perf_counter: unify and fix delayed counter wakeup
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_counter.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/div64.h>
45 #include <asm/timex.h>
46 #include <asm/io.h>
47
48 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
49
50 EXPORT_SYMBOL(jiffies_64);
51
52 /*
53 * per-CPU timer vector definitions:
54 */
55 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57 #define TVN_SIZE (1 << TVN_BITS)
58 #define TVR_SIZE (1 << TVR_BITS)
59 #define TVN_MASK (TVN_SIZE - 1)
60 #define TVR_MASK (TVR_SIZE - 1)
61
62 struct tvec {
63 struct list_head vec[TVN_SIZE];
64 };
65
66 struct tvec_root {
67 struct list_head vec[TVR_SIZE];
68 };
69
70 struct tvec_base {
71 spinlock_t lock;
72 struct timer_list *running_timer;
73 unsigned long timer_jiffies;
74 struct tvec_root tv1;
75 struct tvec tv2;
76 struct tvec tv3;
77 struct tvec tv4;
78 struct tvec tv5;
79 } ____cacheline_aligned;
80
81 struct tvec_base boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
84
85 /*
86 * Note that all tvec_bases are 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
89 */
90 #define TBASE_DEFERRABLE_FLAG (0x1)
91
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 {
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
96 }
97
98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 {
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
101 }
102
103 static inline void timer_set_deferrable(struct timer_list *timer)
104 {
105 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
106 TBASE_DEFERRABLE_FLAG));
107 }
108
109 static inline void
110 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
111 {
112 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
113 tbase_get_deferrable(timer->base));
114 }
115
116 static unsigned long round_jiffies_common(unsigned long j, int cpu,
117 bool force_up)
118 {
119 int rem;
120 unsigned long original = j;
121
122 /*
123 * We don't want all cpus firing their timers at once hitting the
124 * same lock or cachelines, so we skew each extra cpu with an extra
125 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * already did this.
127 * The skew is done by adding 3*cpunr, then round, then subtract this
128 * extra offset again.
129 */
130 j += cpu * 3;
131
132 rem = j % HZ;
133
134 /*
135 * If the target jiffie is just after a whole second (which can happen
136 * due to delays of the timer irq, long irq off times etc etc) then
137 * we should round down to the whole second, not up. Use 1/4th second
138 * as cutoff for this rounding as an extreme upper bound for this.
139 * But never round down if @force_up is set.
140 */
141 if (rem < HZ/4 && !force_up) /* round down */
142 j = j - rem;
143 else /* round up */
144 j = j - rem + HZ;
145
146 /* now that we have rounded, subtract the extra skew again */
147 j -= cpu * 3;
148
149 if (j <= jiffies) /* rounding ate our timeout entirely; */
150 return original;
151 return j;
152 }
153
154 /**
155 * __round_jiffies - function to round jiffies to a full second
156 * @j: the time in (absolute) jiffies that should be rounded
157 * @cpu: the processor number on which the timeout will happen
158 *
159 * __round_jiffies() rounds an absolute time in the future (in jiffies)
160 * up or down to (approximately) full seconds. This is useful for timers
161 * for which the exact time they fire does not matter too much, as long as
162 * they fire approximately every X seconds.
163 *
164 * By rounding these timers to whole seconds, all such timers will fire
165 * at the same time, rather than at various times spread out. The goal
166 * of this is to have the CPU wake up less, which saves power.
167 *
168 * The exact rounding is skewed for each processor to avoid all
169 * processors firing at the exact same time, which could lead
170 * to lock contention or spurious cache line bouncing.
171 *
172 * The return value is the rounded version of the @j parameter.
173 */
174 unsigned long __round_jiffies(unsigned long j, int cpu)
175 {
176 return round_jiffies_common(j, cpu, false);
177 }
178 EXPORT_SYMBOL_GPL(__round_jiffies);
179
180 /**
181 * __round_jiffies_relative - function to round jiffies to a full second
182 * @j: the time in (relative) jiffies that should be rounded
183 * @cpu: the processor number on which the timeout will happen
184 *
185 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
186 * up or down to (approximately) full seconds. This is useful for timers
187 * for which the exact time they fire does not matter too much, as long as
188 * they fire approximately every X seconds.
189 *
190 * By rounding these timers to whole seconds, all such timers will fire
191 * at the same time, rather than at various times spread out. The goal
192 * of this is to have the CPU wake up less, which saves power.
193 *
194 * The exact rounding is skewed for each processor to avoid all
195 * processors firing at the exact same time, which could lead
196 * to lock contention or spurious cache line bouncing.
197 *
198 * The return value is the rounded version of the @j parameter.
199 */
200 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
201 {
202 unsigned long j0 = jiffies;
203
204 /* Use j0 because jiffies might change while we run */
205 return round_jiffies_common(j + j0, cpu, false) - j0;
206 }
207 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
208
209 /**
210 * round_jiffies - function to round jiffies to a full second
211 * @j: the time in (absolute) jiffies that should be rounded
212 *
213 * round_jiffies() rounds an absolute time in the future (in jiffies)
214 * up or down to (approximately) full seconds. This is useful for timers
215 * for which the exact time they fire does not matter too much, as long as
216 * they fire approximately every X seconds.
217 *
218 * By rounding these timers to whole seconds, all such timers will fire
219 * at the same time, rather than at various times spread out. The goal
220 * of this is to have the CPU wake up less, which saves power.
221 *
222 * The return value is the rounded version of the @j parameter.
223 */
224 unsigned long round_jiffies(unsigned long j)
225 {
226 return round_jiffies_common(j, raw_smp_processor_id(), false);
227 }
228 EXPORT_SYMBOL_GPL(round_jiffies);
229
230 /**
231 * round_jiffies_relative - function to round jiffies to a full second
232 * @j: the time in (relative) jiffies that should be rounded
233 *
234 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
235 * up or down to (approximately) full seconds. This is useful for timers
236 * for which the exact time they fire does not matter too much, as long as
237 * they fire approximately every X seconds.
238 *
239 * By rounding these timers to whole seconds, all such timers will fire
240 * at the same time, rather than at various times spread out. The goal
241 * of this is to have the CPU wake up less, which saves power.
242 *
243 * The return value is the rounded version of the @j parameter.
