Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include "timeconst.h"
45
46 /*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50 struct timezone sys_tz;
51
52 EXPORT_SYMBOL(sys_tz);
53
54 #ifdef __ARCH_WANT_SYS_TIME
55
56 /*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 time_t i = get_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72 }
73
74 /*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97 }
98
99 #endif /* __ARCH_WANT_SYS_TIME */
100
101 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
103 {
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
109 }
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
113 }
114 return 0;
115 }
116
117 /*
118 * Adjust the time obtained from the CMOS to be UTC time instead of
119 * local time.
120 *
121 * This is ugly, but preferable to the alternatives. Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
123 * confusion if the program gets run more than once; it would also be
124 * hard to make the program warp the clock precisely n hours) or
125 * compile in the timezone information into the kernel. Bad, bad....
126 *
127 * - TYT, 1992-01-01
128 *
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
132 */
133 static inline void warp_clock(void)
134 {
135 struct timespec adjust;
136
137 adjust = current_kernel_time();
138 adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139 do_settimeofday(&adjust);
140 }
141
142 /*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
154 {
155 static int firsttime = 1;
156 int error = 0;
157
158 if (tv && !timespec_valid(tv))
159 return -EINVAL;
160
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
168 update_vsyscall_tz();
169 if (firsttime) {
170 firsttime = 0;
171 if (!tv)
172 warp_clock();
173 }
174 }
175 if (tv)
176 {
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
179 */
180 return do_settimeofday(tv);
181 }
182 return 0;
183 }
184
185 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
186 struct timezone __user *, tz)
187 {
188 struct timeval user_tv;
189 struct timespec new_ts;
190 struct timezone new_tz;
191
192 if (tv) {
193 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194 return -EFAULT;
195 new_ts.tv_sec = user_tv.tv_sec;
196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197 }
198 if (tz) {
199 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200 return -EFAULT;
201 }
202
203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204 }
205
206 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
207 {
208 struct timex txc; /* Local copy of parameter */
209 int ret;
210
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
213 * may change
214 */
215 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216 return -EFAULT;
217 ret = do_adjtimex(&txc);
218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
219 }
220
221 /**
222 * current_fs_time - Return FS time
223 * @sb: Superblock.
224 *
225 * Return the current time truncated to the time granularity supported by
226 * the fs.
227 */
228 struct timespec current_fs_time(struct super_block *sb)
229 {
230 struct timespec now = current_kernel_time();
231 return timespec_trunc(now, sb->s_time_gran);
232 }
233 EXPORT_SYMBOL(current_fs_time);
234
235 /*
236 * Convert jiffies to milliseconds and back.
237 *
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
240 */
241 unsigned int inline jiffies_to_msecs(const unsigned long j)
242 {
243 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC / HZ) * j;
245 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
247 #else
248 # if BITS_PER_LONG == 32
249 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
250 # else
251 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
252 # endif
253 #endif
254 }
255 EXPORT_SYMBOL(jiffies_to_msecs);
256
257 unsigned int inline jiffies_to_usecs(const unsigned long j)
258 {
259 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC / HZ) * j;
261 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
263 #else
264 # if BITS_PER_LONG == 32
265 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
266 # else
267 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
268 # endif
269 #endif
270 }
271 EXPORT_SYMBOL(jiffies_to_usecs);
272
273 /**
274 * timespec_trunc - Truncate timespec to a granularity
275 * @t: Timespec
276 * @gran: Granularity in ns.
277 *
278 * Truncate a timespec to a granularity. gran must be smaller than a second.
279 * Always rounds down.
280 *
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283 * it doesn't handle the better resolution of the latter.
