Merge tag 'for-linus-20130509' of git://git.infradead.org/~dwmw2/random-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26
27 #include <asm/irq_regs.h>
28
29 #include "tick-internal.h"
30
31 #include <trace/events/timer.h>
32
33 /*
34 * Per cpu nohz control structure
35 */
36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37
38 /*
39 * The time, when the last jiffy update happened. Protected by jiffies_lock.
40 */
41 static ktime_t last_jiffies_update;
42
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 return &per_cpu(tick_cpu_sched, cpu);
46 }
47
48 /*
49 * Must be called with interrupts disabled !
50 */
51 static void tick_do_update_jiffies64(ktime_t now)
52 {
53 unsigned long ticks = 0;
54 ktime_t delta;
55
56 /*
57 * Do a quick check without holding jiffies_lock:
58 */
59 delta = ktime_sub(now, last_jiffies_update);
60 if (delta.tv64 < tick_period.tv64)
61 return;
62
63 /* Reevalute with jiffies_lock held */
64 write_seqlock(&jiffies_lock);
65
66 delta = ktime_sub(now, last_jiffies_update);
67 if (delta.tv64 >= tick_period.tv64) {
68
69 delta = ktime_sub(delta, tick_period);
70 last_jiffies_update = ktime_add(last_jiffies_update,
71 tick_period);
72
73 /* Slow path for long timeouts */
74 if (unlikely(delta.tv64 >= tick_period.tv64)) {
75 s64 incr = ktime_to_ns(tick_period);
76
77 ticks = ktime_divns(delta, incr);
78
79 last_jiffies_update = ktime_add_ns(last_jiffies_update,
80 incr * ticks);
81 }
82 do_timer(++ticks);
83
84 /* Keep the tick_next_period variable up to date */
85 tick_next_period = ktime_add(last_jiffies_update, tick_period);
86 }
87 write_sequnlock(&jiffies_lock);
88 }
89
90 /*
91 * Initialize and return retrieve the jiffies update.
92 */
93 static ktime_t tick_init_jiffy_update(void)
94 {
95 ktime_t period;
96
97 write_seqlock(&jiffies_lock);
98 /* Did we start the jiffies update yet ? */
99 if (last_jiffies_update.tv64 == 0)
100 last_jiffies_update = tick_next_period;
101 period = last_jiffies_update;
102 write_sequnlock(&jiffies_lock);
103 return period;
104 }
105
106
107 static void tick_sched_do_timer(ktime_t now)
108 {
109 int cpu = smp_processor_id();
110
111 #ifdef CONFIG_NO_HZ_COMMON
112 /*
113 * Check if the do_timer duty was dropped. We don't care about
114 * concurrency: This happens only when the cpu in charge went
115 * into a long sleep. If two cpus happen to assign themself to
116 * this duty, then the jiffies update is still serialized by
117 * jiffies_lock.
118 */
119 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
120 && !tick_nohz_full_cpu(cpu))
121 tick_do_timer_cpu = cpu;
122 #endif
123
124 /* Check, if the jiffies need an update */
125 if (tick_do_timer_cpu == cpu)
126 tick_do_update_jiffies64(now);
127 }
128
129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
130 {
131 #ifdef CONFIG_NO_HZ_COMMON
132 /*
133 * When we are idle and the tick is stopped, we have to touch
134 * the watchdog as we might not schedule for a really long
135 * time. This happens on complete idle SMP systems while
136 * waiting on the login prompt. We also increment the "start of
137 * idle" jiffy stamp so the idle accounting adjustment we do
138 * when we go busy again does not account too much ticks.
139 */
140 if (ts->tick_stopped) {
141 touch_softlockup_watchdog();
142 if (is_idle_task(current))
143 ts->idle_jiffies++;
144 }
145 #endif
146 update_process_times(user_mode(regs));
147 profile_tick(CPU_PROFILING);
148 }
149
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask;
152 bool have_nohz_full_mask;
153
154 static bool can_stop_full_tick(void)
155 {
156 WARN_ON_ONCE(!irqs_disabled());
157
158 if (!sched_can_stop_tick()) {
159 trace_tick_stop(0, "more than 1 task in runqueue\n");
160 return false;
161 }
162
163 if (!posix_cpu_timers_can_stop_tick(current)) {
164 trace_tick_stop(0, "posix timers running\n");
165 return false;
166 }
167
168 if (!perf_event_can_stop_tick()) {
169 trace_tick_stop(0, "perf events running\n");
170 return false;
171 }
172
173 /* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
175 /*
176 * TODO: kick full dynticks CPUs when
177 * sched_clock_stable is set.
