Merge tag 'md/4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP (1 << 0)
34 #define TK_MIRROR (1 << 1)
35 #define TK_CLOCK_WAS_SET (1 << 2)
36
37 /*
38 * The most important data for readout fits into a single 64 byte
39 * cache line.
40 */
41 static struct {
42 seqcount_t seq;
43 struct timekeeper timekeeper;
44 } tk_core ____cacheline_aligned;
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
55 *
56 * See @update_fast_timekeeper() below.
57 */
58 struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
61 };
62
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw ____cacheline_aligned;
65
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 tk->xtime_sec++;
74 }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
82 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83 return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 tk->xtime_sec = ts->tv_sec;
89 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 tk->xtime_sec += ts->tv_sec;
95 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96 tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 struct timespec64 tmp;
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 -tk->wall_to_monotonic.tv_nsec);
109 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
110 tk->wall_to_monotonic = wtm;
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 #ifdef CONFIG_DEBUG_TIMEKEEPING
122 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
123
124 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
125 {
126
127 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
128 const char *name = tk->tkr_mono.clock->name;
129
130 if (offset > max_cycles) {
131 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
132 offset, name, max_cycles);
133 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
134 } else {
135 if (offset > (max_cycles >> 1)) {
136 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
137 offset, name, max_cycles >> 1);
138 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
139 }
140 }
141
142 if (tk->underflow_seen) {
143 if (jiffies - tk->last_warning > WARNING_FREQ) {
144 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
145 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
146 printk_deferred(" Your kernel is probably still fine.\n");
147 tk->last_warning = jiffies;
148 }
149 tk->underflow_seen = 0;
150 }
151
152 if (tk->overflow_seen) {
153 if (jiffies - tk->last_warning > WARNING_FREQ) {
154 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 tk->last_warning = jiffies;
158 }
159 tk->overflow_seen = 0;
160 }
161 }
162
163 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
164 {
165 struct timekeeper *tk = &tk_core.timekeeper;
166 u64 now, last, mask, max, delta;
167 unsigned int seq;
168
169 /*
170 * Since we're called holding a seqlock, the data may shift
171 * under us while we're doing the calculation. This can cause
172 * false positives, since we'd note a problem but throw the
173 * results away. So nest another seqlock here to atomically
174 * grab the points we are checking with.
175 */
176 do {
177 seq = read_seqcount_begin(&tk_core.seq);
178 now = tkr->read(tkr->clock);
179 last = tkr->cycle_last;
180 mask = tkr->mask;
181 max = tkr->clock->max_cycles;
182 } while (read_seqcount_retry(&tk_core.seq, seq));
183
184 delta = clocksource_delta(now, last, mask);
185
186 /*
187 * Try to catch underflows by checking if we are seeing small
188 * mask-relative negative values.
189 */
190 if (unlikely((~delta & mask) < (mask >> 3))) {
191 tk->underflow_seen = 1;
192 delta = 0;
193 }
194
195 /* Cap delta value to the max_cycles values to avoid mult overflows */
196 if (unlikely(delta > max)) {
197 tk->overflow_seen = 1;
198 delta = tkr->clock->max_cycles;
199 }
200
201 return delta;
202 }
203 #else
204 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
205 {
206 }
207 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
208 {
209 u64 cycle_now, delta;
210
211 /* read clocksource */
212 cycle_now = tkr->read(tkr->clock);
213
214 /* calculate the delta since the last update_wall_time */
215 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
216
217 return delta;
218 }
219 #endif
220
221 /**
222 * tk_setup_internals - Set up internals to use clocksource clock.
223 *
224 * @tk: The target timekeeper to setup.
225 * @clock: Pointer to clocksource.
226 *
227 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
228 * pair and interval request.
229 *
230 * Unless you're the timekeeping code, you should not be using this!
231 */
232 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
233 {
234 u64 interval;
235 u64 tmp, ntpinterval;
236 struct clocksource *old_clock;
237
238 ++tk->cs_was_changed_seq;
239 old_clock = tk->tkr_mono.clock;
240 tk->tkr_mono.clock = clock;
241 tk->tkr_mono.read = clock->read;
242 tk->tkr_mono.mask = clock->mask;
243 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
244
245 tk->tkr_raw.clock = clock;
246 tk->tkr_raw.read = clock->read;
247 tk->tkr_raw.mask = clock->mask;
248 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
249
250 /* Do the ns -> cycle conversion first, using original mult */
251 tmp = NTP_INTERVAL_LENGTH;
252 tmp <<= clock->shift;
253 ntpinterval = tmp;
254 tmp += clock->mult/2;
255 do_div(tmp, clock->mult);
256 if (tmp == 0)
257 tmp = 1;
258
259 interval = (u64) tmp;
260 tk->cycle_interval = interval;
261
262 /* Go back from cycles -> shifted ns */
263 tk->xtime_interval = interval * clock->mult;
264 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
265 tk->raw_interval = (interval * clock->mult) >> clock->shift;
266
267 /* if changing clocks, convert xtime_nsec shift units */
268 if (old_clock) {
269 int shift_change = clock->shift - old_clock->shift;
270 if (shift_change < 0)
271 tk->tkr_mono.xtime_nsec >>= -shift_change;
272 else
273 tk->tkr_mono.xtime_nsec <<= shift_change;
274 }
275 tk->tkr_raw.xtime_nsec = 0;
276
277 tk->tkr_mono.shift = clock->shift;
278 tk->tkr_raw.shift = clock->shift;
279
280 tk->ntp_error = 0;
281 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
282 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
283
284 /*
285 * The timekeeper keeps its own mult values for the currently
286 * active clocksource. These value will be adjusted via NTP
287 * to counteract clock drifting.
288 */
289 tk->tkr_mono.mult = clock->mult;
290 tk->tkr_raw.mult = clock->mult;
291 tk->ntp_err_mult = 0;
292 }
293
294 /* Timekeeper helper functions. */
295
296 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
297 static u32 default_arch_gettimeoffset(void) { return 0; }
298 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
299 #else
300 static inline u32 arch_gettimeoffset(void) { return 0; }
301 #endif
302
303 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
304 {
305 u64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312 }
313
314 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 u64 delta;
317
318 delta = timekeeping_get_delta(tkr);
319 return timekeeping_delta_to_ns(tkr, delta);
320 }
321
322 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
323 {
324 u64 delta;
325
326 /* calculate the delta since the last update_wall_time */
327 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
328 return timekeeping_delta_to_ns(tkr, delta);
329 }
330
331 /**
332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333 * @tkr: Timekeeping readout base from which we take the update
334 *
335 * We want to use this from any context including NMI and tracing /
336 * instrumenting the timekeeping code itself.
337 *
338 * Employ the latch technique; see @raw_write_seqcount_latch.
339 *
340 * So if a NMI hits the update of base[0] then it will use base[1]
341 * which is still consistent. In the worst case this can result is a
342 * slightly wrong timestamp (a few nanoseconds). See
343 * @ktime_get_mono_fast_ns.
344 */
345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346 {
347 struct tk_read_base *base = tkf->base;
348
349 /* Force readers off to base[1] */
350 raw_write_seqcount_latch(&tkf->seq);
351
352 /* Update base[0] */
353 memcpy(base, tkr, sizeof(*base));
354
355 /* Force readers back to base[0] */
356 raw_write_seqcount_latch(&tkf->seq);
357
358 /* Update base[1] */
359 memcpy(base + 1, base, sizeof(*base));
360 }
361
362 /**
363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
364 *
365 * This timestamp is not guaranteed to be monotonic across an update.
366 * The timestamp is calculated by:
367 *
368 * now = base_mono + clock_delta * slope
369 *
370 * So if the update lowers the slope, readers who are forced to the
371 * not yet updated second array are still using the old steeper slope.
372 *
373 * tmono
374 * ^
375 * | o n
376 * | o n
377 * | u
378 * | o
379 * |o
380 * |12345678---> reader order
381 *
382 * o = old slope
383 * u = update
384 * n = new slope
385 *
386 * So reader 6 will observe time going backwards versus reader 5.
387 *
388 * While other CPUs are likely to be able observe that, the only way
389 * for a CPU local observation is when an NMI hits in the middle of
390 * the update. Timestamps taken from that NMI context might be ahead
391 * of the following timestamps. Callers need to be aware of that and
392 * deal with it.
