Pull bugfix into test branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
42 #include <asm/io.h>
43
44 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
45
46 EXPORT_SYMBOL(jiffies_64);
47
48 /*
49 * per-CPU timer vector definitions:
50 */
51 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
52 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
53 #define TVN_SIZE (1 << TVN_BITS)
54 #define TVR_SIZE (1 << TVR_BITS)
55 #define TVN_MASK (TVN_SIZE - 1)
56 #define TVR_MASK (TVR_SIZE - 1)
57
58 typedef struct tvec_s {
59 struct list_head vec[TVN_SIZE];
60 } tvec_t;
61
62 typedef struct tvec_root_s {
63 struct list_head vec[TVR_SIZE];
64 } tvec_root_t;
65
66 struct tvec_t_base_s {
67 spinlock_t lock;
68 struct timer_list *running_timer;
69 unsigned long timer_jiffies;
70 tvec_root_t tv1;
71 tvec_t tv2;
72 tvec_t tv3;
73 tvec_t tv4;
74 tvec_t tv5;
75 } ____cacheline_aligned_in_smp;
76
77 typedef struct tvec_t_base_s tvec_base_t;
78
79 tvec_base_t boot_tvec_bases;
80 EXPORT_SYMBOL(boot_tvec_bases);
81 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
82
83 /**
84 * __round_jiffies - function to round jiffies to a full second
85 * @j: the time in (absolute) jiffies that should be rounded
86 * @cpu: the processor number on which the timeout will happen
87 *
88 * __round_jiffies rounds an absolute time in the future (in jiffies)
89 * up or down to (approximately) full seconds. This is useful for timers
90 * for which the exact time they fire does not matter too much, as long as
91 * they fire approximately every X seconds.
92 *
93 * By rounding these timers to whole seconds, all such timers will fire
94 * at the same time, rather than at various times spread out. The goal
95 * of this is to have the CPU wake up less, which saves power.
96 *
97 * The exact rounding is skewed for each processor to avoid all
98 * processors firing at the exact same time, which could lead
99 * to lock contention or spurious cache line bouncing.
100 *
101 * The return value is the rounded version of the "j" parameter.
102 */
103 unsigned long __round_jiffies(unsigned long j, int cpu)
104 {
105 int rem;
106 unsigned long original = j;
107
108 /*
109 * We don't want all cpus firing their timers at once hitting the
110 * same lock or cachelines, so we skew each extra cpu with an extra
111 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
112 * already did this.
113 * The skew is done by adding 3*cpunr, then round, then subtract this
114 * extra offset again.
115 */
116 j += cpu * 3;
117
118 rem = j % HZ;
119
120 /*
121 * If the target jiffie is just after a whole second (which can happen
122 * due to delays of the timer irq, long irq off times etc etc) then
123 * we should round down to the whole second, not up. Use 1/4th second
124 * as cutoff for this rounding as an extreme upper bound for this.
125 */
126 if (rem < HZ/4) /* round down */
127 j = j - rem;
128 else /* round up */
129 j = j - rem + HZ;
130
131 /* now that we have rounded, subtract the extra skew again */
132 j -= cpu * 3;
133
134 if (j <= jiffies) /* rounding ate our timeout entirely; */
135 return original;
136 return j;
137 }
138 EXPORT_SYMBOL_GPL(__round_jiffies);
139
140 /**
141 * __round_jiffies_relative - function to round jiffies to a full second
142 * @j: the time in (relative) jiffies that should be rounded
143 * @cpu: the processor number on which the timeout will happen
144 *
145 * __round_jiffies_relative rounds a time delta in the future (in jiffies)
146 * up or down to (approximately) full seconds. This is useful for timers
147 * for which the exact time they fire does not matter too much, as long as
148 * they fire approximately every X seconds.
149 *
150 * By rounding these timers to whole seconds, all such timers will fire
151 * at the same time, rather than at various times spread out. The goal
152 * of this is to have the CPU wake up less, which saves power.
153 *
154 * The exact rounding is skewed for each processor to avoid all
155 * processors firing at the exact same time, which could lead
156 * to lock contention or spurious cache line bouncing.
157 *
158 * The return value is the rounded version of the "j" parameter.
159 */
160 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
161 {
162 /*
163 * In theory the following code can skip a jiffy in case jiffies
164 * increments right between the addition and the later subtraction.
165 * However since the entire point of this function is to use approximate
166 * timeouts, it's entirely ok to not handle that.
167 */
168 return __round_jiffies(j + jiffies, cpu) - jiffies;
169 }
170 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
171
172 /**
173 * round_jiffies - function to round jiffies to a full second
174 * @j: the time in (absolute) jiffies that should be rounded
175 *
176 * round_jiffies rounds an absolute time in the future (in jiffies)
177 * up or down to (approximately) full seconds. This is useful for timers
178 * for which the exact time they fire does not matter too much, as long as
179 * they fire approximately every X seconds.
180 *
181 * By rounding these timers to whole seconds, all such timers will fire
182 * at the same time, rather than at various times spread out. The goal
183 * of this is to have the CPU wake up less, which saves power.
184 *
185 * The return value is the rounded version of the "j" parameter.
186 */
187 unsigned long round_jiffies(unsigned long j)
188 {
189 return __round_jiffies(j, raw_smp_processor_id());
190 }
191 EXPORT_SYMBOL_GPL(round_jiffies);
192
193 /**
194 * round_jiffies_relative - function to round jiffies to a full second
195 * @j: the time in (relative) jiffies that should be rounded
196 *
197 * round_jiffies_relative rounds a time delta in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
206 * The return value is the rounded version of the "j" parameter.
207 */
208 unsigned long round_jiffies_relative(unsigned long j)
209 {
210 return __round_jiffies_relative(j, raw_smp_processor_id());
211 }
212 EXPORT_SYMBOL_GPL(round_jiffies_relative);
213
214
215 static inline void set_running_timer(tvec_base_t *base,
216 struct timer_list *timer)
217 {
218 #ifdef CONFIG_SMP
219 base->running_timer = timer;
220 #endif
221 }
222
223 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
224 {
225 unsigned long expires = timer->expires;
226 unsigned long idx = expires - base->timer_jiffies;
227 struct list_head *vec;
228
229 if (idx < TVR_SIZE) {
230 int i = expires & TVR_MASK;
231 vec = base->tv1.vec + i;
232 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
233 int i = (expires >> TVR_BITS) & TVN_MASK;
234 vec = base->tv2.vec + i;
235 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
236 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
237 vec = base->tv3.vec + i;
238 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
239 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
240 vec = base->tv4.vec + i;
241 } else if ((signed long) idx < 0) {
242 /*
243 * Can happen if you add a timer with expires == jiffies,
244 * or you set a timer to go off in the past
245 */
246 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
247 } else {
248 int i;
249 /* If the timeout is larger than 0xffffffff on 64-bit
250 * architectures then we use the maximum timeout:
251 */
252 if (idx > 0xffffffffUL) {
253 idx = 0xffffffffUL;
254 expires = idx + base->timer_jiffies;
255 }
256 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
257 vec = base->tv5.vec + i;
258 }
259 /*
260 * Timers are FIFO:
261 */
262 list_add_tail(&timer->entry, vec);
263 }
264
265 /**
266 * init_timer - initialize a timer.