178 */
179 if (!sched_clock_stable) {
180 trace_tick_stop(0, "unstable sched clock\n");
181 return false;
182 }
183 #endif
184
185 return true;
186 }
187
188 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
189
190 /*
191 * Re-evaluate the need for the tick on the current CPU
192 * and restart it if necessary.
193 */
194 void tick_nohz_full_check(void)
195 {
196 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
197
198 if (tick_nohz_full_cpu(smp_processor_id())) {
199 if (ts->tick_stopped && !is_idle_task(current)) {
200 if (!can_stop_full_tick())
201 tick_nohz_restart_sched_tick(ts, ktime_get());
202 }
203 }
204 }
205
206 static void nohz_full_kick_work_func(struct irq_work *work)
207 {
208 tick_nohz_full_check();
209 }
210
211 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
212 .func = nohz_full_kick_work_func,
213 };
214
215 /*
216 * Kick the current CPU if it's full dynticks in order to force it to
217 * re-evaluate its dependency on the tick and restart it if necessary.
218 */
219 void tick_nohz_full_kick(void)
220 {
221 if (tick_nohz_full_cpu(smp_processor_id()))
222 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
223 }
224
225 static void nohz_full_kick_ipi(void *info)
226 {
227 tick_nohz_full_check();
228 }
229
230 /*
231 * Kick all full dynticks CPUs in order to force these to re-evaluate
232 * their dependency on the tick and restart it if necessary.
233 */
234 void tick_nohz_full_kick_all(void)
235 {
236 if (!have_nohz_full_mask)
237 return;
238
239 preempt_disable();
240 smp_call_function_many(nohz_full_mask,
241 nohz_full_kick_ipi, NULL, false);
242 preempt_enable();
243 }
244
245 /*
246 * Re-evaluate the need for the tick as we switch the current task.
247 * It might need the tick due to per task/process properties:
248 * perf events, posix cpu timers, ...
249 */
250 void tick_nohz_task_switch(struct task_struct *tsk)
251 {
252 unsigned long flags;
253
254 local_irq_save(flags);
255
256 if (!tick_nohz_full_cpu(smp_processor_id()))
257 goto out;
258
259 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
260 tick_nohz_full_kick();
261
262 out:
263 local_irq_restore(flags);
264 }
265
266 int tick_nohz_full_cpu(int cpu)
267 {
268 if (!have_nohz_full_mask)
269 return 0;
270
271 return cpumask_test_cpu(cpu, nohz_full_mask);
272 }
273
274 /* Parse the boot-time nohz CPU list from the kernel parameters. */
275 static int __init tick_nohz_full_setup(char *str)
276 {
277 int cpu;
278
279 alloc_bootmem_cpumask_var(&nohz_full_mask);
280 if (cpulist_parse(str, nohz_full_mask) < 0) {
281 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
282 return 1;
283 }
284
285 cpu = smp_processor_id();
286 if (cpumask_test_cpu(cpu, nohz_full_mask)) {
287 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
288 cpumask_clear_cpu(cpu, nohz_full_mask);
289 }
290 have_nohz_full_mask = true;
291
292 return 1;
293 }
294 __setup("nohz_full=", tick_nohz_full_setup);
295
296 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
297 unsigned long action,
298 void *hcpu)
299 {
300 unsigned int cpu = (unsigned long)hcpu;
301
302 switch (action & ~CPU_TASKS_FROZEN) {
303 case CPU_DOWN_PREPARE:
304 /*
305 * If we handle the timekeeping duty for full dynticks CPUs,
306 * we can't safely shutdown that CPU.
307 */
308 if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
309 return -EINVAL;
310 break;
311 }
312 return NOTIFY_OK;
313 }
314
315 /*
316 * Worst case string length in chunks of CPU range seems 2 steps
317 * separations: 0,2,4,6,...
