nohz: Wake up full dynticks CPUs when a timer gets enqueued
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
47 #include <asm/div64.h>
48 #include <asm/timex.h>
49 #include <asm/io.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/timer.h>
53
54 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55
56 EXPORT_SYMBOL(jiffies_64);
57
58 /*
59 * per-CPU timer vector definitions:
60 */
61 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
62 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
63 #define TVN_SIZE (1 << TVN_BITS)
64 #define TVR_SIZE (1 << TVR_BITS)
65 #define TVN_MASK (TVN_SIZE - 1)
66 #define TVR_MASK (TVR_SIZE - 1)
67 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
68
69 struct tvec {
70 struct list_head vec[TVN_SIZE];
71 };
72
73 struct tvec_root {
74 struct list_head vec[TVR_SIZE];
75 };
76
77 struct tvec_base {
78 spinlock_t lock;
79 struct timer_list *running_timer;
80 unsigned long timer_jiffies;
81 unsigned long next_timer;
82 unsigned long active_timers;
83 struct tvec_root tv1;
84 struct tvec tv2;
85 struct tvec tv3;
86 struct tvec tv4;
87 struct tvec tv5;
88 } ____cacheline_aligned;
89
90 struct tvec_base boot_tvec_bases;
91 EXPORT_SYMBOL(boot_tvec_bases);
92 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
93
94 /* Functions below help us manage 'deferrable' flag */
95 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
96 {
97 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
98 }
99
100 static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
101 {
102 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
103 }
104
105 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
106 {
107 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
108 }
109
110 static inline void
111 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
112 {
113 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
114
115 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
116 }
117
118 static unsigned long round_jiffies_common(unsigned long j, int cpu,
119 bool force_up)
120 {
121 int rem;
122 unsigned long original = j;
123
124 /*
125 * We don't want all cpus firing their timers at once hitting the
126 * same lock or cachelines, so we skew each extra cpu with an extra
127 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
128 * already did this.
129 * The skew is done by adding 3*cpunr, then round, then subtract this
130 * extra offset again.
131 */
132 j += cpu * 3;
133
134 rem = j % HZ;
135
136 /*
137 * If the target jiffie is just after a whole second (which can happen
138 * due to delays of the timer irq, long irq off times etc etc) then
139 * we should round down to the whole second, not up. Use 1/4th second
140 * as cutoff for this rounding as an extreme upper bound for this.
141 * But never round down if @force_up is set.
142 */
143 if (rem < HZ/4 && !force_up) /* round down */
144 j = j - rem;
145 else /* round up */
146 j = j - rem + HZ;
147
148 /* now that we have rounded, subtract the extra skew again */
149 j -= cpu * 3;
150
151 if (j <= jiffies) /* rounding ate our timeout entirely; */
152 return original;
153 return j;
154 }
155
156 /**
157 * __round_jiffies - function to round jiffies to a full second
158 * @j: the time in (absolute) jiffies that should be rounded
159 * @cpu: the processor number on which the timeout will happen
160 *
161 * __round_jiffies() rounds an absolute time in the future (in jiffies)
162 * up or down to (approximately) full seconds. This is useful for timers
163 * for which the exact time they fire does not matter too much, as long as
164 * they fire approximately every X seconds.
165 *
166 * By rounding these timers to whole seconds, all such timers will fire
167 * at the same time, rather than at various times spread out. The goal
168 * of this is to have the CPU wake up less, which saves power.
169 *
170 * The exact rounding is skewed for each processor to avoid all
171 * processors firing at the exact same time, which could lead
172 * to lock contention or spurious cache line bouncing.
173 *
174 * The return value is the rounded version of the @j parameter.
175 */
176 unsigned long __round_jiffies(unsigned long j, int cpu)
177 {
178 return round_jiffies_common(j, cpu, false);
179 }
180 EXPORT_SYMBOL_GPL(__round_jiffies);
181
182 /**
183 * __round_jiffies_relative - function to round jiffies to a full second
184 * @j: the time in (relative) jiffies that should be rounded
185 * @cpu: the processor number on which the timeout will happen
186 *
187 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
188 * up or down to (approximately) full seconds. This is useful for timers
189 * for which the exact time they fire does not matter too much, as long as
190 * they fire approximately every X seconds.
191 *
192 * By rounding these timers to whole seconds, all such timers will fire
193 * at the same time, rather than at various times spread out. The goal
194 * of this is to have the CPU wake up less, which saves power.
195 *
196 * The exact rounding is skewed for each processor to avoid all
197 * processors firing at the exact same time, which could lead
198 * to lock contention or spurious cache line bouncing.
199 *
200 * The return value is the rounded version of the @j parameter.
201 */
202 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
203 {
204 unsigned long j0 = jiffies;
205
206 /* Use j0 because jiffies might change while we run */
207 return round_jiffies_common(j + j0, cpu, false) - j0;
208 }
209 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
210
211 /**
212 * round_jiffies - function to round jiffies to a full second
213 * @j: the time in (absolute) jiffies that should be rounded
214 *
215 * round_jiffies() rounds an absolute time in the future (in jiffies)
216 * up or down to (approximately) full seconds. This is useful for timers
217 * for which the exact time they fire does not matter too much, as long as
218 * they fire approximately every X seconds.
219 *
220 * By rounding these timers to whole seconds, all such timers will fire
221 * at the same time, rather than at various times spread out. The goal
222 * of this is to have the CPU wake up less, which saves power.
223 *
224 * The return value is the rounded version of the @j parameter.
225 */
226 unsigned long round_jiffies(unsigned long j)
227 {
228 return round_jiffies_common(j, raw_smp_processor_id(), false);
229 }
230 EXPORT_SYMBOL_GPL(round_jiffies);
231
232 /**
233 * round_jiffies_relative - function to round jiffies to a full second
234 * @j: the time in (relative) jiffies that should be rounded
235 *
236 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
237 * up or down to (approximately) full seconds. This is useful for timers
238 * for which the exact time they fire does not matter too much, as long as
239 * they fire approximately every X seconds.
240 *
241 * By rounding these timers to whole seconds, all such timers will fire
242 * at the same time, rather than at various times spread out. The goal
243 * of this is to have the CPU wake up less, which saves power.
244 *
245 * The return value is the rounded version of the @j parameter.
246 */
247 unsigned long round_jiffies_relative(unsigned long j)
248 {
249 return __round_jiffies_relative(j, raw_smp_processor_id());
250 }
251 EXPORT_SYMBOL_GPL(round_jiffies_relative);
252
253 /**
254 * __round_jiffies_up - function to round jiffies up to a full second
255 * @j: the time in (absolute) jiffies that should be rounded
256 * @cpu: the processor number on which the timeout will happen
257 *
258 * This is the same as __round_jiffies() except that it will never
259 * round down. This is useful for timeouts for which the exact time
260 * of firing does not matter too much, as long as they don't fire too
261 * early.
