perf: Validate cpu early in perf_event_alloc()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55 EXPORT_SYMBOL(jiffies_64);
56
57 /*
58 * per-CPU timer vector definitions:
59 */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
69 };
70
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
73 };
74
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
86
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
90
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93 {
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 }
96
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98 {
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 }
101
102 static inline void timer_set_deferrable(struct timer_list *timer)
103 {
104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
105 }
106
107 static inline void
108 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
109 {
110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111 tbase_get_deferrable(timer->base));
112 }
113
114 static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
116 {
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
137 * But never round down if @force_up is set.
138 */
139 if (rem < HZ/4 && !force_up) /* round down */
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150 }
151
152 /**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172 unsigned long __round_jiffies(unsigned long j, int cpu)
173 {
174 return round_jiffies_common(j, cpu, false);
175 }
176 EXPORT_SYMBOL_GPL(__round_jiffies);
177
178 /**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
196 * The return value is the rounded version of the @j parameter.
197 */
198 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199 {
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
204 }
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207 /**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
220 * The return value is the rounded version of the @j parameter.
221 */
222 unsigned long round_jiffies(unsigned long j)
223 {
224 return round_jiffies_common(j, raw_smp_processor_id(), false);
225 }
226 EXPORT_SYMBOL_GPL(round_jiffies);
227
228 /**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
241 * The return value is the rounded version of the @j parameter.
242 */
243 unsigned long round_jiffies_relative(unsigned long j)
244 {
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246 }
247 EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
249 /**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259 unsigned long __round_jiffies_up(unsigned long j, int cpu)
260 {
261 return round_jiffies_common(j, cpu, true);
262 }
263 EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265 /**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276 {
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281 }
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284 /**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293 unsigned long round_jiffies_up(unsigned long j)
294 {
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296 }
297 EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299 /**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308 unsigned long round_jiffies_up_relative(unsigned long j)
309 {
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311 }
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
314 /**
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327 void set_timer_slack(struct timer_list *timer, int slack_hz)
328 {
329 timer->slack = slack_hz;
330 }
331 EXPORT_SYMBOL_GPL(set_timer_slack);
332
333 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
334 {
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373 }
374
375 #ifdef CONFIG_TIMER_STATS
376 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377 {
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384 }
385
386 static void timer_stats_account_timer(struct timer_list *timer)
387 {
388 unsigned int flag = 0;
389
390 if (likely(!timer->start_site))
391 return;
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397 }
398
399 #else
400 static void timer_stats_account_timer(struct timer_list *timer) {}
401 #endif
402
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405 static struct debug_obj_descr timer_debug_descr;
406
407 /*
408 * fixup_init is called when:
409 * - an active object is initialized
410 */
411 static int timer_fixup_init(void *addr, enum debug_obj_state state)
412 {
413 struct timer_list *timer = addr;
414
415 switch (state) {
416 case ODEBUG_STATE_ACTIVE:
417 del_timer_sync(timer);
418 debug_object_init(timer, &timer_debug_descr);
419 return 1;
420 default:
421 return 0;
422 }
423 }
424
425 /*
426 * fixup_activate is called when:
427 * - an active object is activated
428 * - an unknown object is activated (might be a statically initialized object)
429 */
430 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
431 {
432 struct timer_list *timer = addr;
433
434 switch (state) {
435
436 case ODEBUG_STATE_NOTAVAILABLE:
437 /*
438 * This is not really a fixup. The timer was
439 * statically initialized. We just make sure that it
440 * is tracked in the object tracker.
441 */
442 if (timer->entry.next == NULL &&
443 timer->entry.prev == TIMER_ENTRY_STATIC) {
444 debug_object_init(timer, &timer_debug_descr);
445 debug_object_activate(timer, &timer_debug_descr);
446 return 0;
447 } else {
448 WARN_ON_ONCE(1);
449 }
450 return 0;
451
452 case ODEBUG_STATE_ACTIVE:
453 WARN_ON(1);
454
455 default:
456 return 0;
457 }
458 }
459
460 /*
461 * fixup_free is called when:
462 * - an active object is freed
463 */
464 static int timer_fixup_free(void *addr, enum debug_obj_state state)
465 {
466 struct timer_list *timer = addr;
467
468 switch (state) {
469 case ODEBUG_STATE_ACTIVE:
470 del_timer_sync(timer);
471 debug_object_free(timer, &timer_debug_descr);
472 return 1;
473 default:
474 return 0;
475 }
476 }
477
478 static struct debug_obj_descr timer_debug_descr = {
479 .name = "timer_list",
480 .fixup_init = timer_fixup_init,
481 .fixup_activate = timer_fixup_activate,