318 * This is NR_CPUS + sizeof('\0')
319 */
320 static char __initdata nohz_full_buf[NR_CPUS + 1];
321
322 static int tick_nohz_init_all(void)
323 {
324 int err = -1;
325
326 #ifdef CONFIG_NO_HZ_FULL_ALL
327 if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
328 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
329 return err;
330 }
331 err = 0;
332 cpumask_setall(nohz_full_mask);
333 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
334 have_nohz_full_mask = true;
335 #endif
336 return err;
337 }
338
339 void __init tick_nohz_init(void)
340 {
341 int cpu;
342
343 if (!have_nohz_full_mask) {
344 if (tick_nohz_init_all() < 0)
345 return;
346 }
347
348 cpu_notifier(tick_nohz_cpu_down_callback, 0);
349
350 /* Make sure full dynticks CPU are also RCU nocbs */
351 for_each_cpu(cpu, nohz_full_mask) {
352 if (!rcu_is_nocb_cpu(cpu)) {
353 pr_warning("NO_HZ: CPU %d is not RCU nocb: "
354 "cleared from nohz_full range", cpu);
355 cpumask_clear_cpu(cpu, nohz_full_mask);
356 }
357 }
358
359 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
360 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
361 }
362 #else
363 #define have_nohz_full_mask (0)
364 #endif
365
366 /*
367 * NOHZ - aka dynamic tick functionality
368 */
369 #ifdef CONFIG_NO_HZ_COMMON
370 /*
371 * NO HZ enabled ?
372 */
373 int tick_nohz_enabled __read_mostly = 1;
374
375 /*
376 * Enable / Disable tickless mode
377 */
378 static int __init setup_tick_nohz(char *str)
379 {
380 if (!strcmp(str, "off"))
381 tick_nohz_enabled = 0;
382 else if (!strcmp(str, "on"))
383 tick_nohz_enabled = 1;
384 else
385 return 0;
386 return 1;
387 }
388
389 __setup("nohz=", setup_tick_nohz);
390
391 /**
392 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
393 *
394 * Called from interrupt entry when the CPU was idle
395 *
396 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
397 * must be updated. Otherwise an interrupt handler could use a stale jiffy
398 * value. We do this unconditionally on any cpu, as we don't know whether the
399 * cpu, which has the update task assigned is in a long sleep.
400 */
401 static void tick_nohz_update_jiffies(ktime_t now)
402 {
403 int cpu = smp_processor_id();
404 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
405 unsigned long flags;
406
407 ts->idle_waketime = now;
408
409 local_irq_save(flags);
410 tick_do_update_jiffies64(now);
411 local_irq_restore(flags);
412
413 touch_softlockup_watchdog();
414 }
415
416 /*
417 * Updates the per cpu time idle statistics counters
418 */
419 static void
420 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
421 {
422 ktime_t delta;
423
424 if (ts->idle_active) {
425 delta = ktime_sub(now, ts->idle_entrytime);
426 if (nr_iowait_cpu(cpu) > 0)
427 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
428 else
429 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
430 ts->idle_entrytime = now;
431 }
432
433 if (last_update_time)
434 *last_update_time = ktime_to_us(now);
435
436 }
437
438 static void tick_nohz_stop_idle(int cpu, ktime_t now)
439 {
440 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
441
442 update_ts_time_stats(cpu, ts, now, NULL);
443 ts->idle_active = 0;
444
445 sched_clock_idle_wakeup_event(0);
446 }
447
448 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
449 {
450 ktime_t now = ktime_get();
451
452 ts->idle_entrytime = now;
453 ts->idle_active = 1;
454 sched_clock_idle_sleep_event();
455 return now;
456 }
457
458 /**
459 * get_cpu_idle_time_us - get the total idle time of a cpu
460 * @cpu: CPU number to query
461 * @last_update_time: variable to store update time in. Do not update
462 * counters if NULL.
463 *
464 * Return the cummulative idle time (since boot) for a given
465 * CPU, in microseconds.
466 *
467 * This time is measured via accounting rather than sampling,
468 * and is as accurate as ktime_get() is.
469 *
470 * This function returns -1 if NOHZ is not enabled.
