layered parport code uses parport->dev
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/div64.h>
43 #include <asm/timex.h>
44 #include <asm/io.h>
45
46 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
47
48 EXPORT_SYMBOL(jiffies_64);
49
50 /*
51 * per-CPU timer vector definitions:
52 */
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
59
60 typedef struct tvec_s {
61 struct list_head vec[TVN_SIZE];
62 } tvec_t;
63
64 typedef struct tvec_root_s {
65 struct list_head vec[TVR_SIZE];
66 } tvec_root_t;
67
68 struct tvec_t_base_s {
69 spinlock_t lock;
70 struct timer_list *running_timer;
71 unsigned long timer_jiffies;
72 tvec_root_t tv1;
73 tvec_t tv2;
74 tvec_t tv3;
75 tvec_t tv4;
76 tvec_t tv5;
77 } ____cacheline_aligned_in_smp;
78
79 typedef struct tvec_t_base_s tvec_base_t;
80
81 tvec_base_t boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
84
85 /**
86 * __round_jiffies - function to round jiffies to a full second
87 * @j: the time in (absolute) jiffies that should be rounded
88 * @cpu: the processor number on which the timeout will happen
89 *
90 * __round_jiffies() rounds an absolute time in the future (in jiffies)
91 * up or down to (approximately) full seconds. This is useful for timers
92 * for which the exact time they fire does not matter too much, as long as
93 * they fire approximately every X seconds.
94 *
95 * By rounding these timers to whole seconds, all such timers will fire
96 * at the same time, rather than at various times spread out. The goal
97 * of this is to have the CPU wake up less, which saves power.
98 *
99 * The exact rounding is skewed for each processor to avoid all
100 * processors firing at the exact same time, which could lead
101 * to lock contention or spurious cache line bouncing.
102 *
103 * The return value is the rounded version of the @j parameter.
104 */
105 unsigned long __round_jiffies(unsigned long j, int cpu)
106 {
107 int rem;
108 unsigned long original = j;
109
110 /*
111 * We don't want all cpus firing their timers at once hitting the
112 * same lock or cachelines, so we skew each extra cpu with an extra
113 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
114 * already did this.
115 * The skew is done by adding 3*cpunr, then round, then subtract this
116 * extra offset again.
117 */
118 j += cpu * 3;
119
120 rem = j % HZ;
121
122 /*
123 * If the target jiffie is just after a whole second (which can happen
124 * due to delays of the timer irq, long irq off times etc etc) then
125 * we should round down to the whole second, not up. Use 1/4th second
126 * as cutoff for this rounding as an extreme upper bound for this.
127 */
128 if (rem < HZ/4) /* round down */
129 j = j - rem;
130 else /* round up */
131 j = j - rem + HZ;
132
133 /* now that we have rounded, subtract the extra skew again */
134 j -= cpu * 3;
135
136 if (j <= jiffies) /* rounding ate our timeout entirely; */
137 return original;
138 return j;
139 }
140 EXPORT_SYMBOL_GPL(__round_jiffies);
141
142 /**
143 * __round_jiffies_relative - function to round jiffies to a full second
144 * @j: the time in (relative) jiffies that should be rounded
145 * @cpu: the processor number on which the timeout will happen
146 *
147 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
148 * up or down to (approximately) full seconds. This is useful for timers
149 * for which the exact time they fire does not matter too much, as long as
150 * they fire approximately every X seconds.
151 *
152 * By rounding these timers to whole seconds, all such timers will fire
153 * at the same time, rather than at various times spread out. The goal
154 * of this is to have the CPU wake up less, which saves power.
155 *
156 * The exact rounding is skewed for each processor to avoid all
157 * processors firing at the exact same time, which could lead
158 * to lock contention or spurious cache line bouncing.
159 *
160 * The return value is the rounded version of the @j parameter.
161 */
162 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
163 {
164 /*
165 * In theory the following code can skip a jiffy in case jiffies
166 * increments right between the addition and the later subtraction.
167 * However since the entire point of this function is to use approximate
168 * timeouts, it's entirely ok to not handle that.
169 */
170 return __round_jiffies(j + jiffies, cpu) - jiffies;
171 }
172 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
173
174 /**
175 * round_jiffies - function to round jiffies to a full second
176 * @j: the time in (absolute) jiffies that should be rounded
177 *
178 * round_jiffies() rounds an absolute time in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
182 *
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
186 *
187 * The return value is the rounded version of the @j parameter.
188 */
189 unsigned long round_jiffies(unsigned long j)
190 {
191 return __round_jiffies(j, raw_smp_processor_id());
192 }
193 EXPORT_SYMBOL_GPL(round_jiffies);
194
195 /**
196 * round_jiffies_relative - function to round jiffies to a full second
197 * @j: the time in (relative) jiffies that should be rounded
198 *
199 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
200 * up or down to (approximately) full seconds. This is useful for timers
201 * for which the exact time they fire does not matter too much, as long as
202 * they fire approximately every X seconds.
203 *
204 * By rounding these timers to whole seconds, all such timers will fire
205 * at the same time, rather than at various times spread out. The goal
206 * of this is to have the CPU wake up less, which saves power.
207 *
208 * The return value is the rounded version of the @j parameter.
209 */
210 unsigned long round_jiffies_relative(unsigned long j)
211 {
212 return __round_jiffies_relative(j, raw_smp_processor_id());
213 }
214 EXPORT_SYMBOL_GPL(round_jiffies_relative);
215
216
217 static inline void set_running_timer(tvec_base_t *base,
218 struct timer_list *timer)
219 {
220 #ifdef CONFIG_SMP
221 base->running_timer = timer;
222 #endif
223 }
224
225 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
226 {
227 unsigned long expires = timer->expires;
228 unsigned long idx = expires - base->timer_jiffies;
229 struct list_head *vec;
230
231 if (idx < TVR_SIZE) {
232 int i = expires & TVR_MASK;
233 vec = base->tv1.vec + i;
234 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
235 int i = (expires >> TVR_BITS) & TVN_MASK;
236 vec = base->tv2.vec + i;
237 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
238 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
239 vec = base->tv3.vec + i;
240 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
241 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
242 vec = base->tv4.vec + i;
243 } else if ((signed long) idx < 0) {
244 /*
245 * Can happen if you add a timer with expires == jiffies,
246 * or you set a timer to go off in the past
247 */
248 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
249 } else {
250 int i;
251 /* If the timeout is larger than 0xffffffff on 64-bit
252 * architectures then we use the maximum timeout:
253 */
254 if (idx > 0xffffffffUL) {
255 idx = 0xffffffffUL;
256 expires = idx + base->timer_jiffies;
257 }
258 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
259 vec = base->tv5.vec + i;
260 }
261 /*
262 * Timers are FIFO:
263 */
264 list_add_tail(&timer->entry, vec);
265 }
266
267 #ifdef CONFIG_TIMER_STATS
268 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
269 {
270 if (timer->start_site)
271 return;
272
273 timer->start_site = addr;
274 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
275 timer->start_pid = current->pid;
276 }
277 #endif
278
279 /**
280 * init_timer - initialize a timer.
281 * @timer: the timer to be initialized
282 *
283 * init_timer() must be done to a timer prior calling *any* of the
284 * other timer functions.
