar to
318 * for_each_*_cpu() iterators but also considers the unbound gcwq.
319 *
320 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
321 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
322 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
323 * WORK_CPU_UNBOUND for unbound workqueues
324 */
325 #define for_each_gcwq_cpu(cpu) \
326 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
327 (cpu) < WORK_CPU_NONE; \
328 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
329
330 #define for_each_online_gcwq_cpu(cpu) \
331 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
332 (cpu) < WORK_CPU_NONE; \
333 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
334
335 #define for_each_cwq_cpu(cpu, wq) \
336 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
337 (cpu) < WORK_CPU_NONE; \
338 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
339
340 #ifdef CONFIG_DEBUG_OBJECTS_WORK
341
342 static struct debug_obj_descr work_debug_descr;
343
344 static void *work_debug_hint(void *addr)
345 {
346 return ((struct work_struct *) addr)->func;
347 }
348
349 /*
350 * fixup_init is called when:
351 * - an active object is initialized
352 */
353 static int work_fixup_init(void *addr, enum debug_obj_state state)
354 {
355 struct work_struct *work = addr;
356
357 switch (state) {
358 case ODEBUG_STATE_ACTIVE:
359 cancel_work_sync(work);
360 debug_object_init(work, &work_debug_descr);
361 return 1;
362 default:
363 return 0;
364 }
365 }
366
367 /*
368 * fixup_activate is called when:
369 * - an active object is activated
370 * - an unknown object is activated (might be a statically initialized object)
371 */
372 static int work_fixup_activate(void *addr, enum debug_obj_state state)
373 {
374 struct work_struct *work = addr;
375
376 switch (state) {
377
378 case ODEBUG_STATE_NOTAVAILABLE:
379 /*
380 * This is not really a fixup. The work struct was
381 * statically initialized. We just make sure that it
382 * is tracked in the object tracker.
383 */
384 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
385 debug_object_init(work, &work_debug_descr);
386 debug_object_activate(work, &work_debug_descr);
387 return 0;
388 }
389 WARN_ON_ONCE(1);
390 return 0;
391
392 case ODEBUG_STATE_ACTIVE:
393 WARN_ON(1);
394
395 default:
396 return 0;
397 }
398 }
399
400 /*
401 * fixup_free is called when:
402 * - an active object is freed
403 */
404 static int work_fixup_free(void *addr, enum debug_obj_state state)
405 {
406 struct work_struct *work = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 cancel_work_sync(work);
411 debug_object_free(work, &work_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416 }
417
418 static struct debug_obj_descr work_debug_descr = {
419 .name = "work_struct",
420 .debug_hint = work_debug_hint,
421 .fixup_init = work_fixup_init,
422 .fixup_activate = work_fixup_activate,
423 .fixup_free = work_fixup_free,
424 };
425
426 static inline void debug_work_activate(struct work_struct *work)
427 {
428 debug_object_activate(work, &work_debug_descr);
429 }
430
431 static inline void debug_work_deactivate(struct work_struct *work)
432 {
433 debug_object_deactivate(work, &work_debug_descr);
434 }
435
436 void __init_work(struct work_struct *work, int onstack)
437 {
438 if (onstack)
439 debug_object_init_on_stack(work, &work_debug_descr);
440 else
441 debug_object_init(work, &work_debug_descr);
442 }
443 EXPORT_SYMBOL_GPL(__init_work);
444
445 void destroy_work_on_stack(struct work_struct *work)
446 {
447 debug_object_free(work, &work_debug_descr);
448 }
449 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
450
451 #else
452 static inline void debug_work_activate(struct work_struct *work) { }
453 static inline void debug_work_deactivate(struct work_struct *work) { }
454 #endif
455
456 /* Serializes the accesses to the list of workqueues. */
457 static DEFINE_SPINLOCK(workqueue_lock);
458 static LIST_HEAD(workqueues);
459 static bool workqueue_freezing; /* W: have wqs started freezing? */
460
461 /*
462 * The almighty global cpu workqueues. nr_running is the only field
463 * which is expected to be used frequently by other cpus via
464 * try_to_wake_up(). Put it in a separate cacheline.
465 */
466 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
467 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
468
469 /*
470 * Global cpu workqueue and nr_running counter for unbound gcwq. The
471 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
472 * workers have WORKER_UNBOUND set.
473 */
474 static struct global_cwq unbound_global_cwq;
475 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
476 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
477 };
478
479 static int worker_thread(void *__worker);
480
481 static int worker_pool_pri(struct worker_pool *pool)
482 {
483 return pool - pool->gcwq->pools;
484 }
485
486 static struct global_cwq *get_gcwq(unsigned int cpu)
487 {
488 if (cpu != WORK_CPU_UNBOUND)
489 return &per_cpu(global_cwq, cpu);
490 else
491 return &unbound_global_cwq;
492 }
493
494 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
495 {
496 int cpu = pool->gcwq->cpu;
497 int idx = worker_pool_pri(pool);
498
499 if (cpu != WORK_CPU_UNBOUND)
500 return &per_cpu(pool_nr_running, cpu)[idx];
501 else
502 return &unbound_pool_nr_running[idx];
503 }
504
505 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
506 struct workqueue_struct *wq)
507 {
508 if (!(wq->flags & WQ_UNBOUND)) {
509 if (likely(cpu < nr_cpu_ids))
510 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
511 } else if (likely(cpu == WORK_CPU_UNBOUND))
512 return wq->cpu_wq.single;
513 return NULL;
514 }
515
516 static unsigned int work_color_to_flags(int color)
517 {
518 return color << WORK_STRUCT_COLOR_SHIFT;
519 }
520
521 static int get_work_color(struct work_struct *work)
522 {
523 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
524 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
525 }
526
527 static int work_next_color(int color)
528 {
529 return (color + 1) % WORK_NR_COLORS;
530 }
531
532 /*
533 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
534 * contain the pointer to the queued cwq. Once execution starts, the flag
535 * is cleared and the high bits contain OFFQ flags and CPU number.
536 *
537 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
538 * and clear_work_data() can be used to set the cwq, cpu or clear
539 * work->data. These functions should only be called while the work is
540 * owned - ie. while the PENDING bit is set.
541 *
542 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
543 * a work. gcwq is available once the work has been queued anywhere after
544 * initialization until it is sync canceled. cwq is available only while
545 * the work item is queued.
546 *
547 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
548 * canceled. While being canceled, a work item may have its PENDING set
549 * but stay off timer and worklist for arbitrarily long and nobody should
550 * try to steal the PENDING bit.
551 */
552 static inline void set_work_data(struct work_struct *work, unsigned long data,
553 unsigned long flags)
554 {
555 BUG_ON(!work_pending(work));
556 atomic_long_set(&work->data, data | flags | work_static(work));
557 }
558
559 static void set_work_cwq(struct work_struct *work,
560 struct cpu_workqueue_struct *cwq,
561 unsigned long extra_flags)
562 {
563 set_work_data(work, (unsigned long)cwq,
564 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
565 }
566
567 static void set_work_cpu_and_clear_pending(struct work_struct *work,
568 unsigned int cpu)
569 {
570 /*
571 * The following wmb is paired with the implied mb in
572 * test_and_set_bit(PENDING) and ensures all updates to @work made
573 * here are visible to and precede any updates by the next PENDING
574 * owner.
575 */
576 smp_wmb();
577 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
578 }
579
580 static void clear_work_data(struct work_struct *work)
581 {
582 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
583 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
584 }
585
586 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
587 {
588 unsigned long data = atomic_long_read(&work->data);
589
590 if (data & WORK_STRUCT_CWQ)
591 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 else
593 return NULL;
594 }
595
596 static struct global_cwq *get_work_gcwq(struct work_struct *work)
597 {
598 unsigned long data = atomic_long_read(&work->data);
599 unsigned int cpu;
600
601 if (data & WORK_STRUCT_CWQ)
602 return ((struct cpu_workqueue_struct *)
603 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
604
605 cpu = data >> WORK_OFFQ_CPU_SHIFT;
606 if (cpu == WORK_CPU_NONE)
607 return NULL;
608
609 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
610 return get_gcwq(cpu);
611 }
612
613 static void mark_work_canceling(struct work_struct *work)
614 {
615 struct global_cwq *gcwq = get_work_gcwq(work);
616 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
617
618 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
619 WORK_STRUCT_PENDING);
620 }
621
622 static bool work_is_canceling(struct work_struct *work)
623 {
624 unsigned long data = atomic_long_read(&work->data);
625
626 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
627 }
628
629 /*
630 * Policy functions. These define the policies on how the global worker
631 * pools are managed. Unless noted otherwise, these functions assume that
632 * they're being called with gcwq->lock held.
633 */
634
635 static bool __need_more_worker(struct worker_pool *pool)
636 {
637 return !atomic_read(get_pool_nr_running(pool));
638 }
639
640 /*
641 * Need to wake up a worker? Called from anything but currently
642 * running workers.
643 *
644 * Note that, because unbound workers never contribute to nr_running, this
645 * function will always return %true for unbound gcwq as long as the
646 * worklist isn't empty.
647 */
648 static bool need_more_worker(struct worker_pool *pool)
649 {
650 return !list_empty(&pool->worklist) && __need_more_worker(pool);
651 }
652
653 /* Can I start working? Called from busy but !running workers. */
654 static bool may_start_working(struct worker_pool *pool)
655 {
656 return pool->nr_idle;
657 }
658
659 /* Do I need to keep working? Called from currently running workers. */
660 static bool keep_working(struct worker_pool *pool)
661 {
662 atomic_t *nr_running = get_pool_nr_running(pool);
663
664 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
665 }
666
667 /* Do we need a new worker? Called from manager. */
668 static bool need_to_create_worker(struct worker_pool *pool)
669 {
670 return need_more_worker(pool) && !may_start_working(pool);
671 }
672
673 /* Do I need to be the manager? */
674 static bool need_to_manage_workers(struct worker_pool *pool)
675 {
676 return need_to_create_worker(pool) ||
677 (pool->flags & POOL_MANAGE_WORKERS);
678 }
679
680 /* Do we have too many workers and should some go away? */
681 static bool too_many_workers(struct worker_pool *pool)
682 {
683 bool managing = pool->flags & POOL_MANAGING_WORKERS;
684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 int nr_busy = pool->nr_workers - nr_idle;
686
687 /*
688 * nr_idle and idle_list may disagree if idle rebinding is in
689 * progress. Never return %true if idle_list is empty.
690 */
691 if (list_empty(&pool->idle_list))
692 return false;
693
694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
695 }
696
697 /*
698 * Wake up functions.
699 */
700
701 /* Return the first worker. Safe with preemption disabled */
702 static struct worker *first_worker(struct worker_pool *pool)
703 {
704 if (unlikely(list_empty(&pool->idle_list)))
705 return NULL;
706
707 return list_first_entry(&pool->idle_list, struct worker, entry);
708 }
709
710 /**
711 * wake_up_worker - wake up an idle worker
712 * @pool: worker pool to wake worker from
713 *
714 * Wake up the first idle worker of @pool.
715 *
716 * CONTEXT:
717 * spin_lock_irq(gcwq->lock).
718 */
719 static void wake_up_worker(struct worker_pool *pool)
720 {
721 struct worker *worker = first_worker(pool);
722
723 if (likely(worker))
724 wake_up_process(worker->task);
725 }
726
727 /**
728 * wq_worker_waking_up - a worker is waking up
729 * @task: task waking up
730 * @cpu: CPU @task is waking up to
731 *
732 * This function is called during try_to_wake_up() when a worker is
733 * being awoken.
734 *
735 * CONTEXT:
736 * spin_lock_irq(rq->lock)
737 */
738 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
739 {
740 struct worker *worker = kthread_data(task);
741
742 if (!(worker->flags & WORKER_NOT_RUNNING))
743 atomic_inc(get_pool_nr_running(worker->pool));
744 }
745
746 /**
747 * wq_worker_sleeping - a worker is going to sleep
748 * @task: task going to sleep
749 * @cpu: CPU in question, must be the current CPU number
750 *
751 * This function is called during schedule() when a busy worker is
752 * going to sleep. Worker on the same cpu can be woken up by
753 * returning pointer to its task.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 *
758 * RETURNS:
759 * Worker task on @cpu to wake up, %NULL if none.
760 */
761 struct task_struct *wq_worker_sleeping(struct task_struct *task,
762 unsigned int cpu)
763 {
764 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
765 struct worker_pool *pool = worker->pool;
766 atomic_t *nr_running = get_pool_nr_running(pool);
767
768 if (worker->flags & WORKER_NOT_RUNNING)
769 return NULL;
770
771 /* this can only happen on the local cpu */
772 BUG_ON(cpu != raw_smp_processor_id());
773
774 /*
775 * The counterpart of the following dec_and_test, implied mb,
776 * worklist not empty test sequence is in insert_work().
777 * Please read comment there.
778 *
779 * NOT_RUNNING is clear. This means that we're bound to and
780 * running on the local cpu w/ rq lock held and preemption
781 * disabled, which in turn means that none else could be
782 * manipulating idle_list, so dereferencing idle_list without gcwq
783 * lock is safe.
784 */
785 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
786 to_wakeup = first_worker(pool);
787 return to_wakeup ? to_wakeup->task : NULL;
788 }
789
790 /**
791 * worker_set_flags - set worker flags and adjust nr_running accordingly
792 * @worker: self
793 * @flags: flags to set
794 * @wakeup: wakeup an idle worker if necessary
795 *
796 * Set @flags in @worker->flags and adjust nr_running accordingly. If
797 * nr_running becomes zero and @wakeup is %true, an idle worker is
798 * woken up.
799 *
800 * CONTEXT:
801 * spin_lock_irq(gcwq->lock)
802 */
803 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
804 bool wakeup)
805 {
806 struct worker_pool *pool = worker->pool;
807
808 WARN_ON_ONCE(worker->task != current);
809
810 /*
811 * If transitioning into NOT_RUNNING, adjust nr_running and
812 * wake up an idle worker as necessary if requested by
813 * @wakeup.