284 */
285 struct timespec timespec_trunc(struct timespec t, unsigned gran)
286 {
287 /*
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
291 */
292 if (gran <= jiffies_to_usecs(1) * 1000) {
293 /* nothing */
294 } else if (gran == 1000000000) {
295 t.tv_nsec = 0;
296 } else {
297 t.tv_nsec -= t.tv_nsec % gran;
298 }
299 return t;
300 }
301 EXPORT_SYMBOL(timespec_trunc);
302
303 #ifndef CONFIG_GENERIC_TIME
304 /*
305 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
306 * and therefore only yields usec accuracy
307 */
308 void getnstimeofday(struct timespec *tv)
309 {
310 struct timeval x;
311
312 do_gettimeofday(&x);
313 tv->tv_sec = x.tv_sec;
314 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
315 }
316 EXPORT_SYMBOL_GPL(getnstimeofday);
317 #endif
318
319 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
320 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
321 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
322 *
323 * [For the Julian calendar (which was used in Russia before 1917,
324 * Britain & colonies before 1752, anywhere else before 1582,
325 * and is still in use by some communities) leave out the
326 * -year/100+year/400 terms, and add 10.]
327 *
328 * This algorithm was first published by Gauss (I think).
329 *
330 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
331 * machines where long is 32-bit! (However, as time_t is signed, we
332 * will already get problems at other places on 2038-01-19 03:14:08)
333 */
334 unsigned long
335 mktime(const unsigned int year0, const unsigned int mon0,
336 const unsigned int day, const unsigned int hour,
337 const unsigned int min, const unsigned int sec)
338 {
339 unsigned int mon = mon0, year = year0;
340
341 /* 1..12 -> 11,12,1..10 */
342 if (0 >= (int) (mon -= 2)) {
343 mon += 12; /* Puts Feb last since it has leap day */
344 year -= 1;
345 }
346
347 return ((((unsigned long)
348 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
349 year*365 - 719499
350 )*24 + hour /* now have hours */
351 )*60 + min /* now have minutes */
352 )*60 + sec; /* finally seconds */
353 }
354
355 EXPORT_SYMBOL(mktime);
356
357 /**
358 * set_normalized_timespec - set timespec sec and nsec parts and normalize
359 *
360 * @ts: pointer to timespec variable to be set
361 * @sec: seconds to set
362 * @nsec: nanoseconds to set
363 *
364 * Set seconds and nanoseconds field of a timespec variable and
365 * normalize to the timespec storage format
366 *
367 * Note: The tv_nsec part is always in the range of
368 * 0 <= tv_nsec < NSEC_PER_SEC
369 * For negative values only the tv_sec field is negative !
370 */
371 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
372 {
373 while (nsec >= NSEC_PER_SEC) {
374 /*
375 * The following asm() prevents the compiler from
376 * optimising this loop into a modulo operation. See
377 * also __iter_div_u64_rem() in include/linux/time.h
378 */
379 asm("" : "+rm"(nsec));
380 nsec -= NSEC_PER_SEC;
381 ++sec;
382 }
383 while (nsec < 0) {
384 asm("" : "+rm"(nsec));
385 nsec += NSEC_PER_SEC;
386 --sec;
387 }
388 ts->tv_sec = sec;
389 ts->tv_nsec = nsec;
390 }
391 EXPORT_SYMBOL(set_normalized_timespec);
392
393 /**
394 * ns_to_timespec - Convert nanoseconds to timespec
395 * @nsec: the nanoseconds value to be converted
396 *
397 * Returns the timespec representation of the nsec parameter.
398 */
399 struct timespec ns_to_timespec(const s64 nsec)
400 {
401 struct timespec ts;
402 s32 rem;
403
404 if (!nsec)
405 return (struct timespec) {0, 0};
406
407 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
408 if (unlikely(rem < 0)) {
409 ts.tv_sec--;
410 rem += NSEC_PER_SEC;
411 }
412 ts.tv_nsec = rem;
413
414 return ts;
415 }
416 EXPORT_SYMBOL(ns_to_timespec);
417
418 /**
419 * ns_to_timeval - Convert nanoseconds to timeval
420 * @nsec: the nanoseconds value to be converted
421 *
422 * Returns the timeval representation of the nsec parameter.