482 .fixup_free = timer_fixup_free,
483 };
484
485 static inline void debug_timer_init(struct timer_list *timer)
486 {
487 debug_object_init(timer, &timer_debug_descr);
488 }
489
490 static inline void debug_timer_activate(struct timer_list *timer)
491 {
492 debug_object_activate(timer, &timer_debug_descr);
493 }
494
495 static inline void debug_timer_deactivate(struct timer_list *timer)
496 {
497 debug_object_deactivate(timer, &timer_debug_descr);
498 }
499
500 static inline void debug_timer_free(struct timer_list *timer)
501 {
502 debug_object_free(timer, &timer_debug_descr);
503 }
504
505 static void __init_timer(struct timer_list *timer,
506 const char *name,
507 struct lock_class_key *key);
508
509 void init_timer_on_stack_key(struct timer_list *timer,
510 const char *name,
511 struct lock_class_key *key)
512 {
513 debug_object_init_on_stack(timer, &timer_debug_descr);
514 __init_timer(timer, name, key);
515 }
516 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
517
518 void destroy_timer_on_stack(struct timer_list *timer)
519 {
520 debug_object_free(timer, &timer_debug_descr);
521 }
522 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
523
524 #else
525 static inline void debug_timer_init(struct timer_list *timer) { }
526 static inline void debug_timer_activate(struct timer_list *timer) { }
527 static inline void debug_timer_deactivate(struct timer_list *timer) { }
528 #endif
529
530 static inline void debug_init(struct timer_list *timer)
531 {
532 debug_timer_init(timer);
533 trace_timer_init(timer);
534 }
535
536 static inline void
537 debug_activate(struct timer_list *timer, unsigned long expires)
538 {
539 debug_timer_activate(timer);
540 trace_timer_start(timer, expires);
541 }
542
543 static inline void debug_deactivate(struct timer_list *timer)
544 {
545 debug_timer_deactivate(timer);
546 trace_timer_cancel(timer);
547 }
548
549 static void __init_timer(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
552 {
553 timer->entry.next = NULL;
554 timer->base = __raw_get_cpu_var(tvec_bases);
555 timer->slack = -1;
556 #ifdef CONFIG_TIMER_STATS
557 timer->start_site = NULL;
558 timer->start_pid = -1;
559 memset(timer->start_comm, 0, TASK_COMM_LEN);
560 #endif
561 lockdep_init_map(&timer->lockdep_map, name, key, 0);
562 }
563
564 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
565 const char *name,
566 struct lock_class_key *key,
567 void (*function)(unsigned long),
568 unsigned long data)
569 {
570 timer->function = function;
571 timer->data = data;
572 init_timer_on_stack_key(timer, name, key);
573 timer_set_deferrable(timer);
574 }
575 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
576
577 /**
578 * init_timer_key - initialize a timer
579 * @timer: the timer to be initialized
580 * @name: name of the timer
581 * @key: lockdep class key of the fake lock used for tracking timer
582 * sync lock dependencies
583 *
584 * init_timer_key() must be done to a timer prior calling *any* of the
585 * other timer functions.
586 */
587 void init_timer_key(struct timer_list *timer,
588 const char *name,
589 struct lock_class_key *key)
590 {
591 debug_init(timer);
592 __init_timer(timer, name, key);
593 }
594 EXPORT_SYMBOL(init_timer_key);
595
596 void init_timer_deferrable_key(struct timer_list *timer,
597 const char *name,
598 struct lock_class_key *key)
599 {
600 init_timer_key(timer, name, key);
601 timer_set_deferrable(timer);
602 }
603 EXPORT_SYMBOL(init_timer_deferrable_key);
604
605 static inline void detach_timer(struct timer_list *timer,
606 int clear_pending)
607 {
608 struct list_head *entry = &timer->entry;
609
610 debug_deactivate(timer);
611
612 __list_del(entry->prev, entry->next);
613 if (clear_pending)
614 entry->next = NULL;
615 entry->prev = LIST_POISON2;
616 }
617
618 /*
619 * We are using hashed locking: holding per_cpu(tvec_bases).lock
620 * means that all timers which are tied to this base via timer->base are
621 * locked, and the base itself is locked too.
622 *
623 * So __run_timers/migrate_timers can safely modify all timers which could
624 * be found on ->tvX lists.
625 *
626 * When the timer's base is locked, and the timer removed from list, it is
627 * possible to set timer->base = NULL and drop the lock: the timer remains
628 * locked.
629 */
630 static struct tvec_base *lock_timer_base(struct timer_list *timer,
631 unsigned long *flags)
632 __acquires(timer->base->lock)
633 {
634 struct tvec_base *base;
635
636 for (;;) {
637 struct tvec_base *prelock_base = timer->base;
638 base = tbase_get_base(prelock_base);
639 if (likely(base != NULL)) {
640 spin_lock_irqsave(&base->lock, *flags);
641 if (likely(prelock_base == timer->base))
642 return base;
643 /* The timer has migrated to another CPU */
644 spin_unlock_irqrestore(&base->lock, *flags);
645 }
646 cpu_relax();
647 }
648 }
649
650 static inline int
651 __mod_timer(struct timer_list *timer, unsigned long expires,
652 bool pending_only, int pinned)
653 {
654 struct tvec_base *base, *new_base;
655 unsigned long flags;
656 int ret = 0 , cpu;
657
658 timer_stats_timer_set_start_info(timer);
659 BUG_ON(!timer->function);
660
661 base = lock_timer_base(timer, &flags);
662
663 if (timer_pending(timer)) {
664 detach_timer(timer, 0);
665 if (timer->expires == base->next_timer &&
666 !tbase_get_deferrable(timer->base))
667 base->next_timer = base->timer_jiffies;
668 ret = 1;
669 } else {
670 if (pending_only)
671 goto out_unlock;
672 }
673
674 debug_activate(timer, expires);
675
676 cpu = smp_processor_id();
677
678 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
679 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
680 cpu = get_nohz_timer_target();
681 #endif
682 new_base = per_cpu(tvec_bases, cpu);
683
684 if (base != new_base) {
685 /*
686 * We are trying to schedule the timer on the local CPU.
687 * However we can't change timer's base while it is running,
688 * otherwise del_timer_sync() can't detect that the timer's
689 * handler yet has not finished. This also guarantees that
690 * the timer is serialized wrt itself.