814 */
815 if ((flags & WORKER_NOT_RUNNING) &&
816 !(worker->flags & WORKER_NOT_RUNNING)) {
817 atomic_t *nr_running = get_pool_nr_running(pool);
818
819 if (wakeup) {
820 if (atomic_dec_and_test(nr_running) &&
821 !list_empty(&pool->worklist))
822 wake_up_worker(pool);
823 } else
824 atomic_dec(nr_running);
825 }
826
827 worker->flags |= flags;
828 }
829
830 /**
831 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
832 * @worker: self
833 * @flags: flags to clear
834 *
835 * Clear @flags in @worker->flags and adjust nr_running accordingly.
836 *
837 * CONTEXT:
838 * spin_lock_irq(gcwq->lock)
839 */
840 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
841 {
842 struct worker_pool *pool = worker->pool;
843 unsigned int oflags = worker->flags;
844
845 WARN_ON_ONCE(worker->task != current);
846
847 worker->flags &= ~flags;
848
849 /*
850 * If transitioning out of NOT_RUNNING, increment nr_running. Note
851 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
852 * of multiple flags, not a single flag.
853 */
854 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
855 if (!(worker->flags & WORKER_NOT_RUNNING))
856 atomic_inc(get_pool_nr_running(pool));
857 }
858
859 /**
860 * busy_worker_head - return the busy hash head for a work
861 * @gcwq: gcwq of interest
862 * @work: work to be hashed
863 *
864 * Return hash head of @gcwq for @work.
865 *
866 * CONTEXT:
867 * spin_lock_irq(gcwq->lock).
868 *
869 * RETURNS:
870 * Pointer to the hash head.
871 */
872 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
873 struct work_struct *work)
874 {
875 const int base_shift = ilog2(sizeof(struct work_struct));
876 unsigned long v = (unsigned long)work;
877
878 /* simple shift and fold hash, do we need something better? */
879 v >>= base_shift;
880 v += v >> BUSY_WORKER_HASH_ORDER;
881 v &= BUSY_WORKER_HASH_MASK;
882
883 return &gcwq->busy_hash[v];
884 }
885
886 /**
887 * __find_worker_executing_work - find worker which is executing a work
888 * @gcwq: gcwq of interest
889 * @bwh: hash head as returned by busy_worker_head()
890 * @work: work to find worker for
891 *
892 * Find a worker which is executing @work on @gcwq. @bwh should be
893 * the hash head obtained by calling busy_worker_head() with the same
894 * work.
895 *
896 * CONTEXT:
897 * spin_lock_irq(gcwq->lock).
898 *
899 * RETURNS:
900 * Pointer to worker which is executing @work if found, NULL
901 * otherwise.
902 */
903 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
904 struct hlist_head *bwh,
905 struct work_struct *work)
906 {
907 struct worker *worker;
908 struct hlist_node *tmp;
909
910 hlist_for_each_entry(worker, tmp, bwh, hentry)
911 if (worker->current_work == work)
912 return worker;
913 return NULL;
914 }
915
916 /**
917 * find_worker_executing_work - find worker which is executing a work
918 * @gcwq: gcwq of interest
919 * @work: work to find worker for
920 *
921 * Find a worker which is executing @work on @gcwq. This function is
922 * identical to __find_worker_executing_work() except that this
923 * function calculates @bwh itself.
924 *
925 * CONTEXT:
926 * spin_lock_irq(gcwq->lock).
927 *
928 * RETURNS:
929 * Pointer to worker which is executing @work if found, NULL
930 * otherwise.
931 */
932 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
933 struct work_struct *work)
934 {
935 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
936 work);
937 }
938
939 /**
940 * move_linked_works - move linked works to a list
941 * @work: start of series of works to be scheduled
942 * @head: target list to append @work to
943 * @nextp: out paramter for nested worklist walking
944 *
945 * Schedule linked works starting from @work to @head. Work series to
946 * be scheduled starts at @work and includes any consecutive work with
947 * WORK_STRUCT_LINKED set in its predecessor.
948 *
949 * If @nextp is not NULL, it's updated to point to the next work of
950 * the last scheduled work. This allows move_linked_works() to be
951 * nested inside outer list_for_each_entry_safe().
952 *
953 * CONTEXT:
954 * spin_lock_irq(gcwq->lock).
955 */
956 static void move_linked_works(struct work_struct *work, struct list_head *head,
957 struct work_struct **nextp)
958 {
959 struct work_struct *n;
960
961 /*
962 * Linked worklist will always end before the end of the list,
963 * use NULL for list head.
964 */
965 list_for_each_entry_safe_from(work, n, NULL, entry) {
966 list_move_tail(&work->entry, head);
967 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
968 break;
969 }
970
971 /*
972 * If we're already inside safe list traversal and have moved
973 * multiple works to the scheduled queue, the next position
974 * needs to be updated.
975 */
976 if (nextp)
977 *nextp = n;
978 }
979
980 static void cwq_activate_delayed_work(struct work_struct *work)
981 {
982 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988 }
989
990 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
991 {
992 struct work_struct *work = list_first_entry(&cwq->delayed_works,
993 struct work_struct, entry);
994
995 cwq_activate_delayed_work(work);
996 }
997
998 /**
999 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1000 * @cwq: cwq of interest
1001 * @color: color of work which left the queue
1002 *
1003 * A work either has completed or is removed from pending queue,
1004 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1005 *
1006 * CONTEXT:
1007 * spin_lock_irq(gcwq->lock).
1008 */
1009 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1010 {
1011 /* ignore uncolored works */
1012 if (color == WORK_NO_COLOR)
1013 return;
1014
1015 cwq->nr_in_flight[color]--;
1016
1017 cwq->nr_active--;
1018 if (!list_empty(&cwq->delayed_works)) {
1019 /* one down, submit a delayed one */
1020 if (cwq->nr_active < cwq->max_active)
1021 cwq_activate_first_delayed(cwq);
1022 }
1023
1024 /* is flush in progress and are we at the flushing tip? */
1025 if (likely(cwq->flush_color != color))
1026 return;
1027
1028 /* are there still in-flight works? */
1029 if (cwq->nr_in_flight[color])
1030 return;
1031
1032 /* this cwq is done, clear flush_color */
1033 cwq->flush_color = -1;
1034
1035 /*
1036 * If this was the last cwq, wake up the first flusher. It
1037 * will handle the rest.
1038 */
1039 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1040 complete(&cwq->wq->first_flusher->done);
1041 }
1042
1043 /**
1044 * try_to_grab_pending - steal work item from worklist and disable irq
1045 * @work: work item to steal
1046 * @is_dwork: @work is a delayed_work
1047 * @flags: place to store irq state
1048 *
1049 * Try to grab PENDING bit of @work. This function can handle @work in any
1050 * stable state - idle, on timer or on worklist. Return values are
1051 *
1052 * 1 if @work was pending and we successfully stole PENDING
1053 * 0 if @work was idle and we claimed PENDING
1054 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1055 * -ENOENT if someone else is canceling @work, this state may persist
1056 * for arbitrarily long
1057 *
1058 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1059 * interrupted while holding PENDING and @work off queue, irq must be
1060 * disabled on entry. This, combined with delayed_work->timer being
1061 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1062 *
1063 * On successful return, >= 0, irq is disabled and the caller is
1064 * responsible for releasing it using local_irq_restore(*@flags).
1065 *
1066 * This function is safe to call from any context including IRQ handler.
1067 */
1068 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1069 unsigned long *flags)
1070 {
1071 struct global_cwq *gcwq;
1072
1073 local_irq_save(*flags);
1074
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
1079 /*
1080 * dwork->timer is irqsafe. If del_timer() fails, it's
1081 * guaranteed that the timer is not queued anywhere and not
1082 * running on the local CPU.
1083 */
1084 if (likely(del_timer(&dwork->timer)))
1085 return 1;
1086 }
1087
1088 /* try to claim PENDING the normal way */
1089 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1090 return 0;
1091
1092 /*
1093 * The queueing is in progress, or it is already queued. Try to
1094 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1095 */
1096 gcwq = get_work_gcwq(work);
1097 if (!gcwq)
1098 goto fail;
1099
1100 spin_lock(&gcwq->lock);
1101 if (!list_empty(&work->entry)) {
1102 /*
1103 * This work is queued, but perhaps we locked the wrong gcwq.
1104 * In that case we must see the new value after rmb(), see
1105 * insert_work()->wmb().
1106 */
1107 smp_rmb();
1108 if (gcwq == get_work_gcwq(work)) {
1109 debug_work_deactivate(work);
1110
1111 /*
1112 * A delayed work item cannot be grabbed directly
1113 * because it might have linked NO_COLOR work items
1114 * which, if left on the delayed_list, will confuse
1115 * cwq->nr_active management later on and cause
1116 * stall. Make sure the work item is activated
1117 * before grabbing.
1118 */
1119 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1120 cwq_activate_delayed_work(work);
1121
1122 list_del_init(&work->entry);
1123 cwq_dec_nr_in_flight(get_work_cwq(work),
1124 get_work_color(work));
1125
1126 spin_unlock(&gcwq->lock);
1127 return 1;
1128 }
1129 }
1130 spin_unlock(&gcwq->lock);
1131 fail:
1132 local_irq_restore(*flags);
1133 if (work_is_canceling(work))
1134 return -ENOENT;
1135 cpu_relax();
1136 return -EAGAIN;
1137 }
1138
1139 /**
1140 * insert_work - insert a work into gcwq
1141 * @cwq: cwq @work belongs to
1142 * @work: work to insert
1143 * @head: insertion point
1144 * @extra_flags: extra WORK_STRUCT_* flags to set
1145 *
1146 * Insert @work which belongs to @cwq into @gcwq after @head.
1147 * @extra_flags is or'd to work_struct flags.
1148 *
1149 * CONTEXT:
1150 * spin_lock_irq(gcwq->lock).
1151 */
1152 static void insert_work(struct cpu_workqueue_struct *cwq,
1153 struct work_struct *work, struct list_head *head,
1154 unsigned int extra_flags)
1155 {
1156 struct worker_pool *pool = cwq->pool;
1157
1158 /* we own @work, set data and link */
1159 set_work_cwq(work, cwq, extra_flags);
1160
1161 /*
1162 * Ensure that we get the right work->data if we see the
1163 * result of list_add() below, see try_to_grab_pending().
1164 */
1165 smp_wmb();
1166
1167 list_add_tail(&work->entry, head);
1168
1169 /*
1170 * Ensure either worker_sched_deactivated() sees the above
1171 * list_add_tail() or we see zero nr_running to avoid workers
1172 * lying around lazily while there are works to be processed.
1173 */
1174 smp_mb();
1175
1176 if (__need_more_worker(pool))
1177 wake_up_worker(pool);
1178 }
1179
1180 /*
1181 * Test whether @work is being queued from another work executing on the
1182 * same workqueue. This is rather expensive and should only be used from
1183 * cold paths.
1184 */
1185 static bool is_chained_work(struct workqueue_struct *wq)
1186 {
1187 unsigned long flags;
1188 unsigned int cpu;
1189
1190 for_each_gcwq_cpu(cpu) {
1191 struct global_cwq *gcwq = get_gcwq(cpu);
1192 struct worker *worker;
1193 struct hlist_node *pos;
1194 int i;
1195
1196 spin_lock_irqsave(&gcwq->lock, flags);
1197 for_each_busy_worker(worker, i, pos, gcwq) {
1198 if (worker->task != current)
1199 continue;
1200 spin_unlock_irqrestore(&gcwq->lock, flags);
1201 /*
1202 * I'm @worker, no locking necessary. See if @work
1203 * is headed to the same workqueue.
1204 */
1205 return worker->current_cwq->wq == wq;
1206 }
1207 spin_unlock_irqrestore(&gcwq->lock, flags);
1208 }
1209 return false;
1210 }
1211
1212 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1213 struct work_struct *work)
1214 {
1215 struct global_cwq *gcwq;
1216 struct cpu_workqueue_struct *cwq;
1217 struct list_head *worklist;
1218 unsigned int work_flags;
1219 unsigned int req_cpu = cpu;
1220
1221 /*
1222 * While a work item is PENDING && off queue, a task trying to
1223 * steal the PENDING will busy-loop waiting for it to either get
1224 * queued or lose PENDING. Grabbing PENDING and queueing should
1225 * happen with IRQ disabled.
1226 */
1227 WARN_ON_ONCE(!irqs_disabled());
1228
1229 debug_work_activate(work);
1230
1231 /* if dying, only works from the same workqueue are allowed */
1232 if (unlikely(wq->flags & WQ_DRAINING) &&
1233 WARN_ON_ONCE(!is_chained_work(wq)))
1234 return;
1235
1236 /* determine gcwq to use */
1237 if (!(wq->flags & WQ_UNBOUND)) {
1238 struct global_cwq *last_gcwq;
1239
1240 if (cpu == WORK_CPU_UNBOUND)
1241 cpu = raw_smp_processor_id();
1242
1243 /*
1244 * It's multi cpu. If @work was previously on a different
1245 * cpu, it might still be running there, in which case the
1246 * work needs to be queued on that cpu to guarantee
1247 * non-reentrancy.