393 */
394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 {
396 struct tk_read_base *tkr;
397 unsigned int seq;
398 u64 now;
399
400 do {
401 seq = raw_read_seqcount_latch(&tkf->seq);
402 tkr = tkf->base + (seq & 0x01);
403 now = ktime_to_ns(tkr->base);
404
405 now += timekeeping_delta_to_ns(tkr,
406 clocksource_delta(
407 tkr->read(tkr->clock),
408 tkr->cycle_last,
409 tkr->mask));
410 } while (read_seqcount_retry(&tkf->seq, seq));
411
412 return now;
413 }
414
415 u64 ktime_get_mono_fast_ns(void)
416 {
417 return __ktime_get_fast_ns(&tk_fast_mono);
418 }
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
420
421 u64 ktime_get_raw_fast_ns(void)
422 {
423 return __ktime_get_fast_ns(&tk_fast_raw);
424 }
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
426
427 /**
428 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
429 *
430 * To keep it NMI safe since we're accessing from tracing, we're not using a
431 * separate timekeeper with updates to monotonic clock and boot offset
432 * protected with seqlocks. This has the following minor side effects:
433 *
434 * (1) Its possible that a timestamp be taken after the boot offset is updated
435 * but before the timekeeper is updated. If this happens, the new boot offset
436 * is added to the old timekeeping making the clock appear to update slightly
437 * earlier:
438 * CPU 0 CPU 1
439 * timekeeping_inject_sleeptime64()
440 * __timekeeping_inject_sleeptime(tk, delta);
441 * timestamp();
442 * timekeeping_update(tk, TK_CLEAR_NTP...);
443 *
444 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
445 * partially updated. Since the tk->offs_boot update is a rare event, this
446 * should be a rare occurrence which postprocessing should be able to handle.
447 */
448 u64 notrace ktime_get_boot_fast_ns(void)
449 {
450 struct timekeeper *tk = &tk_core.timekeeper;
451
452 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
453 }
454 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
455
456 /* Suspend-time cycles value for halted fast timekeeper. */
457 static u64 cycles_at_suspend;
458
459 static u64 dummy_clock_read(struct clocksource *cs)
460 {
461 return cycles_at_suspend;
462 }
463
464 /**
465 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
466 * @tk: Timekeeper to snapshot.
467 *
468 * It generally is unsafe to access the clocksource after timekeeping has been
469 * suspended, so take a snapshot of the readout base of @tk and use it as the
470 * fast timekeeper's readout base while suspended. It will return the same
471 * number of cycles every time until timekeeping is resumed at which time the
472 * proper readout base for the fast timekeeper will be restored automatically.
473 */
474 static void halt_fast_timekeeper(struct timekeeper *tk)
475 {
476 static struct tk_read_base tkr_dummy;
477 struct tk_read_base *tkr = &tk->tkr_mono;
478
479 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
480 cycles_at_suspend = tkr->read(tkr->clock);
481 tkr_dummy.read = dummy_clock_read;
482 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
483
484 tkr = &tk->tkr_raw;
485 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
486 tkr_dummy.read = dummy_clock_read;
487 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
488 }
489
490 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
491
492 static inline void update_vsyscall(struct timekeeper *tk)
493 {
494 struct timespec xt, wm;
495
496 xt = timespec64_to_timespec(tk_xtime(tk));
497 wm = timespec64_to_timespec(tk->wall_to_monotonic);
498 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
499 tk->tkr_mono.cycle_last);
500 }
501
502 static inline void old_vsyscall_fixup(struct timekeeper *tk)
503 {
504 s64 remainder;
505
506 /*
507 * Store only full nanoseconds into xtime_nsec after rounding
508 * it up and add the remainder to the error difference.
509 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
510 * by truncating the remainder in vsyscalls. However, it causes
511 * additional work to be done in timekeeping_adjust(). Once
512 * the vsyscall implementations are converted to use xtime_nsec
513 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
514 * users are removed, this can be killed.
515 */
516 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
517 if (remainder != 0) {
518 tk->tkr_mono.xtime_nsec -= remainder;
519 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
520 tk->ntp_error += remainder << tk->ntp_error_shift;
521 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
522 }
523 }
524 #else
525 #define old_vsyscall_fixup(tk)
526 #endif
527
528 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
529
530 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
531 {
532 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
533 }
534
535 /**
536 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
537 */
538 int pvclock_gtod_register_notifier(struct notifier_block *nb)
539 {
540 struct timekeeper *tk = &tk_core.timekeeper;
541 unsigned long flags;
542 int ret;
543
544 raw_spin_lock_irqsave(&timekeeper_lock, flags);
545 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
546 update_pvclock_gtod(tk, true);
547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548
549 return ret;
550 }
551 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
552
553 /**
554 * pvclock_gtod_unregister_notifier - unregister a pvclock
555 * timedata update listener
556 */
557 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
558 {
559 unsigned long flags;
560 int ret;
561
562 raw_spin_lock_irqsave(&timekeeper_lock, flags);
563 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
565
566 return ret;
567 }
568 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
569
570 /*
571 * tk_update_leap_state - helper to update the next_leap_ktime
572 */
573 static inline void tk_update_leap_state(struct timekeeper *tk)
574 {
575 tk->next_leap_ktime = ntp_get_next_leap();
576 if (tk->next_leap_ktime != KTIME_MAX)
577 /* Convert to monotonic time */
578 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
579 }
580
581 /*
582 * Update the ktime_t based scalar nsec members of the timekeeper
583 */
584 static inline void tk_update_ktime_data(struct timekeeper *tk)
585 {
586 u64 seconds;
587 u32 nsec;
588
589 /*
590 * The xtime based monotonic readout is:
591 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
592 * The ktime based monotonic readout is:
593 * nsec = base_mono + now();
594 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
595 */
596 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
597 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
598 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
599
600 /* Update the monotonic raw base */
601 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
602
603 /*
604 * The sum of the nanoseconds portions of xtime and
605 * wall_to_monotonic can be greater/equal one second. Take
606 * this into account before updating tk->ktime_sec.
607 */
608 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
609 if (nsec >= NSEC_PER_SEC)
610 seconds++;
611 tk->ktime_sec = seconds;
612 }
613
614 /* must hold timekeeper_lock */
615 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
616 {
617 if (action & TK_CLEAR_NTP) {
618 tk->ntp_error = 0;
619 ntp_clear();
620 }
621
622 tk_update_leap_state(tk);
623 tk_update_ktime_data(tk);
624
625 update_vsyscall(tk);
626 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
627
628 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
629 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
630
631 if (action & TK_CLOCK_WAS_SET)
632 tk->clock_was_set_seq++;
633 /*
634 * The mirroring of the data to the shadow-timekeeper needs
635 * to happen last here to ensure we don't over-write the
636 * timekeeper structure on the next update with stale data
637 */
638 if (action & TK_MIRROR)
639 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
640 sizeof(tk_core.timekeeper));
641 }
642
643 /**
644 * timekeeping_forward_now - update clock to the current time
645 *
646 * Forward the current clock to update its state since the last call to
647 * update_wall_time(). This is useful before significant clock changes,
648 * as it avoids having to deal with this time offset explicitly.
649 */
650 static void timekeeping_forward_now(struct timekeeper *tk)
651 {
652 struct clocksource *clock = tk->tkr_mono.clock;
653 u64 cycle_now, delta;
654 u64 nsec;
655
656 cycle_now = tk->tkr_mono.read(clock);
657 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
658 tk->tkr_mono.cycle_last = cycle_now;
659 tk->tkr_raw.cycle_last = cycle_now;
660
661 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
662
663 /* If arch requires, add in get_arch_timeoffset() */
664 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
665
666 tk_normalize_xtime(tk);
667
668 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
669 timespec64_add_ns(&tk->raw_time, nsec);
670 }
671
672 /**
673 * __getnstimeofday64 - Returns the time of day in a timespec64.
674 * @ts: pointer to the timespec to be set
675 *
676 * Updates the time of day in the timespec.
677 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
678 */
679 int __getnstimeofday64(struct timespec64 *ts)
680 {
681 struct timekeeper *tk = &tk_core.timekeeper;
682 unsigned long seq;
683 u64 nsecs;
684
685 do {
686 seq = read_seqcount_begin(&tk_core.seq);
687
688 ts->tv_sec = tk->xtime_sec;
689 nsecs = timekeeping_get_ns(&tk->tkr_mono);
690
691 } while (read_seqcount_retry(&tk_core.seq, seq));
692
693 ts->tv_nsec = 0;
694 timespec64_add_ns(ts, nsecs);
695
696 /*
697 * Do not bail out early, in case there were callers still using
698 * the value, even in the face of the WARN_ON.