285 */
286 void fastcall init_timer(struct timer_list *timer)
287 {
288 timer->entry.next = NULL;
289 timer->base = __raw_get_cpu_var(tvec_bases);
290 #ifdef CONFIG_TIMER_STATS
291 timer->start_site = NULL;
292 timer->start_pid = -1;
293 memset(timer->start_comm, 0, TASK_COMM_LEN);
294 #endif
295 }
296 EXPORT_SYMBOL(init_timer);
297
298 static inline void detach_timer(struct timer_list *timer,
299 int clear_pending)
300 {
301 struct list_head *entry = &timer->entry;
302
303 __list_del(entry->prev, entry->next);
304 if (clear_pending)
305 entry->next = NULL;
306 entry->prev = LIST_POISON2;
307 }
308
309 /*
310 * We are using hashed locking: holding per_cpu(tvec_bases).lock
311 * means that all timers which are tied to this base via timer->base are
312 * locked, and the base itself is locked too.
313 *
314 * So __run_timers/migrate_timers can safely modify all timers which could
315 * be found on ->tvX lists.
316 *
317 * When the timer's base is locked, and the timer removed from list, it is
318 * possible to set timer->base = NULL and drop the lock: the timer remains
319 * locked.
320 */
321 static tvec_base_t *lock_timer_base(struct timer_list *timer,
322 unsigned long *flags)
323 __acquires(timer->base->lock)
324 {
325 tvec_base_t *base;
326
327 for (;;) {
328 base = timer->base;
329 if (likely(base != NULL)) {
330 spin_lock_irqsave(&base->lock, *flags);
331 if (likely(base == timer->base))
332 return base;
333 /* The timer has migrated to another CPU */
334 spin_unlock_irqrestore(&base->lock, *flags);
335 }
336 cpu_relax();
337 }
338 }
339
340 int __mod_timer(struct timer_list *timer, unsigned long expires)
341 {
342 tvec_base_t *base, *new_base;
343 unsigned long flags;
344 int ret = 0;
345
346 timer_stats_timer_set_start_info(timer);
347 BUG_ON(!timer->function);
348
349 base = lock_timer_base(timer, &flags);
350
351 if (timer_pending(timer)) {
352 detach_timer(timer, 0);
353 ret = 1;
354 }
355
356 new_base = __get_cpu_var(tvec_bases);
357
358 if (base != new_base) {
359 /*
360 * We are trying to schedule the timer on the local CPU.
361 * However we can't change timer's base while it is running,
362 * otherwise del_timer_sync() can't detect that the timer's
363 * handler yet has not finished. This also guarantees that
364 * the timer is serialized wrt itself.
365 */
366 if (likely(base->running_timer != timer)) {
367 /* See the comment in lock_timer_base() */
368 timer->base = NULL;
369 spin_unlock(&base->lock);
370 base = new_base;
371 spin_lock(&base->lock);
372 timer->base = base;
373 }
374 }
375
376 timer->expires = expires;
377 internal_add_timer(base, timer);
378 spin_unlock_irqrestore(&base->lock, flags);
379
380 return ret;
381 }
382
383 EXPORT_SYMBOL(__mod_timer);
384
385 /**
386 * add_timer_on - start a timer on a particular CPU
387 * @timer: the timer to be added
388 * @cpu: the CPU to start it on
389 *
390 * This is not very scalable on SMP. Double adds are not possible.
391 */
392 void add_timer_on(struct timer_list *timer, int cpu)
393 {
394 tvec_base_t *base = per_cpu(tvec_bases, cpu);
395 unsigned long flags;
396
397 timer_stats_timer_set_start_info(timer);
398 BUG_ON(timer_pending(timer) || !timer->function);
399 spin_lock_irqsave(&base->lock, flags);
400 timer->base = base;
401 internal_add_timer(base, timer);
402 spin_unlock_irqrestore(&base->lock, flags);
403 }
404
405
406 /**
407 * mod_timer - modify a timer's timeout
408 * @timer: the timer to be modified
409 * @expires: new timeout in jiffies
410 *
411 * mod_timer() is a more efficient way to update the expire field of an
412 * active timer (if the timer is inactive it will be activated)
413 *
414 * mod_timer(timer, expires) is equivalent to:
415 *
416 * del_timer(timer); timer->expires = expires; add_timer(timer);
417 *
418 * Note that if there are multiple unserialized concurrent users of the
419 * same timer, then mod_timer() is the only safe way to modify the timeout,
420 * since add_timer() cannot modify an already running timer.
421 *
422 * The function returns whether it has modified a pending timer or not.
423 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
424 * active timer returns 1.)
425 */
426 int mod_timer(struct timer_list *timer, unsigned long expires)
427 {
428 BUG_ON(!timer->function);
429
430 timer_stats_timer_set_start_info(timer);
431 /*
432 * This is a common optimization triggered by the
433 * networking code - if the timer is re-modified
434 * to be the same thing then just return:
435 */
436 if (timer->expires == expires && timer_pending(timer))
437 return 1;
438
439 return __mod_timer(timer, expires);
440 }
441
442 EXPORT_SYMBOL(mod_timer);
443
444 /**
445 * del_timer - deactive a timer.
446 * @timer: the timer to be deactivated
447 *
448 * del_timer() deactivates a timer - this works on both active and inactive
449 * timers.
450 *
451 * The function returns whether it has deactivated a pending timer or not.
452 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
453 * active timer returns 1.)
454 */
455 int del_timer(struct timer_list *timer)
456 {
457 tvec_base_t *base;
458 unsigned long flags;
459 int ret = 0;
460
461 timer_stats_timer_clear_start_info(timer);
462 if (timer_pending(timer)) {
463 base = lock_timer_base(timer, &flags);
464 if (timer_pending(timer)) {
465 detach_timer(timer, 1);
466 ret = 1;
467 }
468 spin_unlock_irqrestore(&base->lock, flags);
469 }
470
471 return ret;
472 }
473
474 EXPORT_SYMBOL(del_timer);
475
476 #ifdef CONFIG_SMP
477 /**
478 * try_to_del_timer_sync - Try to deactivate a timer
479 * @timer: timer do del
480 *
481 * This function tries to deactivate a timer. Upon successful (ret >= 0)
482 * exit the timer is not queued and the handler is not running on any CPU.
483 *
484 * It must not be called from interrupt contexts.
485 */
486 int try_to_del_timer_sync(struct timer_list *timer)
487 {
488 tvec_base_t *base;
489 unsigned long flags;
490 int ret = -1;
491
492 base = lock_timer_base(timer, &flags);
493
494 if (base->running_timer == timer)
495 goto out;
496
497 ret = 0;
498 if (timer_pending(timer)) {
499 detach_timer(timer, 1);
500 ret = 1;
501 }
502 out:
503 spin_unlock_irqrestore(&base->lock, flags);
504
505 return ret;
506 }
507
508 EXPORT_SYMBOL(try_to_del_timer_sync);
509
510 /**
511 * del_timer_sync - deactivate a timer and wait for the handler to finish.
512 * @timer: the timer to be deactivated
513 *
514 * This function only differs from del_timer() on SMP: besides deactivating
515 * the timer it also makes sure the handler has finished executing on other
516 * CPUs.
