timer stats: speedups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / timer_stats.c
1 /*
2 * kernel/time/timer_stats.c
3 *
4 * Collect timer usage statistics.
5 *
6 * Copyright(C) 2006, Red Hat, Inc., Ingo Molnar
7 * Copyright(C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *
9 * timer_stats is based on timer_top, a similar functionality which was part of
10 * Con Kolivas dyntick patch set. It was developed by Daniel Petrini at the
11 * Instituto Nokia de Tecnologia - INdT - Manaus. timer_top's design was based
12 * on dynamic allocation of the statistics entries and linear search based
13 * lookup combined with a global lock, rather than the static array, hash
14 * and per-CPU locking which is used by timer_stats. It was written for the
15 * pre hrtimer kernel code and therefore did not take hrtimers into account.
16 * Nevertheless it provided the base for the timer_stats implementation and
17 * was a helpful source of inspiration. Kudos to Daniel and the Nokia folks
18 * for this effort.
19 *
20 * timer_top.c is
21 * Copyright (C) 2005 Instituto Nokia de Tecnologia - INdT - Manaus
22 * Written by Daniel Petrini <d.pensator@gmail.com>
23 * timer_top.c was released under the GNU General Public License version 2
24 *
25 * We export the addresses and counting of timer functions being called,
26 * the pid and cmdline from the owner process if applicable.
27 *
28 * Start/stop data collection:
29 * # echo 1[0] >/proc/timer_stats
30 *
31 * Display the information collected so far:
32 * # cat /proc/timer_stats
33 *
34 * This program is free software; you can redistribute it and/or modify
35 * it under the terms of the GNU General Public License version 2 as
36 * published by the Free Software Foundation.
37 */
38
39 #include <linux/proc_fs.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/kallsyms.h>
45
46 #include <asm/uaccess.h>
47
48 /*
49 * This is our basic unit of interest: a timer expiry event identified
50 * by the timer, its start/expire functions and the PID of the task that
51 * started the timer. We count the number of times an event happens:
52 */
53 struct entry {
54 /*
55 * Hash list:
56 */
57 struct entry *next;
58
59 /*
60 * Hash keys:
61 */
62 void *timer;
63 void *start_func;
64 void *expire_func;
65 pid_t pid;
66
67 /*
68 * Number of timeout events:
69 */
70 unsigned long count;
71
72 /*
73 * We save the command-line string to preserve
74 * this information past task exit:
75 */
76 char comm[TASK_COMM_LEN + 1];
77
78 } ____cacheline_aligned_in_smp;
79
80 /*
81 * Spinlock protecting the tables - not taken during lookup:
82 */
83 static DEFINE_SPINLOCK(table_lock);
84
85 /*
86 * Per-CPU lookup locks for fast hash lookup:
87 */
88 static DEFINE_PER_CPU(spinlock_t, lookup_lock);
89
90 /*
91 * Mutex to serialize state changes with show-stats activities:
92 */
93 static DEFINE_MUTEX(show_mutex);
94
95 /*
96 * Collection status, active/inactive:
97 */
98 static int __read_mostly active;
99
100 /*
101 * Beginning/end timestamps of measurement:
102 */
103 static ktime_t time_start, time_stop;
104
105 /*
106 * tstat entry structs only get allocated while collection is
107 * active and never freed during that time - this simplifies
108 * things quite a bit.
109 *
110 * They get freed when a new collection period is started.