267 * @timer: the timer to be initialized
268 *
269 * init_timer() must be done to a timer prior calling *any* of the
270 * other timer functions.
271 */
272 void fastcall init_timer(struct timer_list *timer)
273 {
274 timer->entry.next = NULL;
275 timer->base = __raw_get_cpu_var(tvec_bases);
276 }
277 EXPORT_SYMBOL(init_timer);
278
279 static inline void detach_timer(struct timer_list *timer,
280 int clear_pending)
281 {
282 struct list_head *entry = &timer->entry;
283
284 __list_del(entry->prev, entry->next);
285 if (clear_pending)
286 entry->next = NULL;
287 entry->prev = LIST_POISON2;
288 }
289
290 /*
291 * We are using hashed locking: holding per_cpu(tvec_bases).lock
292 * means that all timers which are tied to this base via timer->base are
293 * locked, and the base itself is locked too.
294 *
295 * So __run_timers/migrate_timers can safely modify all timers which could
296 * be found on ->tvX lists.
297 *
298 * When the timer's base is locked, and the timer removed from list, it is
299 * possible to set timer->base = NULL and drop the lock: the timer remains
300 * locked.
301 */
302 static tvec_base_t *lock_timer_base(struct timer_list *timer,
303 unsigned long *flags)
304 __acquires(timer->base->lock)
305 {
306 tvec_base_t *base;
307
308 for (;;) {
309 base = timer->base;
310 if (likely(base != NULL)) {
311 spin_lock_irqsave(&base->lock, *flags);
312 if (likely(base == timer->base))
313 return base;
314 /* The timer has migrated to another CPU */
315 spin_unlock_irqrestore(&base->lock, *flags);
316 }
317 cpu_relax();
318 }
319 }
320
321 int __mod_timer(struct timer_list *timer, unsigned long expires)
322 {
323 tvec_base_t *base, *new_base;
324 unsigned long flags;
325 int ret = 0;
326
327 BUG_ON(!timer->function);
328
329 base = lock_timer_base(timer, &flags);
330
331 if (timer_pending(timer)) {
332 detach_timer(timer, 0);
333 ret = 1;
334 }
335
336 new_base = __get_cpu_var(tvec_bases);
337
338 if (base != new_base) {
339 /*
340 * We are trying to schedule the timer on the local CPU.
341 * However we can't change timer's base while it is running,
342 * otherwise del_timer_sync() can't detect that the timer's
343 * handler yet has not finished. This also guarantees that
344 * the timer is serialized wrt itself.
345 */
346 if (likely(base->running_timer != timer)) {
347 /* See the comment in lock_timer_base() */
348 timer->base = NULL;
349 spin_unlock(&base->lock);
350 base = new_base;
351 spin_lock(&base->lock);
352 timer->base = base;
353 }
354 }
355
356 timer->expires = expires;
357 internal_add_timer(base, timer);
358 spin_unlock_irqrestore(&base->lock, flags);
359
360 return ret;
361 }
362
363 EXPORT_SYMBOL(__mod_timer);
364
365 /**
366 * add_timer_on - start a timer on a particular CPU
367 * @timer: the timer to be added
368 * @cpu: the CPU to start it on
369 *
370 * This is not very scalable on SMP. Double adds are not possible.
371 */
372 void add_timer_on(struct timer_list *timer, int cpu)
373 {
374 tvec_base_t *base = per_cpu(tvec_bases, cpu);
375 unsigned long flags;
376
377 BUG_ON(timer_pending(timer) || !timer->function);
378 spin_lock_irqsave(&base->lock, flags);
379 timer->base = base;
380 internal_add_timer(base, timer);
381 spin_unlock_irqrestore(&base->lock, flags);
382 }
383
384
385 /**
386 * mod_timer - modify a timer's timeout
387 * @timer: the timer to be modified
388 * @expires: new timeout in jiffies
389 *
390 * mod_timer is a more efficient way to update the expire field of an
391 * active timer (if the timer is inactive it will be activated)
392 *
393 * mod_timer(timer, expires) is equivalent to:
394 *
395 * del_timer(timer); timer->expires = expires; add_timer(timer);
396 *
397 * Note that if there are multiple unserialized concurrent users of the
398 * same timer, then mod_timer() is the only safe way to modify the timeout,
399 * since add_timer() cannot modify an already running timer.
400 *
401 * The function returns whether it has modified a pending timer or not.
402 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
403 * active timer returns 1.)
404 */
405 int mod_timer(struct timer_list *timer, unsigned long expires)
406 {
407 BUG_ON(!timer->function);
408
409 /*
410 * This is a common optimization triggered by the
411 * networking code - if the timer is re-modified
412 * to be the same thing then just return:
413 */
414 if (timer->expires == expires && timer_pending(timer))
415 return 1;
416
417 return __mod_timer(timer, expires);
418 }
419
420 EXPORT_SYMBOL(mod_timer);
421
422 /**
423 * del_timer - deactive a timer.
424 * @timer: the timer to be deactivated
425 *
426 * del_timer() deactivates a timer - this works on both active and inactive
427 * timers.
428 *
429 * The function returns whether it has deactivated a pending timer or not.
430 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
431 * active timer returns 1.)
432 */
433 int del_timer(struct timer_list *timer)
434 {
435 tvec_base_t *base;
436 unsigned long flags;
437 int ret = 0;
438
439 if (timer_pending(timer)) {
440 base = lock_timer_base(timer, &flags);
441 if (timer_pending(timer)) {
442 detach_timer(timer, 1);
443 ret = 1;
444 }
445 spin_unlock_irqrestore(&base->lock, flags);
446 }
447
448 return ret;
449 }
450
451 EXPORT_SYMBOL(del_timer);
452
453 #ifdef CONFIG_SMP
454 /**
455 * try_to_del_timer_sync - Try to deactivate a timer
456 * @timer: timer do del
457 *
458 * This function tries to deactivate a timer. Upon successful (ret >= 0)
459 * exit the timer is not queued and the handler is not running on any CPU.
460 *
461 * It must not be called from interrupt contexts.
462 */
463 int try_to_del_timer_sync(struct timer_list *timer)
464 {
465 tvec_base_t *base;
466 unsigned long flags;
467 int ret = -1;
468
469 base = lock_timer_base(timer, &flags);
470
471 if (base->running_timer == timer)
472 goto out;
473
474 ret = 0;
475 if (timer_pending(timer)) {
476 detach_timer(timer, 1);
477 ret = 1;
478 }
479 out:
480 spin_unlock_irqrestore(&base->lock, flags);
481
482 return ret;
483 }
484
485 /**
486 * del_timer_sync - deactivate a timer and wait for the handler to finish.