517 *
518 * Synchronization rules: Callers must prevent restarting of the timer,
519 * otherwise this function is meaningless. It must not be called from
520 * interrupt contexts. The caller must not hold locks which would prevent
521 * completion of the timer's handler. The timer's handler must not call
522 * add_timer_on(). Upon exit the timer is not queued and the handler is
523 * not running on any CPU.
524 *
525 * The function returns whether it has deactivated a pending timer or not.
526 */
527 int del_timer_sync(struct timer_list *timer)
528 {
529 for (;;) {
530 int ret = try_to_del_timer_sync(timer);
531 if (ret >= 0)
532 return ret;
533 cpu_relax();
534 }
535 }
536
537 EXPORT_SYMBOL(del_timer_sync);
538 #endif
539
540 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
541 {
542 /* cascade all the timers from tv up one level */
543 struct timer_list *timer, *tmp;
544 struct list_head tv_list;
545
546 list_replace_init(tv->vec + index, &tv_list);
547
548 /*
549 * We are removing _all_ timers from the list, so we
550 * don't have to detach them individually.
551 */
552 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
553 BUG_ON(timer->base != base);
554 internal_add_timer(base, timer);
555 }
556
557 return index;
558 }
559
560 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
561
562 /**
563 * __run_timers - run all expired timers (if any) on this CPU.
564 * @base: the timer vector to be processed.
565 *
566 * This function cascades all vectors and executes all expired timer
567 * vectors.
568 */
569 static inline void __run_timers(tvec_base_t *base)
570 {
571 struct timer_list *timer;
572
573 spin_lock_irq(&base->lock);
574 while (time_after_eq(jiffies, base->timer_jiffies)) {
575 struct list_head work_list;
576 struct list_head *head = &work_list;
577 int index = base->timer_jiffies & TVR_MASK;
578
579 /*
580 * Cascade timers:
581 */
582 if (!index &&
583 (!cascade(base, &base->tv2, INDEX(0))) &&
584 (!cascade(base, &base->tv3, INDEX(1))) &&
585 !cascade(base, &base->tv4, INDEX(2)))
586 cascade(base, &base->tv5, INDEX(3));
587 ++base->timer_jiffies;
588 list_replace_init(base->tv1.vec + index, &work_list);
589 while (!list_empty(head)) {
590 void (*fn)(unsigned long);
591 unsigned long data;
592
593 timer = list_entry(head->next,struct timer_list,entry);
594 fn = timer->function;
595 data = timer->data;
596
597 timer_stats_account_timer(timer);
598
599 set_running_timer(base, timer);
600 detach_timer(timer, 1);
601 spin_unlock_irq(&base->lock);
602 {
603 int preempt_count = preempt_count();
604 fn(data);
605 if (preempt_count != preempt_count()) {
606 printk(KERN_WARNING "huh, entered %p "
607 "with preempt_count %08x, exited"
608 " with %08x?\n",
609 fn, preempt_count,
610 preempt_count());
611 BUG();
612 }
613 }
614 spin_lock_irq(&base->lock);
615 }
616 }
617 set_running_timer(base, NULL);
618 spin_unlock_irq(&base->lock);
619 }
620
621 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
622 /*
623 * Find out when the next timer event is due to happen. This
624 * is used on S/390 to stop all activity when a cpus is idle.
625 * This functions needs to be called disabled.
626 */
627 static unsigned long __next_timer_interrupt(tvec_base_t *base)
628 {
629 unsigned long timer_jiffies = base->timer_jiffies;
630 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
631 int index, slot, array, found = 0;
632 struct timer_list *nte;
633 tvec_t *varray[4];
634
635 /* Look for timer events in tv1. */
636 index = slot = timer_jiffies & TVR_MASK;
637 do {
638 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
639 found = 1;
640 expires = nte->expires;
641 /* Look at the cascade bucket(s)? */
642 if (!index || slot < index)
643 goto cascade;
644 return expires;
645 }
646 slot = (slot + 1) & TVR_MASK;
647 } while (slot != index);
648
649 cascade:
650 /* Calculate the next cascade event */
651 if (index)
652 timer_jiffies += TVR_SIZE - index;
653 timer_jiffies >>= TVR_BITS;
654
655 /* Check tv2-tv5. */
656 varray[0] = &base->tv2;
657 varray[1] = &base->tv3;
658 varray[2] = &base->tv4;
659 varray[3] = &base->tv5;
660
661 for (array = 0; array < 4; array++) {
662 tvec_t *varp = varray[array];
663
664 index = slot = timer_jiffies & TVN_MASK;
665 do {
666 list_for_each_entry(nte, varp->vec + slot, entry) {
667 found = 1;
668 if (time_before(nte->expires, expires))
669 expires = nte->expires;
670 }
671 /*
672 * Do we still search for the first timer or are
673 * we looking up the cascade buckets ?
674 */
675 if (found) {
676 /* Look at the cascade bucket(s)? */
677 if (!index || slot < index)
678 break;
679 return expires;
680 }
681 slot = (slot + 1) & TVN_MASK;
682 } while (slot != index);
683
684 if (index)
685 timer_jiffies += TVN_SIZE - index;
686 timer_jiffies >>= TVN_BITS;
687 }
688 return expires;
689 }
690
691 /*
692 * Check, if the next hrtimer event is before the next timer wheel
693 * event:
694 */
695 static unsigned long cmp_next_hrtimer_event(unsigned long now,
696 unsigned long expires)
697 {
698 ktime_t hr_delta = hrtimer_get_next_event();
699 struct timespec tsdelta;
700 unsigned long delta;
701
702 if (hr_delta.tv64 == KTIME_MAX)
703 return expires;
704
705 /*
706 * Expired timer available, let it expire in the next tick
707 */
708 if (hr_delta.tv64 <= 0)
709 return now + 1;
710
711 tsdelta = ktime_to_timespec(hr_delta);
712 delta = timespec_to_jiffies(&tsdelta);
713 /*
714 * Take rounding errors in to account and make sure, that it
715 * expires in the next tick. Otherwise we go into an endless
716 * ping pong due to tick_nohz_stop_sched_tick() retriggering
717 * the timer softirq
718 */
719 if (delta < 1)
720 delta = 1;
721 now += delta;
722 if (time_before(now, expires))
723 return now;
724 return expires;
725 }
726
727 /**
728 * next_timer_interrupt - return the jiffy of the next pending timer
729 * @now: current time (in jiffies)
730 */
731 unsigned long get_next_timer_interrupt(unsigned long now)
732 {
733 tvec_base_t *base = __get_cpu_var(tvec_bases);
734 unsigned long expires;
735
736 spin_lock(&base->lock);
737 expires = __next_timer_interrupt(base);
738 spin_unlock(&base->lock);
739
740 if (time_before_eq(expires, now))
741 return now;
742
743 return cmp_next_hrtimer_event(now, expires);
744 }
745
746 #ifdef CONFIG_NO_IDLE_HZ
747 unsigned long next_timer_interrupt(void)
748 {
749 return get_next_timer_interrupt(jiffies);
750 }
751 #endif
752
753 #endif
754
755 /******************************************************************/
756
757 /*
758 * The current time
759 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
760 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
761 * at zero at system boot time, so wall_to_monotonic will be negative,
762 * however, we will ALWAYS keep the tv_nsec part positive so we can use
763 * the usual normalization.