691 */
692 if (likely(base->running_timer != timer)) {
693 /* See the comment in lock_timer_base() */
694 timer_set_base(timer, NULL);
695 spin_unlock(&base->lock);
696 base = new_base;
697 spin_lock(&base->lock);
698 timer_set_base(timer, base);
699 }
700 }
701
702 timer->expires = expires;
703 if (time_before(timer->expires, base->next_timer) &&
704 !tbase_get_deferrable(timer->base))
705 base->next_timer = timer->expires;
706 internal_add_timer(base, timer);
707
708 out_unlock:
709 spin_unlock_irqrestore(&base->lock, flags);
710
711 return ret;
712 }
713
714 /**
715 * mod_timer_pending - modify a pending timer's timeout
716 * @timer: the pending timer to be modified
717 * @expires: new timeout in jiffies
718 *
719 * mod_timer_pending() is the same for pending timers as mod_timer(),
720 * but will not re-activate and modify already deleted timers.
721 *
722 * It is useful for unserialized use of timers.
723 */
724 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
725 {
726 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
727 }
728 EXPORT_SYMBOL(mod_timer_pending);
729
730 /*
731 * Decide where to put the timer while taking the slack into account
732 *
733 * Algorithm:
734 * 1) calculate the maximum (absolute) time
735 * 2) calculate the highest bit where the expires and new max are different
736 * 3) use this bit to make a mask
737 * 4) use the bitmask to round down the maximum time, so that all last
738 * bits are zeros
739 */
740 static inline
741 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
742 {
743 unsigned long expires_limit, mask;
744 int bit;
745
746 expires_limit = expires;
747
748 if (timer->slack >= 0) {
749 expires_limit = expires + timer->slack;
750 } else {
751 unsigned long now = jiffies;
752
753 /* No slack, if already expired else auto slack 0.4% */
754 if (time_after(expires, now))
755 expires_limit = expires + (expires - now)/256;
756 }
757 mask = expires ^ expires_limit;
758 if (mask == 0)
759 return expires;
760
761 bit = find_last_bit(&mask, BITS_PER_LONG);
762
763 mask = (1 << bit) - 1;
764
765 expires_limit = expires_limit & ~(mask);
766
767 return expires_limit;
768 }
769
770 /**
771 * mod_timer - modify a timer's timeout
772 * @timer: the timer to be modified
773 * @expires: new timeout in jiffies
774 *
775 * mod_timer() is a more efficient way to update the expire field of an
776 * active timer (if the timer is inactive it will be activated)
777 *
778 * mod_timer(timer, expires) is equivalent to:
779 *
780 * del_timer(timer); timer->expires = expires; add_timer(timer);
781 *
782 * Note that if there are multiple unserialized concurrent users of the
783 * same timer, then mod_timer() is the only safe way to modify the timeout,
784 * since add_timer() cannot modify an already running timer.
785 *
786 * The function returns whether it has modified a pending timer or not.
787 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
788 * active timer returns 1.)
789 */
790 int mod_timer(struct timer_list *timer, unsigned long expires)
791 {
792 /*
793 * This is a common optimization triggered by the
794 * networking code - if the timer is re-modified
795 * to be the same thing then just return:
796 */
797 if (timer_pending(timer) && timer->expires == expires)
798 return 1;
799
800 expires = apply_slack(timer, expires);
801
802 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
803 }
804 EXPORT_SYMBOL(mod_timer);
805
806 /**
807 * mod_timer_pinned - modify a timer's timeout
808 * @timer: the timer to be modified
809 * @expires: new timeout in jiffies
810 *
811 * mod_timer_pinned() is a way to update the expire field of an
812 * active timer (if the timer is inactive it will be activated)
813 * and not allow the timer to be migrated to a different CPU.
814 *
815 * mod_timer_pinned(timer, expires) is equivalent to:
816 *
817 * del_timer(timer); timer->expires = expires; add_timer(timer);
818 */
819 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
820 {
821 if (timer->expires == expires && timer_pending(timer))
822 return 1;
823
824 return __mod_timer(timer, expires, false, TIMER_PINNED);
825 }
826 EXPORT_SYMBOL(mod_timer_pinned);
827
828 /**
829 * add_timer - start a timer
830 * @timer: the timer to be added
831 *
832 * The kernel will do a ->function(->data) callback from the
833 * timer interrupt at the ->expires point in the future. The
834 * current time is 'jiffies'.
835 *
836 * The timer's ->expires, ->function (and if the handler uses it, ->data)
837 * fields must be set prior calling this function.
838 *
839 * Timers with an ->expires field in the past will be executed in the next
840 * timer tick.
841 */
842 void add_timer(struct timer_list *timer)
843 {
844 BUG_ON(timer_pending(timer));
845 mod_timer(timer, timer->expires);
846 }
847 EXPORT_SYMBOL(add_timer);
848
849 /**
850 * add_timer_on - start a timer on a particular CPU
851 * @timer: the timer to be added
852 * @cpu: the CPU to start it on
853 *
854 * This is not very scalable on SMP. Double adds are not possible.
855 */
856 void add_timer_on(struct timer_list *timer, int cpu)
857 {
858 struct tvec_base *base = per_cpu(tvec_bases, cpu);
859 unsigned long flags;
860
861 timer_stats_timer_set_start_info(timer);
862 BUG_ON(timer_pending(timer) || !timer->function);
863 spin_lock_irqsave(&base->lock, flags);
864 timer_set_base(timer, base);
865 debug_activate(timer, timer->expires);
866 if (time_before(timer->expires, base->next_timer) &&
867 !tbase_get_deferrable(timer->base))
868 base->next_timer = timer->expires;
869 internal_add_timer(base, timer);
870 /*
871 * Check whether the other CPU is idle and needs to be
872 * triggered to reevaluate the timer wheel when nohz is
873 * active. We are protected against the other CPU fiddling
874 * with the timer by holding the timer base lock. This also
875 * makes sure that a CPU on the way to idle can not evaluate
876 * the timer wheel.
877 */
878 wake_up_idle_cpu(cpu);
879 spin_unlock_irqrestore(&base->lock, flags);
880 }
881 EXPORT_SYMBOL_GPL(add_timer_on);
882
883 /**
884 * del_timer - deactive a timer.