262 */
263 unsigned long __round_jiffies_up(unsigned long j, int cpu)
264 {
265 return round_jiffies_common(j, cpu, true);
266 }
267 EXPORT_SYMBOL_GPL(__round_jiffies_up);
268
269 /**
270 * __round_jiffies_up_relative - function to round jiffies up to a full second
271 * @j: the time in (relative) jiffies that should be rounded
272 * @cpu: the processor number on which the timeout will happen
273 *
274 * This is the same as __round_jiffies_relative() except that it will never
275 * round down. This is useful for timeouts for which the exact time
276 * of firing does not matter too much, as long as they don't fire too
277 * early.
278 */
279 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
280 {
281 unsigned long j0 = jiffies;
282
283 /* Use j0 because jiffies might change while we run */
284 return round_jiffies_common(j + j0, cpu, true) - j0;
285 }
286 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
287
288 /**
289 * round_jiffies_up - function to round jiffies up to a full second
290 * @j: the time in (absolute) jiffies that should be rounded
291 *
292 * This is the same as round_jiffies() except that it will never
293 * round down. This is useful for timeouts for which the exact time
294 * of firing does not matter too much, as long as they don't fire too
295 * early.
296 */
297 unsigned long round_jiffies_up(unsigned long j)
298 {
299 return round_jiffies_common(j, raw_smp_processor_id(), true);
300 }
301 EXPORT_SYMBOL_GPL(round_jiffies_up);
302
303 /**
304 * round_jiffies_up_relative - function to round jiffies up to a full second
305 * @j: the time in (relative) jiffies that should be rounded
306 *
307 * This is the same as round_jiffies_relative() except that it will never
308 * round down. This is useful for timeouts for which the exact time
309 * of firing does not matter too much, as long as they don't fire too
310 * early.
311 */
312 unsigned long round_jiffies_up_relative(unsigned long j)
313 {
314 return __round_jiffies_up_relative(j, raw_smp_processor_id());
315 }
316 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
317
318 /**
319 * set_timer_slack - set the allowed slack for a timer
320 * @timer: the timer to be modified
321 * @slack_hz: the amount of time (in jiffies) allowed for rounding
322 *
323 * Set the amount of time, in jiffies, that a certain timer has
324 * in terms of slack. By setting this value, the timer subsystem
325 * will schedule the actual timer somewhere between
326 * the time mod_timer() asks for, and that time plus the slack.
327 *
328 * By setting the slack to -1, a percentage of the delay is used
329 * instead.
330 */
331 void set_timer_slack(struct timer_list *timer, int slack_hz)
332 {
333 timer->slack = slack_hz;
334 }
335 EXPORT_SYMBOL_GPL(set_timer_slack);
336
337 static void
338 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
339 {
340 unsigned long expires = timer->expires;
341 unsigned long idx = expires - base->timer_jiffies;
342 struct list_head *vec;
343
344 if (idx < TVR_SIZE) {
345 int i = expires & TVR_MASK;
346 vec = base->tv1.vec + i;
347 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
348 int i = (expires >> TVR_BITS) & TVN_MASK;
349 vec = base->tv2.vec + i;
350 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
351 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
352 vec = base->tv3.vec + i;
353 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
354 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
355 vec = base->tv4.vec + i;
356 } else if ((signed long) idx < 0) {
357 /*
358 * Can happen if you add a timer with expires == jiffies,
359 * or you set a timer to go off in the past
360 */
361 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
362 } else {
363 int i;
364 /* If the timeout is larger than MAX_TVAL (on 64-bit
365 * architectures or with CONFIG_BASE_SMALL=1) then we
366 * use the maximum timeout.
367 */
368 if (idx > MAX_TVAL) {
369 idx = MAX_TVAL;
370 expires = idx + base->timer_jiffies;
371 }
372 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
373 vec = base->tv5.vec + i;
374 }
375 /*
376 * Timers are FIFO:
377 */
378 list_add_tail(&timer->entry, vec);
379 }
380
381 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
382 {
383 __internal_add_timer(base, timer);
384 /*
385 * Update base->active_timers and base->next_timer
386 */
387 if (!tbase_get_deferrable(timer->base)) {
388 if (time_before(timer->expires, base->next_timer))
389 base->next_timer = timer->expires;
390 base->active_timers++;
391 }
392 }
393
394 #ifdef CONFIG_TIMER_STATS
395 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
396 {
397 if (timer->start_site)
398 return;
399
400 timer->start_site = addr;
401 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
402 timer->start_pid = current->pid;
403 }
404
405 static void timer_stats_account_timer(struct timer_list *timer)
406 {
407 unsigned int flag = 0;
408
409 if (likely(!timer->start_site))
410 return;
411 if (unlikely(tbase_get_deferrable(timer->base)))
412 flag |= TIMER_STATS_FLAG_DEFERRABLE;
413
414 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
415 timer->function, timer->start_comm, flag);
416 }
417
418 #else
419 static void timer_stats_account_timer(struct timer_list *timer) {}
420 #endif
421
422 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
423
424 static struct debug_obj_descr timer_debug_descr;
425
426 static void *timer_debug_hint(void *addr)
427 {
428 return ((struct timer_list *) addr)->function;
429 }
430
431 /*
432 * fixup_init is called when:
433 * - an active object is initialized
434 */
435 static int timer_fixup_init(void *addr, enum debug_obj_state state)
436 {
437 struct timer_list *timer = addr;
438
439 switch (state) {
440 case ODEBUG_STATE_ACTIVE:
441 del_timer_sync(timer);
442 debug_object_init(timer, &timer_debug_descr);
443 return 1;
444 default:
445 return 0;
446 }
447 }
448
449 /* Stub timer callback for improperly used timers. */
450 static void stub_timer(unsigned long data)
451 {
452 WARN_ON(1);
453 }
454
455 /*
456 * fixup_activate is called when:
457 * - an active object is activated
458 * - an unknown object is activated (might be a statically initialized object)
459 */
460 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
461 {
462 struct timer_list *timer = addr;
463
464 switch (state) {
465
466 case ODEBUG_STATE_NOTAVAILABLE:
467 /*
468 * This is not really a fixup. The timer was
469 * statically initialized. We just make sure that it
470 * is tracked in the object tracker.
471 */
472 if (timer->entry.next == NULL &&
473 timer->entry.prev == TIMER_ENTRY_STATIC) {
474 debug_object_init(timer, &timer_debug_descr);
475 debug_object_activate(timer, &timer_debug_descr);
476 return 0;
477 } else {
478 setup_timer(timer, stub_timer, 0);
479 return 1;
480 }
481 return 0;
482
483 case ODEBUG_STATE_ACTIVE:
484 WARN_ON(1);
485
486 default:
487 return 0;
488 }
489 }
490
491 /*
492 * fixup_free is called when:
493 * - an active object is freed
494 */
495 static int timer_fixup_free(void *addr, enum debug_obj_state state)
496 {
497 struct timer_list *timer = addr;
498
499 switch (state) {
500 case ODEBUG_STATE_ACTIVE:
501 del_timer_sync(timer);
502 debug_object_free(timer, &timer_debug_descr);
503 return 1;
504 default:
505 return 0;
506 }
507 }
508
509 /*
510 * fixup_assert_init is called when:
511 * - an untracked/uninit-ed object is found
512 */
513 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
514 {
515 struct timer_list *timer = addr;
516
517 switch (state) {
518 case ODEBUG_STATE_NOTAVAILABLE:
519 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
520 /*
521 * This is not really a fixup. The timer was
522 * statically initialized. We just make sure that it
523 * is tracked in the object tracker.