244 */
245 unsigned long round_jiffies_relative(unsigned long j)
246 {
247 return __round_jiffies_relative(j, raw_smp_processor_id());
248 }
249 EXPORT_SYMBOL_GPL(round_jiffies_relative);
250
251 /**
252 * __round_jiffies_up - function to round jiffies up to a full second
253 * @j: the time in (absolute) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
255 *
256 * This is the same as __round_jiffies() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
259 * early.
260 */
261 unsigned long __round_jiffies_up(unsigned long j, int cpu)
262 {
263 return round_jiffies_common(j, cpu, true);
264 }
265 EXPORT_SYMBOL_GPL(__round_jiffies_up);
266
267 /**
268 * __round_jiffies_up_relative - function to round jiffies up to a full second
269 * @j: the time in (relative) jiffies that should be rounded
270 * @cpu: the processor number on which the timeout will happen
271 *
272 * This is the same as __round_jiffies_relative() except that it will never
273 * round down. This is useful for timeouts for which the exact time
274 * of firing does not matter too much, as long as they don't fire too
275 * early.
276 */
277 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
278 {
279 unsigned long j0 = jiffies;
280
281 /* Use j0 because jiffies might change while we run */
282 return round_jiffies_common(j + j0, cpu, true) - j0;
283 }
284 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
285
286 /**
287 * round_jiffies_up - function to round jiffies up to a full second
288 * @j: the time in (absolute) jiffies that should be rounded
289 *
290 * This is the same as round_jiffies() except that it will never
291 * round down. This is useful for timeouts for which the exact time
292 * of firing does not matter too much, as long as they don't fire too
293 * early.
294 */
295 unsigned long round_jiffies_up(unsigned long j)
296 {
297 return round_jiffies_common(j, raw_smp_processor_id(), true);
298 }
299 EXPORT_SYMBOL_GPL(round_jiffies_up);
300
301 /**
302 * round_jiffies_up_relative - function to round jiffies up to a full second
303 * @j: the time in (relative) jiffies that should be rounded
304 *
305 * This is the same as round_jiffies_relative() except that it will never
306 * round down. This is useful for timeouts for which the exact time
307 * of firing does not matter too much, as long as they don't fire too
308 * early.
309 */
310 unsigned long round_jiffies_up_relative(unsigned long j)
311 {
312 return __round_jiffies_up_relative(j, raw_smp_processor_id());
313 }
314 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
315
316
317 static inline void set_running_timer(struct tvec_base *base,
318 struct timer_list *timer)
319 {
320 #ifdef CONFIG_SMP
321 base->running_timer = timer;
322 #endif
323 }
324
325 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
326 {
327 unsigned long expires = timer->expires;
328 unsigned long idx = expires - base->timer_jiffies;
329 struct list_head *vec;
330
331 if (idx < TVR_SIZE) {
332 int i = expires & TVR_MASK;
333 vec = base->tv1.vec + i;
334 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
335 int i = (expires >> TVR_BITS) & TVN_MASK;
336 vec = base->tv2.vec + i;
337 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
338 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
339 vec = base->tv3.vec + i;
340 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
341 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
342 vec = base->tv4.vec + i;
343 } else if ((signed long) idx < 0) {
344 /*
345 * Can happen if you add a timer with expires == jiffies,
346 * or you set a timer to go off in the past
347 */
348 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
349 } else {
350 int i;
351 /* If the timeout is larger than 0xffffffff on 64-bit
352 * architectures then we use the maximum timeout:
353 */
354 if (idx > 0xffffffffUL) {
355 idx = 0xffffffffUL;
356 expires = idx + base->timer_jiffies;
357 }
358 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
359 vec = base->tv5.vec + i;
360 }
361 /*
362 * Timers are FIFO:
363 */
364 list_add_tail(&timer->entry, vec);
365 }
366
367 #ifdef CONFIG_TIMER_STATS
368 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
369 {
370 if (timer->start_site)
371 return;
372
373 timer->start_site = addr;
374 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
375 timer->start_pid = current->pid;
376 }
377
378 static void timer_stats_account_timer(struct timer_list *timer)
379 {
380 unsigned int flag = 0;
381
382 if (unlikely(tbase_get_deferrable(timer->base)))
383 flag |= TIMER_STATS_FLAG_DEFERRABLE;
384
385 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
386 timer->function, timer->start_comm, flag);
387 }
388
389 #else
390 static void timer_stats_account_timer(struct timer_list *timer) {}
391 #endif
392
393 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394
395 static struct debug_obj_descr timer_debug_descr;
396
397 /*
398 * fixup_init is called when:
399 * - an active object is initialized
400 */
401 static int timer_fixup_init(void *addr, enum debug_obj_state state)
402 {
403 struct timer_list *timer = addr;
404
405 switch (state) {
406 case ODEBUG_STATE_ACTIVE:
407 del_timer_sync(timer);
408 debug_object_init(timer, &timer_debug_descr);
409 return 1;
410 default:
411 return 0;
412 }
413 }
414
415 /*
416 * fixup_activate is called when:
417 * - an active object is activated
418 * - an unknown object is activated (might be a statically initialized object)
419 */
420 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
421 {
422 struct timer_list *timer = addr;
423
424 switch (state) {
425
426 case ODEBUG_STATE_NOTAVAILABLE:
427 /*
428 * This is not really a fixup. The timer was
429 * statically initialized. We just make sure that it
430 * is tracked in the object tracker.