885 * @timer: the timer to be deactivated
886 *
887 * del_timer() deactivates a timer - this works on both active and inactive
888 * timers.
889 *
890 * The function returns whether it has deactivated a pending timer or not.
891 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
892 * active timer returns 1.)
893 */
894 int del_timer(struct timer_list *timer)
895 {
896 struct tvec_base *base;
897 unsigned long flags;
898 int ret = 0;
899
900 timer_stats_timer_clear_start_info(timer);
901 if (timer_pending(timer)) {
902 base = lock_timer_base(timer, &flags);
903 if (timer_pending(timer)) {
904 detach_timer(timer, 1);
905 if (timer->expires == base->next_timer &&
906 !tbase_get_deferrable(timer->base))
907 base->next_timer = base->timer_jiffies;
908 ret = 1;
909 }
910 spin_unlock_irqrestore(&base->lock, flags);
911 }
912
913 return ret;
914 }
915 EXPORT_SYMBOL(del_timer);
916
917 /**
918 * try_to_del_timer_sync - Try to deactivate a timer
919 * @timer: timer do del
920 *
921 * This function tries to deactivate a timer. Upon successful (ret >= 0)
922 * exit the timer is not queued and the handler is not running on any CPU.
923 */
924 int try_to_del_timer_sync(struct timer_list *timer)
925 {
926 struct tvec_base *base;
927 unsigned long flags;
928 int ret = -1;
929
930 base = lock_timer_base(timer, &flags);
931
932 if (base->running_timer == timer)
933 goto out;
934
935 timer_stats_timer_clear_start_info(timer);
936 ret = 0;
937 if (timer_pending(timer)) {
938 detach_timer(timer, 1);
939 if (timer->expires == base->next_timer &&
940 !tbase_get_deferrable(timer->base))
941 base->next_timer = base->timer_jiffies;
942 ret = 1;
943 }
944 out:
945 spin_unlock_irqrestore(&base->lock, flags);
946
947 return ret;
948 }
949 EXPORT_SYMBOL(try_to_del_timer_sync);
950
951 #ifdef CONFIG_SMP
952 /**
953 * del_timer_sync - deactivate a timer and wait for the handler to finish.
954 * @timer: the timer to be deactivated
955 *
956 * This function only differs from del_timer() on SMP: besides deactivating
957 * the timer it also makes sure the handler has finished executing on other
958 * CPUs.
959 *
960 * Synchronization rules: Callers must prevent restarting of the timer,
961 * otherwise this function is meaningless. It must not be called from
962 * hardirq contexts. The caller must not hold locks which would prevent
963 * completion of the timer's handler. The timer's handler must not call
964 * add_timer_on(). Upon exit the timer is not queued and the handler is
965 * not running on any CPU.
966 *
967 * The function returns whether it has deactivated a pending timer or not.
968 */
969 int del_timer_sync(struct timer_list *timer)
970 {
971 #ifdef CONFIG_LOCKDEP
972 local_bh_disable();
973 lock_map_acquire(&timer->lockdep_map);
974 lock_map_release(&timer->lockdep_map);
975 local_bh_enable();
976 #endif
977 /*
978 * don't use it in hardirq context, because it
979 * could lead to deadlock.
980 */
981 WARN_ON(in_irq());
982 for (;;) {
983 int ret = try_to_del_timer_sync(timer);
984 if (ret >= 0)
985 return ret;
986 cpu_relax();
987 }
988 }
989 EXPORT_SYMBOL(del_timer_sync);
990 #endif
991
992 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
993 {
994 /* cascade all the timers from tv up one level */
995 struct timer_list *timer, *tmp;
996 struct list_head tv_list;
997
998 list_replace_init(tv->vec + index, &tv_list);
999
1000 /*
1001 * We are removing _all_ timers from the list, so we
1002 * don't have to detach them individually.
1003 */
1004 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1005 BUG_ON(tbase_get_base(timer->base) != base);
1006 internal_add_timer(base, timer);
1007 }
1008
1009 return index;
1010 }
1011
1012 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1013 unsigned long data)
1014 {
1015 int preempt_count = preempt_count();
1016
1017 #ifdef CONFIG_LOCKDEP
1018 /*
1019 * It is permissible to free the timer from inside the
1020 * function that is called from it, this we need to take into
1021 * account for lockdep too. To avoid bogus "held lock freed"
1022 * warnings as well as problems when looking into
1023 * timer->lockdep_map, make a copy and use that here.
1024 */
1025 struct lockdep_map lockdep_map = timer->lockdep_map;
1026 #endif
1027 /*
1028 * Couple the lock chain with the lock chain at
1029 * del_timer_sync() by acquiring the lock_map around the fn()
1030 * call here and in del_timer_sync().
1031 */
1032 lock_map_acquire(&lockdep_map);
1033
1034 trace_timer_expire_entry(timer);
1035 fn(data);
1036 trace_timer_expire_exit(timer);
1037
1038 lock_map_release(&lockdep_map);
1039
1040 if (preempt_count != preempt_count()) {
1041 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1042 fn, preempt_count, preempt_count());
1043 /*
1044 * Restore the preempt count. That gives us a decent
1045 * chance to survive and extract information. If the
1046 * callback kept a lock held, bad luck, but not worse
1047 * than the BUG() we had.
1048 */
1049 preempt_count() = preempt_count;
1050 }
1051 }
1052
1053 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1054
1055 /**
1056 * __run_timers - run all expired timers (if any) on this CPU.
1057 * @base: the timer vector to be processed.
1058 *
1059 * This function cascades all vectors and executes all expired timer
1060 * vectors.