423 */
424 struct timeval ns_to_timeval(const s64 nsec)
425 {
426 struct timespec ts = ns_to_timespec(nsec);
427 struct timeval tv;
428
429 tv.tv_sec = ts.tv_sec;
430 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
431
432 return tv;
433 }
434 EXPORT_SYMBOL(ns_to_timeval);
435
436 /*
437 * When we convert to jiffies then we interpret incoming values
438 * the following way:
439 *
440 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
441 *
442 * - 'too large' values [that would result in larger than
443 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
444 *
445 * - all other values are converted to jiffies by either multiplying
446 * the input value by a factor or dividing it with a factor
447 *
448 * We must also be careful about 32-bit overflows.
449 */
450 unsigned long msecs_to_jiffies(const unsigned int m)
451 {
452 /*
453 * Negative value, means infinite timeout:
454 */
455 if ((int)m < 0)
456 return MAX_JIFFY_OFFSET;
457
458 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
459 /*
460 * HZ is equal to or smaller than 1000, and 1000 is a nice
461 * round multiple of HZ, divide with the factor between them,
462 * but round upwards:
463 */
464 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
465 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
466 /*
467 * HZ is larger than 1000, and HZ is a nice round multiple of
468 * 1000 - simply multiply with the factor between them.
469 *
470 * But first make sure the multiplication result cannot
471 * overflow:
472 */
473 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
474 return MAX_JIFFY_OFFSET;
475
476 return m * (HZ / MSEC_PER_SEC);
477 #else
478 /*
479 * Generic case - multiply, round and divide. But first
480 * check that if we are doing a net multiplication, that
481 * we wouldn't overflow:
482 */
483 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
484 return MAX_JIFFY_OFFSET;
485
486 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
487 >> MSEC_TO_HZ_SHR32;
488 #endif
489 }
490 EXPORT_SYMBOL(msecs_to_jiffies);
491
492 unsigned long usecs_to_jiffies(const unsigned int u)
493 {
494 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
495 return MAX_JIFFY_OFFSET;
496 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
497 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
498 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
499 return u * (HZ / USEC_PER_SEC);
500 #else
501 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
502 >> USEC_TO_HZ_SHR32;
503 #endif
504 }
505 EXPORT_SYMBOL(usecs_to_jiffies);
506
507 /*
508 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
509 * that a remainder subtract here would not do the right thing as the
510 * resolution values don't fall on second boundries. I.e. the line:
511 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
512 *
513 * Rather, we just shift the bits off the right.
514 *
515 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
516 * value to a scaled second value.
517 */
518 unsigned long
519 timespec_to_jiffies(const struct timespec *value)
520 {
521 unsigned long sec = value->tv_sec;
522 long nsec = value->tv_nsec + TICK_NSEC - 1;
523
524 if (sec >= MAX_SEC_IN_JIFFIES){
525 sec = MAX_SEC_IN_JIFFIES;
526 nsec = 0;
527 }
528 return (((u64)sec * SEC_CONVERSION) +
529 (((u64)nsec * NSEC_CONVERSION) >>
530 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
531
532 }
533 EXPORT_SYMBOL(timespec_to_jiffies);
534
535 void
536 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
537 {
538 /*
539 * Convert jiffies to nanoseconds and separate with
540 * one divide.
541 */
542 u32 rem;
543 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
544 NSEC_PER_SEC, &rem);
545 value->tv_nsec = rem;
546 }
547 EXPORT_SYMBOL(jiffies_to_timespec);
548
549 /* Same for "timeval"
550 *
551 * Well, almost. The problem here is that the real system resolution is
552 * in nanoseconds and the value being converted is in micro seconds.
553 * Also for some machines (those that use HZ = 1024, in-particular),
554 * there is a LARGE error in the tick size in microseconds.
555
556 * The solution we use is to do the rounding AFTER we convert the
557 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
558 * Instruction wise, this should cost only an additional add with carry
559 * instruction above the way it was done above.
560 */
561 unsigned long
562 timeval_to_jiffies(const struct timeval *value)
563 {
564 unsigned long sec = value->tv_sec;
565 long usec = value->tv_usec;
566
567 if (sec >= MAX_SEC_IN_JIFFIES){
568 sec = MAX_SEC_IN_JIFFIES;
569 usec = 0;
570 }
571 return (((u64)sec * SEC_CONVERSION) +
572 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
573 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
574 }
575 EXPORT_SYMBOL(timeval_to_jiffies);
576
577 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
578 {
579 /*
580 * Convert jiffies to nanoseconds and separate with
581 * one divide.