471 */
472 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
473 {
474 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
475 ktime_t now, idle;
476
477 if (!tick_nohz_enabled)
478 return -1;
479
480 now = ktime_get();
481 if (last_update_time) {
482 update_ts_time_stats(cpu, ts, now, last_update_time);
483 idle = ts->idle_sleeptime;
484 } else {
485 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
486 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
487
488 idle = ktime_add(ts->idle_sleeptime, delta);
489 } else {
490 idle = ts->idle_sleeptime;
491 }
492 }
493
494 return ktime_to_us(idle);
495
496 }
497 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
498
499 /**
500 * get_cpu_iowait_time_us - get the total iowait time of a cpu
501 * @cpu: CPU number to query
502 * @last_update_time: variable to store update time in. Do not update
503 * counters if NULL.
504 *
505 * Return the cummulative iowait time (since boot) for a given
506 * CPU, in microseconds.
507 *
508 * This time is measured via accounting rather than sampling,
509 * and is as accurate as ktime_get() is.
510 *
511 * This function returns -1 if NOHZ is not enabled.
512 */
513 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
514 {
515 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
516 ktime_t now, iowait;
517
518 if (!tick_nohz_enabled)
519 return -1;
520
521 now = ktime_get();
522 if (last_update_time) {
523 update_ts_time_stats(cpu, ts, now, last_update_time);
524 iowait = ts->iowait_sleeptime;
525 } else {
526 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
527 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
528
529 iowait = ktime_add(ts->iowait_sleeptime, delta);
530 } else {
531 iowait = ts->iowait_sleeptime;
532 }
533 }
534
535 return ktime_to_us(iowait);
536 }
537 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
538
539 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
540 ktime_t now, int cpu)
541 {
542 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
543 ktime_t last_update, expires, ret = { .tv64 = 0 };
544 unsigned long rcu_delta_jiffies;
545 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
546 u64 time_delta;
547
548 /* Read jiffies and the time when jiffies were updated last */
549 do {
550 seq = read_seqbegin(&jiffies_lock);
551 last_update = last_jiffies_update;
552 last_jiffies = jiffies;
553 time_delta = timekeeping_max_deferment();
554 } while (read_seqretry(&jiffies_lock, seq));
555
556 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
557 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
558 next_jiffies = last_jiffies + 1;
559 delta_jiffies = 1;
560 } else {
561 /* Get the next timer wheel timer */
562 next_jiffies = get_next_timer_interrupt(last_jiffies);
563 delta_jiffies = next_jiffies - last_jiffies;
564 if (rcu_delta_jiffies < delta_jiffies) {
565 next_jiffies = last_jiffies + rcu_delta_jiffies;
566 delta_jiffies = rcu_delta_jiffies;
567 }
568 }
569
570 /*
571 * Do not stop the tick, if we are only one off (or less)
572 * or if the cpu is required for RCU:
573 */
574 if (!ts->tick_stopped && delta_jiffies <= 1)
575 goto out;
576
577 /* Schedule the tick, if we are at least one jiffie off */
578 if ((long)delta_jiffies >= 1) {
579
580 /*
581 * If this cpu is the one which updates jiffies, then
582 * give up the assignment and let it be taken by the
583 * cpu which runs the tick timer next, which might be
584 * this cpu as well. If we don't drop this here the
585 * jiffies might be stale and do_timer() never
586 * invoked. Keep track of the fact that it was the one
587 * which had the do_timer() duty last. If this cpu is
588 * the one which had the do_timer() duty last, we
589 * limit the sleep time to the timekeeping
590 * max_deferement value which we retrieved
591 * above. Otherwise we can sleep as long as we want.
592 */
593 if (cpu == tick_do_timer_cpu) {
594 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
595 ts->do_timer_last = 1;
596 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
597 time_delta = KTIME_MAX;
598 ts->do_timer_last = 0;
599 } else if (!ts->do_timer_last) {
600 time_delta = KTIME_MAX;
601 }
602
603 #ifdef CONFIG_NO_HZ_FULL
604 if (!ts->inidle) {
605 time_delta = min(time_delta,
606 scheduler_tick_max_deferment());
607 }
608 #endif
609
610 /*
611 * calculate the expiry time for the next timer wheel
612 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
613 * that there is no timer pending or at least extremely
614 * far into the future (12 days for HZ=1000). In this
615 * case we set the expiry to the end of time.
616 */
617 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
618 /*
619 * Calculate the time delta for the next timer event.