699 */
700 if (unlikely(timekeeping_suspended))
701 return -EAGAIN;
702 return 0;
703 }
704 EXPORT_SYMBOL(__getnstimeofday64);
705
706 /**
707 * getnstimeofday64 - Returns the time of day in a timespec64.
708 * @ts: pointer to the timespec64 to be set
709 *
710 * Returns the time of day in a timespec64 (WARN if suspended).
711 */
712 void getnstimeofday64(struct timespec64 *ts)
713 {
714 WARN_ON(__getnstimeofday64(ts));
715 }
716 EXPORT_SYMBOL(getnstimeofday64);
717
718 ktime_t ktime_get(void)
719 {
720 struct timekeeper *tk = &tk_core.timekeeper;
721 unsigned int seq;
722 ktime_t base;
723 u64 nsecs;
724
725 WARN_ON(timekeeping_suspended);
726
727 do {
728 seq = read_seqcount_begin(&tk_core.seq);
729 base = tk->tkr_mono.base;
730 nsecs = timekeeping_get_ns(&tk->tkr_mono);
731
732 } while (read_seqcount_retry(&tk_core.seq, seq));
733
734 return ktime_add_ns(base, nsecs);
735 }
736 EXPORT_SYMBOL_GPL(ktime_get);
737
738 u32 ktime_get_resolution_ns(void)
739 {
740 struct timekeeper *tk = &tk_core.timekeeper;
741 unsigned int seq;
742 u32 nsecs;
743
744 WARN_ON(timekeeping_suspended);
745
746 do {
747 seq = read_seqcount_begin(&tk_core.seq);
748 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
749 } while (read_seqcount_retry(&tk_core.seq, seq));
750
751 return nsecs;
752 }
753 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
754
755 static ktime_t *offsets[TK_OFFS_MAX] = {
756 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
757 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
758 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
759 };
760
761 ktime_t ktime_get_with_offset(enum tk_offsets offs)
762 {
763 struct timekeeper *tk = &tk_core.timekeeper;
764 unsigned int seq;
765 ktime_t base, *offset = offsets[offs];
766 u64 nsecs;
767
768 WARN_ON(timekeeping_suspended);
769
770 do {
771 seq = read_seqcount_begin(&tk_core.seq);
772 base = ktime_add(tk->tkr_mono.base, *offset);
773 nsecs = timekeeping_get_ns(&tk->tkr_mono);
774
775 } while (read_seqcount_retry(&tk_core.seq, seq));
776
777 return ktime_add_ns(base, nsecs);
778
779 }
780 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
781
782 /**
783 * ktime_mono_to_any() - convert mononotic time to any other time
784 * @tmono: time to convert.
785 * @offs: which offset to use
786 */
787 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
788 {
789 ktime_t *offset = offsets[offs];
790 unsigned long seq;
791 ktime_t tconv;
792
793 do {
794 seq = read_seqcount_begin(&tk_core.seq);
795 tconv = ktime_add(tmono, *offset);
796 } while (read_seqcount_retry(&tk_core.seq, seq));
797
798 return tconv;
799 }
800 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
801
802 /**
803 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
804 */
805 ktime_t ktime_get_raw(void)
806 {
807 struct timekeeper *tk = &tk_core.timekeeper;
808 unsigned int seq;
809 ktime_t base;
810 u64 nsecs;
811
812 do {
813 seq = read_seqcount_begin(&tk_core.seq);
814 base = tk->tkr_raw.base;
815 nsecs = timekeeping_get_ns(&tk->tkr_raw);
816
817 } while (read_seqcount_retry(&tk_core.seq, seq));
818
819 return ktime_add_ns(base, nsecs);
820 }
821 EXPORT_SYMBOL_GPL(ktime_get_raw);
822
823 /**
824 * ktime_get_ts64 - get the monotonic clock in timespec64 format
825 * @ts: pointer to timespec variable
826 *
827 * The function calculates the monotonic clock from the realtime
828 * clock and the wall_to_monotonic offset and stores the result
829 * in normalized timespec64 format in the variable pointed to by @ts.
830 */
831 void ktime_get_ts64(struct timespec64 *ts)
832 {
833 struct timekeeper *tk = &tk_core.timekeeper;
834 struct timespec64 tomono;
835 unsigned int seq;
836 u64 nsec;
837
838 WARN_ON(timekeeping_suspended);
839
840 do {
841 seq = read_seqcount_begin(&tk_core.seq);
842 ts->tv_sec = tk->xtime_sec;
843 nsec = timekeeping_get_ns(&tk->tkr_mono);
844 tomono = tk->wall_to_monotonic;
845
846 } while (read_seqcount_retry(&tk_core.seq, seq));
847
848 ts->tv_sec += tomono.tv_sec;
849 ts->tv_nsec = 0;
850 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
851 }
852 EXPORT_SYMBOL_GPL(ktime_get_ts64);
853
854 /**
855 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
856 *
857 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
858 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
859 * works on both 32 and 64 bit systems. On 32 bit systems the readout
860 * covers ~136 years of uptime which should be enough to prevent
861 * premature wrap arounds.
862 */
863 time64_t ktime_get_seconds(void)
864 {
865 struct timekeeper *tk = &tk_core.timekeeper;
866
867 WARN_ON(timekeeping_suspended);
868 return tk->ktime_sec;
869 }
870 EXPORT_SYMBOL_GPL(ktime_get_seconds);
871
872 /**
873 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
874 *
875 * Returns the wall clock seconds since 1970. This replaces the
876 * get_seconds() interface which is not y2038 safe on 32bit systems.
877 *
878 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
879 * 32bit systems the access must be protected with the sequence
880 * counter to provide "atomic" access to the 64bit tk->xtime_sec
881 * value.
882 */
883 time64_t ktime_get_real_seconds(void)
884 {
885 struct timekeeper *tk = &tk_core.timekeeper;
886 time64_t seconds;
887 unsigned int seq;
888
889 if (IS_ENABLED(CONFIG_64BIT))
890 return tk->xtime_sec;
891
892 do {
893 seq = read_seqcount_begin(&tk_core.seq);
894 seconds = tk->xtime_sec;
895
896 } while (read_seqcount_retry(&tk_core.seq, seq));
897
898 return seconds;
899 }
900 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
901
902 /**
903 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
904 * but without the sequence counter protect. This internal function
905 * is called just when timekeeping lock is already held.
906 */
907 time64_t __ktime_get_real_seconds(void)
908 {
909 struct timekeeper *tk = &tk_core.timekeeper;
910
911 return tk->xtime_sec;
912 }
913
914 /**
915 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
916 * @systime_snapshot: pointer to struct receiving the system time snapshot
917 */
918 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
919 {
920 struct timekeeper *tk = &tk_core.timekeeper;
921 unsigned long seq;
922 ktime_t base_raw;
923 ktime_t base_real;
924 u64 nsec_raw;
925 u64 nsec_real;
926 u64 now;
927
928 WARN_ON_ONCE(timekeeping_suspended);
929
930 do {
931 seq = read_seqcount_begin(&tk_core.seq);
932
933 now = tk->tkr_mono.read(tk->tkr_mono.clock);
934 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
935 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
936 base_real = ktime_add(tk->tkr_mono.base,
937 tk_core.timekeeper.offs_real);
938 base_raw = tk->tkr_raw.base;
939 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
940 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
941 } while (read_seqcount_retry(&tk_core.seq, seq));
942
943 systime_snapshot->cycles = now;
944 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
945 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
946 }
947 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
948
949 /* Scale base by mult/div checking for overflow */
950 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
951 {
952 u64 tmp, rem;
953
954 tmp = div64_u64_rem(*base, div, &rem);
955
956 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
957 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
958 return -EOVERFLOW;
959 tmp *= mult;
960 rem *= mult;
961
962 do_div(rem, div);
963 *base = tmp + rem;
964 return 0;
965 }
966
967 /**
968 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
969 * @history: Snapshot representing start of history
970 * @partial_history_cycles: Cycle offset into history (fractional part)
971 * @total_history_cycles: Total history length in cycles
972 * @discontinuity: True indicates clock was set on history period
973 * @ts: Cross timestamp that should be adjusted using
974 * partial/total ratio
975 *
976 * Helper function used by get_device_system_crosststamp() to correct the
977 * crosstimestamp corresponding to the start of the current interval to the
978 * system counter value (timestamp point) provided by the driver. The
979 * total_history_* quantities are the total history starting at the provided
980 * reference point and ending at the start of the current interval. The cycle
981 * count between the driver timestamp point and the start of the current
982 * interval is partial_history_cycles.