764 */
765 struct timespec xtime __attribute__ ((aligned (16)));
766 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
767
768 EXPORT_SYMBOL(xtime);
769
770
771 /* XXX - all of this timekeeping code should be later moved to time.c */
772 #include <linux/clocksource.h>
773 static struct clocksource *clock; /* pointer to current clocksource */
774
775 #ifdef CONFIG_GENERIC_TIME
776 /**
777 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
778 *
779 * private function, must hold xtime_lock lock when being
780 * called. Returns the number of nanoseconds since the
781 * last call to update_wall_time() (adjusted by NTP scaling)
782 */
783 static inline s64 __get_nsec_offset(void)
784 {
785 cycle_t cycle_now, cycle_delta;
786 s64 ns_offset;
787
788 /* read clocksource: */
789 cycle_now = clocksource_read(clock);
790
791 /* calculate the delta since the last update_wall_time: */
792 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
793
794 /* convert to nanoseconds: */
795 ns_offset = cyc2ns(clock, cycle_delta);
796
797 return ns_offset;
798 }
799
800 /**
801 * __get_realtime_clock_ts - Returns the time of day in a timespec
802 * @ts: pointer to the timespec to be set
803 *
804 * Returns the time of day in a timespec. Used by
805 * do_gettimeofday() and get_realtime_clock_ts().
806 */
807 static inline void __get_realtime_clock_ts(struct timespec *ts)
808 {
809 unsigned long seq;
810 s64 nsecs;
811
812 do {
813 seq = read_seqbegin(&xtime_lock);
814
815 *ts = xtime;
816 nsecs = __get_nsec_offset();
817
818 } while (read_seqretry(&xtime_lock, seq));
819
820 timespec_add_ns(ts, nsecs);
821 }
822
823 /**
824 * getnstimeofday - Returns the time of day in a timespec
825 * @ts: pointer to the timespec to be set
826 *
827 * Returns the time of day in a timespec.
828 */
829 void getnstimeofday(struct timespec *ts)
830 {
831 __get_realtime_clock_ts(ts);
832 }
833
834 EXPORT_SYMBOL(getnstimeofday);
835
836 /**
837 * do_gettimeofday - Returns the time of day in a timeval
838 * @tv: pointer to the timeval to be set
839 *
840 * NOTE: Users should be converted to using get_realtime_clock_ts()
841 */
842 void do_gettimeofday(struct timeval *tv)
843 {
844 struct timespec now;
845
846 __get_realtime_clock_ts(&now);
847 tv->tv_sec = now.tv_sec;
848 tv->tv_usec = now.tv_nsec/1000;
849 }
850
851 EXPORT_SYMBOL(do_gettimeofday);
852 /**
853 * do_settimeofday - Sets the time of day
854 * @tv: pointer to the timespec variable containing the new time
855 *
856 * Sets the time of day to the new time and update NTP and notify hrtimers
857 */
858 int do_settimeofday(struct timespec *tv)
859 {
860 unsigned long flags;
861 time_t wtm_sec, sec = tv->tv_sec;
862 long wtm_nsec, nsec = tv->tv_nsec;
863
864 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
865 return -EINVAL;
866
867 write_seqlock_irqsave(&xtime_lock, flags);
868
869 nsec -= __get_nsec_offset();
870
871 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
872 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
873
874 set_normalized_timespec(&xtime, sec, nsec);
875 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
876
877 clock->error = 0;
878 ntp_clear();
879
880 update_vsyscall(&xtime, clock);
881
882 write_sequnlock_irqrestore(&xtime_lock, flags);
883
884 /* signal hrtimers about time change */
885 clock_was_set();
886
887 return 0;
888 }
889
890 EXPORT_SYMBOL(do_settimeofday);
891
892 /**
893 * change_clocksource - Swaps clocksources if a new one is available
894 *
895 * Accumulates current time interval and initializes new clocksource
896 */
897 static void change_clocksource(void)
898 {
899 struct clocksource *new;
900 cycle_t now;
901 u64 nsec;
902
903 new = clocksource_get_next();
904
905 if (clock == new)
906 return;
907
908 now = clocksource_read(new);
909 nsec = __get_nsec_offset();
910 timespec_add_ns(&xtime, nsec);
911
912 clock = new;
913 clock->cycle_last = now;
914
915 clock->error = 0;
916 clock->xtime_nsec = 0;
917 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
918
919 tick_clock_notify();
920
921 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
922 clock->name);
923 }
924 #else
925 static inline void change_clocksource(void) { }
926 #endif
927
928 /**
929 * timekeeping_is_continuous - check to see if timekeeping is free running
930 */
931 int timekeeping_is_continuous(void)
932 {
933 unsigned long seq;
934 int ret;
935
936 do {
937 seq = read_seqbegin(&xtime_lock);
938
939 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
940
941 } while (read_seqretry(&xtime_lock, seq));
942
943 return ret;
944 }
945
946 /**
947 * read_persistent_clock - Return time in seconds from the persistent clock.
948 *
949 * Weak dummy function for arches that do not yet support it.
950 * Returns seconds from epoch using the battery backed persistent clock.
951 * Returns zero if unsupported.
952 *
953 * XXX - Do be sure to remove it once all arches implement it.
954 */
955 unsigned long __attribute__((weak)) read_persistent_clock(void)
956 {
957 return 0;
958 }
959
960 /*
961 * timekeeping_init - Initializes the clocksource and common timekeeping values
962 */
963 void __init timekeeping_init(void)
964 {
965 unsigned long flags;
966 unsigned long sec = read_persistent_clock();
967
968 write_seqlock_irqsave(&xtime_lock, flags);
969
970 ntp_clear();
971
972 clock = clocksource_get_next();
973 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
974 clock->cycle_last = clocksource_read(clock);
975
976 xtime.tv_sec = sec;
977 xtime.tv_nsec = 0;
978 set_normalized_timespec(&wall_to_monotonic,
979 -xtime.tv_sec, -xtime.tv_nsec);
980
981 write_sequnlock_irqrestore(&xtime_lock, flags);
982 }
983
984 /* flag for if timekeeping is suspended */
985 static int timekeeping_suspended;
986 /* time in seconds when suspend began */
987 static unsigned long timekeeping_suspend_time;
988
989 /**
990 * timekeeping_resume - Resumes the generic timekeeping subsystem.
991 * @dev: unused
992 *
993 * This is for the generic clocksource timekeeping.
994 * xtime/wall_to_monotonic/jiffies/etc are
995 * still managed by arch specific suspend/resume code.