1248 */
1249 gcwq = get_gcwq(cpu);
1250 last_gcwq = get_work_gcwq(work);
1251
1252 if (last_gcwq && last_gcwq != gcwq) {
1253 struct worker *worker;
1254
1255 spin_lock(&last_gcwq->lock);
1256
1257 worker = find_worker_executing_work(last_gcwq, work);
1258
1259 if (worker && worker->current_cwq->wq == wq)
1260 gcwq = last_gcwq;
1261 else {
1262 /* meh... not running there, queue here */
1263 spin_unlock(&last_gcwq->lock);
1264 spin_lock(&gcwq->lock);
1265 }
1266 } else {
1267 spin_lock(&gcwq->lock);
1268 }
1269 } else {
1270 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1271 spin_lock(&gcwq->lock);
1272 }
1273
1274 /* gcwq determined, get cwq and queue */
1275 cwq = get_cwq(gcwq->cpu, wq);
1276 trace_workqueue_queue_work(req_cpu, cwq, work);
1277
1278 if (WARN_ON(!list_empty(&work->entry))) {
1279 spin_unlock(&gcwq->lock);
1280 return;
1281 }
1282
1283 cwq->nr_in_flight[cwq->work_color]++;
1284 work_flags = work_color_to_flags(cwq->work_color);
1285
1286 if (likely(cwq->nr_active < cwq->max_active)) {
1287 trace_workqueue_activate_work(work);
1288 cwq->nr_active++;
1289 worklist = &cwq->pool->worklist;
1290 } else {
1291 work_flags |= WORK_STRUCT_DELAYED;
1292 worklist = &cwq->delayed_works;
1293 }
1294
1295 insert_work(cwq, work, worklist, work_flags);
1296
1297 spin_unlock(&gcwq->lock);
1298 }
1299
1300 /**
1301 * queue_work_on - queue work on specific cpu
1302 * @cpu: CPU number to execute work on
1303 * @wq: workqueue to use
1304 * @work: work to queue
1305 *
1306 * Returns %false if @work was already on a queue, %true otherwise.
1307 *
1308 * We queue the work to a specific CPU, the caller must ensure it
1309 * can't go away.
1310 */
1311 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1312 struct work_struct *work)
1313 {
1314 bool ret = false;
1315 unsigned long flags;
1316
1317 local_irq_save(flags);
1318
1319 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1320 __queue_work(cpu, wq, work);
1321 ret = true;
1322 }
1323
1324 local_irq_restore(flags);
1325 return ret;
1326 }
1327 EXPORT_SYMBOL_GPL(queue_work_on);
1328
1329 /**
1330 * queue_work - queue work on a workqueue
1331 * @wq: workqueue to use
1332 * @work: work to queue
1333 *
1334 * Returns %false if @work was already on a queue, %true otherwise.
1335 *
1336 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1337 * it can be processed by another CPU.
1338 */
1339 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1340 {
1341 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1342 }
1343 EXPORT_SYMBOL_GPL(queue_work);
1344
1345 void delayed_work_timer_fn(unsigned long __data)
1346 {
1347 struct delayed_work *dwork = (struct delayed_work *)__data;
1348 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1349
1350 /* should have been called from irqsafe timer with irq already off */
1351 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1352 }
1353 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1354
1355 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1356 struct delayed_work *dwork, unsigned long delay)
1357 {
1358 struct timer_list *timer = &dwork->timer;
1359 struct work_struct *work = &dwork->work;
1360 unsigned int lcpu;
1361
1362 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1363 timer->data != (unsigned long)dwork);
1364 WARN_ON_ONCE(timer_pending(timer));
1365 WARN_ON_ONCE(!list_empty(&work->entry));
1366
1367 /*
1368 * If @delay is 0, queue @dwork->work immediately. This is for
1369 * both optimization and correctness. The earliest @timer can
1370 * expire is on the closest next tick and delayed_work users depend
1371 * on that there's no such delay when @delay is 0.
1372 */
1373 if (!delay) {
1374 __queue_work(cpu, wq, &dwork->work);
1375 return;
1376 }
1377
1378 timer_stats_timer_set_start_info(&dwork->timer);
1379
1380 /*
1381 * This stores cwq for the moment, for the timer_fn. Note that the
1382 * work's gcwq is preserved to allow reentrance detection for
1383 * delayed works.
1384 */
1385 if (!(wq->flags & WQ_UNBOUND)) {
1386 struct global_cwq *gcwq = get_work_gcwq(work);
1387
1388 /*
1389 * If we cannot get the last gcwq from @work directly,
1390 * select the last CPU such that it avoids unnecessarily
1391 * triggering non-reentrancy check in __queue_work().
1392 */
1393 lcpu = cpu;
1394 if (gcwq)
1395 lcpu = gcwq->cpu;
1396 if (lcpu == WORK_CPU_UNBOUND)
1397 lcpu = raw_smp_processor_id();
1398 } else {
1399 lcpu = WORK_CPU_UNBOUND;
1400 }
1401
1402 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1403
1404 dwork->cpu = cpu;
1405 timer->expires = jiffies + delay;
1406
1407 if (unlikely(cpu != WORK_CPU_UNBOUND))
1408 add_timer_on(timer, cpu);
1409 else
1410 add_timer(timer);
1411 }
1412
1413 /**
1414 * queue_delayed_work_on - queue work on specific CPU after delay
1415 * @cpu: CPU number to execute work on
1416 * @wq: workqueue to use
1417 * @dwork: work to queue
1418 * @delay: number of jiffies to wait before queueing
1419 *
1420 * Returns %false if @work was already on a queue, %true otherwise. If
1421 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1422 * execution.
1423 */
1424 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1425 struct delayed_work *dwork, unsigned long delay)
1426 {
1427 struct work_struct *work = &dwork->work;
1428 bool ret = false;
1429 unsigned long flags;
1430
1431 /* read the comment in __queue_work() */
1432 local_irq_save(flags);
1433
1434 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435 __queue_delayed_work(cpu, wq, dwork, delay);
1436 ret = true;
1437 }
1438
1439 local_irq_restore(flags);
1440 return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1443
1444 /**
1445 * queue_delayed_work - queue work on a workqueue after delay
1446 * @wq: workqueue to use
1447 * @dwork: delayable work to queue
1448 * @delay: number of jiffies to wait before queueing
1449 *
1450 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1451 */
1452 bool queue_delayed_work(struct workqueue_struct *wq,
1453 struct delayed_work *dwork, unsigned long delay)
1454 {
1455 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1456 }
1457 EXPORT_SYMBOL_GPL(queue_delayed_work);
1458
1459 /**
1460 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1461 * @cpu: CPU number to execute work on
1462 * @wq: workqueue to use
1463 * @dwork: work to queue
1464 * @delay: number of jiffies to wait before queueing
1465 *
1466 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1467 * modify @dwork's timer so that it expires after @delay. If @delay is
1468 * zero, @work is guaranteed to be scheduled immediately regardless of its
1469 * current state.
1470 *
1471 * Returns %false if @dwork was idle and queued, %true if @dwork was
1472 * pending and its timer was modified.
1473 *
1474 * This function is safe to call from any context including IRQ handler.
1475 * See try_to_grab_pending() for details.
1476 */
1477 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1478 struct delayed_work *dwork, unsigned long delay)
1479 {
1480 unsigned long flags;
1481 int ret;
1482
1483 do {
1484 ret = try_to_grab_pending(&dwork->work, true, &flags);
1485 } while (unlikely(ret == -EAGAIN));
1486
1487 if (likely(ret >= 0)) {
1488 __queue_delayed_work(cpu, wq, dwork, delay);
1489 local_irq_restore(flags);
1490 }
1491
1492 /* -ENOENT from try_to_grab_pending() becomes %true */
1493 return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1496
1497 /**
1498 * mod_delayed_work - modify delay of or queue a delayed work
1499 * @wq: workqueue to use
1500 * @dwork: work to queue
1501 * @delay: number of jiffies to wait before queueing
1502 *
1503 * mod_delayed_work_on() on local CPU.
1504 */
1505 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1506 unsigned long delay)
1507 {
1508 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1509 }
1510 EXPORT_SYMBOL_GPL(mod_delayed_work);
1511
1512 /**
1513 * worker_enter_idle - enter idle state
1514 * @worker: worker which is entering idle state
1515 *
1516 * @worker is entering idle state. Update stats and idle timer if
1517 * necessary.
1518 *
1519 * LOCKING:
1520 * spin_lock_irq(gcwq->lock).
1521 */
1522 static void worker_enter_idle(struct worker *worker)
1523 {
1524 struct worker_pool *pool = worker->pool;
1525 struct global_cwq *gcwq = pool->gcwq;
1526
1527 BUG_ON(worker->flags & WORKER_IDLE);
1528 BUG_ON(!list_empty(&worker->entry) &&
1529 (worker->hentry.next || worker->hentry.pprev));
1530
1531 /* can't use worker_set_flags(), also called from start_worker() */
1532 worker->flags |= WORKER_IDLE;
1533 pool->nr_idle++;
1534 worker->last_active = jiffies;
1535
1536 /* idle_list is LIFO */
1537 list_add(&worker->entry, &pool->idle_list);
1538
1539 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1540 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1541
1542 /*
1543 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1544 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1545 * nr_running, the warning may trigger spuriously. Check iff
1546 * unbind is not in progress.
1547 */
1548 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1549 pool->nr_workers == pool->nr_idle &&
1550 atomic_read(get_pool_nr_running(pool)));
1551 }
1552
1553 /**
1554 * worker_leave_idle - leave idle state
1555 * @worker: worker which is leaving idle state
1556 *
1557 * @worker is leaving idle state. Update stats.
1558 *
1559 * LOCKING:
1560 * spin_lock_irq(gcwq->lock).
1561 */
1562 static void worker_leave_idle(struct worker *worker)
1563 {
1564 struct worker_pool *pool = worker->pool;
1565
1566 BUG_ON(!(worker->flags & WORKER_IDLE));
1567 worker_clr_flags(worker, WORKER_IDLE);
1568 pool->nr_idle--;
1569 list_del_init(&worker->entry);
1570 }
1571
1572 /**
1573 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1574 * @worker: self
1575 *
1576 * Works which are scheduled while the cpu is online must at least be
1577 * scheduled to a worker which is bound to the cpu so that if they are
1578 * flushed from cpu callbacks while cpu is going down, they are
1579 * guaranteed to execute on the cpu.
1580 *
1581 * This function is to be used by rogue workers and rescuers to bind
1582 * themselves to the target cpu and may race with cpu going down or
1583 * coming online. kthread_bind() can't be used because it may put the
1584 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1585 * verbatim as it's best effort and blocking and gcwq may be
1586 * [dis]associated in the meantime.
1587 *
1588 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1589 * binding against %GCWQ_DISASSOCIATED which is set during
1590 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1591 * enters idle state or fetches works without dropping lock, it can
1592 * guarantee the scheduling requirement described in the first paragraph.
1593 *
1594 * CONTEXT:
1595 * Might sleep. Called without any lock but returns with gcwq->lock
1596 * held.
1597 *
1598 * RETURNS:
1599 * %true if the associated gcwq is online (@worker is successfully
1600 * bound), %false if offline.
1601 */
1602 static bool worker_maybe_bind_and_lock(struct worker *worker)
1603 __acquires(&gcwq->lock)
1604 {
1605 struct global_cwq *gcwq = worker->pool->gcwq;
1606 struct task_struct *task = worker->task;
1607
1608 while (true) {
1609 /*
1610 * The following call may fail, succeed or succeed
1611 * without actually migrating the task to the cpu if
1612 * it races with cpu hotunplug operation. Verify
1613 * against GCWQ_DISASSOCIATED.
1614 */
1615 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1616 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1617
1618 spin_lock_irq(&gcwq->lock);
1619 if (gcwq->flags & GCWQ_DISASSOCIATED)
1620 return false;
1621 if (task_cpu(task) == gcwq->cpu &&
1622 cpumask_equal(&current->cpus_allowed,
1623 get_cpu_mask(gcwq->cpu)))
1624 return true;
1625 spin_unlock_irq(&gcwq->lock);
1626
1627 /*
1628 * We've raced with CPU hot[un]plug. Give it a breather
1629 * and retry migration. cond_resched() is required here;
1630 * otherwise, we might deadlock against cpu_stop trying to
1631 * bring down the CPU on non-preemptive kernel.
1632 */
1633 cpu_relax();
1634 cond_resched();
1635 }
1636 }
1637
1638 /*
1639 * Rebind an idle @worker to its CPU. worker_thread() will test
1640 * list_empty(@worker->entry) before leaving idle and call this function.
1641 */
1642 static void idle_worker_rebind(struct worker *worker)
1643 {
1644 struct global_cwq *gcwq = worker->pool->gcwq;
1645
1646 /* CPU may go down again inbetween, clear UNBOUND only on success */
1647 if (worker_maybe_bind_and_lock(worker))
1648 worker_clr_flags(worker, WORKER_UNBOUND);
1649
1650 /* rebind complete, become available again */
1651 list_add(&worker->entry, &worker->pool->idle_list);
1652 spin_unlock_irq(&gcwq->lock);
1653 }
1654
1655 /*
1656 * Function for @worker->rebind.work used to rebind unbound busy workers to
1657 * the associated cpu which is coming back online. This is scheduled by
1658 * cpu up but can race with other cpu hotplug operations and may be
1659 * executed twice without intervening cpu down.
1660 */
1661 static void busy_worker_rebind_fn(struct work_struct *work)
1662 {
1663 struct worker *worker = container_of(work, struct worker, rebind_work);
1664 struct global_cwq *gcwq = worker->pool->gcwq;
1665
1666 if (worker_maybe_bind_and_lock(worker))
1667 worker_clr_flags(worker, WORKER_UNBOUND);
1668
1669 spin_unlock_irq(&gcwq->lock);
1670 }
1671
1672 /**
1673 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1674 * @gcwq: gcwq of interest
1675 *
1676 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1677 * is different for idle and busy ones.
1678 *
1679 * Idle ones will be removed from the idle_list and woken up. They will
1680 * add themselves back after completing rebind. This ensures that the
1681 * idle_list doesn't contain any unbound workers when re-bound busy workers
1682 * try to perform local wake-ups for concurrency management.
1683 *
1684 * Busy workers can rebind after they finish their current work items.
1685 * Queueing the rebind work item at the head of the scheduled list is
1686 * enough. Note that nr_running will be properly bumped as busy workers
1687 * rebind.
1688 *
1689 * On return, all non-manager workers are scheduled for rebind - see
1690 * manage_workers() for the manager special case. Any idle worker
1691 * including the manager will not appear on @idle_list until rebind is
1692 * complete, making local wake-ups safe.