983 */
984 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
985 u64 partial_history_cycles,
986 u64 total_history_cycles,
987 bool discontinuity,
988 struct system_device_crosststamp *ts)
989 {
990 struct timekeeper *tk = &tk_core.timekeeper;
991 u64 corr_raw, corr_real;
992 bool interp_forward;
993 int ret;
994
995 if (total_history_cycles == 0 || partial_history_cycles == 0)
996 return 0;
997
998 /* Interpolate shortest distance from beginning or end of history */
999 interp_forward = partial_history_cycles > total_history_cycles / 2;
1000 partial_history_cycles = interp_forward ?
1001 total_history_cycles - partial_history_cycles :
1002 partial_history_cycles;
1003
1004 /*
1005 * Scale the monotonic raw time delta by:
1006 * partial_history_cycles / total_history_cycles
1007 */
1008 corr_raw = (u64)ktime_to_ns(
1009 ktime_sub(ts->sys_monoraw, history->raw));
1010 ret = scale64_check_overflow(partial_history_cycles,
1011 total_history_cycles, &corr_raw);
1012 if (ret)
1013 return ret;
1014
1015 /*
1016 * If there is a discontinuity in the history, scale monotonic raw
1017 * correction by:
1018 * mult(real)/mult(raw) yielding the realtime correction
1019 * Otherwise, calculate the realtime correction similar to monotonic
1020 * raw calculation
1021 */
1022 if (discontinuity) {
1023 corr_real = mul_u64_u32_div
1024 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1025 } else {
1026 corr_real = (u64)ktime_to_ns(
1027 ktime_sub(ts->sys_realtime, history->real));
1028 ret = scale64_check_overflow(partial_history_cycles,
1029 total_history_cycles, &corr_real);
1030 if (ret)
1031 return ret;
1032 }
1033
1034 /* Fixup monotonic raw and real time time values */
1035 if (interp_forward) {
1036 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1037 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1038 } else {
1039 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1040 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1041 }
1042
1043 return 0;
1044 }
1045
1046 /*
1047 * cycle_between - true if test occurs chronologically between before and after
1048 */
1049 static bool cycle_between(u64 before, u64 test, u64 after)
1050 {
1051 if (test > before && test < after)
1052 return true;
1053 if (test < before && before > after)
1054 return true;
1055 return false;
1056 }
1057
1058 /**
1059 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1060 * @get_time_fn: Callback to get simultaneous device time and
1061 * system counter from the device driver
1062 * @ctx: Context passed to get_time_fn()
1063 * @history_begin: Historical reference point used to interpolate system
1064 * time when counter provided by the driver is before the current interval
1065 * @xtstamp: Receives simultaneously captured system and device time
1066 *
1067 * Reads a timestamp from a device and correlates it to system time
1068 */
1069 int get_device_system_crosststamp(int (*get_time_fn)
1070 (ktime_t *device_time,
1071 struct system_counterval_t *sys_counterval,
1072 void *ctx),
1073 void *ctx,
1074 struct system_time_snapshot *history_begin,
1075 struct system_device_crosststamp *xtstamp)
1076 {
1077 struct system_counterval_t system_counterval;
1078 struct timekeeper *tk = &tk_core.timekeeper;
1079 u64 cycles, now, interval_start;
1080 unsigned int clock_was_set_seq = 0;
1081 ktime_t base_real, base_raw;
1082 u64 nsec_real, nsec_raw;
1083 u8 cs_was_changed_seq;
1084 unsigned long seq;
1085 bool do_interp;
1086 int ret;
1087
1088 do {
1089 seq = read_seqcount_begin(&tk_core.seq);
1090 /*
1091 * Try to synchronously capture device time and a system
1092 * counter value calling back into the device driver
1093 */
1094 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1095 if (ret)
1096 return ret;
1097
1098 /*
1099 * Verify that the clocksource associated with the captured
1100 * system counter value is the same as the currently installed
1101 * timekeeper clocksource
1102 */
1103 if (tk->tkr_mono.clock != system_counterval.cs)
1104 return -ENODEV;
1105 cycles = system_counterval.cycles;
1106
1107 /*
1108 * Check whether the system counter value provided by the
1109 * device driver is on the current timekeeping interval.
1110 */
1111 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1112 interval_start = tk->tkr_mono.cycle_last;
1113 if (!cycle_between(interval_start, cycles, now)) {
1114 clock_was_set_seq = tk->clock_was_set_seq;
1115 cs_was_changed_seq = tk->cs_was_changed_seq;
1116 cycles = interval_start;
1117 do_interp = true;
1118 } else {
1119 do_interp = false;
1120 }
1121
1122 base_real = ktime_add(tk->tkr_mono.base,
1123 tk_core.timekeeper.offs_real);
1124 base_raw = tk->tkr_raw.base;
1125
1126 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1127 system_counterval.cycles);
1128 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1129 system_counterval.cycles);
1130 } while (read_seqcount_retry(&tk_core.seq, seq));
1131
1132 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1133 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1134
1135 /*
1136 * Interpolate if necessary, adjusting back from the start of the
1137 * current interval
1138 */
1139 if (do_interp) {
1140 u64 partial_history_cycles, total_history_cycles;
1141 bool discontinuity;
1142
1143 /*
1144 * Check that the counter value occurs after the provided
1145 * history reference and that the history doesn't cross a
1146 * clocksource change
1147 */
1148 if (!history_begin ||
1149 !cycle_between(history_begin->cycles,
1150 system_counterval.cycles, cycles) ||
1151 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1152 return -EINVAL;
1153 partial_history_cycles = cycles - system_counterval.cycles;
1154 total_history_cycles = cycles - history_begin->cycles;
1155 discontinuity =
1156 history_begin->clock_was_set_seq != clock_was_set_seq;
1157
1158 ret = adjust_historical_crosststamp(history_begin,
1159 partial_history_cycles,
1160 total_history_cycles,
1161 discontinuity, xtstamp);
1162 if (ret)
1163 return ret;
1164 }
1165
1166 return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1169
1170 /**
1171 * do_gettimeofday - Returns the time of day in a timeval
1172 * @tv: pointer to the timeval to be set
1173 *
1174 * NOTE: Users should be converted to using getnstimeofday()
1175 */
1176 void do_gettimeofday(struct timeval *tv)
1177 {
1178 struct timespec64 now;
1179
1180 getnstimeofday64(&now);
1181 tv->tv_sec = now.tv_sec;
1182 tv->tv_usec = now.tv_nsec/1000;
1183 }
1184 EXPORT_SYMBOL(do_gettimeofday);
1185
1186 /**
1187 * do_settimeofday64 - Sets the time of day.
1188 * @ts: pointer to the timespec64 variable containing the new time
1189 *
1190 * Sets the time of day to the new time and update NTP and notify hrtimers
1191 */
1192 int do_settimeofday64(const struct timespec64 *ts)
1193 {
1194 struct timekeeper *tk = &tk_core.timekeeper;
1195 struct timespec64 ts_delta, xt;
1196 unsigned long flags;
1197 int ret = 0;
1198
1199 if (!timespec64_valid_strict(ts))
1200 return -EINVAL;
1201
1202 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1203 write_seqcount_begin(&tk_core.seq);
1204
1205 timekeeping_forward_now(tk);
1206
1207 xt = tk_xtime(tk);
1208 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1209 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1210
1211 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1212 ret = -EINVAL;
1213 goto out;
1214 }
1215
1216 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1217
1218 tk_set_xtime(tk, ts);
1219 out:
1220 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1221
1222 write_seqcount_end(&tk_core.seq);
1223 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1224
1225 /* signal hrtimers about time change */
1226 clock_was_set();
1227
1228 return ret;
1229 }
1230 EXPORT_SYMBOL(do_settimeofday64);
1231
1232 /**
1233 * timekeeping_inject_offset - Adds or subtracts from the current time.
1234 * @tv: pointer to the timespec variable containing the offset
1235 *
1236 * Adds or subtracts an offset value from the current time.