431 */
432 if (timer->entry.next == NULL &&
433 timer->entry.prev == TIMER_ENTRY_STATIC) {
434 debug_object_init(timer, &timer_debug_descr);
435 debug_object_activate(timer, &timer_debug_descr);
436 return 0;
437 } else {
438 WARN_ON_ONCE(1);
439 }
440 return 0;
441
442 case ODEBUG_STATE_ACTIVE:
443 WARN_ON(1);
444
445 default:
446 return 0;
447 }
448 }
449
450 /*
451 * fixup_free is called when:
452 * - an active object is freed
453 */
454 static int timer_fixup_free(void *addr, enum debug_obj_state state)
455 {
456 struct timer_list *timer = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 del_timer_sync(timer);
461 debug_object_free(timer, &timer_debug_descr);
462 return 1;
463 default:
464 return 0;
465 }
466 }
467
468 static struct debug_obj_descr timer_debug_descr = {
469 .name = "timer_list",
470 .fixup_init = timer_fixup_init,
471 .fixup_activate = timer_fixup_activate,
472 .fixup_free = timer_fixup_free,
473 };
474
475 static inline void debug_timer_init(struct timer_list *timer)
476 {
477 debug_object_init(timer, &timer_debug_descr);
478 }
479
480 static inline void debug_timer_activate(struct timer_list *timer)
481 {
482 debug_object_activate(timer, &timer_debug_descr);
483 }
484
485 static inline void debug_timer_deactivate(struct timer_list *timer)
486 {
487 debug_object_deactivate(timer, &timer_debug_descr);
488 }
489
490 static inline void debug_timer_free(struct timer_list *timer)
491 {
492 debug_object_free(timer, &timer_debug_descr);
493 }
494
495 static void __init_timer(struct timer_list *timer,
496 const char *name,
497 struct lock_class_key *key);
498
499 void init_timer_on_stack_key(struct timer_list *timer,
500 const char *name,
501 struct lock_class_key *key)
502 {
503 debug_object_init_on_stack(timer, &timer_debug_descr);
504 __init_timer(timer, name, key);
505 }
506 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
507
508 void destroy_timer_on_stack(struct timer_list *timer)
509 {
510 debug_object_free(timer, &timer_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
513
514 #else
515 static inline void debug_timer_init(struct timer_list *timer) { }
516 static inline void debug_timer_activate(struct timer_list *timer) { }
517 static inline void debug_timer_deactivate(struct timer_list *timer) { }
518 #endif
519
520 static void __init_timer(struct timer_list *timer,
521 const char *name,
522 struct lock_class_key *key)
523 {
524 timer->entry.next = NULL;
525 timer->base = __raw_get_cpu_var(tvec_bases);
526 #ifdef CONFIG_TIMER_STATS
527 timer->start_site = NULL;
528 timer->start_pid = -1;
529 memset(timer->start_comm, 0, TASK_COMM_LEN);
530 #endif
531 lockdep_init_map(&timer->lockdep_map, name, key, 0);
532 }
533
534 /**
535 * init_timer - initialize a timer.
536 * @timer: the timer to be initialized
537 *
538 * init_timer() must be done to a timer prior calling *any* of the
539 * other timer functions.
540 */
541 void init_timer_key(struct timer_list *timer,
542 const char *name,
543 struct lock_class_key *key)
544 {
545 debug_timer_init(timer);
546 __init_timer(timer, name, key);
547 }
548 EXPORT_SYMBOL(init_timer_key);
549
550 void init_timer_deferrable_key(struct timer_list *timer,
551 const char *name,
552 struct lock_class_key *key)
553 {
554 init_timer_key(timer, name, key);
555 timer_set_deferrable(timer);
556 }
557 EXPORT_SYMBOL(init_timer_deferrable_key);
558
559 static inline void detach_timer(struct timer_list *timer,
560 int clear_pending)
561 {
562 struct list_head *entry = &timer->entry;
563
564 debug_timer_deactivate(timer);
565
566 __list_del(entry->prev, entry->next);
567 if (clear_pending)
568 entry->next = NULL;
569 entry->prev = LIST_POISON2;
570 }
571
572 /*
573 * We are using hashed locking: holding per_cpu(tvec_bases).lock
574 * means that all timers which are tied to this base via timer->base are
575 * locked, and the base itself is locked too.
576 *
577 * So __run_timers/migrate_timers can safely modify all timers which could
578 * be found on ->tvX lists.
579 *
580 * When the timer's base is locked, and the timer removed from list, it is
581 * possible to set timer->base = NULL and drop the lock: the timer remains
582 * locked.
583 */
584 static struct tvec_base *lock_timer_base(struct timer_list *timer,
585 unsigned long *flags)
586 __acquires(timer->base->lock)
587 {
588 struct tvec_base *base;
589
590 for (;;) {
591 struct tvec_base *prelock_base = timer->base;
592 base = tbase_get_base(prelock_base);
593 if (likely(base != NULL)) {
594 spin_lock_irqsave(&base->lock, *flags);
595 if (likely(prelock_base == timer->base))
596 return base;
597 /* The timer has migrated to another CPU */
598 spin_unlock_irqrestore(&base->lock, *flags);
599 }
600 cpu_relax();
601 }
602 }
603
604 static inline int
605 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
606 {
607 struct tvec_base *base, *new_base;
608 unsigned long flags;
609 int ret;
610
611 ret = 0;
612
613 timer_stats_timer_set_start_info(timer);
614 BUG_ON(!timer->function);
615
616 base = lock_timer_base(timer, &flags);
617
618 if (timer_pending(timer)) {
619 detach_timer(timer, 0);
620 ret = 1;
621 } else {
622 if (pending_only)
623 goto out_unlock;
624 }
625
626 debug_timer_activate(timer);
627
628 new_base = __get_cpu_var(tvec_bases);
629
630 if (base != new_base) {
631 /*
632 * We are trying to schedule the timer on the local CPU.
633 * However we can't change timer's base while it is running,
634 * otherwise del_timer_sync() can't detect that the timer's
635 * handler yet has not finished. This also guarantees that
636 * the timer is serialized wrt itself.
637 */
638 if (likely(base->running_timer != timer)) {
639 /* See the comment in lock_timer_base() */
640 timer_set_base(timer, NULL);
641 spin_unlock(&base->lock);
642 base = new_base;
643 spin_lock(&base->lock);
644 timer_set_base(timer, base);
645 }
646 }
647
648 timer->expires = expires;
649 internal_add_timer(base, timer);
650
651 out_unlock:
652 spin_unlock_irqrestore(&base->lock, flags);
653
654 return ret;
655 }
656
657 /**
658 * mod_timer_pending - modify a pending timer's timeout
659 * @timer: the pending timer to be modified
660 * @expires: new timeout in jiffies
661 *
662 * mod_timer_pending() is the same for pending timers as mod_timer(),
663 * but will not re-activate and modify already deleted timers.
664 *
665 * It is useful for unserialized use of timers.