1693 */
1694 static void rebind_workers(struct global_cwq *gcwq)
1695 {
1696 struct worker_pool *pool;
1697 struct worker *worker, *n;
1698 struct hlist_node *pos;
1699 int i;
1700
1701 lockdep_assert_held(&gcwq->lock);
1702
1703 for_each_worker_pool(pool, gcwq)
1704 lockdep_assert_held(&pool->assoc_mutex);
1705
1706 /* dequeue and kick idle ones */
1707 for_each_worker_pool(pool, gcwq) {
1708 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1709 /*
1710 * idle workers should be off @pool->idle_list
1711 * until rebind is complete to avoid receiving
1712 * premature local wake-ups.
1713 */
1714 list_del_init(&worker->entry);
1715
1716 /*
1717 * worker_thread() will see the above dequeuing
1718 * and call idle_worker_rebind().
1719 */
1720 wake_up_process(worker->task);
1721 }
1722 }
1723
1724 /* rebind busy workers */
1725 for_each_busy_worker(worker, i, pos, gcwq) {
1726 struct work_struct *rebind_work = &worker->rebind_work;
1727 struct workqueue_struct *wq;
1728
1729 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1730 work_data_bits(rebind_work)))
1731 continue;
1732
1733 debug_work_activate(rebind_work);
1734
1735 /*
1736 * wq doesn't really matter but let's keep @worker->pool
1737 * and @cwq->pool consistent for sanity.
1738 */
1739 if (worker_pool_pri(worker->pool))
1740 wq = system_highpri_wq;
1741 else
1742 wq = system_wq;
1743
1744 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1745 worker->scheduled.next,
1746 work_color_to_flags(WORK_NO_COLOR));
1747 }
1748 }
1749
1750 static struct worker *alloc_worker(void)
1751 {
1752 struct worker *worker;
1753
1754 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1755 if (worker) {
1756 INIT_LIST_HEAD(&worker->entry);
1757 INIT_LIST_HEAD(&worker->scheduled);
1758 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1759 /* on creation a worker is in !idle && prep state */
1760 worker->flags = WORKER_PREP;
1761 }
1762 return worker;
1763 }
1764
1765 /**
1766 * create_worker - create a new workqueue worker
1767 * @pool: pool the new worker will belong to
1768 *
1769 * Create a new worker which is bound to @pool. The returned worker
1770 * can be started by calling start_worker() or destroyed using
1771 * destroy_worker().
1772 *
1773 * CONTEXT:
1774 * Might sleep. Does GFP_KERNEL allocations.
1775 *
1776 * RETURNS:
1777 * Pointer to the newly created worker.
1778 */
1779 static struct worker *create_worker(struct worker_pool *pool)
1780 {
1781 struct global_cwq *gcwq = pool->gcwq;
1782 const char *pri = worker_pool_pri(pool) ? "H" : "";
1783 struct worker *worker = NULL;
1784 int id = -1;
1785
1786 spin_lock_irq(&gcwq->lock);
1787 while (ida_get_new(&pool->worker_ida, &id)) {
1788 spin_unlock_irq(&gcwq->lock);
1789 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1790 goto fail;
1791 spin_lock_irq(&gcwq->lock);
1792 }
1793 spin_unlock_irq(&gcwq->lock);
1794
1795 worker = alloc_worker();
1796 if (!worker)
1797 goto fail;
1798
1799 worker->pool = pool;
1800 worker->id = id;
1801
1802 if (gcwq->cpu != WORK_CPU_UNBOUND)
1803 worker->task = kthread_create_on_node(worker_thread,
1804 worker, cpu_to_node(gcwq->cpu),
1805 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1806 else
1807 worker->task = kthread_create(worker_thread, worker,
1808 "kworker/u:%d%s", id, pri);
1809 if (IS_ERR(worker->task))
1810 goto fail;
1811
1812 if (worker_pool_pri(pool))
1813 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1814
1815 /*
1816 * Determine CPU binding of the new worker depending on
1817 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1818 * flag remains stable across this function. See the comments
1819 * above the flag definition for details.
1820 *
1821 * As an unbound worker may later become a regular one if CPU comes
1822 * online, make sure every worker has %PF_THREAD_BOUND set.
1823 */
1824 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1825 kthread_bind(worker->task, gcwq->cpu);
1826 } else {
1827 worker->task->flags |= PF_THREAD_BOUND;
1828 worker->flags |= WORKER_UNBOUND;
1829 }
1830
1831 return worker;
1832 fail:
1833 if (id >= 0) {
1834 spin_lock_irq(&gcwq->lock);
1835 ida_remove(&pool->worker_ida, id);
1836 spin_unlock_irq(&gcwq->lock);
1837 }
1838 kfree(worker);
1839 return NULL;
1840 }
1841
1842 /**
1843 * start_worker - start a newly created worker
1844 * @worker: worker to start
1845 *
1846 * Make the gcwq aware of @worker and start it.
1847 *
1848 * CONTEXT:
1849 * spin_lock_irq(gcwq->lock).
1850 */
1851 static void start_worker(struct worker *worker)
1852 {
1853 worker->flags |= WORKER_STARTED;
1854 worker->pool->nr_workers++;
1855 worker_enter_idle(worker);
1856 wake_up_process(worker->task);
1857 }
1858
1859 /**
1860 * destroy_worker - destroy a workqueue worker
1861 * @worker: worker to be destroyed
1862 *
1863 * Destroy @worker and adjust @gcwq stats accordingly.
1864 *
1865 * CONTEXT:
1866 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1867 */
1868 static void destroy_worker(struct worker *worker)
1869 {
1870 struct worker_pool *pool = worker->pool;
1871 struct global_cwq *gcwq = pool->gcwq;
1872 int id = worker->id;
1873
1874 /* sanity check frenzy */
1875 BUG_ON(worker->current_work);
1876 BUG_ON(!list_empty(&worker->scheduled));
1877
1878 if (worker->flags & WORKER_STARTED)
1879 pool->nr_workers--;
1880 if (worker->flags & WORKER_IDLE)
1881 pool->nr_idle--;
1882
1883 list_del_init(&worker->entry);
1884 worker->flags |= WORKER_DIE;
1885
1886 spin_unlock_irq(&gcwq->lock);
1887
1888 kthread_stop(worker->task);
1889 kfree(worker);
1890
1891 spin_lock_irq(&gcwq->lock);
1892 ida_remove(&pool->worker_ida, id);
1893 }
1894
1895 static void idle_worker_timeout(unsigned long __pool)
1896 {
1897 struct worker_pool *pool = (void *)__pool;
1898 struct global_cwq *gcwq = pool->gcwq;
1899
1900 spin_lock_irq(&gcwq->lock);
1901
1902 if (too_many_workers(pool)) {
1903 struct worker *worker;
1904 unsigned long expires;
1905
1906 /* idle_list is kept in LIFO order, check the last one */
1907 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1908 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1909
1910 if (time_before(jiffies, expires))
1911 mod_timer(&pool->idle_timer, expires);
1912 else {
1913 /* it's been idle for too long, wake up manager */
1914 pool->flags |= POOL_MANAGE_WORKERS;
1915 wake_up_worker(pool);
1916 }
1917 }
1918
1919 spin_unlock_irq(&gcwq->lock);
1920 }
1921
1922 static bool send_mayday(struct work_struct *work)
1923 {
1924 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1925 struct workqueue_struct *wq = cwq->wq;
1926 unsigned int cpu;
1927
1928 if (!(wq->flags & WQ_RESCUER))
1929 return false;
1930
1931 /* mayday mayday mayday */
1932 cpu = cwq->pool->gcwq->cpu;
1933 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1934 if (cpu == WORK_CPU_UNBOUND)
1935 cpu = 0;
1936 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1937 wake_up_process(wq->rescuer->task);
1938 return true;
1939 }
1940
1941 static void gcwq_mayday_timeout(unsigned long __pool)
1942 {
1943 struct worker_pool *pool = (void *)__pool;
1944 struct global_cwq *gcwq = pool->gcwq;
1945 struct work_struct *work;
1946
1947 spin_lock_irq(&gcwq->lock);
1948
1949 if (need_to_create_worker(pool)) {
1950 /*
1951 * We've been trying to create a new worker but
1952 * haven't been successful. We might be hitting an
1953 * allocation deadlock. Send distress signals to
1954 * rescuers.
1955 */
1956 list_for_each_entry(work, &pool->worklist, entry)
1957 send_mayday(work);
1958 }
1959
1960 spin_unlock_irq(&gcwq->lock);
1961
1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1963 }
1964
1965 /**
1966 * maybe_create_worker - create a new worker if necessary
1967 * @pool: pool to create a new worker for
1968 *
1969 * Create a new worker for @pool if necessary. @pool is guaranteed to
1970 * have at least one idle worker on return from this function. If
1971 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1972 * sent to all rescuers with works scheduled on @pool to resolve
1973 * possible allocation deadlock.
1974 *
1975 * On return, need_to_create_worker() is guaranteed to be false and
1976 * may_start_working() true.
1977 *
1978 * LOCKING:
1979 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1980 * multiple times. Does GFP_KERNEL allocations. Called only from
1981 * manager.
1982 *
1983 * RETURNS:
1984 * false if no action was taken and gcwq->lock stayed locked, true
1985 * otherwise.
1986 */
1987 static bool maybe_create_worker(struct worker_pool *pool)
1988 __releases(&gcwq->lock)
1989 __acquires(&gcwq->lock)
1990 {
1991 struct global_cwq *gcwq = pool->gcwq;
1992
1993 if (!need_to_create_worker(pool))
1994 return false;
1995 restart:
1996 spin_unlock_irq(&gcwq->lock);
1997
1998 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1999 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2000
2001 while (true) {
2002 struct worker *worker;
2003
2004 worker = create_worker(pool);
2005 if (worker) {
2006 del_timer_sync(&pool->mayday_timer);
2007 spin_lock_irq(&gcwq->lock);
2008 start_worker(worker);
2009 BUG_ON(need_to_create_worker(pool));
2010 return true;
2011 }
2012
2013 if (!need_to_create_worker(pool))
2014 break;
2015
2016 __set_current_state(TASK_INTERRUPTIBLE);
2017 schedule_timeout(CREATE_COOLDOWN);
2018
2019 if (!need_to_create_worker(pool))
2020 break;
2021 }
2022
2023 del_timer_sync(&pool->mayday_timer);
2024 spin_lock_irq(&gcwq->lock);
2025 if (need_to_create_worker(pool))
2026 goto restart;
2027 return true;
2028 }
2029
2030 /**
2031 * maybe_destroy_worker - destroy workers which have been idle for a while
2032 * @pool: pool to destroy workers for
2033 *
2034 * Destroy @pool workers which have been idle for longer than
2035 * IDLE_WORKER_TIMEOUT.
2036 *
2037 * LOCKING:
2038 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2039 * multiple times. Called only from manager.
2040 *
2041 * RETURNS:
2042 * false if no action was taken and gcwq->lock stayed locked, true
2043 * otherwise.
2044 */
2045 static bool maybe_destroy_workers(struct worker_pool *pool)
2046 {
2047 bool ret = false;
2048
2049 while (too_many_workers(pool)) {
2050 struct worker *worker;
2051 unsigned long expires;
2052
2053 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2054 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2055
2056 if (time_before(jiffies, expires)) {
2057 mod_timer(&pool->idle_timer, expires);
2058 break;
2059 }
2060
2061 destroy_worker(worker);
2062 ret = true;
2063 }
2064
2065 return ret;
2066 }
2067
2068 /**
2069 * manage_workers - manage worker pool
2070 * @worker: self
2071 *
2072 * Assume the manager role and manage gcwq worker pool @worker belongs
2073 * to. At any given time, there can be only zero or one manager per
2074 * gcwq. The exclusion is handled automatically by this function.
2075 *
2076 * The caller can safely start processing works on false return. On
2077 * true return, it's guaranteed that need_to_create_worker() is false
2078 * and may_start_working() is true.
2079 *
2080 * CONTEXT:
2081 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2082 * multiple times. Does GFP_KERNEL allocations.
2083 *
2084 * RETURNS:
2085 * false if no action was taken and gcwq->lock stayed locked, true if
2086 * some action was taken.
2087 */
2088 static bool manage_workers(struct worker *worker)
2089 {
2090 struct worker_pool *pool = worker->pool;
2091 bool ret = false;
2092
2093 if (pool->flags & POOL_MANAGING_WORKERS)
2094 return ret;
2095
2096 pool->flags |= POOL_MANAGING_WORKERS;
2097
2098 /*
2099 * To simplify both worker management and CPU hotplug, hold off
2100 * management while hotplug is in progress. CPU hotplug path can't
2101 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2102 * lead to idle worker depletion (all become busy thinking someone
2103 * else is managing) which in turn can result in deadlock under
2104 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2105 * manager against CPU hotplug.
2106 *
2107 * assoc_mutex would always be free unless CPU hotplug is in
2108 * progress. trylock first without dropping @gcwq->lock.
2109 */
2110 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2111 spin_unlock_irq(&pool->gcwq->lock);
2112 mutex_lock(&pool->assoc_mutex);
2113 /*
2114 * CPU hotplug could have happened while we were waiting
2115 * for assoc_mutex. Hotplug itself can't handle us
2116 * because manager isn't either on idle or busy list, and
2117 * @gcwq's state and ours could have deviated.
2118 *
2119 * As hotplug is now excluded via assoc_mutex, we can
2120 * simply try to bind. It will succeed or fail depending
2121 * on @gcwq's current state. Try it and adjust
2122 * %WORKER_UNBOUND accordingly.
2123 */
2124 if (worker_maybe_bind_and_lock(worker))
2125 worker->flags &= ~WORKER_UNBOUND;
2126 else
2127 worker->flags |= WORKER_UNBOUND;
2128
2129 ret = true;
2130 }
2131
2132 pool->flags &= ~POOL_MANAGE_WORKERS;
2133
2134 /*
2135 * Destroy and then create so that may_start_working() is true
2136 * on return.