524 */
525 debug_object_init(timer, &timer_debug_descr);
526 return 0;
527 } else {
528 setup_timer(timer, stub_timer, 0);
529 return 1;
530 }
531 default:
532 return 0;
533 }
534 }
535
536 static struct debug_obj_descr timer_debug_descr = {
537 .name = "timer_list",
538 .debug_hint = timer_debug_hint,
539 .fixup_init = timer_fixup_init,
540 .fixup_activate = timer_fixup_activate,
541 .fixup_free = timer_fixup_free,
542 .fixup_assert_init = timer_fixup_assert_init,
543 };
544
545 static inline void debug_timer_init(struct timer_list *timer)
546 {
547 debug_object_init(timer, &timer_debug_descr);
548 }
549
550 static inline void debug_timer_activate(struct timer_list *timer)
551 {
552 debug_object_activate(timer, &timer_debug_descr);
553 }
554
555 static inline void debug_timer_deactivate(struct timer_list *timer)
556 {
557 debug_object_deactivate(timer, &timer_debug_descr);
558 }
559
560 static inline void debug_timer_free(struct timer_list *timer)
561 {
562 debug_object_free(timer, &timer_debug_descr);
563 }
564
565 static inline void debug_timer_assert_init(struct timer_list *timer)
566 {
567 debug_object_assert_init(timer, &timer_debug_descr);
568 }
569
570 static void do_init_timer(struct timer_list *timer, unsigned int flags,
571 const char *name, struct lock_class_key *key);
572
573 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
574 const char *name, struct lock_class_key *key)
575 {
576 debug_object_init_on_stack(timer, &timer_debug_descr);
577 do_init_timer(timer, flags, name, key);
578 }
579 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
580
581 void destroy_timer_on_stack(struct timer_list *timer)
582 {
583 debug_object_free(timer, &timer_debug_descr);
584 }
585 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
586
587 #else
588 static inline void debug_timer_init(struct timer_list *timer) { }
589 static inline void debug_timer_activate(struct timer_list *timer) { }
590 static inline void debug_timer_deactivate(struct timer_list *timer) { }
591 static inline void debug_timer_assert_init(struct timer_list *timer) { }
592 #endif
593
594 static inline void debug_init(struct timer_list *timer)
595 {
596 debug_timer_init(timer);
597 trace_timer_init(timer);
598 }
599
600 static inline void
601 debug_activate(struct timer_list *timer, unsigned long expires)
602 {
603 debug_timer_activate(timer);
604 trace_timer_start(timer, expires);
605 }
606
607 static inline void debug_deactivate(struct timer_list *timer)
608 {
609 debug_timer_deactivate(timer);
610 trace_timer_cancel(timer);
611 }
612
613 static inline void debug_assert_init(struct timer_list *timer)
614 {
615 debug_timer_assert_init(timer);
616 }
617
618 static void do_init_timer(struct timer_list *timer, unsigned int flags,
619 const char *name, struct lock_class_key *key)
620 {
621 struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
622
623 timer->entry.next = NULL;
624 timer->base = (void *)((unsigned long)base | flags);
625 timer->slack = -1;
626 #ifdef CONFIG_TIMER_STATS
627 timer->start_site = NULL;
628 timer->start_pid = -1;
629 memset(timer->start_comm, 0, TASK_COMM_LEN);
630 #endif
631 lockdep_init_map(&timer->lockdep_map, name, key, 0);
632 }
633
634 /**
635 * init_timer_key - initialize a timer
636 * @timer: the timer to be initialized
637 * @flags: timer flags
638 * @name: name of the timer
639 * @key: lockdep class key of the fake lock used for tracking timer
640 * sync lock dependencies
641 *
642 * init_timer_key() must be done to a timer prior calling *any* of the
643 * other timer functions.
644 */
645 void init_timer_key(struct timer_list *timer, unsigned int flags,
646 const char *name, struct lock_class_key *key)
647 {
648 debug_init(timer);
649 do_init_timer(timer, flags, name, key);
650 }
651 EXPORT_SYMBOL(init_timer_key);
652
653 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
654 {
655 struct list_head *entry = &timer->entry;
656
657 debug_deactivate(timer);
658
659 __list_del(entry->prev, entry->next);
660 if (clear_pending)
661 entry->next = NULL;
662 entry->prev = LIST_POISON2;
663 }
664
665 static inline void
666 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
667 {
668 detach_timer(timer, true);
669 if (!tbase_get_deferrable(timer->base))
670 base->active_timers--;
671 }
672
673 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
674 bool clear_pending)
675 {
676 if (!timer_pending(timer))
677 return 0;
678
679 detach_timer(timer, clear_pending);
680 if (!tbase_get_deferrable(timer->base)) {
681 base->active_timers--;
682 if (timer->expires == base->next_timer)
683 base->next_timer = base->timer_jiffies;
684 }
685 return 1;
686 }
687
688 /*
689 * We are using hashed locking: holding per_cpu(tvec_bases).lock
690 * means that all timers which are tied to this base via timer->base are
691 * locked, and the base itself is locked too.
692 *
693 * So __run_timers/migrate_timers can safely modify all timers which could
694 * be found on ->tvX lists.
695 *
696 * When the timer's base is locked, and the timer removed from list, it is
697 * possible to set timer->base = NULL and drop the lock: the timer remains
698 * locked.
699 */
700 static struct tvec_base *lock_timer_base(struct timer_list *timer,
701 unsigned long *flags)
702 __acquires(timer->base->lock)
703 {
704 struct tvec_base *base;
705
706 for (;;) {
707 struct tvec_base *prelock_base = timer->base;
708 base = tbase_get_base(prelock_base);
709 if (likely(base != NULL)) {
710 spin_lock_irqsave(&base->lock, *flags);
711 if (likely(prelock_base == timer->base))
712 return base;
713 /* The timer has migrated to another CPU */
714 spin_unlock_irqrestore(&base->lock, *flags);
715 }
716 cpu_relax();
717 }
718 }
719
720 static inline int
721 __mod_timer(struct timer_list *timer, unsigned long expires,
722 bool pending_only, int pinned)
723 {
724 struct tvec_base *base, *new_base;
725 unsigned long flags;
726 int ret = 0 , cpu;
727
728 timer_stats_timer_set_start_info(timer);
729 BUG_ON(!timer->function);
730
731 base = lock_timer_base(timer, &flags);
732
733 ret = detach_if_pending(timer, base, false);
734 if (!ret && pending_only)
735 goto out_unlock;
736
737 debug_activate(timer, expires);
738
739 cpu = smp_processor_id();
740
741 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
742 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
743 cpu = get_nohz_timer_target();
744 #endif
745 new_base = per_cpu(tvec_bases, cpu);
746
747 if (base != new_base) {
748 /*
749 * We are trying to schedule the timer on the local CPU.