666 */
667 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
668 {
669 return __mod_timer(timer, expires, true);
670 }
671 EXPORT_SYMBOL(mod_timer_pending);
672
673 /**
674 * mod_timer - modify a timer's timeout
675 * @timer: the timer to be modified
676 * @expires: new timeout in jiffies
677 *
678 * mod_timer() is a more efficient way to update the expire field of an
679 * active timer (if the timer is inactive it will be activated)
680 *
681 * mod_timer(timer, expires) is equivalent to:
682 *
683 * del_timer(timer); timer->expires = expires; add_timer(timer);
684 *
685 * Note that if there are multiple unserialized concurrent users of the
686 * same timer, then mod_timer() is the only safe way to modify the timeout,
687 * since add_timer() cannot modify an already running timer.
688 *
689 * The function returns whether it has modified a pending timer or not.
690 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
691 * active timer returns 1.)
692 */
693 int mod_timer(struct timer_list *timer, unsigned long expires)
694 {
695 /*
696 * This is a common optimization triggered by the
697 * networking code - if the timer is re-modified
698 * to be the same thing then just return:
699 */
700 if (timer->expires == expires && timer_pending(timer))
701 return 1;
702
703 return __mod_timer(timer, expires, false);
704 }
705 EXPORT_SYMBOL(mod_timer);
706
707 /**
708 * add_timer - start a timer
709 * @timer: the timer to be added
710 *
711 * The kernel will do a ->function(->data) callback from the
712 * timer interrupt at the ->expires point in the future. The
713 * current time is 'jiffies'.
714 *
715 * The timer's ->expires, ->function (and if the handler uses it, ->data)
716 * fields must be set prior calling this function.
717 *
718 * Timers with an ->expires field in the past will be executed in the next
719 * timer tick.
720 */
721 void add_timer(struct timer_list *timer)
722 {
723 BUG_ON(timer_pending(timer));
724 mod_timer(timer, timer->expires);
725 }
726 EXPORT_SYMBOL(add_timer);
727
728 /**
729 * add_timer_on - start a timer on a particular CPU
730 * @timer: the timer to be added
731 * @cpu: the CPU to start it on
732 *
733 * This is not very scalable on SMP. Double adds are not possible.
734 */
735 void add_timer_on(struct timer_list *timer, int cpu)
736 {
737 struct tvec_base *base = per_cpu(tvec_bases, cpu);
738 unsigned long flags;
739
740 timer_stats_timer_set_start_info(timer);
741 BUG_ON(timer_pending(timer) || !timer->function);
742 spin_lock_irqsave(&base->lock, flags);
743 timer_set_base(timer, base);
744 debug_timer_activate(timer);
745 internal_add_timer(base, timer);
746 /*
747 * Check whether the other CPU is idle and needs to be
748 * triggered to reevaluate the timer wheel when nohz is
749 * active. We are protected against the other CPU fiddling
750 * with the timer by holding the timer base lock. This also
751 * makes sure that a CPU on the way to idle can not evaluate
752 * the timer wheel.
753 */
754 wake_up_idle_cpu(cpu);
755 spin_unlock_irqrestore(&base->lock, flags);
756 }
757
758 /**
759 * del_timer - deactive a timer.
760 * @timer: the timer to be deactivated
761 *
762 * del_timer() deactivates a timer - this works on both active and inactive
763 * timers.
764 *
765 * The function returns whether it has deactivated a pending timer or not.
766 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
767 * active timer returns 1.)
768 */
769 int del_timer(struct timer_list *timer)
770 {
771 struct tvec_base *base;
772 unsigned long flags;
773 int ret = 0;
774
775 timer_stats_timer_clear_start_info(timer);
776 if (timer_pending(timer)) {
777 base = lock_timer_base(timer, &flags);
778 if (timer_pending(timer)) {
779 detach_timer(timer, 1);
780 ret = 1;
781 }
782 spin_unlock_irqrestore(&base->lock, flags);
783 }
784
785 return ret;
786 }
787 EXPORT_SYMBOL(del_timer);
788
789 #ifdef CONFIG_SMP
790 /**
791 * try_to_del_timer_sync - Try to deactivate a timer
792 * @timer: timer do del
793 *
794 * This function tries to deactivate a timer. Upon successful (ret >= 0)
795 * exit the timer is not queued and the handler is not running on any CPU.
796 *
797 * It must not be called from interrupt contexts.
798 */
799 int try_to_del_timer_sync(struct timer_list *timer)
800 {
801 struct tvec_base *base;
802 unsigned long flags;
803 int ret = -1;
804
805 base = lock_timer_base(timer, &flags);
806
807 if (base->running_timer == timer)
808 goto out;
809
810 ret = 0;
811 if (timer_pending(timer)) {
812 detach_timer(timer, 1);
813 ret = 1;
814 }
815 out:
816 spin_unlock_irqrestore(&base->lock, flags);
817
818 return ret;
819 }
820 EXPORT_SYMBOL(try_to_del_timer_sync);
821
822 /**
823 * del_timer_sync - deactivate a timer and wait for the handler to finish.
824 * @timer: the timer to be deactivated
825 *
826 * This function only differs from del_timer() on SMP: besides deactivating
827 * the timer it also makes sure the handler has finished executing on other
828 * CPUs.
829 *
830 * Synchronization rules: Callers must prevent restarting of the timer,
831 * otherwise this function is meaningless. It must not be called from
832 * interrupt contexts. The caller must not hold locks which would prevent
833 * completion of the timer's handler. The timer's handler must not call
834 * add_timer_on(). Upon exit the timer is not queued and the handler is
835 * not running on any CPU.
836 *
837 * The function returns whether it has deactivated a pending timer or not.
838 */
839 int del_timer_sync(struct timer_list *timer)
840 {
841 #ifdef CONFIG_LOCKDEP
842 unsigned long flags;
843
844 local_irq_save(flags);
845 lock_map_acquire(&timer->lockdep_map);
846 lock_map_release(&timer->lockdep_map);
847 local_irq_restore(flags);
848 #endif
849
850 for (;;) {
851 int ret = try_to_del_timer_sync(timer);
852 if (ret >= 0)
853 return ret;
854 cpu_relax();
855 }
856 }
857 EXPORT_SYMBOL(del_timer_sync);
858 #endif
859
860 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
861 {
862 /* cascade all the timers from tv up one level */
863 struct timer_list *timer, *tmp;
864 struct list_head tv_list;
865
866 list_replace_init(tv->vec + index, &tv_list);
867
868 /*
869 * We are removing _all_ timers from the list, so we
870 * don't have to detach them individually.