1237 */
1238 int timekeeping_inject_offset(struct timespec *ts)
1239 {
1240 struct timekeeper *tk = &tk_core.timekeeper;
1241 unsigned long flags;
1242 struct timespec64 ts64, tmp;
1243 int ret = 0;
1244
1245 if (!timespec_inject_offset_valid(ts))
1246 return -EINVAL;
1247
1248 ts64 = timespec_to_timespec64(*ts);
1249
1250 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1251 write_seqcount_begin(&tk_core.seq);
1252
1253 timekeeping_forward_now(tk);
1254
1255 /* Make sure the proposed value is valid */
1256 tmp = timespec64_add(tk_xtime(tk), ts64);
1257 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1258 !timespec64_valid_strict(&tmp)) {
1259 ret = -EINVAL;
1260 goto error;
1261 }
1262
1263 tk_xtime_add(tk, &ts64);
1264 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1265
1266 error: /* even if we error out, we forwarded the time, so call update */
1267 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1268
1269 write_seqcount_end(&tk_core.seq);
1270 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1271
1272 /* signal hrtimers about time change */
1273 clock_was_set();
1274
1275 return ret;
1276 }
1277 EXPORT_SYMBOL(timekeeping_inject_offset);
1278
1279 /**
1280 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1281 *
1282 */
1283 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1284 {
1285 tk->tai_offset = tai_offset;
1286 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1287 }
1288
1289 /**
1290 * change_clocksource - Swaps clocksources if a new one is available
1291 *
1292 * Accumulates current time interval and initializes new clocksource
1293 */
1294 static int change_clocksource(void *data)
1295 {
1296 struct timekeeper *tk = &tk_core.timekeeper;
1297 struct clocksource *new, *old;
1298 unsigned long flags;
1299
1300 new = (struct clocksource *) data;
1301
1302 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1303 write_seqcount_begin(&tk_core.seq);
1304
1305 timekeeping_forward_now(tk);
1306 /*
1307 * If the cs is in module, get a module reference. Succeeds
1308 * for built-in code (owner == NULL) as well.
1309 */
1310 if (try_module_get(new->owner)) {
1311 if (!new->enable || new->enable(new) == 0) {
1312 old = tk->tkr_mono.clock;
1313 tk_setup_internals(tk, new);
1314 if (old->disable)
1315 old->disable(old);
1316 module_put(old->owner);
1317 } else {
1318 module_put(new->owner);
1319 }
1320 }
1321 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1322
1323 write_seqcount_end(&tk_core.seq);
1324 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * timekeeping_notify - Install a new clock source
1331 * @clock: pointer to the clock source
1332 *
1333 * This function is called from clocksource.c after a new, better clock
1334 * source has been registered. The caller holds the clocksource_mutex.
1335 */
1336 int timekeeping_notify(struct clocksource *clock)
1337 {
1338 struct timekeeper *tk = &tk_core.timekeeper;
1339
1340 if (tk->tkr_mono.clock == clock)
1341 return 0;
1342 stop_machine(change_clocksource, clock, NULL);
1343 tick_clock_notify();
1344 return tk->tkr_mono.clock == clock ? 0 : -1;
1345 }
1346
1347 /**
1348 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1349 * @ts: pointer to the timespec64 to be set
1350 *
1351 * Returns the raw monotonic time (completely un-modified by ntp)
1352 */
1353 void getrawmonotonic64(struct timespec64 *ts)
1354 {
1355 struct timekeeper *tk = &tk_core.timekeeper;
1356 struct timespec64 ts64;
1357 unsigned long seq;
1358 u64 nsecs;
1359
1360 do {
1361 seq = read_seqcount_begin(&tk_core.seq);
1362 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1363 ts64 = tk->raw_time;
1364
1365 } while (read_seqcount_retry(&tk_core.seq, seq));
1366
1367 timespec64_add_ns(&ts64, nsecs);
1368 *ts = ts64;
1369 }
1370 EXPORT_SYMBOL(getrawmonotonic64);
1371
1372
1373 /**
1374 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1375 */
1376 int timekeeping_valid_for_hres(void)
1377 {
1378 struct timekeeper *tk = &tk_core.timekeeper;
1379 unsigned long seq;
1380 int ret;
1381
1382 do {
1383 seq = read_seqcount_begin(&tk_core.seq);
1384
1385 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1386
1387 } while (read_seqcount_retry(&tk_core.seq, seq));
1388
1389 return ret;
1390 }
1391
1392 /**
1393 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1394 */
1395 u64 timekeeping_max_deferment(void)
1396 {
1397 struct timekeeper *tk = &tk_core.timekeeper;
1398 unsigned long seq;
1399 u64 ret;
1400
1401 do {
1402 seq = read_seqcount_begin(&tk_core.seq);
1403
1404 ret = tk->tkr_mono.clock->max_idle_ns;
1405
1406 } while (read_seqcount_retry(&tk_core.seq, seq));
1407
1408 return ret;
1409 }
1410
1411 /**
1412 * read_persistent_clock - Return time from the persistent clock.
1413 *
1414 * Weak dummy function for arches that do not yet support it.
1415 * Reads the time from the battery backed persistent clock.
1416 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1417 *
1418 * XXX - Do be sure to remove it once all arches implement it.
1419 */
1420 void __weak read_persistent_clock(struct timespec *ts)
1421 {
1422 ts->tv_sec = 0;
1423 ts->tv_nsec = 0;
1424 }
1425
1426 void __weak read_persistent_clock64(struct timespec64 *ts64)
1427 {
1428 struct timespec ts;
1429
1430 read_persistent_clock(&ts);
1431 *ts64 = timespec_to_timespec64(ts);
1432 }
1433
1434 /**
1435 * read_boot_clock64 - Return time of the system start.
1436 *
1437 * Weak dummy function for arches that do not yet support it.
1438 * Function to read the exact time the system has been started.
1439 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1440 *
1441 * XXX - Do be sure to remove it once all arches implement it.
1442 */
1443 void __weak read_boot_clock64(struct timespec64 *ts)
1444 {
1445 ts->tv_sec = 0;
1446 ts->tv_nsec = 0;
1447 }
1448
1449 /* Flag for if timekeeping_resume() has injected sleeptime */
1450 static bool sleeptime_injected;
1451
1452 /* Flag for if there is a persistent clock on this platform */
1453 static bool persistent_clock_exists;
1454
1455 /*
1456 * timekeeping_init - Initializes the clocksource and common timekeeping values
1457 */
1458 void __init timekeeping_init(void)
1459 {
1460 struct timekeeper *tk = &tk_core.timekeeper;
1461 struct clocksource *clock;
1462 unsigned long flags;
1463 struct timespec64 now, boot, tmp;
1464
1465 read_persistent_clock64(&now);
1466 if (!timespec64_valid_strict(&now)) {
1467 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1468 " Check your CMOS/BIOS settings.\n");
1469 now.tv_sec = 0;
1470 now.tv_nsec = 0;
1471 } else if (now.tv_sec || now.tv_nsec)
1472 persistent_clock_exists = true;
1473
1474 read_boot_clock64(&boot);
1475 if (!timespec64_valid_strict(&boot)) {
1476 pr_warn("WARNING: Boot clock returned invalid value!\n"
1477 " Check your CMOS/BIOS settings.\n");
1478 boot.tv_sec = 0;
1479 boot.tv_nsec = 0;
1480 }
1481
1482 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1483 write_seqcount_begin(&tk_core.seq);
1484 ntp_init();
1485
1486 clock = clocksource_default_clock();
1487 if (clock->enable)
1488 clock->enable(clock);
1489 tk_setup_internals(tk, clock);
1490
1491 tk_set_xtime(tk, &now);
1492 tk->raw_time.tv_sec = 0;
1493 tk->raw_time.tv_nsec = 0;
1494 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1495 boot = tk_xtime(tk);
1496
1497 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1498 tk_set_wall_to_mono(tk, tmp);
1499
1500 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1501
1502 write_seqcount_end(&tk_core.seq);
1503 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1504 }
1505
1506 /* time in seconds when suspend began for persistent clock */
1507 static struct timespec64 timekeeping_suspend_time;
1508
1509 /**
1510 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1511 * @delta: pointer to a timespec delta value
1512 *
1513 * Takes a timespec offset measuring a suspend interval and properly
1514 * adds the sleep offset to the timekeeping variables.
1515 */
1516 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1517 struct timespec64 *delta)
1518 {
1519 if (!timespec64_valid_strict(delta)) {
1520 printk_deferred(KERN_WARNING
1521 "__timekeeping_inject_sleeptime: Invalid "
1522 "sleep delta value!\n");
1523 return;
1524 }
1525 tk_xtime_add(tk, delta);
1526 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1527 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1528 tk_debug_account_sleep_time(delta);
1529 }
1530
1531 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1532 /**
1533 * We have three kinds of time sources to use for sleep time
1534 * injection, the preference order is:
1535 * 1) non-stop clocksource
1536 * 2) persistent clock (ie: RTC accessible when irqs are off)
1537 * 3) RTC
1538 *
1539 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1540 * If system has neither 1) nor 2), 3) will be used finally.