487 * @timer: the timer to be deactivated
488 *
489 * This function only differs from del_timer() on SMP: besides deactivating
490 * the timer it also makes sure the handler has finished executing on other
491 * CPUs.
492 *
493 * Synchronization rules: callers must prevent restarting of the timer,
494 * otherwise this function is meaningless. It must not be called from
495 * interrupt contexts. The caller must not hold locks which would prevent
496 * completion of the timer's handler. The timer's handler must not call
497 * add_timer_on(). Upon exit the timer is not queued and the handler is
498 * not running on any CPU.
499 *
500 * The function returns whether it has deactivated a pending timer or not.
501 */
502 int del_timer_sync(struct timer_list *timer)
503 {
504 for (;;) {
505 int ret = try_to_del_timer_sync(timer);
506 if (ret >= 0)
507 return ret;
508 cpu_relax();
509 }
510 }
511
512 EXPORT_SYMBOL(del_timer_sync);
513 #endif
514
515 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
516 {
517 /* cascade all the timers from tv up one level */
518 struct timer_list *timer, *tmp;
519 struct list_head tv_list;
520
521 list_replace_init(tv->vec + index, &tv_list);
522
523 /*
524 * We are removing _all_ timers from the list, so we
525 * don't have to detach them individually.
526 */
527 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
528 BUG_ON(timer->base != base);
529 internal_add_timer(base, timer);
530 }
531
532 return index;
533 }
534
535 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
536
537 /**
538 * __run_timers - run all expired timers (if any) on this CPU.
539 * @base: the timer vector to be processed.
540 *
541 * This function cascades all vectors and executes all expired timer
542 * vectors.
543 */
544 static inline void __run_timers(tvec_base_t *base)
545 {
546 struct timer_list *timer;
547
548 spin_lock_irq(&base->lock);
549 while (time_after_eq(jiffies, base->timer_jiffies)) {
550 struct list_head work_list;
551 struct list_head *head = &work_list;
552 int index = base->timer_jiffies & TVR_MASK;
553
554 /*
555 * Cascade timers:
556 */
557 if (!index &&
558 (!cascade(base, &base->tv2, INDEX(0))) &&
559 (!cascade(base, &base->tv3, INDEX(1))) &&
560 !cascade(base, &base->tv4, INDEX(2)))
561 cascade(base, &base->tv5, INDEX(3));
562 ++base->timer_jiffies;
563 list_replace_init(base->tv1.vec + index, &work_list);
564 while (!list_empty(head)) {
565 void (*fn)(unsigned long);
566 unsigned long data;
567
568 timer = list_entry(head->next,struct timer_list,entry);
569 fn = timer->function;
570 data = timer->data;
571
572 set_running_timer(base, timer);
573 detach_timer(timer, 1);
574 spin_unlock_irq(&base->lock);
575 {
576 int preempt_count = preempt_count();
577 fn(data);
578 if (preempt_count != preempt_count()) {
579 printk(KERN_WARNING "huh, entered %p "
580 "with preempt_count %08x, exited"
581 " with %08x?\n",
582 fn, preempt_count,
583 preempt_count());
584 BUG();
585 }
586 }
587 spin_lock_irq(&base->lock);
588 }
589 }
590 set_running_timer(base, NULL);
591 spin_unlock_irq(&base->lock);
592 }
593
594 #ifdef CONFIG_NO_IDLE_HZ
595 /*
596 * Find out when the next timer event is due to happen. This
597 * is used on S/390 to stop all activity when a cpus is idle.
598 * This functions needs to be called disabled.
599 */
600 unsigned long next_timer_interrupt(void)
601 {
602 tvec_base_t *base;
603 struct list_head *list;
604 struct timer_list *nte;
605 unsigned long expires;
606 unsigned long hr_expires = MAX_JIFFY_OFFSET;
607 ktime_t hr_delta;
608 tvec_t *varray[4];
609 int i, j;
610
611 hr_delta = hrtimer_get_next_event();
612 if (hr_delta.tv64 != KTIME_MAX) {
613 struct timespec tsdelta;
614 tsdelta = ktime_to_timespec(hr_delta);
615 hr_expires = timespec_to_jiffies(&tsdelta);
616 if (hr_expires < 3)
617 return hr_expires + jiffies;
618 }
619 hr_expires += jiffies;
620
621 base = __get_cpu_var(tvec_bases);
622 spin_lock(&base->lock);
623 expires = base->timer_jiffies + (LONG_MAX >> 1);
624 list = NULL;
625
626 /* Look for timer events in tv1. */
627 j = base->timer_jiffies & TVR_MASK;
628 do {
629 list_for_each_entry(nte, base->tv1.vec + j, entry) {
630 expires = nte->expires;
631 if (j < (base->timer_jiffies & TVR_MASK))
632 list = base->tv2.vec + (INDEX(0));
633 goto found;
634 }
635 j = (j + 1) & TVR_MASK;
636 } while (j != (base->timer_jiffies & TVR_MASK));
637
638 /* Check tv2-tv5. */
639 varray[0] = &base->tv2;
640 varray[1] = &base->tv3;
641 varray[2] = &base->tv4;
642 varray[3] = &base->tv5;
643 for (i = 0; i < 4; i++) {
644 j = INDEX(i);
645 do {
646 if (list_empty(varray[i]->vec + j)) {
647 j = (j + 1) & TVN_MASK;
648 continue;
649 }
650 list_for_each_entry(nte, varray[i]->vec + j, entry)
651 if (time_before(nte->expires, expires))
652 expires = nte->expires;
653 if (j < (INDEX(i)) && i < 3)
654 list = varray[i + 1]->vec + (INDEX(i + 1));
655 goto found;
656 } while (j != (INDEX(i)));
657 }
658 found:
659 if (list) {
660 /*
661 * The search wrapped. We need to look at the next list
662 * from next tv element that would cascade into tv element
663 * where we found the timer element.
664 */
665 list_for_each_entry(nte, list, entry) {
666 if (time_before(nte->expires, expires))
667 expires = nte->expires;
668 }
669 }
670 spin_unlock(&base->lock);
671
672 /*
673 * It can happen that other CPUs service timer IRQs and increment
674 * jiffies, but we have not yet got a local timer tick to process
675 * the timer wheels. In that case, the expiry time can be before
676 * jiffies, but since the high-resolution timer here is relative to
677 * jiffies, the default expression when high-resolution timers are
678 * not active,
679 *
680 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
681 *
682 * would falsely evaluate to true. If that is the case, just
683 * return jiffies so that we can immediately fire the local timer
684 */
685 if (time_before(expires, jiffies))
686 return jiffies;
687
688 if (time_before(hr_expires, expires))
689 return hr_expires;
690
691 return expires;
692 }
693 #endif
694
695 /******************************************************************/
696
697 /*
698 * The current time
699 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
700 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
701 * at zero at system boot time, so wall_to_monotonic will be negative,
702 * however, we will ALWAYS keep the tv_nsec part positive so we can use
703 * the usual normalization.