996 */
997 static int timekeeping_resume(struct sys_device *dev)
998 {
999 unsigned long flags;
1000 unsigned long now = read_persistent_clock();
1001
1002 write_seqlock_irqsave(&xtime_lock, flags);
1003
1004 if (now && (now > timekeeping_suspend_time)) {
1005 unsigned long sleep_length = now - timekeeping_suspend_time;
1006
1007 xtime.tv_sec += sleep_length;
1008 wall_to_monotonic.tv_sec -= sleep_length;
1009 }
1010 /* re-base the last cycle value */
1011 clock->cycle_last = clocksource_read(clock);
1012 clock->error = 0;
1013 timekeeping_suspended = 0;
1014 write_sequnlock_irqrestore(&xtime_lock, flags);
1015
1016 touch_softlockup_watchdog();
1017
1018 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1019
1020 /* Resume hrtimers */
1021 hres_timers_resume();
1022
1023 return 0;
1024 }
1025
1026 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
1027 {
1028 unsigned long flags;
1029
1030 write_seqlock_irqsave(&xtime_lock, flags);
1031 timekeeping_suspended = 1;
1032 timekeeping_suspend_time = read_persistent_clock();
1033 write_sequnlock_irqrestore(&xtime_lock, flags);
1034
1035 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1036
1037 return 0;
1038 }
1039
1040 /* sysfs resume/suspend bits for timekeeping */
1041 static struct sysdev_class timekeeping_sysclass = {
1042 .resume = timekeeping_resume,
1043 .suspend = timekeeping_suspend,
1044 set_kset_name("timekeeping"),
1045 };
1046
1047 static struct sys_device device_timer = {
1048 .id = 0,
1049 .cls = &timekeeping_sysclass,
1050 };
1051
1052 static int __init timekeeping_init_device(void)
1053 {
1054 int error = sysdev_class_register(&timekeeping_sysclass);
1055 if (!error)
1056 error = sysdev_register(&device_timer);
1057 return error;
1058 }
1059
1060 device_initcall(timekeeping_init_device);
1061
1062 /*
1063 * If the error is already larger, we look ahead even further
1064 * to compensate for late or lost adjustments.
1065 */
1066 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
1067 s64 *offset)
1068 {
1069 s64 tick_error, i;
1070 u32 look_ahead, adj;
1071 s32 error2, mult;
1072
1073 /*
1074 * Use the current error value to determine how much to look ahead.
1075 * The larger the error the slower we adjust for it to avoid problems
1076 * with losing too many ticks, otherwise we would overadjust and
1077 * produce an even larger error. The smaller the adjustment the
1078 * faster we try to adjust for it, as lost ticks can do less harm
1079 * here. This is tuned so that an error of about 1 msec is adusted
1080 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1081 */
1082 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1083 error2 = abs(error2);
1084 for (look_ahead = 0; error2 > 0; look_ahead++)
1085 error2 >>= 2;
1086
1087 /*
1088 * Now calculate the error in (1 << look_ahead) ticks, but first
1089 * remove the single look ahead already included in the error.
1090 */
1091 tick_error = current_tick_length() >>
1092 (TICK_LENGTH_SHIFT - clock->shift + 1);
1093 tick_error -= clock->xtime_interval >> 1;
1094 error = ((error - tick_error) >> look_ahead) + tick_error;
1095
1096 /* Finally calculate the adjustment shift value. */
1097 i = *interval;
1098 mult = 1;
1099 if (error < 0) {
1100 error = -error;
1101 *interval = -*interval;
1102 *offset = -*offset;
1103 mult = -1;
1104 }
1105 for (adj = 0; error > i; adj++)
1106 error >>= 1;
1107
1108 *interval <<= adj;
1109 *offset <<= adj;
1110 return mult << adj;
1111 }
1112
1113 /*
1114 * Adjust the multiplier to reduce the error value,
1115 * this is optimized for the most common adjustments of -1,0,1,
1116 * for other values we can do a bit more work.
1117 */
1118 static void clocksource_adjust(struct clocksource *clock, s64 offset)
1119 {
1120 s64 error, interval = clock->cycle_interval;
1121 int adj;
1122
1123 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1124 if (error > interval) {
1125 error >>= 2;
1126 if (likely(error <= interval))
1127 adj = 1;
1128 else
1129 adj = clocksource_bigadjust(error, &interval, &offset);
1130 } else if (error < -interval) {
1131 error >>= 2;
1132 if (likely(error >= -interval)) {
1133 adj = -1;
1134 interval = -interval;
1135 offset = -offset;
1136 } else
1137 adj = clocksource_bigadjust(error, &interval, &offset);
1138 } else
1139 return;
1140
1141 clock->mult += adj;
1142 clock->xtime_interval += interval;
1143 clock->xtime_nsec -= offset;
1144 clock->error -= (interval - offset) <<
1145 (TICK_LENGTH_SHIFT - clock->shift);
1146 }
1147
1148 /**
1149 * update_wall_time - Uses the current clocksource to increment the wall time
1150 *
1151 * Called from the timer interrupt, must hold a write on xtime_lock.
1152 */
1153 static void update_wall_time(void)
1154 {
1155 cycle_t offset;
1156
1157 /* Make sure we're fully resumed: */
1158 if (unlikely(timekeeping_suspended))
1159 return;
1160
1161 #ifdef CONFIG_GENERIC_TIME
1162 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1163 #else
1164 offset = clock->cycle_interval;
1165 #endif
1166 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1167
1168 /* normally this loop will run just once, however in the
1169 * case of lost or late ticks, it will accumulate correctly.
1170 */
1171 while (offset >= clock->cycle_interval) {
1172 /* accumulate one interval */
1173 clock->xtime_nsec += clock->xtime_interval;
1174 clock->cycle_last += clock->cycle_interval;
1175 offset -= clock->cycle_interval;
1176
1177 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1178 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1179 xtime.tv_sec++;
1180 second_overflow();
1181 }
1182
1183 /* interpolator bits */
1184 time_interpolator_update(clock->xtime_interval
1185 >> clock->shift);
1186
1187 /* accumulate error between NTP and clock interval */
1188 clock->error += current_tick_length();
1189 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1190 }
1191
1192 /* correct the clock when NTP error is too big */
1193 clocksource_adjust(clock, offset);
1194
1195 /* store full nanoseconds into xtime */
1196 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1197 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1198
1199 /* check to see if there is a new clocksource to use */
1200 change_clocksource();
1201 update_vsyscall(&xtime, clock);
1202 }
1203
1204 /*
1205 * Called from the timer interrupt handler to charge one tick to the current
1206 * process. user_tick is 1 if the tick is user time, 0 for system.
1207 */
1208 void update_process_times(int user_tick)
1209 {
1210 struct task_struct *p = current;
1211 int cpu = smp_processor_id();
1212
1213 /* Note: this timer irq context must be accounted for as well. */
1214 if (user_tick)
1215 account_user_time(p, jiffies_to_cputime(1));
1216 else
1217 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1218 run_local_timers();
1219 if (rcu_pending(cpu))
1220 rcu_check_callbacks(cpu, user_tick);
1221 scheduler_tick();
1222 run_posix_cpu_timers(p);
1223 }
1224
1225 /*
1226 * Nr of active tasks - counted in fixed-point numbers
1227 */
1228 static unsigned long count_active_tasks(void)
1229 {
1230 return nr_active() * FIXED_1;
1231 }
1232
1233 /*
1234 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1235 * imply that avenrun[] is the standard name for this kind of thing.
1236 * Nothing else seems to be standardized: the fractional size etc
1237 * all seem to differ on different machines.
1238 *
1239 * Requires xtime_lock to access.
1240 */
1241 unsigned long avenrun[3];
1242
1243 EXPORT_SYMBOL(avenrun);
1244
1245 /*
1246 * calc_load - given tick count, update the avenrun load estimates.
1247 * This is called while holding a write_lock on xtime_lock.
