Merge remote-tracking branch 'pfdo/drm-fixes' into drm-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26
27 #include <asm/irq_regs.h>
28
29 #include "tick-internal.h"
30
31 #include <trace/events/timer.h>
32
33 /*
34 * Per cpu nohz control structure
35 */
36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37
38 /*
39 * The time, when the last jiffy update happened. Protected by jiffies_lock.
40 */
41 static ktime_t last_jiffies_update;
42
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 return &per_cpu(tick_cpu_sched, cpu);
46 }
47
48 /*
49 * Must be called with interrupts disabled !
50 */
51 static void tick_do_update_jiffies64(ktime_t now)
52 {
53 unsigned long ticks = 0;
54 ktime_t delta;
55
56 /*
57 * Do a quick check without holding jiffies_lock:
58 */
59 delta = ktime_sub(now, last_jiffies_update);
60 if (delta.tv64 < tick_period.tv64)
61 return;
62
63 /* Reevalute with jiffies_lock held */
64 write_seqlock(&jiffies_lock);
65
66 delta = ktime_sub(now, last_jiffies_update);
67 if (delta.tv64 >= tick_period.tv64) {
68
69 delta = ktime_sub(delta, tick_period);
70 last_jiffies_update = ktime_add(last_jiffies_update,
71 tick_period);
72
73 /* Slow path for long timeouts */
74 if (unlikely(delta.tv64 >= tick_period.tv64)) {
75 s64 incr = ktime_to_ns(tick_period);
76
77 ticks = ktime_divns(delta, incr);
78
79 last_jiffies_update = ktime_add_ns(last_jiffies_update,
80 incr * ticks);
81 }
82 do_timer(++ticks);
83
84 /* Keep the tick_next_period variable up to date */
85 tick_next_period = ktime_add(last_jiffies_update, tick_period);
86 }
87 write_sequnlock(&jiffies_lock);
88 }
89
90 /*
91 * Initialize and return retrieve the jiffies update.
92 */
93 static ktime_t tick_init_jiffy_update(void)
94 {
95 ktime_t period;
96
97 write_seqlock(&jiffies_lock);
98 /* Did we start the jiffies update yet ? */
99 if (last_jiffies_update.tv64 == 0)
100 last_jiffies_update = tick_next_period;
101 period = last_jiffies_update;
102 write_sequnlock(&jiffies_lock);
103 return period;
104 }
105
106
107 static void tick_sched_do_timer(ktime_t now)
108 {
109 int cpu = smp_processor_id();
110
111 #ifdef CONFIG_NO_HZ_COMMON
112 /*
113 * Check if the do_timer duty was dropped. We don't care about
114 * concurrency: This happens only when the cpu in charge went
115 * into a long sleep. If two cpus happen to assign themself to
116 * this duty, then the jiffies update is still serialized by
117 * jiffies_lock.
118 */
119 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
120 && !tick_nohz_full_cpu(cpu))
121 tick_do_timer_cpu = cpu;
122 #endif
123
124 /* Check, if the jiffies need an update */
125 if (tick_do_timer_cpu == cpu)
126 tick_do_update_jiffies64(now);
127 }
128
129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
130 {
131 #ifdef CONFIG_NO_HZ_COMMON
132 /*
133 * When we are idle and the tick is stopped, we have to touch
134 * the watchdog as we might not schedule for a really long
135 * time. This happens on complete idle SMP systems while
136 * waiting on the login prompt. We also increment the "start of
137 * idle" jiffy stamp so the idle accounting adjustment we do
138 * when we go busy again does not account too much ticks.
139 */
140 if (ts->tick_stopped) {
141 touch_softlockup_watchdog();
142 if (is_idle_task(current))
143 ts->idle_jiffies++;
144 }
145 #endif
146 update_process_times(user_mode(regs));
147 profile_tick(CPU_PROFILING);
148 }
149
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask;
152 bool have_nohz_full_mask;
153
154 static bool can_stop_full_tick(void)
155 {
156 WARN_ON_ONCE(!irqs_disabled());
157
158 if (!sched_can_stop_tick()) {
159 trace_tick_stop(0, "more than 1 task in runqueue\n");
160 return false;
161 }
162
163 if (!posix_cpu_timers_can_stop_tick(current)) {
164 trace_tick_stop(0, "posix timers running\n");
165 return false;
166 }
167
168 if (!perf_event_can_stop_tick()) {
169 trace_tick_stop(0, "perf events running\n");
170 return false;
171 }
172
173 /* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
175 /*
176 * TODO: kick full dynticks CPUs when
177 * sched_clock_stable is set.
178 */
179 if (!sched_clock_stable) {
180 trace_tick_stop(0, "unstable sched clock\n");
181 return false;
182 }
183 #endif
184
185 return true;
186 }
187
188 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
189
190 /*
191 * Re-evaluate the need for the tick on the current CPU
192 * and restart it if necessary.