704 */
705 struct timespec xtime __attribute__ ((aligned (16)));
706 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
707
708 EXPORT_SYMBOL(xtime);
709
710
711 /* XXX - all of this timekeeping code should be later moved to time.c */
712 #include <linux/clocksource.h>
713 static struct clocksource *clock; /* pointer to current clocksource */
714
715 #ifdef CONFIG_GENERIC_TIME
716 /**
717 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
718 *
719 * private function, must hold xtime_lock lock when being
720 * called. Returns the number of nanoseconds since the
721 * last call to update_wall_time() (adjusted by NTP scaling)
722 */
723 static inline s64 __get_nsec_offset(void)
724 {
725 cycle_t cycle_now, cycle_delta;
726 s64 ns_offset;
727
728 /* read clocksource: */
729 cycle_now = clocksource_read(clock);
730
731 /* calculate the delta since the last update_wall_time: */
732 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
733
734 /* convert to nanoseconds: */
735 ns_offset = cyc2ns(clock, cycle_delta);
736
737 return ns_offset;
738 }
739
740 /**
741 * __get_realtime_clock_ts - Returns the time of day in a timespec
742 * @ts: pointer to the timespec to be set
743 *
744 * Returns the time of day in a timespec. Used by
745 * do_gettimeofday() and get_realtime_clock_ts().
746 */
747 static inline void __get_realtime_clock_ts(struct timespec *ts)
748 {
749 unsigned long seq;
750 s64 nsecs;
751
752 do {
753 seq = read_seqbegin(&xtime_lock);
754
755 *ts = xtime;
756 nsecs = __get_nsec_offset();
757
758 } while (read_seqretry(&xtime_lock, seq));
759
760 timespec_add_ns(ts, nsecs);
761 }
762
763 /**
764 * getnstimeofday - Returns the time of day in a timespec
765 * @ts: pointer to the timespec to be set
766 *
767 * Returns the time of day in a timespec.
768 */
769 void getnstimeofday(struct timespec *ts)
770 {
771 __get_realtime_clock_ts(ts);
772 }
773
774 EXPORT_SYMBOL(getnstimeofday);
775
776 /**
777 * do_gettimeofday - Returns the time of day in a timeval
778 * @tv: pointer to the timeval to be set
779 *
780 * NOTE: Users should be converted to using get_realtime_clock_ts()
781 */
782 void do_gettimeofday(struct timeval *tv)
783 {
784 struct timespec now;
785
786 __get_realtime_clock_ts(&now);
787 tv->tv_sec = now.tv_sec;
788 tv->tv_usec = now.tv_nsec/1000;
789 }
790
791 EXPORT_SYMBOL(do_gettimeofday);
792 /**
793 * do_settimeofday - Sets the time of day
794 * @tv: pointer to the timespec variable containing the new time
795 *
796 * Sets the time of day to the new time and update NTP and notify hrtimers
797 */
798 int do_settimeofday(struct timespec *tv)
799 {
800 unsigned long flags;
801 time_t wtm_sec, sec = tv->tv_sec;
802 long wtm_nsec, nsec = tv->tv_nsec;
803
804 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
805 return -EINVAL;
806
807 write_seqlock_irqsave(&xtime_lock, flags);
808
809 nsec -= __get_nsec_offset();
810
811 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
812 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
813
814 set_normalized_timespec(&xtime, sec, nsec);
815 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
816
817 clock->error = 0;
818 ntp_clear();
819
820 write_sequnlock_irqrestore(&xtime_lock, flags);
821
822 /* signal hrtimers about time change */
823 clock_was_set();
824
825 return 0;
826 }
827
828 EXPORT_SYMBOL(do_settimeofday);
829
830 /**
831 * change_clocksource - Swaps clocksources if a new one is available
832 *
833 * Accumulates current time interval and initializes new clocksource
834 */
835 static int change_clocksource(void)
836 {
837 struct clocksource *new;
838 cycle_t now;
839 u64 nsec;
840 new = clocksource_get_next();
841 if (clock != new) {
842 now = clocksource_read(new);
843 nsec = __get_nsec_offset();
844 timespec_add_ns(&xtime, nsec);
845
846 clock = new;
847 clock->cycle_last = now;
848 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
849 clock->name);
850 return 1;
851 } else if (clock->update_callback) {
852 return clock->update_callback();
853 }
854 return 0;
855 }
856 #else
857 static inline int change_clocksource(void)
858 {
859 return 0;
860 }
861 #endif
862
863 /**
864 * timeofday_is_continuous - check to see if timekeeping is free running
865 */
866 int timekeeping_is_continuous(void)
867 {
868 unsigned long seq;
869 int ret;
870
871 do {
872 seq = read_seqbegin(&xtime_lock);
873
874 ret = clock->is_continuous;
875
876 } while (read_seqretry(&xtime_lock, seq));
877
878 return ret;
879 }
880
881 /*
882 * timekeeping_init - Initializes the clocksource and common timekeeping values
883 */
884 void __init timekeeping_init(void)
885 {
886 unsigned long flags;
887
888 write_seqlock_irqsave(&xtime_lock, flags);
889
890 ntp_clear();
891
892 clock = clocksource_get_next();
893 clocksource_calculate_interval(clock, tick_nsec);
894 clock->cycle_last = clocksource_read(clock);
895
896 write_sequnlock_irqrestore(&xtime_lock, flags);
897 }
898
899
900 static int timekeeping_suspended;
901 /**
902 * timekeeping_resume - Resumes the generic timekeeping subsystem.
903 * @dev: unused
904 *
905 * This is for the generic clocksource timekeeping.
906 * xtime/wall_to_monotonic/jiffies/etc are
907 * still managed by arch specific suspend/resume code.
908 */
909 static int timekeeping_resume(struct sys_device *dev)
910 {
911 unsigned long flags;
912
913 write_seqlock_irqsave(&xtime_lock, flags);
914 /* restart the last cycle value */
915 clock->cycle_last = clocksource_read(clock);
916 clock->error = 0;
917 timekeeping_suspended = 0;
918 write_sequnlock_irqrestore(&xtime_lock, flags);
919 return 0;
920 }
921
922 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
923 {
924 unsigned long flags;
925
926 write_seqlock_irqsave(&xtime_lock, flags);
927 timekeeping_suspended = 1;
928 write_sequnlock_irqrestore(&xtime_lock, flags);
929 return 0;
930 }
931
932 /* sysfs resume/suspend bits for timekeeping */
933 static struct sysdev_class timekeeping_sysclass = {
934 .resume = timekeeping_resume,
935 .suspend = timekeeping_suspend,
936 set_kset_name("timekeeping"),
937 };
938
939 static struct sys_device device_timer = {
940 .id = 0,
941 .cls = &timekeeping_sysclass,
942 };
943
944 static int __init timekeeping_init_device(void)
945 {
946 int error = sysdev_class_register(&timekeeping_sysclass);
947 if (!error)
948 error = sysdev_register(&device_timer);
949 return error;
950 }
951
952 device_initcall(timekeeping_init_device);
953
954 /*
955 * If the error is already larger, we look ahead even further
956 * to compensate for late or lost adjustments.