620 * If the time delta exceeds the maximum time delta
621 * permitted by the current clocksource then adjust
622 * the time delta accordingly to ensure the
623 * clocksource does not wrap.
624 */
625 time_delta = min_t(u64, time_delta,
626 tick_period.tv64 * delta_jiffies);
627 }
628
629 if (time_delta < KTIME_MAX)
630 expires = ktime_add_ns(last_update, time_delta);
631 else
632 expires.tv64 = KTIME_MAX;
633
634 /* Skip reprogram of event if its not changed */
635 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
636 goto out;
637
638 ret = expires;
639
640 /*
641 * nohz_stop_sched_tick can be called several times before
642 * the nohz_restart_sched_tick is called. This happens when
643 * interrupts arrive which do not cause a reschedule. In the
644 * first call we save the current tick time, so we can restart
645 * the scheduler tick in nohz_restart_sched_tick.
646 */
647 if (!ts->tick_stopped) {
648 nohz_balance_enter_idle(cpu);
649 calc_load_enter_idle();
650
651 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
652 ts->tick_stopped = 1;
653 trace_tick_stop(1, " ");
654 }
655
656 /*
657 * If the expiration time == KTIME_MAX, then
658 * in this case we simply stop the tick timer.
659 */
660 if (unlikely(expires.tv64 == KTIME_MAX)) {
661 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
662 hrtimer_cancel(&ts->sched_timer);
663 goto out;
664 }
665
666 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
667 hrtimer_start(&ts->sched_timer, expires,
668 HRTIMER_MODE_ABS_PINNED);
669 /* Check, if the timer was already in the past */
670 if (hrtimer_active(&ts->sched_timer))
671 goto out;
672 } else if (!tick_program_event(expires, 0))
673 goto out;
674 /*
675 * We are past the event already. So we crossed a
676 * jiffie boundary. Update jiffies and raise the
677 * softirq.
678 */
679 tick_do_update_jiffies64(ktime_get());
680 }
681 raise_softirq_irqoff(TIMER_SOFTIRQ);
682 out:
683 ts->next_jiffies = next_jiffies;
684 ts->last_jiffies = last_jiffies;
685 ts->sleep_length = ktime_sub(dev->next_event, now);
686
687 return ret;
688 }
689
690 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
691 {
692 #ifdef CONFIG_NO_HZ_FULL
693 int cpu = smp_processor_id();
694
695 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
696 return;
697
698 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
699 return;
700
701 if (!can_stop_full_tick())
702 return;
703
704 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
705 #endif
706 }
707
708 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
709 {
710 /*
711 * If this cpu is offline and it is the one which updates
712 * jiffies, then give up the assignment and let it be taken by
713 * the cpu which runs the tick timer next. If we don't drop
714 * this here the jiffies might be stale and do_timer() never
715 * invoked.
716 */
717 if (unlikely(!cpu_online(cpu))) {
718 if (cpu == tick_do_timer_cpu)
719 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
720 }
721
722 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
723 return false;
724
725 if (need_resched())
726 return false;
727
728 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
729 static int ratelimit;
730
731 if (ratelimit < 10 &&
732 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
733 pr_warn("NOHZ: local_softirq_pending %02x\n",
734 (unsigned int) local_softirq_pending());
735 ratelimit++;
736 }
737 return false;
738 }
739
740 if (have_nohz_full_mask) {
741 /*
742 * Keep the tick alive to guarantee timekeeping progression
743 * if there are full dynticks CPUs around
744 */
745 if (tick_do_timer_cpu == cpu)
746 return false;
747 /*
748 * Boot safety: make sure the timekeeping duty has been
749 * assigned before entering dyntick-idle mode,
750 */
751 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
752 return false;
753 }
754
755 return true;
756 }
757
758 static void __tick_nohz_idle_enter(struct tick_sched *ts)
759 {
760 ktime_t now, expires;
761 int cpu = smp_processor_id();
762
763 now = tick_nohz_start_idle(cpu, ts);
764
765 if (can_stop_idle_tick(cpu, ts)) {
766 int was_stopped = ts->tick_stopped;
767
768 ts->idle_calls++;
769
770 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
771 if (expires.tv64 > 0LL) {
772 ts->idle_sleeps++;
773 ts->idle_expires = expires;
774 }
775
776 if (!was_stopped && ts->tick_stopped)
777 ts->idle_jiffies = ts->last_jiffies;
778 }
779 }
780
781 /**
782 * tick_nohz_idle_enter - stop the idle tick from the idle task
783 *
784 * When the next event is more than a tick into the future, stop the idle tick
785 * Called when we start the idle loop.