750 * However we can't change timer's base while it is running,
751 * otherwise del_timer_sync() can't detect that the timer's
752 * handler yet has not finished. This also guarantees that
753 * the timer is serialized wrt itself.
754 */
755 if (likely(base->running_timer != timer)) {
756 /* See the comment in lock_timer_base() */
757 timer_set_base(timer, NULL);
758 spin_unlock(&base->lock);
759 base = new_base;
760 spin_lock(&base->lock);
761 timer_set_base(timer, base);
762 }
763 }
764
765 timer->expires = expires;
766 internal_add_timer(base, timer);
767
768 out_unlock:
769 spin_unlock_irqrestore(&base->lock, flags);
770
771 return ret;
772 }
773
774 /**
775 * mod_timer_pending - modify a pending timer's timeout
776 * @timer: the pending timer to be modified
777 * @expires: new timeout in jiffies
778 *
779 * mod_timer_pending() is the same for pending timers as mod_timer(),
780 * but will not re-activate and modify already deleted timers.
781 *
782 * It is useful for unserialized use of timers.
783 */
784 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
785 {
786 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
787 }
788 EXPORT_SYMBOL(mod_timer_pending);
789
790 /*
791 * Decide where to put the timer while taking the slack into account
792 *
793 * Algorithm:
794 * 1) calculate the maximum (absolute) time
795 * 2) calculate the highest bit where the expires and new max are different
796 * 3) use this bit to make a mask
797 * 4) use the bitmask to round down the maximum time, so that all last
798 * bits are zeros
799 */
800 static inline
801 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
802 {
803 unsigned long expires_limit, mask;
804 int bit;
805
806 if (timer->slack >= 0) {
807 expires_limit = expires + timer->slack;
808 } else {
809 long delta = expires - jiffies;
810
811 if (delta < 256)
812 return expires;
813
814 expires_limit = expires + delta / 256;
815 }
816 mask = expires ^ expires_limit;
817 if (mask == 0)
818 return expires;
819
820 bit = find_last_bit(&mask, BITS_PER_LONG);
821
822 mask = (1 << bit) - 1;
823
824 expires_limit = expires_limit & ~(mask);
825
826 return expires_limit;
827 }
828
829 /**
830 * mod_timer - modify a timer's timeout
831 * @timer: the timer to be modified
832 * @expires: new timeout in jiffies
833 *
834 * mod_timer() is a more efficient way to update the expire field of an
835 * active timer (if the timer is inactive it will be activated)
836 *
837 * mod_timer(timer, expires) is equivalent to:
838 *
839 * del_timer(timer); timer->expires = expires; add_timer(timer);
840 *
841 * Note that if there are multiple unserialized concurrent users of the
842 * same timer, then mod_timer() is the only safe way to modify the timeout,
843 * since add_timer() cannot modify an already running timer.
844 *
845 * The function returns whether it has modified a pending timer or not.
846 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
847 * active timer returns 1.)
848 */
849 int mod_timer(struct timer_list *timer, unsigned long expires)
850 {
851 expires = apply_slack(timer, expires);
852
853 /*
854 * This is a common optimization triggered by the
855 * networking code - if the timer is re-modified
856 * to be the same thing then just return:
857 */
858 if (timer_pending(timer) && timer->expires == expires)
859 return 1;
860
861 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
862 }
863 EXPORT_SYMBOL(mod_timer);
864
865 /**
866 * mod_timer_pinned - modify a timer's timeout
867 * @timer: the timer to be modified
868 * @expires: new timeout in jiffies
869 *
870 * mod_timer_pinned() is a way to update the expire field of an
871 * active timer (if the timer is inactive it will be activated)
872 * and to ensure that the timer is scheduled on the current CPU.
873 *
874 * Note that this does not prevent the timer from being migrated
875 * when the current CPU goes offline. If this is a problem for
876 * you, use CPU-hotplug notifiers to handle it correctly, for
877 * example, cancelling the timer when the corresponding CPU goes
878 * offline.
879 *
880 * mod_timer_pinned(timer, expires) is equivalent to:
881 *
882 * del_timer(timer); timer->expires = expires; add_timer(timer);
883 */
884 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
885 {
886 if (timer->expires == expires && timer_pending(timer))
887 return 1;
888
889 return __mod_timer(timer, expires, false, TIMER_PINNED);
890 }
891 EXPORT_SYMBOL(mod_timer_pinned);
892
893 /**
894 * add_timer - start a timer
895 * @timer: the timer to be added
896 *
897 * The kernel will do a ->function(->data) callback from the
898 * timer interrupt at the ->expires point in the future. The
899 * current time is 'jiffies'.
900 *
901 * The timer's ->expires, ->function (and if the handler uses it, ->data)
902 * fields must be set prior calling this function.
903 *
904 * Timers with an ->expires field in the past will be executed in the next
905 * timer tick.
906 */
907 void add_timer(struct timer_list *timer)
908 {
909 BUG_ON(timer_pending(timer));
910 mod_timer(timer, timer->expires);
911 }
912 EXPORT_SYMBOL(add_timer);
913
914 /**
915 * add_timer_on - start a timer on a particular CPU
916 * @timer: the timer to be added
917 * @cpu: the CPU to start it on
918 *
919 * This is not very scalable on SMP. Double adds are not possible.
920 */
921 void add_timer_on(struct timer_list *timer, int cpu)
922 {
923 struct tvec_base *base = per_cpu(tvec_bases, cpu);
924 unsigned long flags;
925
926 timer_stats_timer_set_start_info(timer);
927 BUG_ON(timer_pending(timer) || !timer->function);
928 spin_lock_irqsave(&base->lock, flags);
929 timer_set_base(timer, base);
930 debug_activate(timer, timer->expires);
931 internal_add_timer(base, timer);
932 /*
933 * Check whether the other CPU is in dynticks mode and needs
934 * to be triggered to reevaluate the timer wheel.
935 * We are protected against the other CPU fiddling
936 * with the timer by holding the timer base lock. This also
937 * makes sure that a CPU on the way to stop its tick can not
938 * evaluate the timer wheel.
939 */
940 wake_up_nohz_cpu(cpu);
941 spin_unlock_irqrestore(&base->lock, flags);
942 }
943 EXPORT_SYMBOL_GPL(add_timer_on);
944
945 /**
946 * del_timer - deactive a timer.
947 * @timer: the timer to be deactivated
948 *
949 * del_timer() deactivates a timer - this works on both active and inactive
950 * timers.
951 *
952 * The function returns whether it has deactivated a pending timer or not.
953 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
954 * active timer returns 1.)