871 */
872 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
873 BUG_ON(tbase_get_base(timer->base) != base);
874 internal_add_timer(base, timer);
875 }
876
877 return index;
878 }
879
880 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
881
882 /**
883 * __run_timers - run all expired timers (if any) on this CPU.
884 * @base: the timer vector to be processed.
885 *
886 * This function cascades all vectors and executes all expired timer
887 * vectors.
888 */
889 static inline void __run_timers(struct tvec_base *base)
890 {
891 struct timer_list *timer;
892
893 spin_lock_irq(&base->lock);
894 while (time_after_eq(jiffies, base->timer_jiffies)) {
895 struct list_head work_list;
896 struct list_head *head = &work_list;
897 int index = base->timer_jiffies & TVR_MASK;
898
899 /*
900 * Cascade timers:
901 */
902 if (!index &&
903 (!cascade(base, &base->tv2, INDEX(0))) &&
904 (!cascade(base, &base->tv3, INDEX(1))) &&
905 !cascade(base, &base->tv4, INDEX(2)))
906 cascade(base, &base->tv5, INDEX(3));
907 ++base->timer_jiffies;
908 list_replace_init(base->tv1.vec + index, &work_list);
909 while (!list_empty(head)) {
910 void (*fn)(unsigned long);
911 unsigned long data;
912
913 timer = list_first_entry(head, struct timer_list,entry);
914 fn = timer->function;
915 data = timer->data;
916
917 timer_stats_account_timer(timer);
918
919 set_running_timer(base, timer);
920 detach_timer(timer, 1);
921
922 spin_unlock_irq(&base->lock);
923 {
924 int preempt_count = preempt_count();
925
926 #ifdef CONFIG_LOCKDEP
927 /*
928 * It is permissible to free the timer from
929 * inside the function that is called from
930 * it, this we need to take into account for
931 * lockdep too. To avoid bogus "held lock
932 * freed" warnings as well as problems when
933 * looking into timer->lockdep_map, make a
934 * copy and use that here.
935 */
936 struct lockdep_map lockdep_map =
937 timer->lockdep_map;
938 #endif
939 /*
940 * Couple the lock chain with the lock chain at
941 * del_timer_sync() by acquiring the lock_map
942 * around the fn() call here and in
943 * del_timer_sync().
944 */
945 lock_map_acquire(&lockdep_map);
946
947 fn(data);
948
949 lock_map_release(&lockdep_map);
950
951 if (preempt_count != preempt_count()) {
952 printk(KERN_ERR "huh, entered %p "
953 "with preempt_count %08x, exited"
954 " with %08x?\n",
955 fn, preempt_count,
956 preempt_count());
957 BUG();
958 }
959 }
960 spin_lock_irq(&base->lock);
961 }
962 }
963 set_running_timer(base, NULL);
964 spin_unlock_irq(&base->lock);
965 }
966
967 #ifdef CONFIG_NO_HZ
968 /*
969 * Find out when the next timer event is due to happen. This
970 * is used on S/390 to stop all activity when a cpus is idle.
971 * This functions needs to be called disabled.
972 */
973 static unsigned long __next_timer_interrupt(struct tvec_base *base)
974 {
975 unsigned long timer_jiffies = base->timer_jiffies;
976 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
977 int index, slot, array, found = 0;
978 struct timer_list *nte;
979 struct tvec *varray[4];
980
981 /* Look for timer events in tv1. */
982 index = slot = timer_jiffies & TVR_MASK;
983 do {
984 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
985 if (tbase_get_deferrable(nte->base))
986 continue;
987
988 found = 1;
989 expires = nte->expires;
990 /* Look at the cascade bucket(s)? */
991 if (!index || slot < index)
992 goto cascade;
993 return expires;
994 }
995 slot = (slot + 1) & TVR_MASK;
996 } while (slot != index);
997
998 cascade:
999 /* Calculate the next cascade event */
1000 if (index)
1001 timer_jiffies += TVR_SIZE - index;
1002 timer_jiffies >>= TVR_BITS;
1003
1004 /* Check tv2-tv5. */
1005 varray[0] = &base->tv2;
1006 varray[1] = &base->tv3;
1007 varray[2] = &base->tv4;
1008 varray[3] = &base->tv5;
1009
1010 for (array = 0; array < 4; array++) {
1011 struct tvec *varp = varray[array];
1012
1013 index = slot = timer_jiffies & TVN_MASK;
1014 do {
1015 list_for_each_entry(nte, varp->vec + slot, entry) {
1016 found = 1;
1017 if (time_before(nte->expires, expires))
1018 expires = nte->expires;
1019 }
1020 /*
1021 * Do we still search for the first timer or are
1022 * we looking up the cascade buckets ?
1023 */
1024 if (found) {
1025 /* Look at the cascade bucket(s)? */
1026 if (!index || slot < index)
1027 break;
1028 return expires;
1029 }
1030 slot = (slot + 1) & TVN_MASK;
1031 } while (slot != index);
1032
1033 if (index)
1034 timer_jiffies += TVN_SIZE - index;
1035 timer_jiffies >>= TVN_BITS;
1036 }
1037 return expires;
1038 }
1039
1040 /*
1041 * Check, if the next hrtimer event is before the next timer wheel
1042 * event:
1043 */
1044 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1045 unsigned long expires)
1046 {
1047 ktime_t hr_delta = hrtimer_get_next_event();
1048 struct timespec tsdelta;
1049 unsigned long delta;
1050
1051 if (hr_delta.tv64 == KTIME_MAX)
1052 return expires;
1053
1054 /*
1055 * Expired timer available, let it expire in the next tick
1056 */
1057 if (hr_delta.tv64 <= 0)
1058 return now + 1;
1059
1060 tsdelta = ktime_to_timespec(hr_delta);
1061 delta = timespec_to_jiffies(&tsdelta);
1062
1063 /*
1064 * Limit the delta to the max value, which is checked in
1065 * tick_nohz_stop_sched_tick():
1066 */
1067 if (delta > NEXT_TIMER_MAX_DELTA)
1068 delta = NEXT_TIMER_MAX_DELTA;
1069
1070 /*
1071 * Take rounding errors in to account and make sure, that it
1072 * expires in the next tick. Otherwise we go into an endless
1073 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1074 * the timer softirq
1075 */
1076 if (delta < 1)
1077 delta = 1;
1078 now += delta;
1079 if (time_before(now, expires))
1080 return now;
1081 return expires;
1082 }
1083
1084 /**
1085 * get_next_timer_interrupt - return the jiffy of the next pending timer
1086 * @now: current time (in jiffies)
1087 */
1088 unsigned long get_next_timer_interrupt(unsigned long now)
1089 {
1090 struct tvec_base *base = __get_cpu_var(tvec_bases);
1091 unsigned long expires;
1092
1093 spin_lock(&base->lock);
1094 expires = __next_timer_interrupt(base);
1095 spin_unlock(&base->lock);
1096
1097 if (time_before_eq(expires, now))
1098 return now;
1099
1100 return cmp_next_hrtimer_event(now, expires);
1101 }
1102 #endif
1103
1104 /*
1105 * Called from the timer interrupt handler to charge one tick to the current
1106 * process. user_tick is 1 if the tick is user time, 0 for system.