786 *
787 * The arch is responsible of calling:
788 *
789 * - rcu_idle_enter() after its last use of RCU before the CPU is put
790 * to sleep.
791 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
792 */
793 void tick_nohz_idle_enter(void)
794 {
795 struct tick_sched *ts;
796
797 WARN_ON_ONCE(irqs_disabled());
798
799 /*
800 * Update the idle state in the scheduler domain hierarchy
801 * when tick_nohz_stop_sched_tick() is called from the idle loop.
802 * State will be updated to busy during the first busy tick after
803 * exiting idle.
804 */
805 set_cpu_sd_state_idle();
806
807 local_irq_disable();
808
809 ts = &__get_cpu_var(tick_cpu_sched);
810 /*
811 * set ts->inidle unconditionally. even if the system did not
812 * switch to nohz mode the cpu frequency governers rely on the
813 * update of the idle time accounting in tick_nohz_start_idle().
814 */
815 ts->inidle = 1;
816 __tick_nohz_idle_enter(ts);
817
818 local_irq_enable();
819 }
820 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
821
822 /**
823 * tick_nohz_irq_exit - update next tick event from interrupt exit
824 *
825 * When an interrupt fires while we are idle and it doesn't cause
826 * a reschedule, it may still add, modify or delete a timer, enqueue
827 * an RCU callback, etc...
828 * So we need to re-calculate and reprogram the next tick event.
829 */
830 void tick_nohz_irq_exit(void)
831 {
832 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
833
834 if (ts->inidle) {
835 /* Cancel the timer because CPU already waken up from the C-states*/
836 menu_hrtimer_cancel();
837 __tick_nohz_idle_enter(ts);
838 } else {
839 tick_nohz_full_stop_tick(ts);
840 }
841 }
842
843 /**
844 * tick_nohz_get_sleep_length - return the length of the current sleep
845 *
846 * Called from power state control code with interrupts disabled
847 */
848 ktime_t tick_nohz_get_sleep_length(void)
849 {
850 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
851
852 return ts->sleep_length;
853 }
854
855 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
856 {
857 hrtimer_cancel(&ts->sched_timer);
858 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
859
860 while (1) {
861 /* Forward the time to expire in the future */
862 hrtimer_forward(&ts->sched_timer, now, tick_period);
863
864 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
865 hrtimer_start_expires(&ts->sched_timer,
866 HRTIMER_MODE_ABS_PINNED);
867 /* Check, if the timer was already in the past */
868 if (hrtimer_active(&ts->sched_timer))
869 break;
870 } else {
871 if (!tick_program_event(
872 hrtimer_get_expires(&ts->sched_timer), 0))
873 break;
874 }
875 /* Reread time and update jiffies */
876 now = ktime_get();
877 tick_do_update_jiffies64(now);
878 }
879 }
880
881 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
882 {
883 /* Update jiffies first */
884 tick_do_update_jiffies64(now);
885 update_cpu_load_nohz();
886
887 calc_load_exit_idle();
888 touch_softlockup_watchdog();
889 /*
890 * Cancel the scheduled timer and restore the tick
891 */
892 ts->tick_stopped = 0;
893 ts->idle_exittime = now;
894
895 tick_nohz_restart(ts, now);
896 }
897
898 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
899 {
900 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
901 unsigned long ticks;
902
903 if (vtime_accounting_enabled())
904 return;
905 /*
906 * We stopped the tick in idle. Update process times would miss the
907 * time we slept as update_process_times does only a 1 tick
908 * accounting. Enforce that this is accounted to idle !
909 */
910 ticks = jiffies - ts->idle_jiffies;
911 /*
912 * We might be one off. Do not randomly account a huge number of ticks!
913 */
914 if (ticks && ticks < LONG_MAX)
915 account_idle_ticks(ticks);
916 #endif
917 }
918
919 /**
920 * tick_nohz_idle_exit - restart the idle tick from the idle task
921 *
922 * Restart the idle tick when the CPU is woken up from idle
923 * This also exit the RCU extended quiescent state. The CPU
924 * can use RCU again after this function is called.