2137 */
2138 ret |= maybe_destroy_workers(pool);
2139 ret |= maybe_create_worker(pool);
2140
2141 pool->flags &= ~POOL_MANAGING_WORKERS;
2142 mutex_unlock(&pool->assoc_mutex);
2143 return ret;
2144 }
2145
2146 /**
2147 * process_one_work - process single work
2148 * @worker: self
2149 * @work: work to process
2150 *
2151 * Process @work. This function contains all the logics necessary to
2152 * process a single work including synchronization against and
2153 * interaction with other workers on the same cpu, queueing and
2154 * flushing. As long as context requirement is met, any worker can
2155 * call this function to process a work.
2156 *
2157 * CONTEXT:
2158 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2159 */
2160 static void process_one_work(struct worker *worker, struct work_struct *work)
2161 __releases(&gcwq->lock)
2162 __acquires(&gcwq->lock)
2163 {
2164 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2165 struct worker_pool *pool = worker->pool;
2166 struct global_cwq *gcwq = pool->gcwq;
2167 struct hlist_head *bwh = busy_worker_head(gcwq, work);
2168 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2169 work_func_t f = work->func;
2170 int work_color;
2171 struct worker *collision;
2172 #ifdef CONFIG_LOCKDEP
2173 /*
2174 * It is permissible to free the struct work_struct from
2175 * inside the function that is called from it, this we need to
2176 * take into account for lockdep too. To avoid bogus "held
2177 * lock freed" warnings as well as problems when looking into
2178 * work->lockdep_map, make a copy and use that here.
2179 */
2180 struct lockdep_map lockdep_map;
2181
2182 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2183 #endif
2184 /*
2185 * Ensure we're on the correct CPU. DISASSOCIATED test is
2186 * necessary to avoid spurious warnings from rescuers servicing the
2187 * unbound or a disassociated gcwq.
2188 */
2189 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2190 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2191 raw_smp_processor_id() != gcwq->cpu);
2192
2193 /*
2194 * A single work shouldn't be executed concurrently by
2195 * multiple workers on a single cpu. Check whether anyone is
2196 * already processing the work. If so, defer the work to the
2197 * currently executing one.
2198 */
2199 collision = __find_worker_executing_work(gcwq, bwh, work);
2200 if (unlikely(collision)) {
2201 move_linked_works(work, &collision->scheduled, NULL);
2202 return;
2203 }
2204
2205 /* claim and dequeue */
2206 debug_work_deactivate(work);
2207 hlist_add_head(&worker->hentry, bwh);
2208 worker->current_work = work;
2209 worker->current_cwq = cwq;
2210 work_color = get_work_color(work);
2211
2212 list_del_init(&work->entry);
2213
2214 /*
2215 * CPU intensive works don't participate in concurrency
2216 * management. They're the scheduler's responsibility.
2217 */
2218 if (unlikely(cpu_intensive))
2219 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2220
2221 /*
2222 * Unbound gcwq isn't concurrency managed and work items should be
2223 * executed ASAP. Wake up another worker if necessary.
2224 */
2225 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2226 wake_up_worker(pool);
2227
2228 /*
2229 * Record the last CPU and clear PENDING which should be the last
2230 * update to @work. Also, do this inside @gcwq->lock so that
2231 * PENDING and queued state changes happen together while IRQ is
2232 * disabled.
2233 */
2234 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2235
2236 spin_unlock_irq(&gcwq->lock);
2237
2238 lock_map_acquire_read(&cwq->wq->lockdep_map);
2239 lock_map_acquire(&lockdep_map);
2240 trace_workqueue_execute_start(work);
2241 f(work);
2242 /*
2243 * While we must be careful to not use "work" after this, the trace
2244 * point will only record its address.
2245 */
2246 trace_workqueue_execute_end(work);
2247 lock_map_release(&lockdep_map);
2248 lock_map_release(&cwq->wq->lockdep_map);
2249
2250 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2251 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2252 " last function: %pf\n",
2253 current->comm, preempt_count(), task_pid_nr(current), f);
2254 debug_show_held_locks(current);
2255 dump_stack();
2256 }
2257
2258 spin_lock_irq(&gcwq->lock);
2259
2260 /* clear cpu intensive status */
2261 if (unlikely(cpu_intensive))
2262 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2263
2264 /* we're done with it, release */
2265 hlist_del_init(&worker->hentry);
2266 worker->current_work = NULL;
2267 worker->current_cwq = NULL;
2268 cwq_dec_nr_in_flight(cwq, work_color);
2269 }
2270
2271 /**
2272 * process_scheduled_works - process scheduled works
2273 * @worker: self
2274 *
2275 * Process all scheduled works. Please note that the scheduled list
2276 * may change while processing a work, so this function repeatedly
2277 * fetches a work from the top and executes it.
2278 *
2279 * CONTEXT:
2280 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2281 * multiple times.
2282 */
2283 static void process_scheduled_works(struct worker *worker)
2284 {
2285 while (!list_empty(&worker->scheduled)) {
2286 struct work_struct *work = list_first_entry(&worker->scheduled,
2287 struct work_struct, entry);
2288 process_one_work(worker, work);
2289 }
2290 }
2291
2292 /**
2293 * worker_thread - the worker thread function
2294 * @__worker: self
2295 *
2296 * The gcwq worker thread function. There's a single dynamic pool of
2297 * these per each cpu. These workers process all works regardless of
2298 * their specific target workqueue. The only exception is works which
2299 * belong to workqueues with a rescuer which will be explained in
2300 * rescuer_thread().
2301 */
2302 static int worker_thread(void *__worker)
2303 {
2304 struct worker *worker = __worker;
2305 struct worker_pool *pool = worker->pool;
2306 struct global_cwq *gcwq = pool->gcwq;
2307
2308 /* tell the scheduler that this is a workqueue worker */
2309 worker->task->flags |= PF_WQ_WORKER;
2310 woke_up:
2311 spin_lock_irq(&gcwq->lock);
2312
2313 /* we are off idle list if destruction or rebind is requested */
2314 if (unlikely(list_empty(&worker->entry))) {
2315 spin_unlock_irq(&gcwq->lock);
2316
2317 /* if DIE is set, destruction is requested */
2318 if (worker->flags & WORKER_DIE) {
2319 worker->task->flags &= ~PF_WQ_WORKER;
2320 return 0;
2321 }
2322
2323 /* otherwise, rebind */
2324 idle_worker_rebind(worker);
2325 goto woke_up;
2326 }
2327
2328 worker_leave_idle(worker);
2329 recheck:
2330 /* no more worker necessary? */
2331 if (!need_more_worker(pool))
2332 goto sleep;
2333
2334 /* do we need to manage? */
2335 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2336 goto recheck;
2337
2338 /*
2339 * ->scheduled list can only be filled while a worker is
2340 * preparing to process a work or actually processing it.
2341 * Make sure nobody diddled with it while I was sleeping.
2342 */
2343 BUG_ON(!list_empty(&worker->scheduled));
2344
2345 /*
2346 * When control reaches this point, we're guaranteed to have
2347 * at least one idle worker or that someone else has already
2348 * assumed the manager role.
2349 */
2350 worker_clr_flags(worker, WORKER_PREP);
2351
2352 do {
2353 struct work_struct *work =
2354 list_first_entry(&pool->worklist,
2355 struct work_struct, entry);
2356
2357 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2358 /* optimization path, not strictly necessary */
2359 process_one_work(worker, work);
2360 if (unlikely(!list_empty(&worker->scheduled)))
2361 process_scheduled_works(worker);
2362 } else {
2363 move_linked_works(work, &worker->scheduled, NULL);
2364 process_scheduled_works(worker);
2365 }
2366 } while (keep_working(pool));
2367
2368 worker_set_flags(worker, WORKER_PREP, false);
2369 sleep:
2370 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2371 goto recheck;
2372
2373 /*
2374 * gcwq->lock is held and there's no work to process and no
2375 * need to manage, sleep. Workers are woken up only while
2376 * holding gcwq->lock or from local cpu, so setting the
2377 * current state before releasing gcwq->lock is enough to
2378 * prevent losing any event.
2379 */
2380 worker_enter_idle(worker);
2381 __set_current_state(TASK_INTERRUPTIBLE);
2382 spin_unlock_irq(&gcwq->lock);
2383 schedule();
2384 goto woke_up;
2385 }
2386
2387 /**
2388 * rescuer_thread - the rescuer thread function
2389 * @__wq: the associated workqueue
2390 *
2391 * Workqueue rescuer thread function. There's one rescuer for each
2392 * workqueue which has WQ_RESCUER set.
2393 *
2394 * Regular work processing on a gcwq may block trying to create a new
2395 * worker which uses GFP_KERNEL allocation which has slight chance of
2396 * developing into deadlock if some works currently on the same queue
2397 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2398 * the problem rescuer solves.
2399 *
2400 * When such condition is possible, the gcwq summons rescuers of all
2401 * workqueues which have works queued on the gcwq and let them process
2402 * those works so that forward progress can be guaranteed.
2403 *
2404 * This should happen rarely.
2405 */
2406 static int rescuer_thread(void *__wq)
2407 {
2408 struct workqueue_struct *wq = __wq;
2409 struct worker *rescuer = wq->rescuer;
2410 struct list_head *scheduled = &rescuer->scheduled;
2411 bool is_unbound = wq->flags & WQ_UNBOUND;
2412 unsigned int cpu;
2413
2414 set_user_nice(current, RESCUER_NICE_LEVEL);
2415 repeat:
2416 set_current_state(TASK_INTERRUPTIBLE);
2417
2418 if (kthread_should_stop()) {
2419 __set_current_state(TASK_RUNNING);
2420 return 0;
2421 }
2422
2423 /*
2424 * See whether any cpu is asking for help. Unbounded
2425 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2426 */
2427 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2428 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2429 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2430 struct worker_pool *pool = cwq->pool;
2431 struct global_cwq *gcwq = pool->gcwq;
2432 struct work_struct *work, *n;
2433
2434 __set_current_state(TASK_RUNNING);
2435 mayday_clear_cpu(cpu, wq->mayday_mask);
2436
2437 /* migrate to the target cpu if possible */
2438 rescuer->pool = pool;
2439 worker_maybe_bind_and_lock(rescuer);
2440
2441 /*
2442 * Slurp in all works issued via this workqueue and
2443 * process'em.
2444 */
2445 BUG_ON(!list_empty(&rescuer->scheduled));
2446 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2447 if (get_work_cwq(work) == cwq)
2448 move_linked_works(work, scheduled, &n);
2449
2450 process_scheduled_works(rescuer);
2451
2452 /*
2453 * Leave this gcwq. If keep_working() is %true, notify a
2454 * regular worker; otherwise, we end up with 0 concurrency
2455 * and stalling the execution.
2456 */
2457 if (keep_working(pool))
2458 wake_up_worker(pool);
2459
2460 spin_unlock_irq(&gcwq->lock);
2461 }
2462
2463 schedule();
2464 goto repeat;
2465 }
2466
2467 struct wq_barrier {
2468 struct work_struct work;
2469 struct completion done;
2470 };
2471
2472 static void wq_barrier_func(struct work_struct *work)
2473 {
2474 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2475 complete(&barr->done);
2476 }
2477
2478 /**
2479 * insert_wq_barrier - insert a barrier work
2480 * @cwq: cwq to insert barrier into
2481 * @barr: wq_barrier to insert
2482 * @target: target work to attach @barr to
2483 * @worker: worker currently executing @target, NULL if @target is not executing
2484 *
2485 * @barr is linked to @target such that @barr is completed only after
2486 * @target finishes execution. Please note that the ordering
2487 * guarantee is observed only with respect to @target and on the local
2488 * cpu.
2489 *
2490 * Currently, a queued barrier can't be canceled. This is because
2491 * try_to_grab_pending() can't determine whether the work to be
2492 * grabbed is at the head of the queue and thus can't clear LINKED
2493 * flag of the previous work while there must be a valid next work
2494 * after a work with LINKED flag set.
2495 *
2496 * Note that when @worker is non-NULL, @target may be modified
2497 * underneath us, so we can't reliably determine cwq from @target.
2498 *
2499 * CONTEXT:
2500 * spin_lock_irq(gcwq->lock).
2501 */
2502 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2503 struct wq_barrier *barr,
2504 struct work_struct *target, struct worker *worker)
2505 {
2506 struct list_head *head;
2507 unsigned int linked = 0;
2508
2509 /*
2510 * debugobject calls are safe here even with gcwq->lock locked
2511 * as we know for sure that this will not trigger any of the
2512 * checks and call back into the fixup functions where we
2513 * might deadlock.
2514 */
2515 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2516 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2517 init_completion(&barr->done);
2518
2519 /*
2520 * If @target is currently being executed, schedule the
2521 * barrier to the worker; otherwise, put it after @target.
2522 */
2523 if (worker)
2524 head = worker->scheduled.next;
2525 else {
2526 unsigned long *bits = work_data_bits(target);
2527
2528 head = target->entry.next;
2529 /* there can already be other linked works, inherit and set */
2530 linked = *bits & WORK_STRUCT_LINKED;
2531 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2532 }
2533
2534 debug_work_activate(&barr->work);
2535 insert_work(cwq, &barr->work, head,
2536 work_color_to_flags(WORK_NO_COLOR) | linked);
2537 }
2538
2539 /**
2540 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2541 * @wq: workqueue being flushed
2542 * @flush_color: new flush color, < 0 for no-op
2543 * @work_color: new work color, < 0 for no-op
2544 *
2545 * Prepare cwqs for workqueue flushing.
2546 *
2547 * If @flush_color is non-negative, flush_color on all cwqs should be
2548 * -1. If no cwq has in-flight commands at the specified color, all
2549 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2550 * has in flight commands, its cwq->flush_color is set to
2551 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2552 * wakeup logic is armed and %true is returned.
2553 *
2554 * The caller should have initialized @wq->first_flusher prior to
2555 * calling this function with non-negative @flush_color. If
2556 * @flush_color is negative, no flush color update is done and %false
2557 * is returned.