957 */
958 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
959 s64 *offset)
960 {
961 s64 tick_error, i;
962 u32 look_ahead, adj;
963 s32 error2, mult;
964
965 /*
966 * Use the current error value to determine how much to look ahead.
967 * The larger the error the slower we adjust for it to avoid problems
968 * with losing too many ticks, otherwise we would overadjust and
969 * produce an even larger error. The smaller the adjustment the
970 * faster we try to adjust for it, as lost ticks can do less harm
971 * here. This is tuned so that an error of about 1 msec is adusted
972 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
973 */
974 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
975 error2 = abs(error2);
976 for (look_ahead = 0; error2 > 0; look_ahead++)
977 error2 >>= 2;
978
979 /*
980 * Now calculate the error in (1 << look_ahead) ticks, but first
981 * remove the single look ahead already included in the error.
982 */
983 tick_error = current_tick_length() >>
984 (TICK_LENGTH_SHIFT - clock->shift + 1);
985 tick_error -= clock->xtime_interval >> 1;
986 error = ((error - tick_error) >> look_ahead) + tick_error;
987
988 /* Finally calculate the adjustment shift value. */
989 i = *interval;
990 mult = 1;
991 if (error < 0) {
992 error = -error;
993 *interval = -*interval;
994 *offset = -*offset;
995 mult = -1;
996 }
997 for (adj = 0; error > i; adj++)
998 error >>= 1;
999
1000 *interval <<= adj;
1001 *offset <<= adj;
1002 return mult << adj;
1003 }
1004
1005 /*
1006 * Adjust the multiplier to reduce the error value,
1007 * this is optimized for the most common adjustments of -1,0,1,
1008 * for other values we can do a bit more work.
1009 */
1010 static void clocksource_adjust(struct clocksource *clock, s64 offset)
1011 {
1012 s64 error, interval = clock->cycle_interval;
1013 int adj;
1014
1015 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1016 if (error > interval) {
1017 error >>= 2;
1018 if (likely(error <= interval))
1019 adj = 1;
1020 else
1021 adj = clocksource_bigadjust(error, &interval, &offset);
1022 } else if (error < -interval) {
1023 error >>= 2;
1024 if (likely(error >= -interval)) {
1025 adj = -1;
1026 interval = -interval;
1027 offset = -offset;
1028 } else
1029 adj = clocksource_bigadjust(error, &interval, &offset);
1030 } else
1031 return;
1032
1033 clock->mult += adj;
1034 clock->xtime_interval += interval;
1035 clock->xtime_nsec -= offset;
1036 clock->error -= (interval - offset) <<
1037 (TICK_LENGTH_SHIFT - clock->shift);
1038 }
1039
1040 /**
1041 * update_wall_time - Uses the current clocksource to increment the wall time
1042 *
1043 * Called from the timer interrupt, must hold a write on xtime_lock.
1044 */
1045 static void update_wall_time(void)
1046 {
1047 cycle_t offset;
1048
1049 /* Make sure we're fully resumed: */
1050 if (unlikely(timekeeping_suspended))
1051 return;
1052
1053 #ifdef CONFIG_GENERIC_TIME
1054 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1055 #else
1056 offset = clock->cycle_interval;
1057 #endif
1058 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1059
1060 /* normally this loop will run just once, however in the
1061 * case of lost or late ticks, it will accumulate correctly.
1062 */
1063 while (offset >= clock->cycle_interval) {
1064 /* accumulate one interval */
1065 clock->xtime_nsec += clock->xtime_interval;
1066 clock->cycle_last += clock->cycle_interval;
1067 offset -= clock->cycle_interval;
1068
1069 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1070 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1071 xtime.tv_sec++;
1072 second_overflow();
1073 }
1074
1075 /* interpolator bits */
1076 time_interpolator_update(clock->xtime_interval
1077 >> clock->shift);
1078
1079 /* accumulate error between NTP and clock interval */
1080 clock->error += current_tick_length();
1081 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1082 }
1083
1084 /* correct the clock when NTP error is too big */
1085 clocksource_adjust(clock, offset);
1086
1087 /* store full nanoseconds into xtime */
1088 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1089 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1090
1091 /* check to see if there is a new clocksource to use */
1092 if (change_clocksource()) {
1093 clock->error = 0;
1094 clock->xtime_nsec = 0;
1095 clocksource_calculate_interval(clock, tick_nsec);
1096 }
1097 }
1098
1099 /*
1100 * Called from the timer interrupt handler to charge one tick to the current
1101 * process. user_tick is 1 if the tick is user time, 0 for system.
1102 */
1103 void update_process_times(int user_tick)
1104 {
1105 struct task_struct *p = current;
1106 int cpu = smp_processor_id();
1107
1108 /* Note: this timer irq context must be accounted for as well. */
1109 if (user_tick)
1110 account_user_time(p, jiffies_to_cputime(1));
1111 else
1112 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1113 run_local_timers();
1114 if (rcu_pending(cpu))
1115 rcu_check_callbacks(cpu, user_tick);
1116 scheduler_tick();
1117 run_posix_cpu_timers(p);
1118 }
1119
1120 /*
1121 * Nr of active tasks - counted in fixed-point numbers
1122 */
1123 static unsigned long count_active_tasks(void)
1124 {
1125 return nr_active() * FIXED_1;
1126 }
1127
1128 /*
1129 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1130 * imply that avenrun[] is the standard name for this kind of thing.
1131 * Nothing else seems to be standardized: the fractional size etc
1132 * all seem to differ on different machines.
1133 *
1134 * Requires xtime_lock to access.
1135 */
1136 unsigned long avenrun[3];
1137
1138 EXPORT_SYMBOL(avenrun);
1139
1140 /*
1141 * calc_load - given tick count, update the avenrun load estimates.
1142 * This is called while holding a write_lock on xtime_lock.
1143 */
1144 static inline void calc_load(unsigned long ticks)
1145 {
1146 unsigned long active_tasks; /* fixed-point */
1147 static int count = LOAD_FREQ;
1148
1149 count -= ticks;
1150 if (unlikely(count < 0)) {
1151 active_tasks = count_active_tasks();
1152 do {
1153 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1154 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1155 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1156 count += LOAD_FREQ;
1157 } while (count < 0);
1158 }
1159 }
1160
1161 /*
1162 * This read-write spinlock protects us from races in SMP while
1163 * playing with xtime and avenrun.
1164 */
1165 #ifndef ARCH_HAVE_XTIME_LOCK
1166 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1167
1168 EXPORT_SYMBOL(xtime_lock);
1169 #endif
1170
1171 /*
1172 * This function runs timers and the timer-tq in bottom half context.