1248 */
1249 static inline void calc_load(unsigned long ticks)
1250 {
1251 unsigned long active_tasks; /* fixed-point */
1252 static int count = LOAD_FREQ;
1253
1254 count -= ticks;
1255 if (unlikely(count < 0)) {
1256 active_tasks = count_active_tasks();
1257 do {
1258 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1259 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1260 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1261 count += LOAD_FREQ;
1262 } while (count < 0);
1263 }
1264 }
1265
1266 /*
1267 * This read-write spinlock protects us from races in SMP while
1268 * playing with xtime and avenrun.
1269 */
1270 __attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1271
1272 EXPORT_SYMBOL(xtime_lock);
1273
1274 /*
1275 * This function runs timers and the timer-tq in bottom half context.
1276 */
1277 static void run_timer_softirq(struct softirq_action *h)
1278 {
1279 tvec_base_t *base = __get_cpu_var(tvec_bases);
1280
1281 hrtimer_run_queues();
1282
1283 if (time_after_eq(jiffies, base->timer_jiffies))
1284 __run_timers(base);
1285 }
1286
1287 /*
1288 * Called by the local, per-CPU timer interrupt on SMP.
1289 */
1290 void run_local_timers(void)
1291 {
1292 raise_softirq(TIMER_SOFTIRQ);
1293 softlockup_tick();
1294 }
1295
1296 /*
1297 * Called by the timer interrupt. xtime_lock must already be taken
1298 * by the timer IRQ!
1299 */
1300 static inline void update_times(unsigned long ticks)
1301 {
1302 update_wall_time();
1303 calc_load(ticks);
1304 }
1305
1306 /*
1307 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1308 * without sampling the sequence number in xtime_lock.
1309 * jiffies is defined in the linker script...
1310 */
1311
1312 void do_timer(unsigned long ticks)
1313 {
1314 jiffies_64 += ticks;
1315 update_times(ticks);
1316 }
1317
1318 #ifdef __ARCH_WANT_SYS_ALARM
1319
1320 /*
1321 * For backwards compatibility? This can be done in libc so Alpha
1322 * and all newer ports shouldn't need it.
1323 */
1324 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1325 {
1326 return alarm_setitimer(seconds);
1327 }
1328
1329 #endif
1330
1331 #ifndef __alpha__
1332
1333 /*
1334 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1335 * should be moved into arch/i386 instead?
1336 */
1337
1338 /**
1339 * sys_getpid - return the thread group id of the current process
1340 *
1341 * Note, despite the name, this returns the tgid not the pid. The tgid and
1342 * the pid are identical unless CLONE_THREAD was specified on clone() in
1343 * which case the tgid is the same in all threads of the same group.
1344 *
1345 * This is SMP safe as current->tgid does not change.
1346 */
1347 asmlinkage long sys_getpid(void)
1348 {
1349 return current->tgid;
1350 }
1351
1352 /*
1353 * Accessing ->real_parent is not SMP-safe, it could
1354 * change from under us. However, we can use a stale
1355 * value of ->real_parent under rcu_read_lock(), see
1356 * release_task()->call_rcu(delayed_put_task_struct).
1357 */
1358 asmlinkage long sys_getppid(void)
1359 {
1360 int pid;
1361
1362 rcu_read_lock();
1363 pid = rcu_dereference(current->real_parent)->tgid;
1364 rcu_read_unlock();
1365
1366 return pid;
1367 }
1368
1369 asmlinkage long sys_getuid(void)
1370 {
1371 /* Only we change this so SMP safe */
1372 return current->uid;
1373 }
1374
1375 asmlinkage long sys_geteuid(void)
1376 {
1377 /* Only we change this so SMP safe */
1378 return current->euid;
1379 }
1380
1381 asmlinkage long sys_getgid(void)
1382 {
1383 /* Only we change this so SMP safe */
1384 return current->gid;
1385 }
1386
1387 asmlinkage long sys_getegid(void)
1388 {
1389 /* Only we change this so SMP safe */
1390 return current->egid;
1391 }
1392
1393 #endif
1394
1395 static void process_timeout(unsigned long __data)
1396 {
1397 wake_up_process((struct task_struct *)__data);
1398 }
1399
1400 /**
1401 * schedule_timeout - sleep until timeout
1402 * @timeout: timeout value in jiffies
1403 *
1404 * Make the current task sleep until @timeout jiffies have
1405 * elapsed. The routine will return immediately unless
1406 * the current task state has been set (see set_current_state()).
1407 *
1408 * You can set the task state as follows -
1409 *
1410 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1411 * pass before the routine returns. The routine will return 0
1412 *
1413 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1414 * delivered to the current task. In this case the remaining time
1415 * in jiffies will be returned, or 0 if the timer expired in time
1416 *
1417 * The current task state is guaranteed to be TASK_RUNNING when this
1418 * routine returns.
1419 *
1420 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1421 * the CPU away without a bound on the timeout. In this case the return
1422 * value will be %MAX_SCHEDULE_TIMEOUT.
1423 *
1424 * In all cases the return value is guaranteed to be non-negative.
1425 */
1426 fastcall signed long __sched schedule_timeout(signed long timeout)
1427 {
1428 struct timer_list timer;
1429 unsigned long expire;
1430
1431 switch (timeout)
1432 {
1433 case MAX_SCHEDULE_TIMEOUT:
1434 /*
1435 * These two special cases are useful to be comfortable
1436 * in the caller. Nothing more. We could take
1437 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1438 * but I' d like to return a valid offset (>=0) to allow
1439 * the caller to do everything it want with the retval.
1440 */
1441 schedule();
1442 goto out;
1443 default:
1444 /*
1445 * Another bit of PARANOID. Note that the retval will be
1446 * 0 since no piece of kernel is supposed to do a check
1447 * for a negative retval of schedule_timeout() (since it
1448 * should never happens anyway). You just have the printk()
1449 * that will tell you if something is gone wrong and where.
1450 */
1451 if (timeout < 0) {
1452 printk(KERN_ERR "schedule_timeout: wrong timeout "
1453 "value %lx\n", timeout);
1454 dump_stack();
1455 current->state = TASK_RUNNING;
1456 goto out;
1457 }
1458 }
1459
1460 expire = timeout + jiffies;
1461
1462 setup_timer(&timer, process_timeout, (unsigned long)current);
1463 __mod_timer(&timer, expire);
1464 schedule();
1465 del_singleshot_timer_sync(&timer);
1466
1467 timeout = expire - jiffies;
1468
1469 out:
1470 return timeout < 0 ? 0 : timeout;
1471 }
1472 EXPORT_SYMBOL(schedule_timeout);
1473
1474 /*
1475 * We can use __set_current_state() here because schedule_timeout() calls
1476 * schedule() unconditionally.