1541 *
1542 *
1543 * If timekeeping has injected sleeptime via either 1) or 2),
1544 * 3) becomes needless, so in this case we don't need to call
1545 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1546 * means.
1547 */
1548 bool timekeeping_rtc_skipresume(void)
1549 {
1550 return sleeptime_injected;
1551 }
1552
1553 /**
1554 * 1) can be determined whether to use or not only when doing
1555 * timekeeping_resume() which is invoked after rtc_suspend(),
1556 * so we can't skip rtc_suspend() surely if system has 1).
1557 *
1558 * But if system has 2), 2) will definitely be used, so in this
1559 * case we don't need to call rtc_suspend(), and this is what
1560 * timekeeping_rtc_skipsuspend() means.
1561 */
1562 bool timekeeping_rtc_skipsuspend(void)
1563 {
1564 return persistent_clock_exists;
1565 }
1566
1567 /**
1568 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1569 * @delta: pointer to a timespec64 delta value
1570 *
1571 * This hook is for architectures that cannot support read_persistent_clock64
1572 * because their RTC/persistent clock is only accessible when irqs are enabled.
1573 * and also don't have an effective nonstop clocksource.
1574 *
1575 * This function should only be called by rtc_resume(), and allows
1576 * a suspend offset to be injected into the timekeeping values.
1577 */
1578 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1579 {
1580 struct timekeeper *tk = &tk_core.timekeeper;
1581 unsigned long flags;
1582
1583 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1584 write_seqcount_begin(&tk_core.seq);
1585
1586 timekeeping_forward_now(tk);
1587
1588 __timekeeping_inject_sleeptime(tk, delta);
1589
1590 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1591
1592 write_seqcount_end(&tk_core.seq);
1593 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1594
1595 /* signal hrtimers about time change */
1596 clock_was_set();
1597 }
1598 #endif
1599
1600 /**
1601 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1602 */
1603 void timekeeping_resume(void)
1604 {
1605 struct timekeeper *tk = &tk_core.timekeeper;
1606 struct clocksource *clock = tk->tkr_mono.clock;
1607 unsigned long flags;
1608 struct timespec64 ts_new, ts_delta;
1609 u64 cycle_now;
1610
1611 sleeptime_injected = false;
1612 read_persistent_clock64(&ts_new);
1613
1614 clockevents_resume();
1615 clocksource_resume();
1616
1617 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1618 write_seqcount_begin(&tk_core.seq);
1619
1620 /*
1621 * After system resumes, we need to calculate the suspended time and
1622 * compensate it for the OS time. There are 3 sources that could be
1623 * used: Nonstop clocksource during suspend, persistent clock and rtc
1624 * device.
1625 *
1626 * One specific platform may have 1 or 2 or all of them, and the
1627 * preference will be:
1628 * suspend-nonstop clocksource -> persistent clock -> rtc
1629 * The less preferred source will only be tried if there is no better
1630 * usable source. The rtc part is handled separately in rtc core code.
1631 */
1632 cycle_now = tk->tkr_mono.read(clock);
1633 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1634 cycle_now > tk->tkr_mono.cycle_last) {
1635 u64 nsec, cyc_delta;
1636
1637 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1638 tk->tkr_mono.mask);
1639 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1640 ts_delta = ns_to_timespec64(nsec);
1641 sleeptime_injected = true;
1642 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1643 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1644 sleeptime_injected = true;
1645 }
1646
1647 if (sleeptime_injected)
1648 __timekeeping_inject_sleeptime(tk, &ts_delta);
1649
1650 /* Re-base the last cycle value */
1651 tk->tkr_mono.cycle_last = cycle_now;
1652 tk->tkr_raw.cycle_last = cycle_now;
1653
1654 tk->ntp_error = 0;
1655 timekeeping_suspended = 0;
1656 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1657 write_seqcount_end(&tk_core.seq);
1658 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1659
1660 touch_softlockup_watchdog();
1661
1662 tick_resume();
1663 hrtimers_resume();
1664 }
1665
1666 int timekeeping_suspend(void)
1667 {
1668 struct timekeeper *tk = &tk_core.timekeeper;
1669 unsigned long flags;
1670 struct timespec64 delta, delta_delta;
1671 static struct timespec64 old_delta;
1672
1673 read_persistent_clock64(&timekeeping_suspend_time);
1674
1675 /*
1676 * On some systems the persistent_clock can not be detected at
1677 * timekeeping_init by its return value, so if we see a valid
1678 * value returned, update the persistent_clock_exists flag.
1679 */
1680 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1681 persistent_clock_exists = true;
1682
1683 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1684 write_seqcount_begin(&tk_core.seq);
1685 timekeeping_forward_now(tk);
1686 timekeeping_suspended = 1;
1687
1688 if (persistent_clock_exists) {
1689 /*
1690 * To avoid drift caused by repeated suspend/resumes,
1691 * which each can add ~1 second drift error,
1692 * try to compensate so the difference in system time
1693 * and persistent_clock time stays close to constant.
1694 */
1695 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1696 delta_delta = timespec64_sub(delta, old_delta);
1697 if (abs(delta_delta.tv_sec) >= 2) {
1698 /*
1699 * if delta_delta is too large, assume time correction
1700 * has occurred and set old_delta to the current delta.
1701 */
1702 old_delta = delta;
1703 } else {
1704 /* Otherwise try to adjust old_system to compensate */
1705 timekeeping_suspend_time =
1706 timespec64_add(timekeeping_suspend_time, delta_delta);
1707 }
1708 }
1709
1710 timekeeping_update(tk, TK_MIRROR);
1711 halt_fast_timekeeper(tk);
1712 write_seqcount_end(&tk_core.seq);
1713 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1714
1715 tick_suspend();
1716 clocksource_suspend();
1717 clockevents_suspend();
1718
1719 return 0;
1720 }
1721
1722 /* sysfs resume/suspend bits for timekeeping */
1723 static struct syscore_ops timekeeping_syscore_ops = {
1724 .resume = timekeeping_resume,
1725 .suspend = timekeeping_suspend,
1726 };
1727
1728 static int __init timekeeping_init_ops(void)
1729 {
1730 register_syscore_ops(&timekeeping_syscore_ops);
1731 return 0;
1732 }
1733 device_initcall(timekeeping_init_ops);
1734
1735 /*
1736 * Apply a multiplier adjustment to the timekeeper
1737 */
1738 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1739 s64 offset,
1740 bool negative,
1741 int adj_scale)
1742 {
1743 s64 interval = tk->cycle_interval;
1744 s32 mult_adj = 1;
1745
1746 if (negative) {
1747 mult_adj = -mult_adj;
1748 interval = -interval;
1749 offset = -offset;
1750 }
1751 mult_adj <<= adj_scale;
1752 interval <<= adj_scale;
1753 offset <<= adj_scale;
1754
1755 /*
1756 * So the following can be confusing.
1757 *
1758 * To keep things simple, lets assume mult_adj == 1 for now.
1759 *
1760 * When mult_adj != 1, remember that the interval and offset values
1761 * have been appropriately scaled so the math is the same.
1762 *
1763 * The basic idea here is that we're increasing the multiplier
1764 * by one, this causes the xtime_interval to be incremented by
1765 * one cycle_interval. This is because:
1766 * xtime_interval = cycle_interval * mult
1767 * So if mult is being incremented by one:
1768 * xtime_interval = cycle_interval * (mult + 1)
1769 * Its the same as:
1770 * xtime_interval = (cycle_interval * mult) + cycle_interval
1771 * Which can be shortened to:
1772 * xtime_interval += cycle_interval
1773 *
1774 * So offset stores the non-accumulated cycles. Thus the current
1775 * time (in shifted nanoseconds) is:
1776 * now = (offset * adj) + xtime_nsec
1777 * Now, even though we're adjusting the clock frequency, we have
1778 * to keep time consistent. In other words, we can't jump back
1779 * in time, and we also want to avoid jumping forward in time.
1780 *
1781 * So given the same offset value, we need the time to be the same
1782 * both before and after the freq adjustment.