1107 */
1108 void update_process_times(int user_tick)
1109 {
1110 struct task_struct *p = current;
1111 int cpu = smp_processor_id();
1112
1113 /* Note: this timer irq context must be accounted for as well. */
1114 account_process_tick(p, user_tick);
1115 run_local_timers();
1116 if (rcu_pending(cpu))
1117 rcu_check_callbacks(cpu, user_tick);
1118 printk_tick();
1119 scheduler_tick();
1120 run_posix_cpu_timers(p);
1121 }
1122
1123 /*
1124 * Nr of active tasks - counted in fixed-point numbers
1125 */
1126 static unsigned long count_active_tasks(void)
1127 {
1128 return nr_active() * FIXED_1;
1129 }
1130
1131 /*
1132 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1133 * imply that avenrun[] is the standard name for this kind of thing.
1134 * Nothing else seems to be standardized: the fractional size etc
1135 * all seem to differ on different machines.
1136 *
1137 * Requires xtime_lock to access.
1138 */
1139 unsigned long avenrun[3];
1140
1141 EXPORT_SYMBOL(avenrun);
1142
1143 /*
1144 * calc_load - given tick count, update the avenrun load estimates.
1145 * This is called while holding a write_lock on xtime_lock.
1146 */
1147 static inline void calc_load(unsigned long ticks)
1148 {
1149 unsigned long active_tasks; /* fixed-point */
1150 static int count = LOAD_FREQ;
1151
1152 count -= ticks;
1153 if (unlikely(count < 0)) {
1154 active_tasks = count_active_tasks();
1155 do {
1156 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1157 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1158 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1159 count += LOAD_FREQ;
1160 } while (count < 0);
1161 }
1162 }
1163
1164 /*
1165 * This function runs timers and the timer-tq in bottom half context.
1166 */
1167 static void run_timer_softirq(struct softirq_action *h)
1168 {
1169 struct tvec_base *base = __get_cpu_var(tvec_bases);
1170
1171 perf_counter_do_pending();
1172
1173 hrtimer_run_pending();
1174
1175 if (time_after_eq(jiffies, base->timer_jiffies))
1176 __run_timers(base);
1177 }
1178
1179 /*
1180 * Called by the local, per-CPU timer interrupt on SMP.
1181 */
1182 void run_local_timers(void)
1183 {
1184 hrtimer_run_queues();
1185 raise_softirq(TIMER_SOFTIRQ);
1186 softlockup_tick();
1187 }
1188
1189 /*
1190 * Called by the timer interrupt. xtime_lock must already be taken
1191 * by the timer IRQ!
1192 */
1193 static inline void update_times(unsigned long ticks)
1194 {
1195 update_wall_time();
1196 calc_load(ticks);
1197 }
1198
1199 /*
1200 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1201 * without sampling the sequence number in xtime_lock.
1202 * jiffies is defined in the linker script...
1203 */
1204
1205 void do_timer(unsigned long ticks)
1206 {
1207 jiffies_64 += ticks;
1208 update_times(ticks);
1209 }
1210
1211 #ifdef __ARCH_WANT_SYS_ALARM
1212
1213 /*
1214 * For backwards compatibility? This can be done in libc so Alpha
1215 * and all newer ports shouldn't need it.
1216 */
1217 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1218 {
1219 return alarm_setitimer(seconds);
1220 }
1221
1222 #endif
1223
1224 #ifndef __alpha__
1225
1226 /*
1227 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1228 * should be moved into arch/i386 instead?
1229 */
1230
1231 /**
1232 * sys_getpid - return the thread group id of the current process
1233 *
1234 * Note, despite the name, this returns the tgid not the pid. The tgid and
1235 * the pid are identical unless CLONE_THREAD was specified on clone() in
1236 * which case the tgid is the same in all threads of the same group.
1237 *
1238 * This is SMP safe as current->tgid does not change.
1239 */
1240 SYSCALL_DEFINE0(getpid)
1241 {
1242 return task_tgid_vnr(current);
1243 }
1244
1245 /*
1246 * Accessing ->real_parent is not SMP-safe, it could
1247 * change from under us. However, we can use a stale
1248 * value of ->real_parent under rcu_read_lock(), see
1249 * release_task()->call_rcu(delayed_put_task_struct).
1250 */
1251 SYSCALL_DEFINE0(getppid)
1252 {
1253 int pid;
1254
1255 rcu_read_lock();
1256 pid = task_tgid_vnr(current->real_parent);
1257 rcu_read_unlock();
1258
1259 return pid;
1260 }
1261
1262 SYSCALL_DEFINE0(getuid)
1263 {
1264 /* Only we change this so SMP safe */
1265 return current_uid();
1266 }
1267
1268 SYSCALL_DEFINE0(geteuid)
1269 {
1270 /* Only we change this so SMP safe */
1271 return current_euid();
1272 }
1273
1274 SYSCALL_DEFINE0(getgid)
1275 {
1276 /* Only we change this so SMP safe */
1277 return current_gid();
1278 }
1279
1280 SYSCALL_DEFINE0(getegid)
1281 {
1282 /* Only we change this so SMP safe */
1283 return current_egid();
1284 }
1285
1286 #endif
1287
1288 static void process_timeout(unsigned long __data)
1289 {
1290 wake_up_process((struct task_struct *)__data);
1291 }
1292
1293 /**
1294 * schedule_timeout - sleep until timeout
1295 * @timeout: timeout value in jiffies
1296 *
1297 * Make the current task sleep until @timeout jiffies have
1298 * elapsed. The routine will return immediately unless
1299 * the current task state has been set (see set_current_state()).