1061 */
1062 static inline void __run_timers(struct tvec_base *base)
1063 {
1064 struct timer_list *timer;
1065
1066 spin_lock_irq(&base->lock);
1067 while (time_after_eq(jiffies, base->timer_jiffies)) {
1068 struct list_head work_list;
1069 struct list_head *head = &work_list;
1070 int index = base->timer_jiffies & TVR_MASK;
1071
1072 /*
1073 * Cascade timers:
1074 */
1075 if (!index &&
1076 (!cascade(base, &base->tv2, INDEX(0))) &&
1077 (!cascade(base, &base->tv3, INDEX(1))) &&
1078 !cascade(base, &base->tv4, INDEX(2)))
1079 cascade(base, &base->tv5, INDEX(3));
1080 ++base->timer_jiffies;
1081 list_replace_init(base->tv1.vec + index, &work_list);
1082 while (!list_empty(head)) {
1083 void (*fn)(unsigned long);
1084 unsigned long data;
1085
1086 timer = list_first_entry(head, struct timer_list,entry);
1087 fn = timer->function;
1088 data = timer->data;
1089
1090 timer_stats_account_timer(timer);
1091
1092 base->running_timer = timer;
1093 detach_timer(timer, 1);
1094
1095 spin_unlock_irq(&base->lock);
1096 call_timer_fn(timer, fn, data);
1097 spin_lock_irq(&base->lock);
1098 }
1099 }
1100 base->running_timer = NULL;
1101 spin_unlock_irq(&base->lock);
1102 }
1103
1104 #ifdef CONFIG_NO_HZ
1105 /*
1106 * Find out when the next timer event is due to happen. This
1107 * is used on S/390 to stop all activity when a CPU is idle.
1108 * This function needs to be called with interrupts disabled.
1109 */
1110 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1111 {
1112 unsigned long timer_jiffies = base->timer_jiffies;
1113 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1114 int index, slot, array, found = 0;
1115 struct timer_list *nte;
1116 struct tvec *varray[4];
1117
1118 /* Look for timer events in tv1. */
1119 index = slot = timer_jiffies & TVR_MASK;
1120 do {
1121 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1122 if (tbase_get_deferrable(nte->base))
1123 continue;
1124
1125 found = 1;
1126 expires = nte->expires;
1127 /* Look at the cascade bucket(s)? */
1128 if (!index || slot < index)
1129 goto cascade;
1130 return expires;
1131 }
1132 slot = (slot + 1) & TVR_MASK;
1133 } while (slot != index);
1134
1135 cascade:
1136 /* Calculate the next cascade event */
1137 if (index)
1138 timer_jiffies += TVR_SIZE - index;
1139 timer_jiffies >>= TVR_BITS;
1140
1141 /* Check tv2-tv5. */
1142 varray[0] = &base->tv2;
1143 varray[1] = &base->tv3;
1144 varray[2] = &base->tv4;
1145 varray[3] = &base->tv5;
1146
1147 for (array = 0; array < 4; array++) {
1148 struct tvec *varp = varray[array];
1149
1150 index = slot = timer_jiffies & TVN_MASK;
1151 do {
1152 list_for_each_entry(nte, varp->vec + slot, entry) {
1153 if (tbase_get_deferrable(nte->base))
1154 continue;
1155
1156 found = 1;
1157 if (time_before(nte->expires, expires))
1158 expires = nte->expires;
1159 }
1160 /*
1161 * Do we still search for the first timer or are
1162 * we looking up the cascade buckets ?
1163 */
1164 if (found) {
1165 /* Look at the cascade bucket(s)? */
1166 if (!index || slot < index)
1167 break;
1168 return expires;
1169 }
1170 slot = (slot + 1) & TVN_MASK;
1171 } while (slot != index);
1172
1173 if (index)
1174 timer_jiffies += TVN_SIZE - index;
1175 timer_jiffies >>= TVN_BITS;
1176 }
1177 return expires;
1178 }
1179
1180 /*
1181 * Check, if the next hrtimer event is before the next timer wheel
1182 * event:
1183 */
1184 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1185 unsigned long expires)
1186 {
1187 ktime_t hr_delta = hrtimer_get_next_event();
1188 struct timespec tsdelta;
1189 unsigned long delta;
1190
1191 if (hr_delta.tv64 == KTIME_MAX)
1192 return expires;
1193
1194 /*
1195 * Expired timer available, let it expire in the next tick
1196 */
1197 if (hr_delta.tv64 <= 0)
1198 return now + 1;
1199
1200 tsdelta = ktime_to_timespec(hr_delta);
1201 delta = timespec_to_jiffies(&tsdelta);
1202
1203 /*
1204 * Limit the delta to the max value, which is checked in
1205 * tick_nohz_stop_sched_tick():
1206 */
1207 if (delta > NEXT_TIMER_MAX_DELTA)
1208 delta = NEXT_TIMER_MAX_DELTA;
1209
1210 /*
1211 * Take rounding errors in to account and make sure, that it
1212 * expires in the next tick. Otherwise we go into an endless
1213 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1214 * the timer softirq
1215 */
1216 if (delta < 1)
1217 delta = 1;
1218 now += delta;
1219 if (time_before(now, expires))
1220 return now;
1221 return expires;
1222 }
1223
1224 /**
1225 * get_next_timer_interrupt - return the jiffy of the next pending timer
1226 * @now: current time (in jiffies)
1227 */
1228 unsigned long get_next_timer_interrupt(unsigned long now)
1229 {
1230 struct tvec_base *base = __this_cpu_read(tvec_bases);
1231 unsigned long expires;
1232
1233 /*
1234 * Pretend that there is no timer pending if the cpu is offline.
1235 * Possible pending timers will be migrated later to an active cpu.