1783 * now = (offset * adj_1) + xtime_nsec_1
1784 * now = (offset * adj_2) + xtime_nsec_2
1785 * So:
1786 * (offset * adj_1) + xtime_nsec_1 =
1787 * (offset * adj_2) + xtime_nsec_2
1788 * And we know:
1789 * adj_2 = adj_1 + 1
1790 * So:
1791 * (offset * adj_1) + xtime_nsec_1 =
1792 * (offset * (adj_1+1)) + xtime_nsec_2
1793 * (offset * adj_1) + xtime_nsec_1 =
1794 * (offset * adj_1) + offset + xtime_nsec_2
1795 * Canceling the sides:
1796 * xtime_nsec_1 = offset + xtime_nsec_2
1797 * Which gives us:
1798 * xtime_nsec_2 = xtime_nsec_1 - offset
1799 * Which simplfies to:
1800 * xtime_nsec -= offset
1801 *
1802 * XXX - TODO: Doc ntp_error calculation.
1803 */
1804 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1805 /* NTP adjustment caused clocksource mult overflow */
1806 WARN_ON_ONCE(1);
1807 return;
1808 }
1809
1810 tk->tkr_mono.mult += mult_adj;
1811 tk->xtime_interval += interval;
1812 tk->tkr_mono.xtime_nsec -= offset;
1813 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1814 }
1815
1816 /*
1817 * Calculate the multiplier adjustment needed to match the frequency
1818 * specified by NTP
1819 */
1820 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1821 s64 offset)
1822 {
1823 s64 interval = tk->cycle_interval;
1824 s64 xinterval = tk->xtime_interval;
1825 u32 base = tk->tkr_mono.clock->mult;
1826 u32 max = tk->tkr_mono.clock->maxadj;
1827 u32 cur_adj = tk->tkr_mono.mult;
1828 s64 tick_error;
1829 bool negative;
1830 u32 adj_scale;
1831
1832 /* Remove any current error adj from freq calculation */
1833 if (tk->ntp_err_mult)
1834 xinterval -= tk->cycle_interval;
1835
1836 tk->ntp_tick = ntp_tick_length();
1837
1838 /* Calculate current error per tick */
1839 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1840 tick_error -= (xinterval + tk->xtime_remainder);
1841
1842 /* Don't worry about correcting it if its small */
1843 if (likely((tick_error >= 0) && (tick_error <= interval)))
1844 return;
1845
1846 /* preserve the direction of correction */
1847 negative = (tick_error < 0);
1848
1849 /* If any adjustment would pass the max, just return */
1850 if (negative && (cur_adj - 1) <= (base - max))
1851 return;
1852 if (!negative && (cur_adj + 1) >= (base + max))
1853 return;
1854 /*
1855 * Sort out the magnitude of the correction, but
1856 * avoid making so large a correction that we go
1857 * over the max adjustment.
1858 */
1859 adj_scale = 0;
1860 tick_error = abs(tick_error);
1861 while (tick_error > interval) {
1862 u32 adj = 1 << (adj_scale + 1);
1863
1864 /* Check if adjustment gets us within 1 unit from the max */
1865 if (negative && (cur_adj - adj) <= (base - max))
1866 break;
1867 if (!negative && (cur_adj + adj) >= (base + max))
1868 break;
1869
1870 adj_scale++;
1871 tick_error >>= 1;
1872 }
1873
1874 /* scale the corrections */
1875 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1876 }
1877
1878 /*
1879 * Adjust the timekeeper's multiplier to the correct frequency
1880 * and also to reduce the accumulated error value.
1881 */
1882 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1883 {
1884 /* Correct for the current frequency error */
1885 timekeeping_freqadjust(tk, offset);
1886
1887 /* Next make a small adjustment to fix any cumulative error */
1888 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1889 tk->ntp_err_mult = 1;
1890 timekeeping_apply_adjustment(tk, offset, 0, 0);
1891 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1892 /* Undo any existing error adjustment */
1893 timekeeping_apply_adjustment(tk, offset, 1, 0);
1894 tk->ntp_err_mult = 0;
1895 }
1896
1897 if (unlikely(tk->tkr_mono.clock->maxadj &&
1898 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1899 > tk->tkr_mono.clock->maxadj))) {
1900 printk_once(KERN_WARNING
1901 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1902 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1903 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1904 }
1905
1906 /*
1907 * It may be possible that when we entered this function, xtime_nsec
1908 * was very small. Further, if we're slightly speeding the clocksource
1909 * in the code above, its possible the required corrective factor to
1910 * xtime_nsec could cause it to underflow.
1911 *
1912 * Now, since we already accumulated the second, cannot simply roll
1913 * the accumulated second back, since the NTP subsystem has been
1914 * notified via second_overflow. So instead we push xtime_nsec forward
1915 * by the amount we underflowed, and add that amount into the error.
1916 *
1917 * We'll correct this error next time through this function, when
1918 * xtime_nsec is not as small.
1919 */
1920 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1921 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1922 tk->tkr_mono.xtime_nsec = 0;
1923 tk->ntp_error += neg << tk->ntp_error_shift;
1924 }
1925 }
1926
1927 /**
1928 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1929 *
1930 * Helper function that accumulates the nsecs greater than a second
1931 * from the xtime_nsec field to the xtime_secs field.
1932 * It also calls into the NTP code to handle leapsecond processing.
1933 *
1934 */
1935 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1936 {
1937 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1938 unsigned int clock_set = 0;
1939
1940 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1941 int leap;
1942
1943 tk->tkr_mono.xtime_nsec -= nsecps;
1944 tk->xtime_sec++;
1945
1946 /* Figure out if its a leap sec and apply if needed */
1947 leap = second_overflow(tk->xtime_sec);
1948 if (unlikely(leap)) {
1949 struct timespec64 ts;
1950
1951 tk->xtime_sec += leap;
1952
1953 ts.tv_sec = leap;
1954 ts.tv_nsec = 0;
1955 tk_set_wall_to_mono(tk,
1956 timespec64_sub(tk->wall_to_monotonic, ts));
1957
1958 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1959
1960 clock_set = TK_CLOCK_WAS_SET;
1961 }
1962 }
1963 return clock_set;
1964 }
1965
1966 /**
1967 * logarithmic_accumulation - shifted accumulation of cycles
1968 *
1969 * This functions accumulates a shifted interval of cycles into
1970 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1971 * loop.
1972 *
1973 * Returns the unconsumed cycles.
1974 */
1975 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1976 u32 shift, unsigned int *clock_set)
1977 {
1978 u64 interval = tk->cycle_interval << shift;
1979 u64 raw_nsecs;
1980
1981 /* If the offset is smaller than a shifted interval, do nothing */
1982 if (offset < interval)
1983 return offset;
1984
1985 /* Accumulate one shifted interval */
1986 offset -= interval;
1987 tk->tkr_mono.cycle_last += interval;
1988 tk->tkr_raw.cycle_last += interval;
1989
1990 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1991 *clock_set |= accumulate_nsecs_to_secs(tk);
1992
1993 /* Accumulate raw time */
1994 raw_nsecs = (u64)tk->raw_interval << shift;
1995 raw_nsecs += tk->raw_time.tv_nsec;
1996 if (raw_nsecs >= NSEC_PER_SEC) {
1997 u64 raw_secs = raw_nsecs;
1998 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1999 tk->raw_time.tv_sec += raw_secs;
2000 }
2001 tk->raw_time.tv_nsec = raw_nsecs;
2002
2003 /* Accumulate error between NTP and clock interval */
2004 tk->ntp_error += tk->ntp_tick << shift;
2005 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2006 (tk->ntp_error_shift + shift);
2007
2008 return offset;
2009 }
2010
2011 /**
2012 * update_wall_time - Uses the current clocksource to increment the wall time
2013 *
2014 */
2015 void update_wall_time(void)
2016 {
2017 struct timekeeper *real_tk = &tk_core.timekeeper;
2018 struct timekeeper *tk = &shadow_timekeeper;
2019 u64 offset;
2020 int shift = 0, maxshift;
2021 unsigned int clock_set = 0;
2022 unsigned long flags;
2023
2024 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2025
2026 /* Make sure we're fully resumed: */
2027 if (unlikely(timekeeping_suspended))
2028 goto out;
2029
2030 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2031 offset = real_tk->cycle_interval;
2032 #else
2033 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2034 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2035 #endif
2036
2037 /* Check if there's really nothing to do */
2038 if (offset < real_tk->cycle_interval)
2039 goto out;
2040
2041 /* Do some additional sanity checking */
2042 timekeeping_check_update(real_tk, offset);
2043
2044 /*
2045 * With NO_HZ we may have to accumulate many cycle_intervals
2046 * (think "ticks") worth of time at once. To do this efficiently,
2047 * we calculate the largest doubling multiple of cycle_intervals
2048 * that is smaller than the offset. We then accumulate that
2049 * chunk in one go, and then try to consume the next smaller
2050 * doubled multiple.