582 */
583 u32 rem;
584
585 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
586 NSEC_PER_SEC, &rem);
587 value->tv_usec = rem / NSEC_PER_USEC;
588 }
589 EXPORT_SYMBOL(jiffies_to_timeval);
590
591 /*
592 * Convert jiffies/jiffies_64 to clock_t and back.
593 */
594 clock_t jiffies_to_clock_t(long x)
595 {
596 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
597 # if HZ < USER_HZ
598 return x * (USER_HZ / HZ);
599 # else
600 return x / (HZ / USER_HZ);
601 # endif
602 #else
603 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
604 #endif
605 }
606 EXPORT_SYMBOL(jiffies_to_clock_t);
607
608 unsigned long clock_t_to_jiffies(unsigned long x)
609 {
610 #if (HZ % USER_HZ)==0
611 if (x >= ~0UL / (HZ / USER_HZ))
612 return ~0UL;
613 return x * (HZ / USER_HZ);
614 #else
615 /* Don't worry about loss of precision here .. */
616 if (x >= ~0UL / HZ * USER_HZ)
617 return ~0UL;
618
619 /* .. but do try to contain it here */
620 return div_u64((u64)x * HZ, USER_HZ);
621 #endif
622 }
623 EXPORT_SYMBOL(clock_t_to_jiffies);
624
625 u64 jiffies_64_to_clock_t(u64 x)
626 {
627 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
628 # if HZ < USER_HZ
629 x = div_u64(x * USER_HZ, HZ);
630 # elif HZ > USER_HZ
631 x = div_u64(x, HZ / USER_HZ);
632 # else
633 /* Nothing to do */
634 # endif
635 #else
636 /*
637 * There are better ways that don't overflow early,
638 * but even this doesn't overflow in hundreds of years
639 * in 64 bits, so..
640 */
641 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
642 #endif
643 return x;
644 }
645 EXPORT_SYMBOL(jiffies_64_to_clock_t);
646
647 u64 nsec_to_clock_t(u64 x)
648 {
649 #if (NSEC_PER_SEC % USER_HZ) == 0
650 return div_u64(x, NSEC_PER_SEC / USER_HZ);
651 #elif (USER_HZ % 512) == 0
652 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
653 #else
654 /*
655 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
656 * overflow after 64.99 years.
657 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
658 */
659 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
660 #endif
661 }
662
663 /**
664 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
665 *
666 * @n: nsecs in u64
667 *
668 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
669 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
670 * for scheduler, not for use in device drivers to calculate timeout value.
671 *
672 * note:
673 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
674 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
675 */
676 unsigned long nsecs_to_jiffies(u64 n)
677 {
678 #if (NSEC_PER_SEC % HZ) == 0
679 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
680 return div_u64(n, NSEC_PER_SEC / HZ);
681 #elif (HZ % 512) == 0
682 /* overflow after 292 years if HZ = 1024 */
683 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
684 #else
685 /*
686 * Generic case - optimized for cases where HZ is a multiple of 3.
687 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
688 */
689 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
690 #endif
691 }
692
693 #if (BITS_PER_LONG < 64)
694 u64 get_jiffies_64(void)
695 {
696 unsigned long seq;
697 u64 ret;
698
699 do {
700 seq = read_seqbegin(&xtime_lock);
701 ret = jiffies_64;
702 } while (read_seqretry(&xtime_lock, seq));
703 return ret;
704 }
705 EXPORT_SYMBOL(get_jiffies_64);
706 #endif
707
708 EXPORT_SYMBOL(jiffies);
709
710 /*
711 * Add two timespec values and do a safety check for overflow.
712 * It's assumed that both values are valid (>= 0)
713 */
714 struct timespec timespec_add_safe(const struct timespec lhs,
715 const struct timespec rhs)
716 {
717 struct timespec res;
718
719 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
720 lhs.tv_nsec + rhs.tv_nsec);
721
722 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
723 res.tv_sec = TIME_T_MAX;
724
725 return res;
726 }