1477 */
1478 signed long __sched schedule_timeout_interruptible(signed long timeout)
1479 {
1480 __set_current_state(TASK_INTERRUPTIBLE);
1481 return schedule_timeout(timeout);
1482 }
1483 EXPORT_SYMBOL(schedule_timeout_interruptible);
1484
1485 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1486 {
1487 __set_current_state(TASK_UNINTERRUPTIBLE);
1488 return schedule_timeout(timeout);
1489 }
1490 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1491
1492 /* Thread ID - the internal kernel "pid" */
1493 asmlinkage long sys_gettid(void)
1494 {
1495 return current->pid;
1496 }
1497
1498 /**
1499 * do_sysinfo - fill in sysinfo struct
1500 * @info: pointer to buffer to fill
1501 */
1502 int do_sysinfo(struct sysinfo *info)
1503 {
1504 unsigned long mem_total, sav_total;
1505 unsigned int mem_unit, bitcount;
1506 unsigned long seq;
1507
1508 memset(info, 0, sizeof(struct sysinfo));
1509
1510 do {
1511 struct timespec tp;
1512 seq = read_seqbegin(&xtime_lock);
1513
1514 /*
1515 * This is annoying. The below is the same thing
1516 * posix_get_clock_monotonic() does, but it wants to
1517 * take the lock which we want to cover the loads stuff
1518 * too.
1519 */
1520
1521 getnstimeofday(&tp);
1522 tp.tv_sec += wall_to_monotonic.tv_sec;
1523 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1524 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1525 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1526 tp.tv_sec++;
1527 }
1528 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1529
1530 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1531 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1532 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1533
1534 info->procs = nr_threads;
1535 } while (read_seqretry(&xtime_lock, seq));
1536
1537 si_meminfo(info);
1538 si_swapinfo(info);
1539
1540 /*
1541 * If the sum of all the available memory (i.e. ram + swap)
1542 * is less than can be stored in a 32 bit unsigned long then
1543 * we can be binary compatible with 2.2.x kernels. If not,
1544 * well, in that case 2.2.x was broken anyways...
1545 *
1546 * -Erik Andersen <andersee@debian.org>
1547 */
1548
1549 mem_total = info->totalram + info->totalswap;
1550 if (mem_total < info->totalram || mem_total < info->totalswap)
1551 goto out;
1552 bitcount = 0;
1553 mem_unit = info->mem_unit;
1554 while (mem_unit > 1) {
1555 bitcount++;
1556 mem_unit >>= 1;
1557 sav_total = mem_total;
1558 mem_total <<= 1;
1559 if (mem_total < sav_total)
1560 goto out;
1561 }
1562
1563 /*
1564 * If mem_total did not overflow, multiply all memory values by
1565 * info->mem_unit and set it to 1. This leaves things compatible
1566 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1567 * kernels...
1568 */
1569
1570 info->mem_unit = 1;
1571 info->totalram <<= bitcount;
1572 info->freeram <<= bitcount;
1573 info->sharedram <<= bitcount;
1574 info->bufferram <<= bitcount;
1575 info->totalswap <<= bitcount;
1576 info->freeswap <<= bitcount;
1577 info->totalhigh <<= bitcount;
1578 info->freehigh <<= bitcount;
1579
1580 out:
1581 return 0;
1582 }
1583
1584 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1585 {
1586 struct sysinfo val;
1587
1588 do_sysinfo(&val);
1589
1590 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1591 return -EFAULT;
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * lockdep: we want to track each per-CPU base as a separate lock-class,
1598 * but timer-bases are kmalloc()-ed, so we need to attach separate
1599 * keys to them:
1600 */
1601 static struct lock_class_key base_lock_keys[NR_CPUS];
1602
1603 static int __devinit init_timers_cpu(int cpu)
1604 {
1605 int j;
1606 tvec_base_t *base;
1607 static char __devinitdata tvec_base_done[NR_CPUS];
1608
1609 if (!tvec_base_done[cpu]) {
1610 static char boot_done;
1611
1612 if (boot_done) {
1613 /*
1614 * The APs use this path later in boot
1615 */
1616 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1617 cpu_to_node(cpu));
1618 if (!base)
1619 return -ENOMEM;
1620 memset(base, 0, sizeof(*base));
1621 per_cpu(tvec_bases, cpu) = base;
1622 } else {
1623 /*
1624 * This is for the boot CPU - we use compile-time
1625 * static initialisation because per-cpu memory isn't
1626 * ready yet and because the memory allocators are not
1627 * initialised either.
1628 */
1629 boot_done = 1;
1630 base = &boot_tvec_bases;
1631 }
1632 tvec_base_done[cpu] = 1;
1633 } else {
1634 base = per_cpu(tvec_bases, cpu);
1635 }
1636
1637 spin_lock_init(&base->lock);
1638 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1639
1640 for (j = 0; j < TVN_SIZE; j++) {
1641 INIT_LIST_HEAD(base->tv5.vec + j);
1642 INIT_LIST_HEAD(base->tv4.vec + j);
1643 INIT_LIST_HEAD(base->tv3.vec + j);
1644 INIT_LIST_HEAD(base->tv2.vec + j);
1645 }
1646 for (j = 0; j < TVR_SIZE; j++)
1647 INIT_LIST_HEAD(base->tv1.vec + j);
1648
1649 base->timer_jiffies = jiffies;
1650 return 0;
1651 }
1652
1653 #ifdef CONFIG_HOTPLUG_CPU
1654 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1655 {
1656 struct timer_list *timer;
1657
1658 while (!list_empty(head)) {
1659 timer = list_entry(head->next, struct timer_list, entry);
1660 detach_timer(timer, 0);
1661 timer->base = new_base;
1662 internal_add_timer(new_base, timer);
1663 }
1664 }
1665
1666 static void __devinit migrate_timers(int cpu)
1667 {
1668 tvec_base_t *old_base;
1669 tvec_base_t *new_base;
1670 int i;
1671
1672 BUG_ON(cpu_online(cpu));
1673 old_base = per_cpu(tvec_bases, cpu);
1674 new_base = get_cpu_var(tvec_bases);
1675
1676 local_irq_disable();
1677 double_spin_lock(&new_base->lock, &old_base->lock,
1678 smp_processor_id() < cpu);
1679
1680 BUG_ON(old_base->running_timer);
1681
1682 for (i = 0; i < TVR_SIZE; i++)
1683 migrate_timer_list(new_base, old_base->tv1.vec + i);
1684 for (i = 0; i < TVN_SIZE; i++) {
1685 migrate_timer_list(new_base, old_base->tv2.vec + i);
1686 migrate_timer_list(new_base, old_base->tv3.vec + i);
1687 migrate_timer_list(new_base, old_base->tv4.vec + i);
1688 migrate_timer_list(new_base, old_base->tv5.vec + i);
1689 }
1690
1691 double_spin_unlock(&new_base->lock, &old_base->lock,
1692 smp_processor_id() < cpu);
1693 local_irq_enable();
1694 put_cpu_var(tvec_bases);
1695 }
1696 #endif /* CONFIG_HOTPLUG_CPU */
1697
1698 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1699 unsigned long action, void *hcpu)
1700 {
1701 long cpu = (long)hcpu;
1702 switch(action) {
1703 case CPU_UP_PREPARE:
1704 if (init_timers_cpu(cpu) < 0)
1705 return NOTIFY_BAD;
1706 break;
1707 #ifdef CONFIG_HOTPLUG_CPU
1708 case CPU_DEAD:
1709 migrate_timers(cpu);
1710 break;
1711 #endif
1712 default:
1713 break;
1714 }
1715 return NOTIFY_OK;
1716 }
1717
1718 static struct notifier_block __cpuinitdata timers_nb = {
1719 .notifier_call = timer_cpu_notify,
1720 };
1721
1722
1723 void __init init_timers(void)
1724 {
1725 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1726 (void *)(long)smp_processor_id());
1727
1728 init_timer_stats();
1729
1730 BUG_ON(err == NOTIFY_BAD);
1731 register_cpu_notifier(&timers_nb);
1732 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1733 }
1734
1735 #ifdef CONFIG_TIME_INTERPOLATION
1736
1737 struct time_interpolator *time_interpolator __read_mostly;
1738 static struct time_interpolator *time_interpolator_list __read_mostly;
1739 static DEFINE_SPINLOCK(time_interpolator_lock);
1740
1741 static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1742 {
1743 unsigned long (*x)(void);
1744
1745 switch (src)
1746 {
1747 case TIME_SOURCE_FUNCTION:
1748 x = time_interpolator->addr;
1749 return x();
1750
1751 case TIME_SOURCE_MMIO64 :
1752 return readq_relaxed((void __iomem *)time_interpolator->addr);
1753
1754 case TIME_SOURCE_MMIO32 :
1755 return readl_relaxed((void __iomem *)time_interpolator->addr);
1756
1757 default: return get_cycles();
1758 }
1759 }
1760
1761 static inline u64 time_interpolator_get_counter(int writelock)
1762 {
1763 unsigned int src = time_interpolator->source;
1764
1765 if (time_interpolator->jitter)
1766 {
1767 cycles_t lcycle;
1768 cycles_t now;
1769
1770 do {
1771 lcycle = time_interpolator->last_cycle;
1772 now = time_interpolator_get_cycles(src);
1773 if (lcycle && time_after(lcycle, now))
1774 return lcycle;
1775
1776 /* When holding the xtime write lock, there's no need
1777 * to add the overhead of the cmpxchg. Readers are
1778 * force to retry until the write lock is released.