955 */
956 int del_timer(struct timer_list *timer)
957 {
958 struct tvec_base *base;
959 unsigned long flags;
960 int ret = 0;
961
962 debug_assert_init(timer);
963
964 timer_stats_timer_clear_start_info(timer);
965 if (timer_pending(timer)) {
966 base = lock_timer_base(timer, &flags);
967 ret = detach_if_pending(timer, base, true);
968 spin_unlock_irqrestore(&base->lock, flags);
969 }
970
971 return ret;
972 }
973 EXPORT_SYMBOL(del_timer);
974
975 /**
976 * try_to_del_timer_sync - Try to deactivate a timer
977 * @timer: timer do del
978 *
979 * This function tries to deactivate a timer. Upon successful (ret >= 0)
980 * exit the timer is not queued and the handler is not running on any CPU.
981 */
982 int try_to_del_timer_sync(struct timer_list *timer)
983 {
984 struct tvec_base *base;
985 unsigned long flags;
986 int ret = -1;
987
988 debug_assert_init(timer);
989
990 base = lock_timer_base(timer, &flags);
991
992 if (base->running_timer != timer) {
993 timer_stats_timer_clear_start_info(timer);
994 ret = detach_if_pending(timer, base, true);
995 }
996 spin_unlock_irqrestore(&base->lock, flags);
997
998 return ret;
999 }
1000 EXPORT_SYMBOL(try_to_del_timer_sync);
1001
1002 #ifdef CONFIG_SMP
1003 /**
1004 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1005 * @timer: the timer to be deactivated
1006 *
1007 * This function only differs from del_timer() on SMP: besides deactivating
1008 * the timer it also makes sure the handler has finished executing on other
1009 * CPUs.
1010 *
1011 * Synchronization rules: Callers must prevent restarting of the timer,
1012 * otherwise this function is meaningless. It must not be called from
1013 * interrupt contexts unless the timer is an irqsafe one. The caller must
1014 * not hold locks which would prevent completion of the timer's
1015 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1016 * timer is not queued and the handler is not running on any CPU.
1017 *
1018 * Note: For !irqsafe timers, you must not hold locks that are held in
1019 * interrupt context while calling this function. Even if the lock has
1020 * nothing to do with the timer in question. Here's why:
1021 *
1022 * CPU0 CPU1
1023 * ---- ----
1024 * <SOFTIRQ>
1025 * call_timer_fn();
1026 * base->running_timer = mytimer;
1027 * spin_lock_irq(somelock);
1028 * <IRQ>
1029 * spin_lock(somelock);
1030 * del_timer_sync(mytimer);
1031 * while (base->running_timer == mytimer);
1032 *
1033 * Now del_timer_sync() will never return and never release somelock.
1034 * The interrupt on the other CPU is waiting to grab somelock but
1035 * it has interrupted the softirq that CPU0 is waiting to finish.
1036 *
1037 * The function returns whether it has deactivated a pending timer or not.
1038 */
1039 int del_timer_sync(struct timer_list *timer)
1040 {
1041 #ifdef CONFIG_LOCKDEP
1042 unsigned long flags;
1043
1044 /*
1045 * If lockdep gives a backtrace here, please reference
1046 * the synchronization rules above.
1047 */
1048 local_irq_save(flags);
1049 lock_map_acquire(&timer->lockdep_map);
1050 lock_map_release(&timer->lockdep_map);
1051 local_irq_restore(flags);
1052 #endif
1053 /*
1054 * don't use it in hardirq context, because it
1055 * could lead to deadlock.
1056 */
1057 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1058 for (;;) {
1059 int ret = try_to_del_timer_sync(timer);
1060 if (ret >= 0)
1061 return ret;
1062 cpu_relax();
1063 }
1064 }
1065 EXPORT_SYMBOL(del_timer_sync);
1066 #endif
1067
1068 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1069 {
1070 /* cascade all the timers from tv up one level */
1071 struct timer_list *timer, *tmp;
1072 struct list_head tv_list;
1073
1074 list_replace_init(tv->vec + index, &tv_list);
1075
1076 /*
1077 * We are removing _all_ timers from the list, so we
1078 * don't have to detach them individually.
1079 */
1080 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1081 BUG_ON(tbase_get_base(timer->base) != base);
1082 /* No accounting, while moving them */
1083 __internal_add_timer(base, timer);
1084 }
1085
1086 return index;
1087 }
1088
1089 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1090 unsigned long data)
1091 {
1092 int preempt_count = preempt_count();
1093
1094 #ifdef CONFIG_LOCKDEP
1095 /*
1096 * It is permissible to free the timer from inside the
1097 * function that is called from it, this we need to take into
1098 * account for lockdep too. To avoid bogus "held lock freed"
1099 * warnings as well as problems when looking into
1100 * timer->lockdep_map, make a copy and use that here.
1101 */
1102 struct lockdep_map lockdep_map;
1103
1104 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1105 #endif
1106 /*
1107 * Couple the lock chain with the lock chain at
1108 * del_timer_sync() by acquiring the lock_map around the fn()
1109 * call here and in del_timer_sync().
1110 */
1111 lock_map_acquire(&lockdep_map);
1112
1113 trace_timer_expire_entry(timer);
1114 fn(data);
1115 trace_timer_expire_exit(timer);
1116
1117 lock_map_release(&lockdep_map);
1118
1119 if (preempt_count != preempt_count()) {
1120 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1121 fn, preempt_count, preempt_count());
1122 /*
1123 * Restore the preempt count. That gives us a decent
1124 * chance to survive and extract information. If the
1125 * callback kept a lock held, bad luck, but not worse
1126 * than the BUG() we had.
1127 */
1128 preempt_count() = preempt_count;
1129 }
1130 }
1131
1132 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1133
1134 /**
1135 * __run_timers - run all expired timers (if any) on this CPU.
1136 * @base: the timer vector to be processed.
1137 *
1138 * This function cascades all vectors and executes all expired timer
1139 * vectors.
1140 */
1141 static inline void __run_timers(struct tvec_base *base)
1142 {
1143 struct timer_list *timer;
1144
1145 spin_lock_irq(&base->lock);
1146 while (time_after_eq(jiffies, base->timer_jiffies)) {
1147 struct list_head work_list;
1148 struct list_head *head = &work_list;
1149 int index = base->timer_jiffies & TVR_MASK;
1150
1151 /*
1152 * Cascade timers:
1153 */
1154 if (!index &&
1155 (!cascade(base, &base->tv2, INDEX(0))) &&
1156 (!cascade(base, &base->tv3, INDEX(1))) &&
1157 !cascade(base, &base->tv4, INDEX(2)))
1158 cascade(base, &base->tv5, INDEX(3));
1159 ++base->timer_jiffies;
1160 list_replace_init(base->tv1.vec + index, &work_list);
1161 while (!list_empty(head)) {
1162 void (*fn)(unsigned long);
1163 unsigned long data;
1164 bool irqsafe;
1165
1166 timer = list_first_entry(head, struct timer_list,entry);
1167 fn = timer->function;
1168 data = timer->data;
1169 irqsafe = tbase_get_irqsafe(timer->base);
1170
1171 timer_stats_account_timer(timer);
1172
1173 base->running_timer = timer;
1174 detach_expired_timer(timer, base);
1175
1176 if (irqsafe) {
1177 spin_unlock(&base->lock);
1178 call_timer_fn(timer, fn, data);
1179 spin_lock(&base->lock);
1180 } else {
1181 spin_unlock_irq(&base->lock);
1182 call_timer_fn(timer, fn, data);
1183 spin_lock_irq(&base->lock);
1184 }
1185 }
1186 }
1187 base->running_timer = NULL;
1188 spin_unlock_irq(&base->lock);
1189 }
1190
1191 #ifdef CONFIG_NO_HZ
1192 /*
1193 * Find out when the next timer event is due to happen. This
1194 * is used on S/390 to stop all activity when a CPU is idle.