1236 */
1237 if (cpu_is_offline(smp_processor_id()))
1238 return now + NEXT_TIMER_MAX_DELTA;
1239 spin_lock(&base->lock);
1240 if (time_before_eq(base->next_timer, base->timer_jiffies))
1241 base->next_timer = __next_timer_interrupt(base);
1242 expires = base->next_timer;
1243 spin_unlock(&base->lock);
1244
1245 if (time_before_eq(expires, now))
1246 return now;
1247
1248 return cmp_next_hrtimer_event(now, expires);
1249 }
1250 #endif
1251
1252 /*
1253 * Called from the timer interrupt handler to charge one tick to the current
1254 * process. user_tick is 1 if the tick is user time, 0 for system.
1255 */
1256 void update_process_times(int user_tick)
1257 {
1258 struct task_struct *p = current;
1259 int cpu = smp_processor_id();
1260
1261 /* Note: this timer irq context must be accounted for as well. */
1262 account_process_tick(p, user_tick);
1263 run_local_timers();
1264 rcu_check_callbacks(cpu, user_tick);
1265 printk_tick();
1266 #ifdef CONFIG_IRQ_WORK
1267 if (in_irq())
1268 irq_work_run();
1269 #endif
1270 scheduler_tick();
1271 run_posix_cpu_timers(p);
1272 }
1273
1274 /*
1275 * This function runs timers and the timer-tq in bottom half context.
1276 */
1277 static void run_timer_softirq(struct softirq_action *h)
1278 {
1279 struct tvec_base *base = __this_cpu_read(tvec_bases);
1280
1281 hrtimer_run_pending();
1282
1283 if (time_after_eq(jiffies, base->timer_jiffies))
1284 __run_timers(base);
1285 }
1286
1287 /*
1288 * Called by the local, per-CPU timer interrupt on SMP.
1289 */
1290 void run_local_timers(void)
1291 {
1292 hrtimer_run_queues();
1293 raise_softirq(TIMER_SOFTIRQ);
1294 }
1295
1296 /*
1297 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1298 * without sampling the sequence number in xtime_lock.
1299 * jiffies is defined in the linker script...
1300 */
1301
1302 void do_timer(unsigned long ticks)
1303 {
1304 jiffies_64 += ticks;
1305 update_wall_time();
1306 calc_global_load(ticks);
1307 }
1308
1309 #ifdef __ARCH_WANT_SYS_ALARM
1310
1311 /*
1312 * For backwards compatibility? This can be done in libc so Alpha
1313 * and all newer ports shouldn't need it.
1314 */
1315 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1316 {
1317 return alarm_setitimer(seconds);
1318 }
1319
1320 #endif
1321
1322 #ifndef __alpha__
1323
1324 /*
1325 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1326 * should be moved into arch/i386 instead?
1327 */
1328
1329 /**
1330 * sys_getpid - return the thread group id of the current process
1331 *
1332 * Note, despite the name, this returns the tgid not the pid. The tgid and
1333 * the pid are identical unless CLONE_THREAD was specified on clone() in
1334 * which case the tgid is the same in all threads of the same group.
1335 *
1336 * This is SMP safe as current->tgid does not change.
1337 */
1338 SYSCALL_DEFINE0(getpid)
1339 {
1340 return task_tgid_vnr(current);
1341 }
1342
1343 /*
1344 * Accessing ->real_parent is not SMP-safe, it could
1345 * change from under us. However, we can use a stale
1346 * value of ->real_parent under rcu_read_lock(), see
1347 * release_task()->call_rcu(delayed_put_task_struct).
1348 */
1349 SYSCALL_DEFINE0(getppid)
1350 {
1351 int pid;
1352
1353 rcu_read_lock();
1354 pid = task_tgid_vnr(current->real_parent);
1355 rcu_read_unlock();
1356
1357 return pid;
1358 }
1359
1360 SYSCALL_DEFINE0(getuid)
1361 {
1362 /* Only we change this so SMP safe */
1363 return current_uid();
1364 }
1365
1366 SYSCALL_DEFINE0(geteuid)
1367 {
1368 /* Only we change this so SMP safe */
1369 return current_euid();
1370 }
1371
1372 SYSCALL_DEFINE0(getgid)
1373 {
1374 /* Only we change this so SMP safe */
1375 return current_gid();
1376 }
1377
1378 SYSCALL_DEFINE0(getegid)
1379 {
1380 /* Only we change this so SMP safe */
1381 return current_egid();
1382 }
1383
1384 #endif
1385
1386 static void process_timeout(unsigned long __data)
1387 {
1388 wake_up_process((struct task_struct *)__data);
1389 }
1390
1391 /**
1392 * schedule_timeout - sleep until timeout
1393 * @timeout: timeout value in jiffies
1394 *
1395 * Make the current task sleep until @timeout jiffies have
1396 * elapsed. The routine will return immediately unless
1397 * the current task state has been set (see set_current_state()).
1398 *
1399 * You can set the task state as follows -
1400 *
1401 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1402 * pass before the routine returns. The routine will return 0
1403 *
1404 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1405 * delivered to the current task. In this case the remaining time
1406 * in jiffies will be returned, or 0 if the timer expired in time
1407 *
1408 * The current task state is guaranteed to be TASK_RUNNING when this
1409 * routine returns.
1410 *
1411 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1412 * the CPU away without a bound on the timeout. In this case the return
1413 * value will be %MAX_SCHEDULE_TIMEOUT.
1414 *
1415 * In all cases the return value is guaranteed to be non-negative.