1779 */
1780 if (writelock) {
1781 time_interpolator->last_cycle = now;
1782 return now;
1783 }
1784 /* Keep track of the last timer value returned. The use of cmpxchg here
1785 * will cause contention in an SMP environment.
1786 */
1787 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1788 return now;
1789 }
1790 else
1791 return time_interpolator_get_cycles(src);
1792 }
1793
1794 void time_interpolator_reset(void)
1795 {
1796 time_interpolator->offset = 0;
1797 time_interpolator->last_counter = time_interpolator_get_counter(1);
1798 }
1799
1800 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1801
1802 unsigned long time_interpolator_get_offset(void)
1803 {
1804 /* If we do not have a time interpolator set up then just return zero */
1805 if (!time_interpolator)
1806 return 0;
1807
1808 return time_interpolator->offset +
1809 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1810 }
1811
1812 #define INTERPOLATOR_ADJUST 65536
1813 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1814
1815 void time_interpolator_update(long delta_nsec)
1816 {
1817 u64 counter;
1818 unsigned long offset;
1819
1820 /* If there is no time interpolator set up then do nothing */
1821 if (!time_interpolator)
1822 return;
1823
1824 /*
1825 * The interpolator compensates for late ticks by accumulating the late
1826 * time in time_interpolator->offset. A tick earlier than expected will
1827 * lead to a reset of the offset and a corresponding jump of the clock
1828 * forward. Again this only works if the interpolator clock is running
1829 * slightly slower than the regular clock and the tuning logic insures
1830 * that.
1831 */
1832
1833 counter = time_interpolator_get_counter(1);
1834 offset = time_interpolator->offset +
1835 GET_TI_NSECS(counter, time_interpolator);
1836
1837 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1838 time_interpolator->offset = offset - delta_nsec;
1839 else {
1840 time_interpolator->skips++;
1841 time_interpolator->ns_skipped += delta_nsec - offset;
1842 time_interpolator->offset = 0;
1843 }
1844 time_interpolator->last_counter = counter;
1845
1846 /* Tuning logic for time interpolator invoked every minute or so.
1847 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1848 * Increase interpolator clock speed if we skip too much time.
1849 */
1850 if (jiffies % INTERPOLATOR_ADJUST == 0)
1851 {
1852 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1853 time_interpolator->nsec_per_cyc--;
1854 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1855 time_interpolator->nsec_per_cyc++;
1856 time_interpolator->skips = 0;
1857 time_interpolator->ns_skipped = 0;
1858 }
1859 }
1860
1861 static inline int
1862 is_better_time_interpolator(struct time_interpolator *new)
1863 {
1864 if (!time_interpolator)
1865 return 1;
1866 return new->frequency > 2*time_interpolator->frequency ||
1867 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1868 }
1869
1870 void
1871 register_time_interpolator(struct time_interpolator *ti)
1872 {
1873 unsigned long flags;
1874
1875 /* Sanity check */
1876 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1877
1878 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1879 spin_lock(&time_interpolator_lock);
1880 write_seqlock_irqsave(&xtime_lock, flags);
1881 if (is_better_time_interpolator(ti)) {
1882 time_interpolator = ti;
1883 time_interpolator_reset();
1884 }
1885 write_sequnlock_irqrestore(&xtime_lock, flags);
1886
1887 ti->next = time_interpolator_list;
1888 time_interpolator_list = ti;
1889 spin_unlock(&time_interpolator_lock);
1890 }
1891
1892 void
1893 unregister_time_interpolator(struct time_interpolator *ti)
1894 {
1895 struct time_interpolator *curr, **prev;
1896 unsigned long flags;
1897
1898 spin_lock(&time_interpolator_lock);
1899 prev = &time_interpolator_list;
1900 for (curr = *prev; curr; curr = curr->next) {
1901 if (curr == ti) {
1902 *prev = curr->next;
1903 break;
1904 }
1905 prev = &curr->next;
1906 }
1907
1908 write_seqlock_irqsave(&xtime_lock, flags);
1909 if (ti == time_interpolator) {
1910 /* we lost the best time-interpolator: */
1911 time_interpolator = NULL;
1912 /* find the next-best interpolator */
1913 for (curr = time_interpolator_list; curr; curr = curr->next)
1914 if (is_better_time_interpolator(curr))
1915 time_interpolator = curr;
1916 time_interpolator_reset();
1917 }
1918 write_sequnlock_irqrestore(&xtime_lock, flags);
1919 spin_unlock(&time_interpolator_lock);
1920 }
1921 #endif /* CONFIG_TIME_INTERPOLATION */
1922
1923 /**
1924 * msleep - sleep safely even with waitqueue interruptions
1925 * @msecs: Time in milliseconds to sleep for
1926 */
1927 void msleep(unsigned int msecs)
1928 {
1929 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1930
1931 while (timeout)
1932 timeout = schedule_timeout_uninterruptible(timeout);
1933 }
1934
1935 EXPORT_SYMBOL(msleep);
1936
1937 /**
1938 * msleep_interruptible - sleep waiting for signals
1939 * @msecs: Time in milliseconds to sleep for
1940 */
1941 unsigned long msleep_interruptible(unsigned int msecs)
1942 {
1943 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1944
1945 while (timeout && !signal_pending(current))
1946 timeout = schedule_timeout_interruptible(timeout);
1947 return jiffies_to_msecs(timeout);
1948 }
1949
1950 EXPORT_SYMBOL(msleep_interruptible);