925 */
926 void tick_nohz_idle_exit(void)
927 {
928 int cpu = smp_processor_id();
929 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
930 ktime_t now;
931
932 local_irq_disable();
933
934 WARN_ON_ONCE(!ts->inidle);
935
936 ts->inidle = 0;
937
938 /* Cancel the timer because CPU already waken up from the C-states*/
939 menu_hrtimer_cancel();
940 if (ts->idle_active || ts->tick_stopped)
941 now = ktime_get();
942
943 if (ts->idle_active)
944 tick_nohz_stop_idle(cpu, now);
945
946 if (ts->tick_stopped) {
947 tick_nohz_restart_sched_tick(ts, now);
948 tick_nohz_account_idle_ticks(ts);
949 }
950
951 local_irq_enable();
952 }
953 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
954
955 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
956 {
957 hrtimer_forward(&ts->sched_timer, now, tick_period);
958 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
959 }
960
961 /*
962 * The nohz low res interrupt handler
963 */
964 static void tick_nohz_handler(struct clock_event_device *dev)
965 {
966 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
967 struct pt_regs *regs = get_irq_regs();
968 ktime_t now = ktime_get();
969
970 dev->next_event.tv64 = KTIME_MAX;
971
972 tick_sched_do_timer(now);
973 tick_sched_handle(ts, regs);
974
975 while (tick_nohz_reprogram(ts, now)) {
976 now = ktime_get();
977 tick_do_update_jiffies64(now);
978 }
979 }
980
981 /**
982 * tick_nohz_switch_to_nohz - switch to nohz mode
983 */
984 static void tick_nohz_switch_to_nohz(void)
985 {
986 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
987 ktime_t next;
988
989 if (!tick_nohz_enabled)
990 return;
991
992 local_irq_disable();
993 if (tick_switch_to_oneshot(tick_nohz_handler)) {
994 local_irq_enable();
995 return;
996 }
997
998 ts->nohz_mode = NOHZ_MODE_LOWRES;
999
1000 /*
1001 * Recycle the hrtimer in ts, so we can share the
1002 * hrtimer_forward with the highres code.
1003 */
1004 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1005 /* Get the next period */
1006 next = tick_init_jiffy_update();
1007
1008 for (;;) {
1009 hrtimer_set_expires(&ts->sched_timer, next);
1010 if (!tick_program_event(next, 0))
1011 break;
1012 next = ktime_add(next, tick_period);
1013 }
1014 local_irq_enable();
1015 }
1016
1017 /*
1018 * When NOHZ is enabled and the tick is stopped, we need to kick the
1019 * tick timer from irq_enter() so that the jiffies update is kept
1020 * alive during long running softirqs. That's ugly as hell, but
1021 * correctness is key even if we need to fix the offending softirq in
1022 * the first place.
1023 *
1024 * Note, this is different to tick_nohz_restart. We just kick the
1025 * timer and do not touch the other magic bits which need to be done
1026 * when idle is left.
1027 */
1028 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1029 {
1030 #if 0
1031 /* Switch back to 2.6.27 behaviour */
1032
1033 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1034 ktime_t delta;
1035
1036 /*
1037 * Do not touch the tick device, when the next expiry is either
1038 * already reached or less/equal than the tick period.
1039 */
1040 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1041 if (delta.tv64 <= tick_period.tv64)
1042 return;
1043
1044 tick_nohz_restart(ts, now);
1045 #endif
1046 }
1047
1048 static inline void tick_check_nohz(int cpu)
1049 {
1050 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1051 ktime_t now;
1052
1053 if (!ts->idle_active && !ts->tick_stopped)
1054 return;
1055 now = ktime_get();
1056 if (ts->idle_active)
1057 tick_nohz_stop_idle(cpu, now);
1058 if (ts->tick_stopped) {
1059 tick_nohz_update_jiffies(now);
1060 tick_nohz_kick_tick(cpu, now);
1061 }
1062 }
1063
1064 #else
1065
1066 static inline void tick_nohz_switch_to_nohz(void) { }
1067 static inline void tick_check_nohz(int cpu) { }
1068
1069 #endif /* CONFIG_NO_HZ_COMMON */
1070
1071 /*
1072 * Called from irq_enter to notify about the possible interruption of idle()
1073 */
1074 void tick_check_idle(int cpu)
1075 {
1076 tick_check_oneshot_broadcast(cpu);
1077 tick_check_nohz(cpu);
1078 }
1079
1080 /*
1081 * High resolution timer specific code
1082 */
1083 #ifdef CONFIG_HIGH_RES_TIMERS
1084 /*
1085 * We rearm the timer until we get disabled by the idle code.