111 */
112 #define MAX_ENTRIES_BITS 10
113 #define MAX_ENTRIES (1UL << MAX_ENTRIES_BITS)
114
115 static unsigned long nr_entries;
116 static struct entry entries[MAX_ENTRIES];
117
118 static atomic_t overflow_count;
119
120 /*
121 * The entries are in a hash-table, for fast lookup:
122 */
123 #define TSTAT_HASH_BITS (MAX_ENTRIES_BITS - 1)
124 #define TSTAT_HASH_SIZE (1UL << TSTAT_HASH_BITS)
125 #define TSTAT_HASH_MASK (TSTAT_HASH_SIZE - 1)
126
127 #define __tstat_hashfn(entry) \
128 (((unsigned long)(entry)->timer ^ \
129 (unsigned long)(entry)->start_func ^ \
130 (unsigned long)(entry)->expire_func ^ \
131 (unsigned long)(entry)->pid ) & TSTAT_HASH_MASK)
132
133 #define tstat_hashentry(entry) (tstat_hash_table + __tstat_hashfn(entry))
134
135 static struct entry *tstat_hash_table[TSTAT_HASH_SIZE] __read_mostly;
136
137 static void reset_entries(void)
138 {
139 nr_entries = 0;
140 memset(entries, 0, sizeof(entries));
141 memset(tstat_hash_table, 0, sizeof(tstat_hash_table));
142 atomic_set(&overflow_count, 0);
143 }
144
145 static struct entry *alloc_entry(void)
146 {
147 if (nr_entries >= MAX_ENTRIES)
148 return NULL;
149
150 return entries + nr_entries++;
151 }
152
153 static int match_entries(struct entry *entry1, struct entry *entry2)
154 {
155 return entry1->timer == entry2->timer &&
156 entry1->start_func == entry2->start_func &&
157 entry1->expire_func == entry2->expire_func &&
158 entry1->pid == entry2->pid;
159 }
160
161 /*
162 * Look up whether an entry matching this item is present
163 * in the hash already. Must be called with irqs off and the
164 * lookup lock held:
165 */
166 static struct entry *tstat_lookup(struct entry *entry, char *comm)
167 {
168 struct entry **head, *curr, *prev;
169
170 head = tstat_hashentry(entry);
171 curr = *head;
172
173 /*
174 * The fastpath is when the entry is already hashed,
175 * we do this with the lookup lock held, but with the
176 * table lock not held:
177 */
178 while (curr) {
179 if (match_entries(curr, entry))
180 return curr;
181
182 curr = curr->next;
183 }
184 /*
185 * Slowpath: allocate, set up and link a new hash entry:
186 */
187 prev = NULL;
188 curr = *head;
189
190 spin_lock(&table_lock);
191 /*
192 * Make sure we have not raced with another CPU:
193 */
194 while (curr) {
195 if (match_entries(curr, entry))
196 goto out_unlock;
197
198 prev = curr;
199 curr = curr->next;
200 }
201
202 curr = alloc_entry();
203 if (curr) {
204 *curr = *entry;
205 curr->count = 0;
206 curr->next = NULL;
207 memcpy(curr->comm, comm, TASK_COMM_LEN);
208
209 smp_mb(); /* Ensure that curr is initialized before insert */
210
211 if (prev)
212 prev->next = curr;
213 else
214 *head = curr;
215 }
216 out_unlock:
217 spin_unlock(&table_lock);
218
219 return curr;
220 }
221
222 /**
223 * timer_stats_update_stats - Update the statistics for a timer.
224 * @timer: pointer to either a timer_list or a hrtimer
225 * @pid: the pid of the task which set up the timer
226 * @startf: pointer to the function which did the timer setup
227 * @timerf: pointer to the timer callback function of the timer
228 * @comm: name of the process which set up the timer
229 *
230 * When the timer is already registered, then the event counter is
231 * incremented. Otherwise the timer is registered in a free slot.