2558 *
2559 * If @work_color is non-negative, all cwqs should have the same
2560 * work_color which is previous to @work_color and all will be
2561 * advanced to @work_color.
2562 *
2563 * CONTEXT:
2564 * mutex_lock(wq->flush_mutex).
2565 *
2566 * RETURNS:
2567 * %true if @flush_color >= 0 and there's something to flush. %false
2568 * otherwise.
2569 */
2570 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2571 int flush_color, int work_color)
2572 {
2573 bool wait = false;
2574 unsigned int cpu;
2575
2576 if (flush_color >= 0) {
2577 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2578 atomic_set(&wq->nr_cwqs_to_flush, 1);
2579 }
2580
2581 for_each_cwq_cpu(cpu, wq) {
2582 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2583 struct global_cwq *gcwq = cwq->pool->gcwq;
2584
2585 spin_lock_irq(&gcwq->lock);
2586
2587 if (flush_color >= 0) {
2588 BUG_ON(cwq->flush_color != -1);
2589
2590 if (cwq->nr_in_flight[flush_color]) {
2591 cwq->flush_color = flush_color;
2592 atomic_inc(&wq->nr_cwqs_to_flush);
2593 wait = true;
2594 }
2595 }
2596
2597 if (work_color >= 0) {
2598 BUG_ON(work_color != work_next_color(cwq->work_color));
2599 cwq->work_color = work_color;
2600 }
2601
2602 spin_unlock_irq(&gcwq->lock);
2603 }
2604
2605 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2606 complete(&wq->first_flusher->done);
2607
2608 return wait;
2609 }
2610
2611 /**
2612 * flush_workqueue - ensure that any scheduled work has run to completion.
2613 * @wq: workqueue to flush
2614 *
2615 * Forces execution of the workqueue and blocks until its completion.
2616 * This is typically used in driver shutdown handlers.
2617 *
2618 * We sleep until all works which were queued on entry have been handled,
2619 * but we are not livelocked by new incoming ones.
2620 */
2621 void flush_workqueue(struct workqueue_struct *wq)
2622 {
2623 struct wq_flusher this_flusher = {
2624 .list = LIST_HEAD_INIT(this_flusher.list),
2625 .flush_color = -1,
2626 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2627 };
2628 int next_color;
2629
2630 lock_map_acquire(&wq->lockdep_map);
2631 lock_map_release(&wq->lockdep_map);
2632
2633 mutex_lock(&wq->flush_mutex);
2634
2635 /*
2636 * Start-to-wait phase
2637 */
2638 next_color = work_next_color(wq->work_color);
2639
2640 if (next_color != wq->flush_color) {
2641 /*
2642 * Color space is not full. The current work_color
2643 * becomes our flush_color and work_color is advanced
2644 * by one.
2645 */
2646 BUG_ON(!list_empty(&wq->flusher_overflow));
2647 this_flusher.flush_color = wq->work_color;
2648 wq->work_color = next_color;
2649
2650 if (!wq->first_flusher) {
2651 /* no flush in progress, become the first flusher */
2652 BUG_ON(wq->flush_color != this_flusher.flush_color);
2653
2654 wq->first_flusher = &this_flusher;
2655
2656 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2657 wq->work_color)) {
2658 /* nothing to flush, done */
2659 wq->flush_color = next_color;
2660 wq->first_flusher = NULL;
2661 goto out_unlock;
2662 }
2663 } else {
2664 /* wait in queue */
2665 BUG_ON(wq->flush_color == this_flusher.flush_color);
2666 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2667 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2668 }
2669 } else {
2670 /*
2671 * Oops, color space is full, wait on overflow queue.
2672 * The next flush completion will assign us
2673 * flush_color and transfer to flusher_queue.
2674 */
2675 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2676 }
2677
2678 mutex_unlock(&wq->flush_mutex);
2679
2680 wait_for_completion(&this_flusher.done);
2681
2682 /*
2683 * Wake-up-and-cascade phase
2684 *
2685 * First flushers are responsible for cascading flushes and
2686 * handling overflow. Non-first flushers can simply return.
2687 */
2688 if (wq->first_flusher != &this_flusher)
2689 return;
2690
2691 mutex_lock(&wq->flush_mutex);
2692
2693 /* we might have raced, check again with mutex held */
2694 if (wq->first_flusher != &this_flusher)
2695 goto out_unlock;
2696
2697 wq->first_flusher = NULL;
2698
2699 BUG_ON(!list_empty(&this_flusher.list));
2700 BUG_ON(wq->flush_color != this_flusher.flush_color);
2701
2702 while (true) {
2703 struct wq_flusher *next, *tmp;
2704
2705 /* complete all the flushers sharing the current flush color */
2706 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2707 if (next->flush_color != wq->flush_color)
2708 break;
2709 list_del_init(&next->list);
2710 complete(&next->done);
2711 }
2712
2713 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2714 wq->flush_color != work_next_color(wq->work_color));
2715
2716 /* this flush_color is finished, advance by one */
2717 wq->flush_color = work_next_color(wq->flush_color);
2718
2719 /* one color has been freed, handle overflow queue */
2720 if (!list_empty(&wq->flusher_overflow)) {
2721 /*
2722 * Assign the same color to all overflowed
2723 * flushers, advance work_color and append to
2724 * flusher_queue. This is the start-to-wait
2725 * phase for these overflowed flushers.
2726 */
2727 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2728 tmp->flush_color = wq->work_color;
2729
2730 wq->work_color = work_next_color(wq->work_color);
2731
2732 list_splice_tail_init(&wq->flusher_overflow,
2733 &wq->flusher_queue);
2734 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2735 }
2736
2737 if (list_empty(&wq->flusher_queue)) {
2738 BUG_ON(wq->flush_color != wq->work_color);
2739 break;
2740 }
2741
2742 /*
2743 * Need to flush more colors. Make the next flusher
2744 * the new first flusher and arm cwqs.
2745 */
2746 BUG_ON(wq->flush_color == wq->work_color);
2747 BUG_ON(wq->flush_color != next->flush_color);
2748
2749 list_del_init(&next->list);
2750 wq->first_flusher = next;
2751
2752 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2753 break;
2754
2755 /*
2756 * Meh... this color is already done, clear first
2757 * flusher and repeat cascading.
2758 */
2759 wq->first_flusher = NULL;
2760 }
2761
2762 out_unlock:
2763 mutex_unlock(&wq->flush_mutex);
2764 }
2765 EXPORT_SYMBOL_GPL(flush_workqueue);
2766
2767 /**
2768 * drain_workqueue - drain a workqueue
2769 * @wq: workqueue to drain
2770 *
2771 * Wait until the workqueue becomes empty. While draining is in progress,
2772 * only chain queueing is allowed. IOW, only currently pending or running
2773 * work items on @wq can queue further work items on it. @wq is flushed
2774 * repeatedly until it becomes empty. The number of flushing is detemined
2775 * by the depth of chaining and should be relatively short. Whine if it
2776 * takes too long.
2777 */
2778 void drain_workqueue(struct workqueue_struct *wq)
2779 {
2780 unsigned int flush_cnt = 0;
2781 unsigned int cpu;
2782
2783 /*
2784 * __queue_work() needs to test whether there are drainers, is much
2785 * hotter than drain_workqueue() and already looks at @wq->flags.
2786 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2787 */
2788 spin_lock(&workqueue_lock);
2789 if (!wq->nr_drainers++)
2790 wq->flags |= WQ_DRAINING;
2791 spin_unlock(&workqueue_lock);
2792 reflush:
2793 flush_workqueue(wq);
2794
2795 for_each_cwq_cpu(cpu, wq) {
2796 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2797 bool drained;
2798
2799 spin_lock_irq(&cwq->pool->gcwq->lock);
2800 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2801 spin_unlock_irq(&cwq->pool->gcwq->lock);
2802
2803 if (drained)
2804 continue;
2805
2806 if (++flush_cnt == 10 ||
2807 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2808 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2809 wq->name, flush_cnt);
2810 goto reflush;
2811 }
2812
2813 spin_lock(&workqueue_lock);
2814 if (!--wq->nr_drainers)
2815 wq->flags &= ~WQ_DRAINING;
2816 spin_unlock(&workqueue_lock);
2817 }
2818 EXPORT_SYMBOL_GPL(drain_workqueue);
2819
2820 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2821 {
2822 struct worker *worker = NULL;
2823 struct global_cwq *gcwq;
2824 struct cpu_workqueue_struct *cwq;
2825
2826 might_sleep();
2827 gcwq = get_work_gcwq(work);
2828 if (!gcwq)
2829 return false;
2830
2831 spin_lock_irq(&gcwq->lock);
2832 if (!list_empty(&work->entry)) {
2833 /*
2834 * See the comment near try_to_grab_pending()->smp_rmb().
2835 * If it was re-queued to a different gcwq under us, we
2836 * are not going to wait.
2837 */
2838 smp_rmb();
2839 cwq = get_work_cwq(work);
2840 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2841 goto already_gone;
2842 } else {
2843 worker = find_worker_executing_work(gcwq, work);
2844 if (!worker)
2845 goto already_gone;
2846 cwq = worker->current_cwq;
2847 }
2848
2849 insert_wq_barrier(cwq, barr, work, worker);
2850 spin_unlock_irq(&gcwq->lock);
2851
2852 /*
2853 * If @max_active is 1 or rescuer is in use, flushing another work
2854 * item on the same workqueue may lead to deadlock. Make sure the
2855 * flusher is not running on the same workqueue by verifying write
2856 * access.
2857 */
2858 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2859 lock_map_acquire(&cwq->wq->lockdep_map);
2860 else
2861 lock_map_acquire_read(&cwq->wq->lockdep_map);
2862 lock_map_release(&cwq->wq->lockdep_map);
2863
2864 return true;
2865 already_gone:
2866 spin_unlock_irq(&gcwq->lock);
2867 return false;
2868 }
2869
2870 /**
2871 * flush_work - wait for a work to finish executing the last queueing instance
2872 * @work: the work to flush
2873 *
2874 * Wait until @work has finished execution. @work is guaranteed to be idle
2875 * on return if it hasn't been requeued since flush started.
2876 *
2877 * RETURNS:
2878 * %true if flush_work() waited for the work to finish execution,
2879 * %false if it was already idle.
2880 */
2881 bool flush_work(struct work_struct *work)
2882 {
2883 struct wq_barrier barr;
2884
2885 lock_map_acquire(&work->lockdep_map);
2886 lock_map_release(&work->lockdep_map);
2887
2888 if (start_flush_work(work, &barr)) {
2889 wait_for_completion(&barr.done);
2890 destroy_work_on_stack(&barr.work);
2891 return true;
2892 } else {
2893 return false;
2894 }
2895 }
2896 EXPORT_SYMBOL_GPL(flush_work);
2897
2898 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2899 {
2900 unsigned long flags;
2901 int ret;
2902
2903 do {
2904 ret = try_to_grab_pending(work, is_dwork, &flags);
2905 /*
2906 * If someone else is canceling, wait for the same event it
2907 * would be waiting for before retrying.
2908 */
2909 if (unlikely(ret == -ENOENT))
2910 flush_work(work);
2911 } while (unlikely(ret < 0));
2912
2913 /* tell other tasks trying to grab @work to back off */
2914 mark_work_canceling(work);
2915 local_irq_restore(flags);
2916
2917 flush_work(work);
2918 clear_work_data(work);
2919 return ret;
2920 }
2921
2922 /**
2923 * cancel_work_sync - cancel a work and wait for it to finish
2924 * @work: the work to cancel
2925 *
2926 * Cancel @work and wait for its execution to finish. This function
2927 * can be used even if the work re-queues itself or migrates to
2928 * another workqueue. On return from this function, @work is
2929 * guaranteed to be not pending or executing on any CPU.
2930 *
2931 * cancel_work_sync(&delayed_work->work) must not be used for
2932 * delayed_work's. Use cancel_delayed_work_sync() instead.
2933 *
2934 * The caller must ensure that the workqueue on which @work was last
2935 * queued can't be destroyed before this function returns.
2936 *
2937 * RETURNS:
2938 * %true if @work was pending, %false otherwise.
2939 */
2940 bool cancel_work_sync(struct work_struct *work)
2941 {
2942 return __cancel_work_timer(work, false);
2943 }
2944 EXPORT_SYMBOL_GPL(cancel_work_sync);
2945
2946 /**
2947 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2948 * @dwork: the delayed work to flush
2949 *
2950 * Delayed timer is cancelled and the pending work is queued for
2951 * immediate execution. Like flush_work(), this function only
2952 * considers the last queueing instance of @dwork.
2953 *
2954 * RETURNS:
2955 * %true if flush_work() waited for the work to finish execution,
2956 * %false if it was already idle.
2957 */
2958 bool flush_delayed_work(struct delayed_work *dwork)
2959 {
2960 local_irq_disable();
2961 if (del_timer_sync(&dwork->timer))
2962 __queue_work(dwork->cpu,
2963 get_work_cwq(&dwork->work)->wq, &dwork->work);
2964 local_irq_enable();
2965 return flush_work(&dwork->work);
2966 }
2967 EXPORT_SYMBOL(flush_delayed_work);
2968
2969 /**
2970 * cancel_delayed_work - cancel a delayed work
2971 * @dwork: delayed_work to cancel
2972 *
2973 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2974 * and canceled; %false if wasn't pending. Note that the work callback
2975 * function may still be running on return, unless it returns %true and the
2976 * work doesn't re-arm itself. Explicitly flush or use
2977 * cancel_delayed_work_sync() to wait on it.
2978 *
2979 * This function is safe to call from any context including IRQ handler.
2980 */
2981 bool cancel_delayed_work(struct delayed_work *dwork)
2982 {
2983 unsigned long flags;
2984 int ret;
2985
2986 do {
2987 ret = try_to_grab_pending(&dwork->work, true, &flags);
2988 } while (unlikely(ret == -EAGAIN));
2989
2990 if (unlikely(ret < 0))
2991 return false;
2992
2993 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2994 local_irq_restore(flags);
2995 return ret;
2996 }
2997 EXPORT_SYMBOL(cancel_delayed_work);
2998
2999 /**
3000 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3001 * @dwork: the delayed work cancel
3002 *
3003 * This is cancel_work_sync() for delayed works.