1086 * Called with interrupts disabled.
1087 */
1088 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1089 {
1090 struct tick_sched *ts =
1091 container_of(timer, struct tick_sched, sched_timer);
1092 struct pt_regs *regs = get_irq_regs();
1093 ktime_t now = ktime_get();
1094
1095 tick_sched_do_timer(now);
1096
1097 /*
1098 * Do not call, when we are not in irq context and have
1099 * no valid regs pointer
1100 */
1101 if (regs)
1102 tick_sched_handle(ts, regs);
1103
1104 hrtimer_forward(timer, now, tick_period);
1105
1106 return HRTIMER_RESTART;
1107 }
1108
1109 static int sched_skew_tick;
1110
1111 static int __init skew_tick(char *str)
1112 {
1113 get_option(&str, &sched_skew_tick);
1114
1115 return 0;
1116 }
1117 early_param("skew_tick", skew_tick);
1118
1119 /**
1120 * tick_setup_sched_timer - setup the tick emulation timer
1121 */
1122 void tick_setup_sched_timer(void)
1123 {
1124 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1125 ktime_t now = ktime_get();
1126
1127 /*
1128 * Emulate tick processing via per-CPU hrtimers:
1129 */
1130 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1131 ts->sched_timer.function = tick_sched_timer;
1132
1133 /* Get the next period (per cpu) */
1134 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1135
1136 /* Offset the tick to avert jiffies_lock contention. */
1137 if (sched_skew_tick) {
1138 u64 offset = ktime_to_ns(tick_period) >> 1;
1139 do_div(offset, num_possible_cpus());
1140 offset *= smp_processor_id();
1141 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1142 }
1143
1144 for (;;) {
1145 hrtimer_forward(&ts->sched_timer, now, tick_period);
1146 hrtimer_start_expires(&ts->sched_timer,
1147 HRTIMER_MODE_ABS_PINNED);
1148 /* Check, if the timer was already in the past */
1149 if (hrtimer_active(&ts->sched_timer))
1150 break;
1151 now = ktime_get();
1152 }
1153
1154 #ifdef CONFIG_NO_HZ_COMMON
1155 if (tick_nohz_enabled)
1156 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1157 #endif
1158 }
1159 #endif /* HIGH_RES_TIMERS */
1160
1161 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1162 void tick_cancel_sched_timer(int cpu)
1163 {
1164 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1165
1166 # ifdef CONFIG_HIGH_RES_TIMERS
1167 if (ts->sched_timer.base)
1168 hrtimer_cancel(&ts->sched_timer);
1169 # endif
1170
1171 ts->nohz_mode = NOHZ_MODE_INACTIVE;
1172 }
1173 #endif
1174
1175 /**
1176 * Async notification about clocksource changes
1177 */
1178 void tick_clock_notify(void)
1179 {
1180 int cpu;
1181
1182 for_each_possible_cpu(cpu)
1183 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1184 }
1185
1186 /*
1187 * Async notification about clock event changes
1188 */
1189 void tick_oneshot_notify(void)
1190 {
1191 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1192
1193 set_bit(0, &ts->check_clocks);
1194 }
1195
1196 /**
1197 * Check, if a change happened, which makes oneshot possible.
1198 *
1199 * Called cyclic from the hrtimer softirq (driven by the timer
1200 * softirq) allow_nohz signals, that we can switch into low-res nohz
1201 * mode, because high resolution timers are disabled (either compile
1202 * or runtime).
1203 */
1204 int tick_check_oneshot_change(int allow_nohz)
1205 {
1206 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1207
1208 if (!test_and_clear_bit(0, &ts->check_clocks))
1209 return 0;
1210
1211 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1212 return 0;
1213
1214 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1215 return 0;
1216
1217 if (!allow_nohz)
1218 return 1;
1219
1220 tick_nohz_switch_to_nohz();
1221 return 0;
1222 }