1173 */
1174 static void run_timer_softirq(struct softirq_action *h)
1175 {
1176 tvec_base_t *base = __get_cpu_var(tvec_bases);
1177
1178 hrtimer_run_queues();
1179 if (time_after_eq(jiffies, base->timer_jiffies))
1180 __run_timers(base);
1181 }
1182
1183 /*
1184 * Called by the local, per-CPU timer interrupt on SMP.
1185 */
1186 void run_local_timers(void)
1187 {
1188 raise_softirq(TIMER_SOFTIRQ);
1189 softlockup_tick();
1190 }
1191
1192 /*
1193 * Called by the timer interrupt. xtime_lock must already be taken
1194 * by the timer IRQ!
1195 */
1196 static inline void update_times(unsigned long ticks)
1197 {
1198 update_wall_time();
1199 calc_load(ticks);
1200 }
1201
1202 /*
1203 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1204 * without sampling the sequence number in xtime_lock.
1205 * jiffies is defined in the linker script...
1206 */
1207
1208 void do_timer(unsigned long ticks)
1209 {
1210 jiffies_64 += ticks;
1211 update_times(ticks);
1212 }
1213
1214 #ifdef __ARCH_WANT_SYS_ALARM
1215
1216 /*
1217 * For backwards compatibility? This can be done in libc so Alpha
1218 * and all newer ports shouldn't need it.
1219 */
1220 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1221 {
1222 return alarm_setitimer(seconds);
1223 }
1224
1225 #endif
1226
1227 #ifndef __alpha__
1228
1229 /*
1230 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1231 * should be moved into arch/i386 instead?
1232 */
1233
1234 /**
1235 * sys_getpid - return the thread group id of the current process
1236 *
1237 * Note, despite the name, this returns the tgid not the pid. The tgid and
1238 * the pid are identical unless CLONE_THREAD was specified on clone() in
1239 * which case the tgid is the same in all threads of the same group.
1240 *
1241 * This is SMP safe as current->tgid does not change.
1242 */
1243 asmlinkage long sys_getpid(void)
1244 {
1245 return current->tgid;
1246 }
1247
1248 /*
1249 * Accessing ->real_parent is not SMP-safe, it could
1250 * change from under us. However, we can use a stale
1251 * value of ->real_parent under rcu_read_lock(), see
1252 * release_task()->call_rcu(delayed_put_task_struct).
1253 */
1254 asmlinkage long sys_getppid(void)
1255 {
1256 int pid;
1257
1258 rcu_read_lock();
1259 pid = rcu_dereference(current->real_parent)->tgid;
1260 rcu_read_unlock();
1261
1262 return pid;
1263 }
1264
1265 asmlinkage long sys_getuid(void)
1266 {
1267 /* Only we change this so SMP safe */
1268 return current->uid;
1269 }
1270
1271 asmlinkage long sys_geteuid(void)
1272 {
1273 /* Only we change this so SMP safe */
1274 return current->euid;
1275 }
1276
1277 asmlinkage long sys_getgid(void)
1278 {
1279 /* Only we change this so SMP safe */
1280 return current->gid;
1281 }
1282
1283 asmlinkage long sys_getegid(void)
1284 {
1285 /* Only we change this so SMP safe */
1286 return current->egid;
1287 }
1288
1289 #endif
1290
1291 static void process_timeout(unsigned long __data)
1292 {
1293 wake_up_process((struct task_struct *)__data);
1294 }
1295
1296 /**
1297 * schedule_timeout - sleep until timeout
1298 * @timeout: timeout value in jiffies
1299 *
1300 * Make the current task sleep until @timeout jiffies have
1301 * elapsed. The routine will return immediately unless
1302 * the current task state has been set (see set_current_state()).
1303 *
1304 * You can set the task state as follows -
1305 *
1306 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1307 * pass before the routine returns. The routine will return 0
1308 *
1309 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1310 * delivered to the current task. In this case the remaining time
1311 * in jiffies will be returned, or 0 if the timer expired in time
1312 *
1313 * The current task state is guaranteed to be TASK_RUNNING when this
1314 * routine returns.
1315 *
1316 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1317 * the CPU away without a bound on the timeout. In this case the return
1318 * value will be %MAX_SCHEDULE_TIMEOUT.
1319 *
1320 * In all cases the return value is guaranteed to be non-negative.
1321 */
1322 fastcall signed long __sched schedule_timeout(signed long timeout)
1323 {
1324 struct timer_list timer;
1325 unsigned long expire;
1326
1327 switch (timeout)
1328 {
1329 case MAX_SCHEDULE_TIMEOUT:
1330 /*
1331 * These two special cases are useful to be comfortable
1332 * in the caller. Nothing more. We could take
1333 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1334 * but I' d like to return a valid offset (>=0) to allow
1335 * the caller to do everything it want with the retval.
1336 */
1337 schedule();
1338 goto out;
1339 default:
1340 /*
1341 * Another bit of PARANOID. Note that the retval will be
1342 * 0 since no piece of kernel is supposed to do a check
1343 * for a negative retval of schedule_timeout() (since it
1344 * should never happens anyway). You just have the printk()
1345 * that will tell you if something is gone wrong and where.
1346 */
1347 if (timeout < 0)
1348 {
1349 printk(KERN_ERR "schedule_timeout: wrong timeout "
1350 "value %lx from %p\n", timeout,
1351 __builtin_return_address(0));
1352 current->state = TASK_RUNNING;
1353 goto out;
1354 }
1355 }
1356
1357 expire = timeout + jiffies;
1358
1359 setup_timer(&timer, process_timeout, (unsigned long)current);
1360 __mod_timer(&timer, expire);
1361 schedule();
1362 del_singleshot_timer_sync(&timer);
1363
1364 timeout = expire - jiffies;
1365
1366 out:
1367 return timeout < 0 ? 0 : timeout;
1368 }
1369 EXPORT_SYMBOL(schedule_timeout);
1370
1371 /*
1372 * We can use __set_current_state() here because schedule_timeout() calls
1373 * schedule() unconditionally.
1374 */
1375 signed long __sched schedule_timeout_interruptible(signed long timeout)
1376 {
1377 __set_current_state(TASK_INTERRUPTIBLE);
1378 return schedule_timeout(timeout);
1379 }
1380 EXPORT_SYMBOL(schedule_timeout_interruptible);
1381
1382 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1383 {
1384 __set_current_state(TASK_UNINTERRUPTIBLE);
1385 return schedule_timeout(timeout);
1386 }
1387 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1388
1389 /* Thread ID - the internal kernel "pid" */
1390 asmlinkage long sys_gettid(void)
1391 {
1392 return current->pid;
1393 }
1394
1395 /**
1396 * sys_sysinfo - fill in sysinfo struct
1397 * @info: pointer to buffer to fill
1398 */
1399 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1400 {
1401 struct sysinfo val;
1402 unsigned long mem_total, sav_total;
1403 unsigned int mem_unit, bitcount;
1404 unsigned long seq;
1405
1406 memset((char *)&val, 0, sizeof(struct sysinfo));
1407
1408 do {
1409 struct timespec tp;
1410 seq = read_seqbegin(&xtime_lock);
1411
1412 /*
1413 * This is annoying. The below is the same thing
1414 * posix_get_clock_monotonic() does, but it wants to
1415 * take the lock which we want to cover the loads stuff
1416 * too.