1195 * This function needs to be called with interrupts disabled.
1196 */
1197 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1198 {
1199 unsigned long timer_jiffies = base->timer_jiffies;
1200 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1201 int index, slot, array, found = 0;
1202 struct timer_list *nte;
1203 struct tvec *varray[4];
1204
1205 /* Look for timer events in tv1. */
1206 index = slot = timer_jiffies & TVR_MASK;
1207 do {
1208 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1209 if (tbase_get_deferrable(nte->base))
1210 continue;
1211
1212 found = 1;
1213 expires = nte->expires;
1214 /* Look at the cascade bucket(s)? */
1215 if (!index || slot < index)
1216 goto cascade;
1217 return expires;
1218 }
1219 slot = (slot + 1) & TVR_MASK;
1220 } while (slot != index);
1221
1222 cascade:
1223 /* Calculate the next cascade event */
1224 if (index)
1225 timer_jiffies += TVR_SIZE - index;
1226 timer_jiffies >>= TVR_BITS;
1227
1228 /* Check tv2-tv5. */
1229 varray[0] = &base->tv2;
1230 varray[1] = &base->tv3;
1231 varray[2] = &base->tv4;
1232 varray[3] = &base->tv5;
1233
1234 for (array = 0; array < 4; array++) {
1235 struct tvec *varp = varray[array];
1236
1237 index = slot = timer_jiffies & TVN_MASK;
1238 do {
1239 list_for_each_entry(nte, varp->vec + slot, entry) {
1240 if (tbase_get_deferrable(nte->base))
1241 continue;
1242
1243 found = 1;
1244 if (time_before(nte->expires, expires))
1245 expires = nte->expires;
1246 }
1247 /*
1248 * Do we still search for the first timer or are
1249 * we looking up the cascade buckets ?
1250 */
1251 if (found) {
1252 /* Look at the cascade bucket(s)? */
1253 if (!index || slot < index)
1254 break;
1255 return expires;
1256 }
1257 slot = (slot + 1) & TVN_MASK;
1258 } while (slot != index);
1259
1260 if (index)
1261 timer_jiffies += TVN_SIZE - index;
1262 timer_jiffies >>= TVN_BITS;
1263 }
1264 return expires;
1265 }
1266
1267 /*
1268 * Check, if the next hrtimer event is before the next timer wheel
1269 * event:
1270 */
1271 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1272 unsigned long expires)
1273 {
1274 ktime_t hr_delta = hrtimer_get_next_event();
1275 struct timespec tsdelta;
1276 unsigned long delta;
1277
1278 if (hr_delta.tv64 == KTIME_MAX)
1279 return expires;
1280
1281 /*
1282 * Expired timer available, let it expire in the next tick
1283 */
1284 if (hr_delta.tv64 <= 0)
1285 return now + 1;
1286
1287 tsdelta = ktime_to_timespec(hr_delta);
1288 delta = timespec_to_jiffies(&tsdelta);
1289
1290 /*
1291 * Limit the delta to the max value, which is checked in
1292 * tick_nohz_stop_sched_tick():
1293 */
1294 if (delta > NEXT_TIMER_MAX_DELTA)
1295 delta = NEXT_TIMER_MAX_DELTA;
1296
1297 /*
1298 * Take rounding errors in to account and make sure, that it
1299 * expires in the next tick. Otherwise we go into an endless
1300 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1301 * the timer softirq
1302 */
1303 if (delta < 1)
1304 delta = 1;
1305 now += delta;
1306 if (time_before(now, expires))
1307 return now;
1308 return expires;
1309 }
1310
1311 /**
1312 * get_next_timer_interrupt - return the jiffy of the next pending timer
1313 * @now: current time (in jiffies)
1314 */
1315 unsigned long get_next_timer_interrupt(unsigned long now)
1316 {
1317 struct tvec_base *base = __this_cpu_read(tvec_bases);
1318 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1319
1320 /*
1321 * Pretend that there is no timer pending if the cpu is offline.
1322 * Possible pending timers will be migrated later to an active cpu.
1323 */
1324 if (cpu_is_offline(smp_processor_id()))
1325 return expires;
1326
1327 spin_lock(&base->lock);
1328 if (base->active_timers) {
1329 if (time_before_eq(base->next_timer, base->timer_jiffies))
1330 base->next_timer = __next_timer_interrupt(base);
1331 expires = base->next_timer;
1332 }
1333 spin_unlock(&base->lock);
1334
1335 if (time_before_eq(expires, now))
1336 return now;
1337
1338 return cmp_next_hrtimer_event(now, expires);
1339 }
1340 #endif
1341
1342 /*
1343 * Called from the timer interrupt handler to charge one tick to the current
1344 * process. user_tick is 1 if the tick is user time, 0 for system.
1345 */
1346 void update_process_times(int user_tick)
1347 {
1348 struct task_struct *p = current;
1349 int cpu = smp_processor_id();
1350
1351 /* Note: this timer irq context must be accounted for as well. */
1352 account_process_tick(p, user_tick);
1353 run_local_timers();
1354 rcu_check_callbacks(cpu, user_tick);
1355 #ifdef CONFIG_IRQ_WORK
1356 if (in_irq())
1357 irq_work_run();
1358 #endif
1359 scheduler_tick();
1360 run_posix_cpu_timers(p);
1361 }
1362
1363 /*
1364 * This function runs timers and the timer-tq in bottom half context.
1365 */
1366 static void run_timer_softirq(struct softirq_action *h)
1367 {
1368 struct tvec_base *base = __this_cpu_read(tvec_bases);
1369
1370 hrtimer_run_pending();
1371
1372 if (time_after_eq(jiffies, base->timer_jiffies))
1373 __run_timers(base);
1374 }
1375
1376 /*
1377 * Called by the local, per-CPU timer interrupt on SMP.
1378 */
1379 void run_local_timers(void)
1380 {
1381 hrtimer_run_queues();
1382 raise_softirq(TIMER_SOFTIRQ);
1383 }
1384
1385 #ifdef __ARCH_WANT_SYS_ALARM
1386
1387 /*
1388 * For backwards compatibility? This can be done in libc so Alpha
1389 * and all newer ports shouldn't need it.
1390 */
1391 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1392 {
1393 return alarm_setitimer(seconds);
1394 }
1395
1396 #endif
1397
1398 /**
1399 * sys_getpid - return the thread group id of the current process
1400 *
1401 * Note, despite the name, this returns the tgid not the pid. The tgid and
1402 * the pid are identical unless CLONE_THREAD was specified on clone() in
1403 * which case the tgid is the same in all threads of the same group.