3004 *
3005 * RETURNS:
3006 * %true if @dwork was pending, %false otherwise.
3007 */
3008 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3009 {
3010 return __cancel_work_timer(&dwork->work, true);
3011 }
3012 EXPORT_SYMBOL(cancel_delayed_work_sync);
3013
3014 /**
3015 * schedule_work_on - put work task on a specific cpu
3016 * @cpu: cpu to put the work task on
3017 * @work: job to be done
3018 *
3019 * This puts a job on a specific cpu
3020 */
3021 bool schedule_work_on(int cpu, struct work_struct *work)
3022 {
3023 return queue_work_on(cpu, system_wq, work);
3024 }
3025 EXPORT_SYMBOL(schedule_work_on);
3026
3027 /**
3028 * schedule_work - put work task in global workqueue
3029 * @work: job to be done
3030 *
3031 * Returns %false if @work was already on the kernel-global workqueue and
3032 * %true otherwise.
3033 *
3034 * This puts a job in the kernel-global workqueue if it was not already
3035 * queued and leaves it in the same position on the kernel-global
3036 * workqueue otherwise.
3037 */
3038 bool schedule_work(struct work_struct *work)
3039 {
3040 return queue_work(system_wq, work);
3041 }
3042 EXPORT_SYMBOL(schedule_work);
3043
3044 /**
3045 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3046 * @cpu: cpu to use
3047 * @dwork: job to be done
3048 * @delay: number of jiffies to wait
3049 *
3050 * After waiting for a given time this puts a job in the kernel-global
3051 * workqueue on the specified CPU.
3052 */
3053 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3054 unsigned long delay)
3055 {
3056 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3057 }
3058 EXPORT_SYMBOL(schedule_delayed_work_on);
3059
3060 /**
3061 * schedule_delayed_work - put work task in global workqueue after delay
3062 * @dwork: job to be done
3063 * @delay: number of jiffies to wait or 0 for immediate execution
3064 *
3065 * After waiting for a given time this puts a job in the kernel-global
3066 * workqueue.
3067 */
3068 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3069 {
3070 return queue_delayed_work(system_wq, dwork, delay);
3071 }
3072 EXPORT_SYMBOL(schedule_delayed_work);
3073
3074 /**
3075 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3076 * @func: the function to call
3077 *
3078 * schedule_on_each_cpu() executes @func on each online CPU using the
3079 * system workqueue and blocks until all CPUs have completed.
3080 * schedule_on_each_cpu() is very slow.
3081 *
3082 * RETURNS:
3083 * 0 on success, -errno on failure.
3084 */
3085 int schedule_on_each_cpu(work_func_t func)
3086 {
3087 int cpu;
3088 struct work_struct __percpu *works;
3089
3090 works = alloc_percpu(struct work_struct);
3091 if (!works)
3092 return -ENOMEM;
3093
3094 get_online_cpus();
3095
3096 for_each_online_cpu(cpu) {
3097 struct work_struct *work = per_cpu_ptr(works, cpu);
3098
3099 INIT_WORK(work, func);
3100 schedule_work_on(cpu, work);
3101 }
3102
3103 for_each_online_cpu(cpu)
3104 flush_work(per_cpu_ptr(works, cpu));
3105
3106 put_online_cpus();
3107 free_percpu(works);
3108 return 0;
3109 }
3110
3111 /**
3112 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3113 *
3114 * Forces execution of the kernel-global workqueue and blocks until its
3115 * completion.
3116 *
3117 * Think twice before calling this function! It's very easy to get into
3118 * trouble if you don't take great care. Either of the following situations
3119 * will lead to deadlock:
3120 *
3121 * One of the work items currently on the workqueue needs to acquire
3122 * a lock held by your code or its caller.
3123 *
3124 * Your code is running in the context of a work routine.
3125 *
3126 * They will be detected by lockdep when they occur, but the first might not
3127 * occur very often. It depends on what work items are on the workqueue and
3128 * what locks they need, which you have no control over.
3129 *
3130 * In most situations flushing the entire workqueue is overkill; you merely
3131 * need to know that a particular work item isn't queued and isn't running.
3132 * In such cases you should use cancel_delayed_work_sync() or
3133 * cancel_work_sync() instead.
3134 */
3135 void flush_scheduled_work(void)
3136 {
3137 flush_workqueue(system_wq);
3138 }
3139 EXPORT_SYMBOL(flush_scheduled_work);
3140
3141 /**
3142 * execute_in_process_context - reliably execute the routine with user context
3143 * @fn: the function to execute
3144 * @ew: guaranteed storage for the execute work structure (must
3145 * be available when the work executes)
3146 *
3147 * Executes the function immediately if process context is available,
3148 * otherwise schedules the function for delayed execution.
3149 *
3150 * Returns: 0 - function was executed
3151 * 1 - function was scheduled for execution
3152 */
3153 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3154 {
3155 if (!in_interrupt()) {
3156 fn(&ew->work);
3157 return 0;
3158 }
3159
3160 INIT_WORK(&ew->work, fn);
3161 schedule_work(&ew->work);
3162
3163 return 1;
3164 }
3165 EXPORT_SYMBOL_GPL(execute_in_process_context);
3166
3167 int keventd_up(void)
3168 {
3169 return system_wq != NULL;
3170 }
3171
3172 static int alloc_cwqs(struct workqueue_struct *wq)
3173 {
3174 /*
3175 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3176 * Make sure that the alignment isn't lower than that of
3177 * unsigned long long.
3178 */
3179 const size_t size = sizeof(struct cpu_workqueue_struct);
3180 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3181 __alignof__(unsigned long long));
3182
3183 if (!(wq->flags & WQ_UNBOUND))
3184 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3185 else {
3186 void *ptr;
3187
3188 /*
3189 * Allocate enough room to align cwq and put an extra
3190 * pointer at the end pointing back to the originally
3191 * allocated pointer which will be used for free.
3192 */
3193 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3194 if (ptr) {
3195 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3196 *(void **)(wq->cpu_wq.single + 1) = ptr;
3197 }
3198 }
3199
3200 /* just in case, make sure it's actually aligned */
3201 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3202 return wq->cpu_wq.v ? 0 : -ENOMEM;
3203 }
3204
3205 static void free_cwqs(struct workqueue_struct *wq)
3206 {
3207 if (!(wq->flags & WQ_UNBOUND))
3208 free_percpu(wq->cpu_wq.pcpu);
3209 else if (wq->cpu_wq.single) {
3210 /* the pointer to free is stored right after the cwq */
3211 kfree(*(void **)(wq->cpu_wq.single + 1));
3212 }
3213 }
3214
3215 static int wq_clamp_max_active(int max_active, unsigned int flags,
3216 const char *name)
3217 {
3218 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3219
3220 if (max_active < 1 || max_active > lim)
3221 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3222 max_active, name, 1, lim);
3223
3224 return clamp_val(max_active, 1, lim);
3225 }
3226
3227 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3228 unsigned int flags,
3229 int max_active,
3230 struct lock_class_key *key,
3231 const char *lock_name, ...)
3232 {
3233 va_list args, args1;
3234 struct workqueue_struct *wq;
3235 unsigned int cpu;
3236 size_t namelen;
3237
3238 /* determine namelen, allocate wq and format name */
3239 va_start(args, lock_name);
3240 va_copy(args1, args);
3241 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3242
3243 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3244 if (!wq)
3245 goto err;
3246
3247 vsnprintf(wq->name, namelen, fmt, args1);
3248 va_end(args);
3249 va_end(args1);
3250
3251 /*
3252 * Workqueues which may be used during memory reclaim should
3253 * have a rescuer to guarantee forward progress.
3254 */
3255 if (flags & WQ_MEM_RECLAIM)
3256 flags |= WQ_RESCUER;
3257
3258 max_active = max_active ?: WQ_DFL_ACTIVE;
3259 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3260
3261 /* init wq */
3262 wq->flags = flags;
3263 wq->saved_max_active = max_active;
3264 mutex_init(&wq->flush_mutex);
3265 atomic_set(&wq->nr_cwqs_to_flush, 0);
3266 INIT_LIST_HEAD(&wq->flusher_queue);
3267 INIT_LIST_HEAD(&wq->flusher_overflow);
3268
3269 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3270 INIT_LIST_HEAD(&wq->list);
3271
3272 if (alloc_cwqs(wq) < 0)
3273 goto err;
3274
3275 for_each_cwq_cpu(cpu, wq) {
3276 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3277 struct global_cwq *gcwq = get_gcwq(cpu);
3278 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3279
3280 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3281 cwq->pool = &gcwq->pools[pool_idx];
3282 cwq->wq = wq;
3283 cwq->flush_color = -1;
3284 cwq->max_active = max_active;
3285 INIT_LIST_HEAD(&cwq->delayed_works);
3286 }
3287
3288 if (flags & WQ_RESCUER) {
3289 struct worker *rescuer;
3290
3291 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3292 goto err;
3293
3294 wq->rescuer = rescuer = alloc_worker();
3295 if (!rescuer)
3296 goto err;
3297
3298 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3299 wq->name);
3300 if (IS_ERR(rescuer->task))
3301 goto err;
3302
3303 rescuer->task->flags |= PF_THREAD_BOUND;
3304 wake_up_process(rescuer->task);
3305 }
3306
3307 /*
3308 * workqueue_lock protects global freeze state and workqueues
3309 * list. Grab it, set max_active accordingly and add the new
3310 * workqueue to workqueues list.
3311 */
3312 spin_lock(&workqueue_lock);
3313
3314 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3315 for_each_cwq_cpu(cpu, wq)
3316 get_cwq(cpu, wq)->max_active = 0;
3317
3318 list_add(&wq->list, &workqueues);
3319
3320 spin_unlock(&workqueue_lock);
3321
3322 return wq;
3323 err:
3324 if (wq) {
3325 free_cwqs(wq);
3326 free_mayday_mask(wq->mayday_mask);
3327 kfree(wq->rescuer);
3328 kfree(wq);
3329 }
3330 return NULL;
3331 }
3332 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3333
3334 /**
3335 * destroy_workqueue - safely terminate a workqueue
3336 * @wq: target workqueue
3337 *
3338 * Safely destroy a workqueue. All work currently pending will be done first.
3339 */
3340 void destroy_workqueue(struct workqueue_struct *wq)
3341 {
3342 unsigned int cpu;
3343
3344 /* drain it before proceeding with destruction */
3345 drain_workqueue(wq);
3346
3347 /*
3348 * wq list is used to freeze wq, remove from list after
3349 * flushing is complete in case freeze races us.
3350 */
3351 spin_lock(&workqueue_lock);
3352 list_del(&wq->list);
3353 spin_unlock(&workqueue_lock);
3354
3355 /* sanity check */
3356 for_each_cwq_cpu(cpu, wq) {
3357 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3358 int i;
3359
3360 for (i = 0; i < WORK_NR_COLORS; i++)
3361 BUG_ON(cwq->nr_in_flight[i]);
3362 BUG_ON(cwq->nr_active);
3363 BUG_ON(!list_empty(&cwq->delayed_works));
3364 }
3365
3366 if (wq->flags & WQ_RESCUER) {
3367 kthread_stop(wq->rescuer->task);
3368 free_mayday_mask(wq->mayday_mask);
3369 kfree(wq->rescuer);
3370 }
3371
3372 free_cwqs(wq);
3373 kfree(wq);
3374 }
3375 EXPORT_SYMBOL_GPL(destroy_workqueue);
3376
3377 /**
3378 * cwq_set_max_active - adjust max_active of a cwq
3379 * @cwq: target cpu_workqueue_struct
3380 * @max_active: new max_active value.
3381 *
3382 * Set @cwq->max_active to @max_active and activate delayed works if
3383 * increased.
3384 *
3385 * CONTEXT:
3386 * spin_lock_irq(gcwq->lock).
3387 */
3388 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3389 {
3390 cwq->max_active = max_active;
3391
3392 while (!list_empty(&cwq->delayed_works) &&
3393 cwq->nr_active < cwq->max_active)
3394 cwq_activate_first_delayed(cwq);
3395 }
3396
3397 /**
3398 * workqueue_set_max_active - adjust max_active of a workqueue
3399 * @wq: target workqueue
3400 * @max_active: new max_active value.
3401 *
3402 * Set max_active of @wq to @max_active.
3403 *
3404 * CONTEXT:
3405 * Don't call from IRQ context.
3406 */
3407 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3408 {
3409 unsigned int cpu;
3410
3411 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3412
3413 spin_lock(&workqueue_lock);
3414
3415 wq->saved_max_active = max_active;
3416
3417 for_each_cwq_cpu(cpu, wq) {
3418 struct global_cwq *gcwq = get_gcwq(cpu);
3419
3420 spin_lock_irq(&gcwq->lock);
3421
3422 if (!(wq->flags & WQ_FREEZABLE) ||
3423 !(gcwq->flags & GCWQ_FREEZING))
3424 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3425
3426 spin_unlock_irq(&gcwq->lock);
3427 }
3428
3429 spin_unlock(&workqueue_lock);
3430 }
3431 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3432
3433 /**
3434 * workqueue_congested - test whether a workqueue is congested
3435 * @cpu: CPU in question
3436 * @wq: target workqueue
3437 *
3438 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3439 * no synchronization around this function and the test result is
3440 * unreliable and only useful as advisory hints or for debugging.
3441 *
3442 * RETURNS:
3443 * %true if congested, %false otherwise.