1417 */
1418
1419 getnstimeofday(&tp);
1420 tp.tv_sec += wall_to_monotonic.tv_sec;
1421 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1422 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1423 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1424 tp.tv_sec++;
1425 }
1426 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1427
1428 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1429 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1430 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1431
1432 val.procs = nr_threads;
1433 } while (read_seqretry(&xtime_lock, seq));
1434
1435 si_meminfo(&val);
1436 si_swapinfo(&val);
1437
1438 /*
1439 * If the sum of all the available memory (i.e. ram + swap)
1440 * is less than can be stored in a 32 bit unsigned long then
1441 * we can be binary compatible with 2.2.x kernels. If not,
1442 * well, in that case 2.2.x was broken anyways...
1443 *
1444 * -Erik Andersen <andersee@debian.org>
1445 */
1446
1447 mem_total = val.totalram + val.totalswap;
1448 if (mem_total < val.totalram || mem_total < val.totalswap)
1449 goto out;
1450 bitcount = 0;
1451 mem_unit = val.mem_unit;
1452 while (mem_unit > 1) {
1453 bitcount++;
1454 mem_unit >>= 1;
1455 sav_total = mem_total;
1456 mem_total <<= 1;
1457 if (mem_total < sav_total)
1458 goto out;
1459 }
1460
1461 /*
1462 * If mem_total did not overflow, multiply all memory values by
1463 * val.mem_unit and set it to 1. This leaves things compatible
1464 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1465 * kernels...
1466 */
1467
1468 val.mem_unit = 1;
1469 val.totalram <<= bitcount;
1470 val.freeram <<= bitcount;
1471 val.sharedram <<= bitcount;
1472 val.bufferram <<= bitcount;
1473 val.totalswap <<= bitcount;
1474 val.freeswap <<= bitcount;
1475 val.totalhigh <<= bitcount;
1476 val.freehigh <<= bitcount;
1477
1478 out:
1479 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1480 return -EFAULT;
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * lockdep: we want to track each per-CPU base as a separate lock-class,
1487 * but timer-bases are kmalloc()-ed, so we need to attach separate
1488 * keys to them:
1489 */
1490 static struct lock_class_key base_lock_keys[NR_CPUS];
1491
1492 static int __devinit init_timers_cpu(int cpu)
1493 {
1494 int j;
1495 tvec_base_t *base;
1496 static char __devinitdata tvec_base_done[NR_CPUS];
1497
1498 if (!tvec_base_done[cpu]) {
1499 static char boot_done;
1500
1501 if (boot_done) {
1502 /*
1503 * The APs use this path later in boot
1504 */
1505 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1506 cpu_to_node(cpu));
1507 if (!base)
1508 return -ENOMEM;
1509 memset(base, 0, sizeof(*base));
1510 per_cpu(tvec_bases, cpu) = base;
1511 } else {
1512 /*
1513 * This is for the boot CPU - we use compile-time
1514 * static initialisation because per-cpu memory isn't
1515 * ready yet and because the memory allocators are not
1516 * initialised either.
1517 */
1518 boot_done = 1;
1519 base = &boot_tvec_bases;
1520 }
1521 tvec_base_done[cpu] = 1;
1522 } else {
1523 base = per_cpu(tvec_bases, cpu);
1524 }
1525
1526 spin_lock_init(&base->lock);
1527 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1528
1529 for (j = 0; j < TVN_SIZE; j++) {
1530 INIT_LIST_HEAD(base->tv5.vec + j);
1531 INIT_LIST_HEAD(base->tv4.vec + j);
1532 INIT_LIST_HEAD(base->tv3.vec + j);
1533 INIT_LIST_HEAD(base->tv2.vec + j);
1534 }
1535 for (j = 0; j < TVR_SIZE; j++)
1536 INIT_LIST_HEAD(base->tv1.vec + j);
1537
1538 base->timer_jiffies = jiffies;
1539 return 0;
1540 }
1541
1542 #ifdef CONFIG_HOTPLUG_CPU
1543 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1544 {
1545 struct timer_list *timer;
1546
1547 while (!list_empty(head)) {
1548 timer = list_entry(head->next, struct timer_list, entry);
1549 detach_timer(timer, 0);
1550 timer->base = new_base;
1551 internal_add_timer(new_base, timer);
1552 }
1553 }
1554
1555 static void __devinit migrate_timers(int cpu)
1556 {
1557 tvec_base_t *old_base;
1558 tvec_base_t *new_base;
1559 int i;
1560
1561 BUG_ON(cpu_online(cpu));
1562 old_base = per_cpu(tvec_bases, cpu);
1563 new_base = get_cpu_var(tvec_bases);
1564
1565 local_irq_disable();
1566 spin_lock(&new_base->lock);
1567 spin_lock(&old_base->lock);
1568
1569 BUG_ON(old_base->running_timer);
1570
1571 for (i = 0; i < TVR_SIZE; i++)
1572 migrate_timer_list(new_base, old_base->tv1.vec + i);
1573 for (i = 0; i < TVN_SIZE; i++) {
1574 migrate_timer_list(new_base, old_base->tv2.vec + i);
1575 migrate_timer_list(new_base, old_base->tv3.vec + i);
1576 migrate_timer_list(new_base, old_base->tv4.vec + i);
1577 migrate_timer_list(new_base, old_base->tv5.vec + i);
1578 }
1579
1580 spin_unlock(&old_base->lock);
1581 spin_unlock(&new_base->lock);
1582 local_irq_enable();
1583 put_cpu_var(tvec_bases);
1584 }
1585 #endif /* CONFIG_HOTPLUG_CPU */
1586
1587 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1588 unsigned long action, void *hcpu)
1589 {
1590 long cpu = (long)hcpu;
1591 switch(action) {
1592 case CPU_UP_PREPARE:
1593 if (init_timers_cpu(cpu) < 0)
1594 return NOTIFY_BAD;
1595 break;
1596 #ifdef CONFIG_HOTPLUG_CPU
1597 case CPU_DEAD:
1598 migrate_timers(cpu);
1599 break;
1600 #endif
1601 default:
1602 break;
1603 }
1604 return NOTIFY_OK;
1605 }
1606
1607 static struct notifier_block __cpuinitdata timers_nb = {
1608 .notifier_call = timer_cpu_notify,
1609 };
1610
1611
1612 void __init init_timers(void)
1613 {
1614 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1615 (void *)(long)smp_processor_id());
1616
1617 BUG_ON(err == NOTIFY_BAD);
1618 register_cpu_notifier(&timers_nb);
1619 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1620 }
1621
1622 #ifdef CONFIG_TIME_INTERPOLATION
1623
1624 struct time_interpolator *time_interpolator __read_mostly;
1625 static struct time_interpolator *time_interpolator_list __read_mostly;
1626 static DEFINE_SPINLOCK(time_interpolator_lock);
1627
1628 static inline u64 time_interpolator_get_cycles(unsigned int src)
1629 {
1630 unsigned long (*x)(void);
1631
1632 switch (src)
1633 {
1634 case TIME_SOURCE_FUNCTION:
1635 x = time_interpolator->addr;
1636 return x();
1637
1638 case TIME_SOURCE_MMIO64 :
1639 return readq_relaxed((void __iomem *)time_interpolator->addr);
1640
1641 case TIME_SOURCE_MMIO32 :
1642 return readl_relaxed((void __iomem *)time_interpolator->addr);
1643
1644 default: return get_cycles();
1645 }
1646 }
1647
1648 static inline u64 time_interpolator_get_counter(int writelock)
1649 {
1650 unsigned int src = time_interpolator->source;
1651
1652 if (time_interpolator->jitter)
1653 {
1654 u64 lcycle;
1655 u64 now;
1656
1657 do {
1658 lcycle = time_interpolator->last_cycle;
1659 now = time_interpolator_get_cycles(src);
1660 if (lcycle && time_after(lcycle, now))
1661 return lcycle;
1662
1663 /* When holding the xtime write lock, there's no need
1664 * to add the overhead of the cmpxchg. Readers are
1665 * force to retry until the write lock is released.