1300 *
1301 * You can set the task state as follows -
1302 *
1303 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1304 * pass before the routine returns. The routine will return 0
1305 *
1306 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1307 * delivered to the current task. In this case the remaining time
1308 * in jiffies will be returned, or 0 if the timer expired in time
1309 *
1310 * The current task state is guaranteed to be TASK_RUNNING when this
1311 * routine returns.
1312 *
1313 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1314 * the CPU away without a bound on the timeout. In this case the return
1315 * value will be %MAX_SCHEDULE_TIMEOUT.
1316 *
1317 * In all cases the return value is guaranteed to be non-negative.
1318 */
1319 signed long __sched schedule_timeout(signed long timeout)
1320 {
1321 struct timer_list timer;
1322 unsigned long expire;
1323
1324 switch (timeout)
1325 {
1326 case MAX_SCHEDULE_TIMEOUT:
1327 /*
1328 * These two special cases are useful to be comfortable
1329 * in the caller. Nothing more. We could take
1330 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1331 * but I' d like to return a valid offset (>=0) to allow
1332 * the caller to do everything it want with the retval.
1333 */
1334 schedule();
1335 goto out;
1336 default:
1337 /*
1338 * Another bit of PARANOID. Note that the retval will be
1339 * 0 since no piece of kernel is supposed to do a check
1340 * for a negative retval of schedule_timeout() (since it
1341 * should never happens anyway). You just have the printk()
1342 * that will tell you if something is gone wrong and where.
1343 */
1344 if (timeout < 0) {
1345 printk(KERN_ERR "schedule_timeout: wrong timeout "
1346 "value %lx\n", timeout);
1347 dump_stack();
1348 current->state = TASK_RUNNING;
1349 goto out;
1350 }
1351 }
1352
1353 expire = timeout + jiffies;
1354
1355 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1356 __mod_timer(&timer, expire, false);
1357 schedule();
1358 del_singleshot_timer_sync(&timer);
1359
1360 /* Remove the timer from the object tracker */
1361 destroy_timer_on_stack(&timer);
1362
1363 timeout = expire - jiffies;
1364
1365 out:
1366 return timeout < 0 ? 0 : timeout;
1367 }
1368 EXPORT_SYMBOL(schedule_timeout);
1369
1370 /*
1371 * We can use __set_current_state() here because schedule_timeout() calls
1372 * schedule() unconditionally.
1373 */
1374 signed long __sched schedule_timeout_interruptible(signed long timeout)
1375 {
1376 __set_current_state(TASK_INTERRUPTIBLE);
1377 return schedule_timeout(timeout);
1378 }
1379 EXPORT_SYMBOL(schedule_timeout_interruptible);
1380
1381 signed long __sched schedule_timeout_killable(signed long timeout)
1382 {
1383 __set_current_state(TASK_KILLABLE);
1384 return schedule_timeout(timeout);
1385 }
1386 EXPORT_SYMBOL(schedule_timeout_killable);
1387
1388 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1389 {
1390 __set_current_state(TASK_UNINTERRUPTIBLE);
1391 return schedule_timeout(timeout);
1392 }
1393 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1394
1395 /* Thread ID - the internal kernel "pid" */
1396 SYSCALL_DEFINE0(gettid)
1397 {
1398 return task_pid_vnr(current);
1399 }
1400
1401 /**
1402 * do_sysinfo - fill in sysinfo struct
1403 * @info: pointer to buffer to fill
1404 */
1405 int do_sysinfo(struct sysinfo *info)
1406 {
1407 unsigned long mem_total, sav_total;
1408 unsigned int mem_unit, bitcount;
1409 unsigned long seq;
1410
1411 memset(info, 0, sizeof(struct sysinfo));
1412
1413 do {
1414 struct timespec tp;
1415 seq = read_seqbegin(&xtime_lock);
1416
1417 /*
1418 * This is annoying. The below is the same thing
1419 * posix_get_clock_monotonic() does, but it wants to
1420 * take the lock which we want to cover the loads stuff
1421 * too.
1422 */
1423
1424 getnstimeofday(&tp);
1425 tp.tv_sec += wall_to_monotonic.tv_sec;
1426 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1427 monotonic_to_bootbased(&tp);
1428 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1429 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1430 tp.tv_sec++;
1431 }
1432 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1433
1434 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1435 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1436 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1437
1438 info->procs = nr_threads;
1439 } while (read_seqretry(&xtime_lock, seq));
1440
1441 si_meminfo(info);
1442 si_swapinfo(info);
1443
1444 /*
1445 * If the sum of all the available memory (i.e. ram + swap)
1446 * is less than can be stored in a 32 bit unsigned long then
1447 * we can be binary compatible with 2.2.x kernels. If not,
1448 * well, in that case 2.2.x was broken anyways...
1449 *
1450 * -Erik Andersen <andersee@debian.org>
1451 */
1452
1453 mem_total = info->totalram + info->totalswap;
1454 if (mem_total < info->totalram || mem_total < info->totalswap)
1455 goto out;
1456 bitcount = 0;
1457 mem_unit = info->mem_unit;
1458 while (mem_unit > 1) {
1459 bitcount++;
1460 mem_unit >>= 1;
1461 sav_total = mem_total;
1462 mem_total <<= 1;
1463 if (mem_total < sav_total)
1464 goto out;
1465 }
1466
1467 /*
1468 * If mem_total did not overflow, multiply all memory values by
1469 * info->mem_unit and set it to 1. This leaves things compatible
1470 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1471 * kernels...