232 */
233 void timer_stats_update_stats(void *timer, pid_t pid, void *startf,
234 void *timerf, char * comm)
235 {
236 /*
237 * It doesnt matter which lock we take:
238 */
239 spinlock_t *lock;
240 struct entry *entry, input;
241 unsigned long flags;
242
243 if (likely(!active))
244 return;
245
246 lock = &per_cpu(lookup_lock, raw_smp_processor_id());
247
248 input.timer = timer;
249 input.start_func = startf;
250 input.expire_func = timerf;
251 input.pid = pid;
252
253 spin_lock_irqsave(lock, flags);
254 if (!active)
255 goto out_unlock;
256
257 entry = tstat_lookup(&input, comm);
258 if (likely(entry))
259 entry->count++;
260 else
261 atomic_inc(&overflow_count);
262
263 out_unlock:
264 spin_unlock_irqrestore(lock, flags);
265 }
266
267 static void print_name_offset(struct seq_file *m, unsigned long addr)
268 {
269 char symname[KSYM_NAME_LEN+1];
270
271 if (lookup_symbol_name(addr, symname) < 0)
272 seq_printf(m, "<%p>", (void *)addr);
273 else
274 seq_printf(m, "%s", symname);
275 }
276
277 static int tstats_show(struct seq_file *m, void *v)
278 {
279 struct timespec period;
280 struct entry *entry;
281 unsigned long ms;
282 long events = 0;
283 ktime_t time;
284 int i;
285
286 mutex_lock(&show_mutex);
287 /*
288 * If still active then calculate up to now:
289 */
290 if (active)
291 time_stop = ktime_get();
292
293 time = ktime_sub(time_stop, time_start);
294
295 period = ktime_to_timespec(time);
296 ms = period.tv_nsec / 1000000;
297
298 seq_puts(m, "Timer Stats Version: v0.1\n");
299 seq_printf(m, "Sample period: %ld.%03ld s\n", period.tv_sec, ms);
300 if (atomic_read(&overflow_count))
301 seq_printf(m, "Overflow: %d entries\n",
302 atomic_read(&overflow_count));
303
304 for (i = 0; i < nr_entries; i++) {
305 entry = entries + i;
306 seq_printf(m, "%4lu, %5d %-16s ",
307 entry->count, entry->pid, entry->comm);
308
309 print_name_offset(m, (unsigned long)entry->start_func);
310 seq_puts(m, " (");
311 print_name_offset(m, (unsigned long)entry->expire_func);
312 seq_puts(m, ")\n");
313
314 events += entry->count;
315 }
316
317 ms += period.tv_sec * 1000;
318 if (!ms)
319 ms = 1;
320
321 if (events && period.tv_sec)
322 seq_printf(m, "%ld total events, %ld.%ld events/sec\n", events,
323 events / period.tv_sec, events * 1000 / ms);
324 else
325 seq_printf(m, "%ld total events\n", events);
326
327 mutex_unlock(&show_mutex);
328
329 return 0;
330 }
331
332 /*
333 * After a state change, make sure all concurrent lookup/update
334 * activities have stopped:
335 */
336 static void sync_access(void)
337 {
338 unsigned long flags;
339 int cpu;
340
341 for_each_online_cpu(cpu) {
342 spin_lock_irqsave(&per_cpu(lookup_lock, cpu), flags);
343 /* nothing */
344 spin_unlock_irqrestore(&per_cpu(lookup_lock, cpu), flags);
345 }
346 }
347
348 static ssize_t tstats_write(struct file *file, const char __user *buf,
349 size_t count, loff_t *offs)
350 {
351 char ctl[2];
352
353 if (count != 2 || *offs)
354 return -EINVAL;
355
356 if (copy_from_user(ctl, buf, count))
357 return -EFAULT;
358
359 mutex_lock(&show_mutex);
360 switch (ctl[0]) {
361 case '0':
362 if (active) {
363 active = 0;
364 time_stop = ktime_get();
365 sync_access();
366 }
367 break;
368 case '1':
369 if (!active) {
370 reset_entries();
371 time_start = ktime_get();
372 smp_mb();
373 active = 1;
374 }
375 break;
376 default:
377 count = -EINVAL;
378 }
379 mutex_unlock(&show_mutex);
380
381 return count;
382 }
383
384 static int tstats_open(struct inode *inode, struct file *filp)
385 {
386 return single_open(filp, tstats_show, NULL);
387 }
388
389 static struct file_operations tstats_fops = {
390 .open = tstats_open,
391 .read = seq_read,
392 .write = tstats_write,
393 .llseek = seq_lseek,
394 .release = seq_release,
395 };
396
397 void __init init_timer_stats(void)
398 {
399 int cpu;
400
401 for_each_possible_cpu(cpu)
402 spin_lock_init(&per_cpu(lookup_lock, cpu));
403 }
404
405 static int __init init_tstats_procfs(void)
406 {
407 struct proc_dir_entry *pe;
408
409 pe = create_proc_entry("timer_stats", 0644, NULL);
410 if (!pe)
411 return -ENOMEM;
412
413 pe->proc_fops = &tstats_fops;
414
415 return 0;
416 }
417 __initcall(init_tstats_procfs);