e080ba863ae33167ebaf8aecd0b9588a2a9b6acf
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / user.c
1 /*
2 * The "user cache".
3 *
4 * (C) Copyright 1991-2000 Linus Torvalds
5 *
6 * We have a per-user structure to keep track of how many
7 * processes, files etc the user has claimed, in order to be
8 * able to have per-user limits for system resources.
9 */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/bitops.h>
15 #include <linux/key.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/user_namespace.h>
19
20 /*
21 * UID task count cache, to get fast user lookup in "alloc_uid"
22 * when changing user ID's (ie setuid() and friends).
23 */
24
25 #define UIDHASH_MASK (UIDHASH_SZ - 1)
26 #define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
27 #define uidhashentry(ns, uid) ((ns)->uidhash_table + __uidhashfn((uid)))
28
29 static struct kmem_cache *uid_cachep;
30
31 /*
32 * The uidhash_lock is mostly taken from process context, but it is
33 * occasionally also taken from softirq/tasklet context, when
34 * task-structs get RCU-freed. Hence all locking must be softirq-safe.
35 * But free_uid() is also called with local interrupts disabled, and running
36 * local_bh_enable() with local interrupts disabled is an error - we'll run
37 * softirq callbacks, and they can unconditionally enable interrupts, and
38 * the caller of free_uid() didn't expect that..
39 */
40 static DEFINE_SPINLOCK(uidhash_lock);
41
42 struct user_struct root_user = {
43 .__count = ATOMIC_INIT(1),
44 .processes = ATOMIC_INIT(1),
45 .files = ATOMIC_INIT(0),
46 .sigpending = ATOMIC_INIT(0),
47 .mq_bytes = 0,
48 .locked_shm = 0,
49 #ifdef CONFIG_KEYS
50 .uid_keyring = &root_user_keyring,
51 .session_keyring = &root_session_keyring,
52 #endif
53 };
54
55 /*
56 * These routines must be called with the uidhash spinlock held!
57 */
58 static inline void uid_hash_insert(struct user_struct *up, struct list_head *hashent)
59 {
60 list_add(&up->uidhash_list, hashent);
61 }
62
63 static inline void uid_hash_remove(struct user_struct *up)
64 {
65 list_del(&up->uidhash_list);
66 }
67
68 static inline struct user_struct *uid_hash_find(uid_t uid, struct list_head *hashent)
69 {
70 struct user_struct *user;
71
72 list_for_each_entry(user, hashent, uidhash_list) {
73 if(user->uid == uid) {
74 atomic_inc(&user->__count);
75 return user;
76 }
77 }
78
79 return NULL;
80 }
81
82 /*
83 * Locate the user_struct for the passed UID. If found, take a ref on it. The
84 * caller must undo that ref with free_uid().
85 *
86 * If the user_struct could not be found, return NULL.
87 */
88 struct user_struct *find_user(uid_t uid)
89 {
90 struct user_struct *ret;
91 unsigned long flags;
92 struct user_namespace *ns = current->nsproxy->user_ns;
93
94 spin_lock_irqsave(&uidhash_lock, flags);
95 ret = uid_hash_find(uid, uidhashentry(ns, uid));
96 spin_unlock_irqrestore(&uidhash_lock, flags);
97 return ret;
98 }
99
100 void free_uid(struct user_struct *up)
101 {
102 unsigned long flags;
103
104 if (!up)
105 return;
106
107 local_irq_save(flags);
108 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
109 uid_hash_remove(up);
110 spin_unlock_irqrestore(&uidhash_lock, flags);
111 key_put(up->uid_keyring);
112 key_put(up->session_keyring);
113 kmem_cache_free(uid_cachep, up);
114 } else {
115 local_irq_restore(flags);
116 }
117 }
118
119 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
120 {
121 struct list_head *hashent = uidhashentry(ns, uid);
122 struct user_struct *up;
123
124 spin_lock_irq(&uidhash_lock);
125 up = uid_hash_find(uid, hashent);
126 spin_unlock_irq(&uidhash_lock);
127
128 if (!up) {
129 struct user_struct *new;
130
131 new = kmem_cache_alloc(uid_cachep, GFP_KERNEL);
132 if (!new)
133 return NULL;
134 new->uid = uid;
135 atomic_set(&new->__count, 1);
136 atomic_set(&new->processes, 0);
137 atomic_set(&new->files, 0);
138 atomic_set(&new->sigpending, 0);
139 #ifdef CONFIG_INOTIFY_USER
140 atomic_set(&new->inotify_watches, 0);
141 atomic_set(&new->inotify_devs, 0);
142 #endif
143
144 new->mq_bytes = 0;
145 new->locked_shm = 0;
146
147 if (alloc_uid_keyring(new, current) < 0) {
148 kmem_cache_free(uid_cachep, new);
149 return NULL;
150 }
151
152 /*
153 * Before adding this, check whether we raced
154 * on adding the same user already..
155 */
156 spin_lock_irq(&uidhash_lock);
157 up = uid_hash_find(uid, hashent);
158 if (up) {
159 key_put(new->uid_keyring);
160 key_put(new->session_keyring);
161 kmem_cache_free(uid_cachep, new);
162 } else {
163 uid_hash_insert(new, hashent);
164 up = new;
165 }
166 spin_unlock_irq(&uidhash_lock);
167
168 }
169 return up;
170 }
171
172 void switch_uid(struct user_struct *new_user)
173 {
174 struct user_struct *old_user;
175
176 /* What if a process setreuid()'s and this brings the
177 * new uid over his NPROC rlimit? We can check this now
178 * cheaply with the new uid cache, so if it matters
179 * we should be checking for it. -DaveM
180 */
181 old_user = current->user;
182 atomic_inc(&new_user->processes);
183 atomic_dec(&old_user->processes);
184 switch_uid_keyring(new_user);
185 current->user = new_user;
186
187 /*
188 * We need to synchronize with __sigqueue_alloc()
189 * doing a get_uid(p->user).. If that saw the old
190 * user value, we need to wait until it has exited
191 * its critical region before we can free the old
192 * structure.
193 */
194 smp_mb();
195 spin_unlock_wait(&current->sighand->siglock);
196
197 free_uid(old_user);
198 suid_keys(current);
199 }
200
201
202 static int __init uid_cache_init(void)
203 {
204 int n;
205
206 uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
207 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
208
209 for(n = 0; n < UIDHASH_SZ; ++n)
210 INIT_LIST_HEAD(init_user_ns.uidhash_table + n);
211
212 /* Insert the root user immediately (init already runs as root) */
213 spin_lock_irq(&uidhash_lock);
214 uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
215 spin_unlock_irq(&uidhash_lock);
216
217 return 0;
218 }
219
220 module_init(uid_cache_init);