3444 */
3445 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3446 {
3447 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3448
3449 return !list_empty(&cwq->delayed_works);
3450 }
3451 EXPORT_SYMBOL_GPL(workqueue_congested);
3452
3453 /**
3454 * work_cpu - return the last known associated cpu for @work
3455 * @work: the work of interest
3456 *
3457 * RETURNS:
3458 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3459 */
3460 unsigned int work_cpu(struct work_struct *work)
3461 {
3462 struct global_cwq *gcwq = get_work_gcwq(work);
3463
3464 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3465 }
3466 EXPORT_SYMBOL_GPL(work_cpu);
3467
3468 /**
3469 * work_busy - test whether a work is currently pending or running
3470 * @work: the work to be tested
3471 *
3472 * Test whether @work is currently pending or running. There is no
3473 * synchronization around this function and the test result is
3474 * unreliable and only useful as advisory hints or for debugging.
3475 * Especially for reentrant wqs, the pending state might hide the
3476 * running state.
3477 *
3478 * RETURNS:
3479 * OR'd bitmask of WORK_BUSY_* bits.
3480 */
3481 unsigned int work_busy(struct work_struct *work)
3482 {
3483 struct global_cwq *gcwq = get_work_gcwq(work);
3484 unsigned long flags;
3485 unsigned int ret = 0;
3486
3487 if (!gcwq)
3488 return false;
3489
3490 spin_lock_irqsave(&gcwq->lock, flags);
3491
3492 if (work_pending(work))
3493 ret |= WORK_BUSY_PENDING;
3494 if (find_worker_executing_work(gcwq, work))
3495 ret |= WORK_BUSY_RUNNING;
3496
3497 spin_unlock_irqrestore(&gcwq->lock, flags);
3498
3499 return ret;
3500 }
3501 EXPORT_SYMBOL_GPL(work_busy);
3502
3503 /*
3504 * CPU hotplug.
3505 *
3506 * There are two challenges in supporting CPU hotplug. Firstly, there
3507 * are a lot of assumptions on strong associations among work, cwq and
3508 * gcwq which make migrating pending and scheduled works very
3509 * difficult to implement without impacting hot paths. Secondly,
3510 * gcwqs serve mix of short, long and very long running works making
3511 * blocked draining impractical.
3512 *
3513 * This is solved by allowing a gcwq to be disassociated from the CPU
3514 * running as an unbound one and allowing it to be reattached later if the
3515 * cpu comes back online.
3516 */
3517
3518 /* claim manager positions of all pools */
3519 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3520 {
3521 struct worker_pool *pool;
3522
3523 for_each_worker_pool(pool, gcwq)
3524 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3525 spin_lock_irq(&gcwq->lock);
3526 }
3527
3528 /* release manager positions */
3529 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3530 {
3531 struct worker_pool *pool;
3532
3533 spin_unlock_irq(&gcwq->lock);
3534 for_each_worker_pool(pool, gcwq)
3535 mutex_unlock(&pool->assoc_mutex);
3536 }
3537
3538 static void gcwq_unbind_fn(struct work_struct *work)
3539 {
3540 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3541 struct worker_pool *pool;
3542 struct worker *worker;
3543 struct hlist_node *pos;
3544 int i;
3545
3546 BUG_ON(gcwq->cpu != smp_processor_id());
3547
3548 gcwq_claim_assoc_and_lock(gcwq);
3549
3550 /*
3551 * We've claimed all manager positions. Make all workers unbound
3552 * and set DISASSOCIATED. Before this, all workers except for the
3553 * ones which are still executing works from before the last CPU
3554 * down must be on the cpu. After this, they may become diasporas.
3555 */
3556 for_each_worker_pool(pool, gcwq)
3557 list_for_each_entry(worker, &pool->idle_list, entry)
3558 worker->flags |= WORKER_UNBOUND;
3559
3560 for_each_busy_worker(worker, i, pos, gcwq)
3561 worker->flags |= WORKER_UNBOUND;
3562
3563 gcwq->flags |= GCWQ_DISASSOCIATED;
3564
3565 gcwq_release_assoc_and_unlock(gcwq);
3566
3567 /*
3568 * Call schedule() so that we cross rq->lock and thus can guarantee
3569 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3570 * as scheduler callbacks may be invoked from other cpus.
3571 */
3572 schedule();
3573
3574 /*
3575 * Sched callbacks are disabled now. Zap nr_running. After this,
3576 * nr_running stays zero and need_more_worker() and keep_working()
3577 * are always true as long as the worklist is not empty. @gcwq now
3578 * behaves as unbound (in terms of concurrency management) gcwq
3579 * which is served by workers tied to the CPU.
3580 *
3581 * On return from this function, the current worker would trigger
3582 * unbound chain execution of pending work items if other workers
3583 * didn't already.
3584 */
3585 for_each_worker_pool(pool, gcwq)
3586 atomic_set(get_pool_nr_running(pool), 0);
3587 }
3588
3589 /*
3590 * Workqueues should be brought up before normal priority CPU notifiers.
3591 * This will be registered high priority CPU notifier.
3592 */
3593 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3594 unsigned long action,
3595 void *hcpu)
3596 {
3597 unsigned int cpu = (unsigned long)hcpu;
3598 struct global_cwq *gcwq = get_gcwq(cpu);
3599 struct worker_pool *pool;
3600
3601 switch (action & ~CPU_TASKS_FROZEN) {
3602 case CPU_UP_PREPARE:
3603 for_each_worker_pool(pool, gcwq) {
3604 struct worker *worker;
3605
3606 if (pool->nr_workers)
3607 continue;
3608
3609 worker = create_worker(pool);
3610 if (!worker)
3611 return NOTIFY_BAD;
3612
3613 spin_lock_irq(&gcwq->lock);
3614 start_worker(worker);
3615 spin_unlock_irq(&gcwq->lock);
3616 }
3617 break;
3618
3619 case CPU_DOWN_FAILED:
3620 case CPU_ONLINE:
3621 gcwq_claim_assoc_and_lock(gcwq);
3622 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3623 rebind_workers(gcwq);
3624 gcwq_release_assoc_and_unlock(gcwq);
3625 break;
3626 }
3627 return NOTIFY_OK;
3628 }
3629
3630 /*
3631 * Workqueues should be brought down after normal priority CPU notifiers.
3632 * This will be registered as low priority CPU notifier.
3633 */
3634 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3635 unsigned long action,
3636 void *hcpu)
3637 {
3638 unsigned int cpu = (unsigned long)hcpu;
3639 struct work_struct unbind_work;
3640
3641 switch (action & ~CPU_TASKS_FROZEN) {
3642 case CPU_DOWN_PREPARE:
3643 /* unbinding should happen on the local CPU */
3644 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3645 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3646 flush_work(&unbind_work);
3647 break;
3648 }
3649 return NOTIFY_OK;
3650 }
3651
3652 #ifdef CONFIG_SMP
3653
3654 struct work_for_cpu {
3655 struct work_struct work;
3656 long (*fn)(void *);
3657 void *arg;
3658 long ret;
3659 };
3660
3661 static void work_for_cpu_fn(struct work_struct *work)
3662 {
3663 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3664
3665 wfc->ret = wfc->fn(wfc->arg);
3666 }
3667
3668 /**
3669 * work_on_cpu - run a function in user context on a particular cpu
3670 * @cpu: the cpu to run on
3671 * @fn: the function to run
3672 * @arg: the function arg
3673 *
3674 * This will return the value @fn returns.
3675 * It is up to the caller to ensure that the cpu doesn't go offline.
3676 * The caller must not hold any locks which would prevent @fn from completing.
3677 */
3678 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3679 {
3680 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3681
3682 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3683 schedule_work_on(cpu, &wfc.work);
3684 flush_work(&wfc.work);
3685 return wfc.ret;
3686 }
3687 EXPORT_SYMBOL_GPL(work_on_cpu);
3688 #endif /* CONFIG_SMP */
3689
3690 #ifdef CONFIG_FREEZER
3691
3692 /**
3693 * freeze_workqueues_begin - begin freezing workqueues
3694 *
3695 * Start freezing workqueues. After this function returns, all freezable
3696 * workqueues will queue new works to their frozen_works list instead of
3697 * gcwq->worklist.
3698 *
3699 * CONTEXT:
3700 * Grabs and releases workqueue_lock and gcwq->lock's.
3701 */
3702 void freeze_workqueues_begin(void)
3703 {
3704 unsigned int cpu;
3705
3706 spin_lock(&workqueue_lock);
3707
3708 BUG_ON(workqueue_freezing);
3709 workqueue_freezing = true;
3710
3711 for_each_gcwq_cpu(cpu) {
3712 struct global_cwq *gcwq = get_gcwq(cpu);
3713 struct workqueue_struct *wq;
3714
3715 spin_lock_irq(&gcwq->lock);
3716
3717 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3718 gcwq->flags |= GCWQ_FREEZING;
3719
3720 list_for_each_entry(wq, &workqueues, list) {
3721 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3722
3723 if (cwq && wq->flags & WQ_FREEZABLE)
3724 cwq->max_active = 0;
3725 }
3726
3727 spin_unlock_irq(&gcwq->lock);
3728 }
3729
3730 spin_unlock(&workqueue_lock);
3731 }
3732
3733 /**
3734 * freeze_workqueues_busy - are freezable workqueues still busy?
3735 *
3736 * Check whether freezing is complete. This function must be called
3737 * between freeze_workqueues_begin() and thaw_workqueues().
3738 *
3739 * CONTEXT:
3740 * Grabs and releases workqueue_lock.
3741 *
3742 * RETURNS:
3743 * %true if some freezable workqueues are still busy. %false if freezing
3744 * is complete.
3745 */
3746 bool freeze_workqueues_busy(void)
3747 {
3748 unsigned int cpu;
3749 bool busy = false;
3750
3751 spin_lock(&workqueue_lock);
3752
3753 BUG_ON(!workqueue_freezing);
3754
3755 for_each_gcwq_cpu(cpu) {
3756 struct workqueue_struct *wq;
3757 /*
3758 * nr_active is monotonically decreasing. It's safe
3759 * to peek without lock.
3760 */
3761 list_for_each_entry(wq, &workqueues, list) {
3762 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3763
3764 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3765 continue;
3766
3767 BUG_ON(cwq->nr_active < 0);
3768 if (cwq->nr_active) {
3769 busy = true;
3770 goto out_unlock;
3771 }
3772 }
3773 }
3774 out_unlock:
3775 spin_unlock(&workqueue_lock);
3776 return busy;
3777 }
3778
3779 /**
3780 * thaw_workqueues - thaw workqueues
3781 *
3782 * Thaw workqueues. Normal queueing is restored and all collected
3783 * frozen works are transferred to their respective gcwq worklists.
3784 *
3785 * CONTEXT:
3786 * Grabs and releases workqueue_lock and gcwq->lock's.
3787 */
3788 void thaw_workqueues(void)
3789 {
3790 unsigned int cpu;
3791
3792 spin_lock(&workqueue_lock);
3793
3794 if (!workqueue_freezing)
3795 goto out_unlock;
3796
3797 for_each_gcwq_cpu(cpu) {
3798 struct global_cwq *gcwq = get_gcwq(cpu);
3799 struct worker_pool *pool;
3800 struct workqueue_struct *wq;
3801
3802 spin_lock_irq(&gcwq->lock);
3803
3804 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3805 gcwq->flags &= ~GCWQ_FREEZING;
3806
3807 list_for_each_entry(wq, &workqueues, list) {
3808 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3809
3810 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3811 continue;
3812
3813 /* restore max_active and repopulate worklist */
3814 cwq_set_max_active(cwq, wq->saved_max_active);
3815 }
3816
3817 for_each_worker_pool(pool, gcwq)
3818 wake_up_worker(pool);
3819
3820 spin_unlock_irq(&gcwq->lock);
3821 }
3822
3823 workqueue_freezing = false;
3824 out_unlock:
3825 spin_unlock(&workqueue_lock);
3826 }
3827 #endif /* CONFIG_FREEZER */
3828
3829 static int __init init_workqueues(void)
3830 {
3831 unsigned int cpu;
3832 int i;
3833
3834 /* make sure we have enough bits for OFFQ CPU number */
3835 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3836 WORK_CPU_LAST);
3837
3838 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3839 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3840
3841 /* initialize gcwqs */
3842 for_each_gcwq_cpu(cpu) {
3843 struct global_cwq *gcwq = get_gcwq(cpu);
3844 struct worker_pool *pool;
3845
3846 spin_lock_init(&gcwq->lock);
3847 gcwq->cpu = cpu;
3848 gcwq->flags |= GCWQ_DISASSOCIATED;
3849
3850 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3851 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3852
3853 for_each_worker_pool(pool, gcwq) {
3854 pool->gcwq = gcwq;
3855 INIT_LIST_HEAD(&pool->worklist);
3856 INIT_LIST_HEAD(&pool->idle_list);
3857
3858 init_timer_deferrable(&pool->idle_timer);
3859 pool->idle_timer.function = idle_worker_timeout;
3860 pool->idle_timer.data = (unsigned long)pool;
3861
3862 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3863 (unsigned long)pool);
3864
3865 mutex_init(&pool->assoc_mutex);
3866 ida_init(&pool->worker_ida);
3867 }
3868 }
3869
3870 /* create the initial worker */
3871 for_each_online_gcwq_cpu(cpu) {
3872 struct global_cwq *gcwq = get_gcwq(cpu);
3873 struct worker_pool *pool;
3874
3875 if (cpu != WORK_CPU_UNBOUND)
3876 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3877
3878 for_each_worker_pool(pool, gcwq) {
3879 struct worker *worker;
3880
3881 worker = create_worker(pool);
3882 BUG_ON(!worker);
3883 spin_lock_irq(&gcwq->lock);
3884 start_worker(worker);
3885 spin_unlock_irq(&gcwq->lock);
3886 }
3887 }
3888
3889 system_wq = alloc_workqueue("events", 0, 0);
3890 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3891 system_long_wq = alloc_workqueue("events_long", 0, 0);
3892 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3893 WQ_UNBOUND_MAX_ACTIVE);
3894 system_freezable_wq = alloc_workqueue("events_freezable",
3895 WQ_FREEZABLE, 0);
3896 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3897 !system_unbound_wq || !system_freezable_wq);
3898 return 0;
3899 }
3900 early_initcall(init_workqueues);