1416 */
1417 signed long __sched schedule_timeout(signed long timeout)
1418 {
1419 struct timer_list timer;
1420 unsigned long expire;
1421
1422 switch (timeout)
1423 {
1424 case MAX_SCHEDULE_TIMEOUT:
1425 /*
1426 * These two special cases are useful to be comfortable
1427 * in the caller. Nothing more. We could take
1428 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1429 * but I' d like to return a valid offset (>=0) to allow
1430 * the caller to do everything it want with the retval.
1431 */
1432 schedule();
1433 goto out;
1434 default:
1435 /*
1436 * Another bit of PARANOID. Note that the retval will be
1437 * 0 since no piece of kernel is supposed to do a check
1438 * for a negative retval of schedule_timeout() (since it
1439 * should never happens anyway). You just have the printk()
1440 * that will tell you if something is gone wrong and where.
1441 */
1442 if (timeout < 0) {
1443 printk(KERN_ERR "schedule_timeout: wrong timeout "
1444 "value %lx\n", timeout);
1445 dump_stack();
1446 current->state = TASK_RUNNING;
1447 goto out;
1448 }
1449 }
1450
1451 expire = timeout + jiffies;
1452
1453 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1454 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1455 schedule();
1456 del_singleshot_timer_sync(&timer);
1457
1458 /* Remove the timer from the object tracker */
1459 destroy_timer_on_stack(&timer);
1460
1461 timeout = expire - jiffies;
1462
1463 out:
1464 return timeout < 0 ? 0 : timeout;
1465 }
1466 EXPORT_SYMBOL(schedule_timeout);
1467
1468 /*
1469 * We can use __set_current_state() here because schedule_timeout() calls
1470 * schedule() unconditionally.
1471 */
1472 signed long __sched schedule_timeout_interruptible(signed long timeout)
1473 {
1474 __set_current_state(TASK_INTERRUPTIBLE);
1475 return schedule_timeout(timeout);
1476 }
1477 EXPORT_SYMBOL(schedule_timeout_interruptible);
1478
1479 signed long __sched schedule_timeout_killable(signed long timeout)
1480 {
1481 __set_current_state(TASK_KILLABLE);
1482 return schedule_timeout(timeout);
1483 }
1484 EXPORT_SYMBOL(schedule_timeout_killable);
1485
1486 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1487 {
1488 __set_current_state(TASK_UNINTERRUPTIBLE);
1489 return schedule_timeout(timeout);
1490 }
1491 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1492
1493 /* Thread ID - the internal kernel "pid" */
1494 SYSCALL_DEFINE0(gettid)
1495 {
1496 return task_pid_vnr(current);
1497 }
1498
1499 /**
1500 * do_sysinfo - fill in sysinfo struct
1501 * @info: pointer to buffer to fill
1502 */
1503 int do_sysinfo(struct sysinfo *info)
1504 {
1505 unsigned long mem_total, sav_total;
1506 unsigned int mem_unit, bitcount;
1507 struct timespec tp;
1508
1509 memset(info, 0, sizeof(struct sysinfo));
1510
1511 ktime_get_ts(&tp);
1512 monotonic_to_bootbased(&tp);
1513 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1514
1515 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1516
1517 info->procs = nr_threads;
1518
1519 si_meminfo(info);
1520 si_swapinfo(info);
1521
1522 /*
1523 * If the sum of all the available memory (i.e. ram + swap)
1524 * is less than can be stored in a 32 bit unsigned long then
1525 * we can be binary compatible with 2.2.x kernels. If not,
1526 * well, in that case 2.2.x was broken anyways...
1527 *
1528 * -Erik Andersen <andersee@debian.org>
1529 */
1530
1531 mem_total = info->totalram + info->totalswap;
1532 if (mem_total < info->totalram || mem_total < info->totalswap)
1533 goto out;
1534 bitcount = 0;
1535 mem_unit = info->mem_unit;
1536 while (mem_unit > 1) {
1537 bitcount++;
1538 mem_unit >>= 1;
1539 sav_total = mem_total;
1540 mem_total <<= 1;
1541 if (mem_total < sav_total)
1542 goto out;
1543 }
1544
1545 /*
1546 * If mem_total did not overflow, multiply all memory values by
1547 * info->mem_unit and set it to 1. This leaves things compatible
1548 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1549 * kernels...
1550 */
1551
1552 info->mem_unit = 1;
1553 info->totalram <<= bitcount;
1554 info->freeram <<= bitcount;
1555 info->sharedram <<= bitcount;
1556 info->bufferram <<= bitcount;
1557 info->totalswap <<= bitcount;
1558 info->freeswap <<= bitcount;
1559 info->totalhigh <<= bitcount;
1560 info->freehigh <<= bitcount;
1561
1562 out:
1563 return 0;
1564 }
1565
1566 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1567 {
1568 struct sysinfo val;
1569
1570 do_sysinfo(&val);
1571
1572 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1573 return -EFAULT;
1574
1575 return 0;
1576 }
1577
1578 static int __cpuinit init_timers_cpu(int cpu)
1579 {
1580 int j;
1581 struct tvec_base *base;
1582 static char __cpuinitdata tvec_base_done[NR_CPUS];
1583
1584 if (!tvec_base_done[cpu]) {
1585 static char boot_done;
1586
1587 if (boot_done) {
1588 /*
1589 * The APs use this path later in boot
1590 */
1591 base = kmalloc_node(sizeof(*base),
1592 GFP_KERNEL | __GFP_ZERO,
1593 cpu_to_node(cpu));
1594 if (!base)
1595 return -ENOMEM;
1596
1597 /* Make sure that tvec_base is 2 byte aligned */
1598 if (tbase_get_deferrable(base)) {
1599 WARN_ON(1);
1600 kfree(base);
1601 return -ENOMEM;
1602 }
1603 per_cpu(tvec_bases, cpu) = base;
1604 } else {
1605 /*
1606 * This is for the boot CPU - we use compile-time
1607 * static initialisation because per-cpu memory isn't
1608 * ready yet and because the memory allocators are not
1609 * initialised either.