1472 */
1473
1474 info->mem_unit = 1;
1475 info->totalram <<= bitcount;
1476 info->freeram <<= bitcount;
1477 info->sharedram <<= bitcount;
1478 info->bufferram <<= bitcount;
1479 info->totalswap <<= bitcount;
1480 info->freeswap <<= bitcount;
1481 info->totalhigh <<= bitcount;
1482 info->freehigh <<= bitcount;
1483
1484 out:
1485 return 0;
1486 }
1487
1488 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1489 {
1490 struct sysinfo val;
1491
1492 do_sysinfo(&val);
1493
1494 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1495 return -EFAULT;
1496
1497 return 0;
1498 }
1499
1500 static int __cpuinit init_timers_cpu(int cpu)
1501 {
1502 int j;
1503 struct tvec_base *base;
1504 static char __cpuinitdata tvec_base_done[NR_CPUS];
1505
1506 if (!tvec_base_done[cpu]) {
1507 static char boot_done;
1508
1509 if (boot_done) {
1510 /*
1511 * The APs use this path later in boot
1512 */
1513 base = kmalloc_node(sizeof(*base),
1514 GFP_KERNEL | __GFP_ZERO,
1515 cpu_to_node(cpu));
1516 if (!base)
1517 return -ENOMEM;
1518
1519 /* Make sure that tvec_base is 2 byte aligned */
1520 if (tbase_get_deferrable(base)) {
1521 WARN_ON(1);
1522 kfree(base);
1523 return -ENOMEM;
1524 }
1525 per_cpu(tvec_bases, cpu) = base;
1526 } else {
1527 /*
1528 * This is for the boot CPU - we use compile-time
1529 * static initialisation because per-cpu memory isn't
1530 * ready yet and because the memory allocators are not
1531 * initialised either.
1532 */
1533 boot_done = 1;
1534 base = &boot_tvec_bases;
1535 }
1536 tvec_base_done[cpu] = 1;
1537 } else {
1538 base = per_cpu(tvec_bases, cpu);
1539 }
1540
1541 spin_lock_init(&base->lock);
1542
1543 for (j = 0; j < TVN_SIZE; j++) {
1544 INIT_LIST_HEAD(base->tv5.vec + j);
1545 INIT_LIST_HEAD(base->tv4.vec + j);
1546 INIT_LIST_HEAD(base->tv3.vec + j);
1547 INIT_LIST_HEAD(base->tv2.vec + j);
1548 }
1549 for (j = 0; j < TVR_SIZE; j++)
1550 INIT_LIST_HEAD(base->tv1.vec + j);
1551
1552 base->timer_jiffies = jiffies;
1553 return 0;
1554 }
1555
1556 #ifdef CONFIG_HOTPLUG_CPU
1557 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1558 {
1559 struct timer_list *timer;
1560
1561 while (!list_empty(head)) {
1562 timer = list_first_entry(head, struct timer_list, entry);
1563 detach_timer(timer, 0);
1564 timer_set_base(timer, new_base);
1565 internal_add_timer(new_base, timer);
1566 }
1567 }
1568
1569 static void __cpuinit migrate_timers(int cpu)
1570 {
1571 struct tvec_base *old_base;
1572 struct tvec_base *new_base;
1573 int i;
1574
1575 BUG_ON(cpu_online(cpu));
1576 old_base = per_cpu(tvec_bases, cpu);
1577 new_base = get_cpu_var(tvec_bases);
1578 /*
1579 * The caller is globally serialized and nobody else
1580 * takes two locks at once, deadlock is not possible.
1581 */
1582 spin_lock_irq(&new_base->lock);
1583 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1584
1585 BUG_ON(old_base->running_timer);
1586
1587 for (i = 0; i < TVR_SIZE; i++)
1588 migrate_timer_list(new_base, old_base->tv1.vec + i);
1589 for (i = 0; i < TVN_SIZE; i++) {
1590 migrate_timer_list(new_base, old_base->tv2.vec + i);
1591 migrate_timer_list(new_base, old_base->tv3.vec + i);
1592 migrate_timer_list(new_base, old_base->tv4.vec + i);
1593 migrate_timer_list(new_base, old_base->tv5.vec + i);
1594 }
1595
1596 spin_unlock(&old_base->lock);
1597 spin_unlock_irq(&new_base->lock);
1598 put_cpu_var(tvec_bases);
1599 }
1600 #endif /* CONFIG_HOTPLUG_CPU */
1601
1602 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1603 unsigned long action, void *hcpu)
1604 {
1605 long cpu = (long)hcpu;
1606 switch(action) {
1607 case CPU_UP_PREPARE:
1608 case CPU_UP_PREPARE_FROZEN:
1609 if (init_timers_cpu(cpu) < 0)
1610 return NOTIFY_BAD;
1611 break;
1612 #ifdef CONFIG_HOTPLUG_CPU
1613 case CPU_DEAD:
1614 case CPU_DEAD_FROZEN:
1615 migrate_timers(cpu);
1616 break;
1617 #endif
1618 default:
1619 break;
1620 }
1621 return NOTIFY_OK;
1622 }
1623
1624 static struct notifier_block __cpuinitdata timers_nb = {
1625 .notifier_call = timer_cpu_notify,
1626 };
1627
1628
1629 void __init init_timers(void)
1630 {
1631 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1632 (void *)(long)smp_processor_id());
1633
1634 init_timer_stats();
1635
1636 BUG_ON(err == NOTIFY_BAD);
1637 register_cpu_notifier(&timers_nb);
1638 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1639 }
1640
1641 /**
1642 * msleep - sleep safely even with waitqueue interruptions
1643 * @msecs: Time in milliseconds to sleep for
1644 */
1645 void msleep(unsigned int msecs)
1646 {
1647 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1648
1649 while (timeout)
1650 timeout = schedule_timeout_uninterruptible(timeout);
1651 }
1652
1653 EXPORT_SYMBOL(msleep);
1654
1655 /**
1656 * msleep_interruptible - sleep waiting for signals
1657 * @msecs: Time in milliseconds to sleep for
1658 */
1659 unsigned long msleep_interruptible(unsigned int msecs)
1660 {
1661 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1662
1663 while (timeout && !signal_pending(current))
1664 timeout = schedule_timeout_interruptible(timeout);
1665 return jiffies_to_msecs(timeout);
1666 }
1667
1668 EXPORT_SYMBOL(msleep_interruptible);