1404 *
1405 * This is SMP safe as current->tgid does not change.
1406 */
1407 SYSCALL_DEFINE0(getpid)
1408 {
1409 return task_tgid_vnr(current);
1410 }
1411
1412 /*
1413 * Accessing ->real_parent is not SMP-safe, it could
1414 * change from under us. However, we can use a stale
1415 * value of ->real_parent under rcu_read_lock(), see
1416 * release_task()->call_rcu(delayed_put_task_struct).
1417 */
1418 SYSCALL_DEFINE0(getppid)
1419 {
1420 int pid;
1421
1422 rcu_read_lock();
1423 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1424 rcu_read_unlock();
1425
1426 return pid;
1427 }
1428
1429 SYSCALL_DEFINE0(getuid)
1430 {
1431 /* Only we change this so SMP safe */
1432 return from_kuid_munged(current_user_ns(), current_uid());
1433 }
1434
1435 SYSCALL_DEFINE0(geteuid)
1436 {
1437 /* Only we change this so SMP safe */
1438 return from_kuid_munged(current_user_ns(), current_euid());
1439 }
1440
1441 SYSCALL_DEFINE0(getgid)
1442 {
1443 /* Only we change this so SMP safe */
1444 return from_kgid_munged(current_user_ns(), current_gid());
1445 }
1446
1447 SYSCALL_DEFINE0(getegid)
1448 {
1449 /* Only we change this so SMP safe */
1450 return from_kgid_munged(current_user_ns(), current_egid());
1451 }
1452
1453 static void process_timeout(unsigned long __data)
1454 {
1455 wake_up_process((struct task_struct *)__data);
1456 }
1457
1458 /**
1459 * schedule_timeout - sleep until timeout
1460 * @timeout: timeout value in jiffies
1461 *
1462 * Make the current task sleep until @timeout jiffies have
1463 * elapsed. The routine will return immediately unless
1464 * the current task state has been set (see set_current_state()).
1465 *
1466 * You can set the task state as follows -
1467 *
1468 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1469 * pass before the routine returns. The routine will return 0
1470 *
1471 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1472 * delivered to the current task. In this case the remaining time
1473 * in jiffies will be returned, or 0 if the timer expired in time
1474 *
1475 * The current task state is guaranteed to be TASK_RUNNING when this
1476 * routine returns.
1477 *
1478 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1479 * the CPU away without a bound on the timeout. In this case the return
1480 * value will be %MAX_SCHEDULE_TIMEOUT.
1481 *
1482 * In all cases the return value is guaranteed to be non-negative.
1483 */
1484 signed long __sched schedule_timeout(signed long timeout)
1485 {
1486 struct timer_list timer;
1487 unsigned long expire;
1488
1489 switch (timeout)
1490 {
1491 case MAX_SCHEDULE_TIMEOUT:
1492 /*
1493 * These two special cases are useful to be comfortable
1494 * in the caller. Nothing more. We could take
1495 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1496 * but I' d like to return a valid offset (>=0) to allow
1497 * the caller to do everything it want with the retval.
1498 */
1499 schedule();
1500 goto out;
1501 default:
1502 /*
1503 * Another bit of PARANOID. Note that the retval will be
1504 * 0 since no piece of kernel is supposed to do a check
1505 * for a negative retval of schedule_timeout() (since it
1506 * should never happens anyway). You just have the printk()
1507 * that will tell you if something is gone wrong and where.
1508 */
1509 if (timeout < 0) {
1510 printk(KERN_ERR "schedule_timeout: wrong timeout "
1511 "value %lx\n", timeout);
1512 dump_stack();
1513 current->state = TASK_RUNNING;
1514 goto out;
1515 }
1516 }
1517
1518 expire = timeout + jiffies;
1519
1520 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1521 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1522 schedule();
1523 del_singleshot_timer_sync(&timer);
1524
1525 /* Remove the timer from the object tracker */
1526 destroy_timer_on_stack(&timer);
1527
1528 timeout = expire - jiffies;
1529
1530 out:
1531 return timeout < 0 ? 0 : timeout;
1532 }
1533 EXPORT_SYMBOL(schedule_timeout);
1534
1535 /*
1536 * We can use __set_current_state() here because schedule_timeout() calls
1537 * schedule() unconditionally.
1538 */
1539 signed long __sched schedule_timeout_interruptible(signed long timeout)
1540 {
1541 __set_current_state(TASK_INTERRUPTIBLE);
1542 return schedule_timeout(timeout);
1543 }
1544 EXPORT_SYMBOL(schedule_timeout_interruptible);
1545
1546 signed long __sched schedule_timeout_killable(signed long timeout)
1547 {
1548 __set_current_state(TASK_KILLABLE);
1549 return schedule_timeout(timeout);
1550 }
1551 EXPORT_SYMBOL(schedule_timeout_killable);
1552
1553 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1554 {
1555 __set_current_state(TASK_UNINTERRUPTIBLE);
1556 return schedule_timeout(timeout);
1557 }
1558 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1559
1560 /* Thread ID - the internal kernel "pid" */
1561 SYSCALL_DEFINE0(gettid)
1562 {
1563 return task_pid_vnr(current);
1564 }
1565
1566 /**
1567 * do_sysinfo - fill in sysinfo struct
1568 * @info: pointer to buffer to fill
1569 */
1570 int do_sysinfo(struct sysinfo *info)
1571 {
1572 unsigned long mem_total, sav_total;
1573 unsigned int mem_unit, bitcount;
1574 struct timespec tp;
1575
1576 memset(info, 0, sizeof(struct sysinfo));
1577
1578 ktime_get_ts(&tp);
1579 monotonic_to_bootbased(&tp);
1580 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1581
1582 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1583
1584 info->procs = nr_threads;
1585
1586 si_meminfo(info);
1587 si_swapinfo(info);
1588
1589 /*
1590 * If the sum of all the available memory (i.e. ram + swap)
1591 * is less than can be stored in a 32 bit unsigned long then
1592 * we can be binary compatible with 2.2.x kernels. If not,
1593 * well, in that case 2.2.x was broken anyways...
1594 *
1595 * -Erik Andersen <andersee@debian.org>
1596 */
1597
1598 mem_total = info->totalram + info->totalswap;
1599 if (mem_total < info->totalram || mem_total < info->totalswap)
1600 goto out;
1601 bitcount = 0;
1602 mem_unit = info->mem_unit;
1603 while (mem_unit > 1) {
1604 bitcount++;
1605 mem_unit >>= 1;
1606 sav_total = mem_total;
1607 mem_total <<= 1;
1608 if (mem_total < sav_total)
1609 goto out;
1610 }
1611
1612 /*
1613 * If mem_total did not overflow, multiply all memory values by
1614 * info->mem_unit and set it to 1. This leaves things compatible
1615 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1616 * kernels...