1610 */
1611 boot_done = 1;
1612 base = &boot_tvec_bases;
1613 }
1614 tvec_base_done[cpu] = 1;
1615 } else {
1616 base = per_cpu(tvec_bases, cpu);
1617 }
1618
1619 spin_lock_init(&base->lock);
1620
1621 for (j = 0; j < TVN_SIZE; j++) {
1622 INIT_LIST_HEAD(base->tv5.vec + j);
1623 INIT_LIST_HEAD(base->tv4.vec + j);
1624 INIT_LIST_HEAD(base->tv3.vec + j);
1625 INIT_LIST_HEAD(base->tv2.vec + j);
1626 }
1627 for (j = 0; j < TVR_SIZE; j++)
1628 INIT_LIST_HEAD(base->tv1.vec + j);
1629
1630 base->timer_jiffies = jiffies;
1631 base->next_timer = base->timer_jiffies;
1632 return 0;
1633 }
1634
1635 #ifdef CONFIG_HOTPLUG_CPU
1636 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1637 {
1638 struct timer_list *timer;
1639
1640 while (!list_empty(head)) {
1641 timer = list_first_entry(head, struct timer_list, entry);
1642 detach_timer(timer, 0);
1643 timer_set_base(timer, new_base);
1644 if (time_before(timer->expires, new_base->next_timer) &&
1645 !tbase_get_deferrable(timer->base))
1646 new_base->next_timer = timer->expires;
1647 internal_add_timer(new_base, timer);
1648 }
1649 }
1650
1651 static void __cpuinit migrate_timers(int cpu)
1652 {
1653 struct tvec_base *old_base;
1654 struct tvec_base *new_base;
1655 int i;
1656
1657 BUG_ON(cpu_online(cpu));
1658 old_base = per_cpu(tvec_bases, cpu);
1659 new_base = get_cpu_var(tvec_bases);
1660 /*
1661 * The caller is globally serialized and nobody else
1662 * takes two locks at once, deadlock is not possible.
1663 */
1664 spin_lock_irq(&new_base->lock);
1665 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1666
1667 BUG_ON(old_base->running_timer);
1668
1669 for (i = 0; i < TVR_SIZE; i++)
1670 migrate_timer_list(new_base, old_base->tv1.vec + i);
1671 for (i = 0; i < TVN_SIZE; i++) {
1672 migrate_timer_list(new_base, old_base->tv2.vec + i);
1673 migrate_timer_list(new_base, old_base->tv3.vec + i);
1674 migrate_timer_list(new_base, old_base->tv4.vec + i);
1675 migrate_timer_list(new_base, old_base->tv5.vec + i);
1676 }
1677
1678 spin_unlock(&old_base->lock);
1679 spin_unlock_irq(&new_base->lock);
1680 put_cpu_var(tvec_bases);
1681 }
1682 #endif /* CONFIG_HOTPLUG_CPU */
1683
1684 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1685 unsigned long action, void *hcpu)
1686 {
1687 long cpu = (long)hcpu;
1688 int err;
1689
1690 switch(action) {
1691 case CPU_UP_PREPARE:
1692 case CPU_UP_PREPARE_FROZEN:
1693 err = init_timers_cpu(cpu);
1694 if (err < 0)
1695 return notifier_from_errno(err);
1696 break;
1697 #ifdef CONFIG_HOTPLUG_CPU
1698 case CPU_DEAD:
1699 case CPU_DEAD_FROZEN:
1700 migrate_timers(cpu);
1701 break;
1702 #endif
1703 default:
1704 break;
1705 }
1706 return NOTIFY_OK;
1707 }
1708
1709 static struct notifier_block __cpuinitdata timers_nb = {
1710 .notifier_call = timer_cpu_notify,
1711 };
1712
1713
1714 void __init init_timers(void)
1715 {
1716 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1717 (void *)(long)smp_processor_id());
1718
1719 init_timer_stats();
1720
1721 BUG_ON(err != NOTIFY_OK);
1722 register_cpu_notifier(&timers_nb);
1723 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1724 }
1725
1726 /**
1727 * msleep - sleep safely even with waitqueue interruptions
1728 * @msecs: Time in milliseconds to sleep for
1729 */
1730 void msleep(unsigned int msecs)
1731 {
1732 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1733
1734 while (timeout)
1735 timeout = schedule_timeout_uninterruptible(timeout);
1736 }
1737
1738 EXPORT_SYMBOL(msleep);
1739
1740 /**
1741 * msleep_interruptible - sleep waiting for signals
1742 * @msecs: Time in milliseconds to sleep for
1743 */
1744 unsigned long msleep_interruptible(unsigned int msecs)
1745 {
1746 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1747
1748 while (timeout && !signal_pending(current))
1749 timeout = schedule_timeout_interruptible(timeout);
1750 return jiffies_to_msecs(timeout);
1751 }
1752
1753 EXPORT_SYMBOL(msleep_interruptible);
1754
1755 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1756 {
1757 ktime_t kmin;
1758 unsigned long delta;
1759
1760 kmin = ktime_set(0, min * NSEC_PER_USEC);
1761 delta = (max - min) * NSEC_PER_USEC;
1762 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1763 }
1764
1765 /**
1766 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1767 * @min: Minimum time in usecs to sleep
1768 * @max: Maximum time in usecs to sleep
1769 */
1770 void usleep_range(unsigned long min, unsigned long max)
1771 {
1772 __set_current_state(TASK_UNINTERRUPTIBLE);
1773 do_usleep_range(min, max);
1774 }
1775 EXPORT_SYMBOL(usleep_range);