1666 */
1667 if (writelock) {
1668 time_interpolator->last_cycle = now;
1669 return now;
1670 }
1671 /* Keep track of the last timer value returned. The use of cmpxchg here
1672 * will cause contention in an SMP environment.
1673 */
1674 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1675 return now;
1676 }
1677 else
1678 return time_interpolator_get_cycles(src);
1679 }
1680
1681 void time_interpolator_reset(void)
1682 {
1683 time_interpolator->offset = 0;
1684 time_interpolator->last_counter = time_interpolator_get_counter(1);
1685 }
1686
1687 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1688
1689 unsigned long time_interpolator_get_offset(void)
1690 {
1691 /* If we do not have a time interpolator set up then just return zero */
1692 if (!time_interpolator)
1693 return 0;
1694
1695 return time_interpolator->offset +
1696 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1697 }
1698
1699 #define INTERPOLATOR_ADJUST 65536
1700 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1701
1702 void time_interpolator_update(long delta_nsec)
1703 {
1704 u64 counter;
1705 unsigned long offset;
1706
1707 /* If there is no time interpolator set up then do nothing */
1708 if (!time_interpolator)
1709 return;
1710
1711 /*
1712 * The interpolator compensates for late ticks by accumulating the late
1713 * time in time_interpolator->offset. A tick earlier than expected will
1714 * lead to a reset of the offset and a corresponding jump of the clock
1715 * forward. Again this only works if the interpolator clock is running
1716 * slightly slower than the regular clock and the tuning logic insures
1717 * that.
1718 */
1719
1720 counter = time_interpolator_get_counter(1);
1721 offset = time_interpolator->offset +
1722 GET_TI_NSECS(counter, time_interpolator);
1723
1724 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1725 time_interpolator->offset = offset - delta_nsec;
1726 else {
1727 time_interpolator->skips++;
1728 time_interpolator->ns_skipped += delta_nsec - offset;
1729 time_interpolator->offset = 0;
1730 }
1731 time_interpolator->last_counter = counter;
1732
1733 /* Tuning logic for time interpolator invoked every minute or so.
1734 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1735 * Increase interpolator clock speed if we skip too much time.
1736 */
1737 if (jiffies % INTERPOLATOR_ADJUST == 0)
1738 {
1739 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1740 time_interpolator->nsec_per_cyc--;
1741 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1742 time_interpolator->nsec_per_cyc++;
1743 time_interpolator->skips = 0;
1744 time_interpolator->ns_skipped = 0;
1745 }
1746 }
1747
1748 static inline int
1749 is_better_time_interpolator(struct time_interpolator *new)
1750 {
1751 if (!time_interpolator)
1752 return 1;
1753 return new->frequency > 2*time_interpolator->frequency ||
1754 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1755 }
1756
1757 void
1758 register_time_interpolator(struct time_interpolator *ti)
1759 {
1760 unsigned long flags;
1761
1762 /* Sanity check */
1763 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1764
1765 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1766 spin_lock(&time_interpolator_lock);
1767 write_seqlock_irqsave(&xtime_lock, flags);
1768 if (is_better_time_interpolator(ti)) {
1769 time_interpolator = ti;
1770 time_interpolator_reset();
1771 }
1772 write_sequnlock_irqrestore(&xtime_lock, flags);
1773
1774 ti->next = time_interpolator_list;
1775 time_interpolator_list = ti;
1776 spin_unlock(&time_interpolator_lock);
1777 }
1778
1779 void
1780 unregister_time_interpolator(struct time_interpolator *ti)
1781 {
1782 struct time_interpolator *curr, **prev;
1783 unsigned long flags;
1784
1785 spin_lock(&time_interpolator_lock);
1786 prev = &time_interpolator_list;
1787 for (curr = *prev; curr; curr = curr->next) {
1788 if (curr == ti) {
1789 *prev = curr->next;
1790 break;
1791 }
1792 prev = &curr->next;
1793 }
1794
1795 write_seqlock_irqsave(&xtime_lock, flags);
1796 if (ti == time_interpolator) {
1797 /* we lost the best time-interpolator: */
1798 time_interpolator = NULL;
1799 /* find the next-best interpolator */
1800 for (curr = time_interpolator_list; curr; curr = curr->next)
1801 if (is_better_time_interpolator(curr))
1802 time_interpolator = curr;
1803 time_interpolator_reset();
1804 }
1805 write_sequnlock_irqrestore(&xtime_lock, flags);
1806 spin_unlock(&time_interpolator_lock);
1807 }
1808 #endif /* CONFIG_TIME_INTERPOLATION */
1809
1810 /**
1811 * msleep - sleep safely even with waitqueue interruptions
1812 * @msecs: Time in milliseconds to sleep for
1813 */
1814 void msleep(unsigned int msecs)
1815 {
1816 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1817
1818 while (timeout)
1819 timeout = schedule_timeout_uninterruptible(timeout);
1820 }
1821
1822 EXPORT_SYMBOL(msleep);
1823
1824 /**
1825 * msleep_interruptible - sleep waiting for signals
1826 * @msecs: Time in milliseconds to sleep for
1827 */
1828 unsigned long msleep_interruptible(unsigned int msecs)
1829 {
1830 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1831
1832 while (timeout && !signal_pending(current))
1833 timeout = schedule_timeout_interruptible(timeout);
1834 return jiffies_to_msecs(timeout);
1835 }
1836
1837 EXPORT_SYMBOL(msleep_interruptible);