2051 */
2052 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2053 shift = max(0, shift);
2054 /* Bound shift to one less than what overflows tick_length */
2055 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2056 shift = min(shift, maxshift);
2057 while (offset >= tk->cycle_interval) {
2058 offset = logarithmic_accumulation(tk, offset, shift,
2059 &clock_set);
2060 if (offset < tk->cycle_interval<<shift)
2061 shift--;
2062 }
2063
2064 /* correct the clock when NTP error is too big */
2065 timekeeping_adjust(tk, offset);
2066
2067 /*
2068 * XXX This can be killed once everyone converts
2069 * to the new update_vsyscall.
2070 */
2071 old_vsyscall_fixup(tk);
2072
2073 /*
2074 * Finally, make sure that after the rounding
2075 * xtime_nsec isn't larger than NSEC_PER_SEC
2076 */
2077 clock_set |= accumulate_nsecs_to_secs(tk);
2078
2079 write_seqcount_begin(&tk_core.seq);
2080 /*
2081 * Update the real timekeeper.
2082 *
2083 * We could avoid this memcpy by switching pointers, but that
2084 * requires changes to all other timekeeper usage sites as
2085 * well, i.e. move the timekeeper pointer getter into the
2086 * spinlocked/seqcount protected sections. And we trade this
2087 * memcpy under the tk_core.seq against one before we start
2088 * updating.
2089 */
2090 timekeeping_update(tk, clock_set);
2091 memcpy(real_tk, tk, sizeof(*tk));
2092 /* The memcpy must come last. Do not put anything here! */
2093 write_seqcount_end(&tk_core.seq);
2094 out:
2095 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2096 if (clock_set)
2097 /* Have to call _delayed version, since in irq context*/
2098 clock_was_set_delayed();
2099 }
2100
2101 /**
2102 * getboottime64 - Return the real time of system boot.
2103 * @ts: pointer to the timespec64 to be set
2104 *
2105 * Returns the wall-time of boot in a timespec64.
2106 *
2107 * This is based on the wall_to_monotonic offset and the total suspend
2108 * time. Calls to settimeofday will affect the value returned (which
2109 * basically means that however wrong your real time clock is at boot time,
2110 * you get the right time here).
2111 */
2112 void getboottime64(struct timespec64 *ts)
2113 {
2114 struct timekeeper *tk = &tk_core.timekeeper;
2115 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2116
2117 *ts = ktime_to_timespec64(t);
2118 }
2119 EXPORT_SYMBOL_GPL(getboottime64);
2120
2121 unsigned long get_seconds(void)
2122 {
2123 struct timekeeper *tk = &tk_core.timekeeper;
2124
2125 return tk->xtime_sec;
2126 }
2127 EXPORT_SYMBOL(get_seconds);
2128
2129 struct timespec __current_kernel_time(void)
2130 {
2131 struct timekeeper *tk = &tk_core.timekeeper;
2132
2133 return timespec64_to_timespec(tk_xtime(tk));
2134 }
2135
2136 struct timespec64 current_kernel_time64(void)
2137 {
2138 struct timekeeper *tk = &tk_core.timekeeper;
2139 struct timespec64 now;
2140 unsigned long seq;
2141
2142 do {
2143 seq = read_seqcount_begin(&tk_core.seq);
2144
2145 now = tk_xtime(tk);
2146 } while (read_seqcount_retry(&tk_core.seq, seq));
2147
2148 return now;
2149 }
2150 EXPORT_SYMBOL(current_kernel_time64);
2151
2152 struct timespec64 get_monotonic_coarse64(void)
2153 {
2154 struct timekeeper *tk = &tk_core.timekeeper;
2155 struct timespec64 now, mono;
2156 unsigned long seq;
2157
2158 do {
2159 seq = read_seqcount_begin(&tk_core.seq);
2160
2161 now = tk_xtime(tk);
2162 mono = tk->wall_to_monotonic;
2163 } while (read_seqcount_retry(&tk_core.seq, seq));
2164
2165 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2166 now.tv_nsec + mono.tv_nsec);
2167
2168 return now;
2169 }
2170 EXPORT_SYMBOL(get_monotonic_coarse64);
2171
2172 /*
2173 * Must hold jiffies_lock
2174 */
2175 void do_timer(unsigned long ticks)
2176 {
2177 jiffies_64 += ticks;
2178 calc_global_load(ticks);
2179 }
2180
2181 /**
2182 * ktime_get_update_offsets_now - hrtimer helper
2183 * @cwsseq: pointer to check and store the clock was set sequence number
2184 * @offs_real: pointer to storage for monotonic -> realtime offset
2185 * @offs_boot: pointer to storage for monotonic -> boottime offset
2186 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2187 *
2188 * Returns current monotonic time and updates the offsets if the
2189 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2190 * different.
2191 *
2192 * Called from hrtimer_interrupt() or retrigger_next_event()
2193 */
2194 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2195 ktime_t *offs_boot, ktime_t *offs_tai)
2196 {
2197 struct timekeeper *tk = &tk_core.timekeeper;
2198 unsigned int seq;
2199 ktime_t base;
2200 u64 nsecs;
2201
2202 do {
2203 seq = read_seqcount_begin(&tk_core.seq);
2204
2205 base = tk->tkr_mono.base;
2206 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2207 base = ktime_add_ns(base, nsecs);
2208
2209 if (*cwsseq != tk->clock_was_set_seq) {
2210 *cwsseq = tk->clock_was_set_seq;
2211 *offs_real = tk->offs_real;
2212 *offs_boot = tk->offs_boot;
2213 *offs_tai = tk->offs_tai;
2214 }
2215
2216 /* Handle leapsecond insertion adjustments */
2217 if (unlikely(base >= tk->next_leap_ktime))
2218 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2219
2220 } while (read_seqcount_retry(&tk_core.seq, seq));
2221
2222 return base;
2223 }
2224
2225 /**
2226 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2227 */
2228 int do_adjtimex(struct timex *txc)
2229 {
2230 struct timekeeper *tk = &tk_core.timekeeper;
2231 unsigned long flags;
2232 struct timespec64 ts;
2233 s32 orig_tai, tai;
2234 int ret;
2235
2236 /* Validate the data before disabling interrupts */
2237 ret = ntp_validate_timex(txc);
2238 if (ret)
2239 return ret;
2240
2241 if (txc->modes & ADJ_SETOFFSET) {
2242 struct timespec delta;
2243 delta.tv_sec = txc->time.tv_sec;
2244 delta.tv_nsec = txc->time.tv_usec;
2245 if (!(txc->modes & ADJ_NANO))
2246 delta.tv_nsec *= 1000;
2247 ret = timekeeping_inject_offset(&delta);
2248 if (ret)
2249 return ret;
2250 }
2251
2252 getnstimeofday64(&ts);
2253
2254 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2255 write_seqcount_begin(&tk_core.seq);
2256
2257 orig_tai = tai = tk->tai_offset;
2258 ret = __do_adjtimex(txc, &ts, &tai);
2259
2260 if (tai != orig_tai) {
2261 __timekeeping_set_tai_offset(tk, tai);
2262 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2263 }
2264 tk_update_leap_state(tk);
2265
2266 write_seqcount_end(&tk_core.seq);
2267 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2268
2269 if (tai != orig_tai)
2270 clock_was_set();
2271
2272 ntp_notify_cmos_timer();
2273
2274 return ret;
2275 }
2276
2277 #ifdef CONFIG_NTP_PPS
2278 /**
2279 * hardpps() - Accessor function to NTP __hardpps function
2280 */
2281 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2282 {
2283 unsigned long flags;
2284
2285 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2286 write_seqcount_begin(&tk_core.seq);
2287
2288 __hardpps(phase_ts, raw_ts);
2289
2290 write_seqcount_end(&tk_core.seq);
2291 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2292 }
2293 EXPORT_SYMBOL(hardpps);
2294 #endif
2295
2296 /**
2297 * xtime_update() - advances the timekeeping infrastructure
2298 * @ticks: number of ticks, that have elapsed since the last call.
2299 *
2300 * Must be called with interrupts disabled.
2301 */
2302 void xtime_update(unsigned long ticks)
2303 {
2304 write_seqlock(&jiffies_lock);
2305 do_timer(ticks);
2306 write_sequnlock(&jiffies_lock);
2307 update_wall_time();
2308 }