1617 */
1618
1619 info->mem_unit = 1;
1620 info->totalram <<= bitcount;
1621 info->freeram <<= bitcount;
1622 info->sharedram <<= bitcount;
1623 info->bufferram <<= bitcount;
1624 info->totalswap <<= bitcount;
1625 info->freeswap <<= bitcount;
1626 info->totalhigh <<= bitcount;
1627 info->freehigh <<= bitcount;
1628
1629 out:
1630 return 0;
1631 }
1632
1633 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1634 {
1635 struct sysinfo val;
1636
1637 do_sysinfo(&val);
1638
1639 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1640 return -EFAULT;
1641
1642 return 0;
1643 }
1644
1645 static int __cpuinit init_timers_cpu(int cpu)
1646 {
1647 int j;
1648 struct tvec_base *base;
1649 static char __cpuinitdata tvec_base_done[NR_CPUS];
1650
1651 if (!tvec_base_done[cpu]) {
1652 static char boot_done;
1653
1654 if (boot_done) {
1655 /*
1656 * The APs use this path later in boot
1657 */
1658 base = kmalloc_node(sizeof(*base),
1659 GFP_KERNEL | __GFP_ZERO,
1660 cpu_to_node(cpu));
1661 if (!base)
1662 return -ENOMEM;
1663
1664 /* Make sure that tvec_base is 2 byte aligned */
1665 if (tbase_get_deferrable(base)) {
1666 WARN_ON(1);
1667 kfree(base);
1668 return -ENOMEM;
1669 }
1670 per_cpu(tvec_bases, cpu) = base;
1671 } else {
1672 /*
1673 * This is for the boot CPU - we use compile-time
1674 * static initialisation because per-cpu memory isn't
1675 * ready yet and because the memory allocators are not
1676 * initialised either.
1677 */
1678 boot_done = 1;
1679 base = &boot_tvec_bases;
1680 }
1681 tvec_base_done[cpu] = 1;
1682 } else {
1683 base = per_cpu(tvec_bases, cpu);
1684 }
1685
1686 spin_lock_init(&base->lock);
1687
1688 for (j = 0; j < TVN_SIZE; j++) {
1689 INIT_LIST_HEAD(base->tv5.vec + j);
1690 INIT_LIST_HEAD(base->tv4.vec + j);
1691 INIT_LIST_HEAD(base->tv3.vec + j);
1692 INIT_LIST_HEAD(base->tv2.vec + j);
1693 }
1694 for (j = 0; j < TVR_SIZE; j++)
1695 INIT_LIST_HEAD(base->tv1.vec + j);
1696
1697 base->timer_jiffies = jiffies;
1698 base->next_timer = base->timer_jiffies;
1699 base->active_timers = 0;
1700 return 0;
1701 }
1702
1703 #ifdef CONFIG_HOTPLUG_CPU
1704 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1705 {
1706 struct timer_list *timer;
1707
1708 while (!list_empty(head)) {
1709 timer = list_first_entry(head, struct timer_list, entry);
1710 /* We ignore the accounting on the dying cpu */
1711 detach_timer(timer, false);
1712 timer_set_base(timer, new_base);
1713 internal_add_timer(new_base, timer);
1714 }
1715 }
1716
1717 static void __cpuinit migrate_timers(int cpu)
1718 {
1719 struct tvec_base *old_base;
1720 struct tvec_base *new_base;
1721 int i;
1722
1723 BUG_ON(cpu_online(cpu));
1724 old_base = per_cpu(tvec_bases, cpu);
1725 new_base = get_cpu_var(tvec_bases);
1726 /*
1727 * The caller is globally serialized and nobody else
1728 * takes two locks at once, deadlock is not possible.
1729 */
1730 spin_lock_irq(&new_base->lock);
1731 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1732
1733 BUG_ON(old_base->running_timer);
1734
1735 for (i = 0; i < TVR_SIZE; i++)
1736 migrate_timer_list(new_base, old_base->tv1.vec + i);
1737 for (i = 0; i < TVN_SIZE; i++) {
1738 migrate_timer_list(new_base, old_base->tv2.vec + i);
1739 migrate_timer_list(new_base, old_base->tv3.vec + i);
1740 migrate_timer_list(new_base, old_base->tv4.vec + i);
1741 migrate_timer_list(new_base, old_base->tv5.vec + i);
1742 }
1743
1744 spin_unlock(&old_base->lock);
1745 spin_unlock_irq(&new_base->lock);
1746 put_cpu_var(tvec_bases);
1747 }
1748 #endif /* CONFIG_HOTPLUG_CPU */
1749
1750 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1751 unsigned long action, void *hcpu)
1752 {
1753 long cpu = (long)hcpu;
1754 int err;
1755
1756 switch(action) {
1757 case CPU_UP_PREPARE:
1758 case CPU_UP_PREPARE_FROZEN:
1759 err = init_timers_cpu(cpu);
1760 if (err < 0)
1761 return notifier_from_errno(err);
1762 break;
1763 #ifdef CONFIG_HOTPLUG_CPU
1764 case CPU_DEAD:
1765 case CPU_DEAD_FROZEN:
1766 migrate_timers(cpu);
1767 break;
1768 #endif
1769 default:
1770 break;
1771 }
1772 return NOTIFY_OK;
1773 }
1774
1775 static struct notifier_block __cpuinitdata timers_nb = {
1776 .notifier_call = timer_cpu_notify,
1777 };
1778
1779
1780 void __init init_timers(void)
1781 {
1782 int err;
1783
1784 /* ensure there are enough low bits for flags in timer->base pointer */
1785 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1786
1787 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1788 (void *)(long)smp_processor_id());
1789 init_timer_stats();
1790
1791 BUG_ON(err != NOTIFY_OK);
1792 register_cpu_notifier(&timers_nb);
1793 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1794 }
1795
1796 /**
1797 * msleep - sleep safely even with waitqueue interruptions
1798 * @msecs: Time in milliseconds to sleep for
1799 */
1800 void msleep(unsigned int msecs)
1801 {
1802 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1803
1804 while (timeout)
1805 timeout = schedule_timeout_uninterruptible(timeout);
1806 }
1807
1808 EXPORT_SYMBOL(msleep);
1809
1810 /**
1811 * msleep_interruptible - sleep waiting for signals
1812 * @msecs: Time in milliseconds to sleep for
1813 */
1814 unsigned long msleep_interruptible(unsigned int msecs)
1815 {
1816 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1817
1818 while (timeout && !signal_pending(current))
1819 timeout = schedule_timeout_interruptible(timeout);
1820 return jiffies_to_msecs(timeout);
1821 }
1822
1823 EXPORT_SYMBOL(msleep_interruptible);
1824
1825 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1826 {
1827 ktime_t kmin;
1828 unsigned long delta;
1829
1830 kmin = ktime_set(0, min * NSEC_PER_USEC);
1831 delta = (max - min) * NSEC_PER_USEC;
1832 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1833 }
1834
1835 /**
1836 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1837 * @min: Minimum time in usecs to sleep
1838 * @max: Maximum time in usecs to sleep
1839 */
1840 void usleep_range(unsigned long min, unsigned long max)
1841 {
1842 __set_current_state(TASK_UNINTERRUPTIBLE);
1843 do_usleep_range(min, max);
1844 }
1845 EXPORT_SYMBOL(usleep_range);