193 */
194 void tick_nohz_full_check(void)
195 {
196 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
197
198 if (tick_nohz_full_cpu(smp_processor_id())) {
199 if (ts->tick_stopped && !is_idle_task(current)) {
200 if (!can_stop_full_tick())
201 tick_nohz_restart_sched_tick(ts, ktime_get());
202 }
203 }
204 }
205
206 static void nohz_full_kick_work_func(struct irq_work *work)
207 {
208 tick_nohz_full_check();
209 }
210
211 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
212 .func = nohz_full_kick_work_func,
213 };
214
215 /*
216 * Kick the current CPU if it's full dynticks in order to force it to
217 * re-evaluate its dependency on the tick and restart it if necessary.
218 */
219 void tick_nohz_full_kick(void)
220 {
221 if (tick_nohz_full_cpu(smp_processor_id()))
222 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
223 }
224
225 static void nohz_full_kick_ipi(void *info)
226 {
227 tick_nohz_full_check();
228 }
229
230 /*
231 * Kick all full dynticks CPUs in order to force these to re-evaluate
232 * their dependency on the tick and restart it if necessary.
233 */
234 void tick_nohz_full_kick_all(void)
235 {
236 if (!have_nohz_full_mask)
237 return;
238
239 preempt_disable();
240 smp_call_function_many(nohz_full_mask,
241 nohz_full_kick_ipi, NULL, false);
242 preempt_enable();
243 }
244
245 /*
246 * Re-evaluate the need for the tick as we switch the current task.
247 * It might need the tick due to per task/process properties:
248 * perf events, posix cpu timers, ...
249 */
250 void tick_nohz_task_switch(struct task_struct *tsk)
251 {
252 unsigned long flags;
253
254 local_irq_save(flags);
255
256 if (!tick_nohz_full_cpu(smp_processor_id()))
257 goto out;
258
259 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
260 tick_nohz_full_kick();
261
262 out:
263 local_irq_restore(flags);
264 }
265
266 int tick_nohz_full_cpu(int cpu)
267 {
268 if (!have_nohz_full_mask)
269 return 0;
270
271 return cpumask_test_cpu(cpu, nohz_full_mask);
272 }
273
274 /* Parse the boot-time nohz CPU list from the kernel parameters. */
275 static int __init tick_nohz_full_setup(char *str)
276 {
277 int cpu;
278
279 alloc_bootmem_cpumask_var(&nohz_full_mask);
280 if (cpulist_parse(str, nohz_full_mask) < 0) {
281 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
282 return 1;
283 }
284
285 cpu = smp_processor_id();
286 if (cpumask_test_cpu(cpu, nohz_full_mask)) {
287 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
288 cpumask_clear_cpu(cpu, nohz_full_mask);
289 }
290 have_nohz_full_mask = true;
291
292 return 1;
293 }
294 __setup("nohz_full=", tick_nohz_full_setup);
295
296 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
297 unsigned long action,
298 void *hcpu)
299 {
300 unsigned int cpu = (unsigned long)hcpu;
301
302 switch (action & ~CPU_TASKS_FROZEN) {
303 case CPU_DOWN_PREPARE:
304 /*
305 * If we handle the timekeeping duty for full dynticks CPUs,
306 * we can't safely shutdown that CPU.
307 */
308 if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
309 return -EINVAL;
310 break;
311 }
312 return NOTIFY_OK;
313 }
314
315 /*
316 * Worst case string length in chunks of CPU range seems 2 steps
317 * separations: 0,2,4,6,...
318 * This is NR_CPUS + sizeof('\0')
319 */
320 static char __initdata nohz_full_buf[NR_CPUS + 1];
321
322 static int tick_nohz_init_all(void)
323 {
324 int err = -1;
325
326 #ifdef CONFIG_NO_HZ_FULL_ALL
327 if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
328 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
329 return err;
330 }
331 err = 0;
332 cpumask_setall(nohz_full_mask);
333 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
334 have_nohz_full_mask = true;
335 #endif
336 return err;
337 }
338
339 void __init tick_nohz_init(void)
340 {
341 int cpu;
342
343 if (!have_nohz_full_mask) {
344 if (tick_nohz_init_all() < 0)
345 return;
346 }
347
348 cpu_notifier(tick_nohz_cpu_down_callback, 0);
349
350 /* Make sure full dynticks CPU are also RCU nocbs */
351 for_each_cpu(cpu, nohz_full_mask) {
352 if (!rcu_is_nocb_cpu(cpu)) {
353 pr_warning("NO_HZ: CPU %d is not RCU nocb: "
354 "cleared from nohz_full range", cpu);
355 cpumask_clear_cpu(cpu, nohz_full_mask);
356 }
357 }
358
359 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
360 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
361 }
362 #else
363 #define have_nohz_full_mask (0)
364 #endif
365
366 /*
367 * NOHZ - aka dynamic tick functionality
368 */
369 #ifdef CONFIG_NO_HZ_COMMON
370 /*
371 * NO HZ enabled ?
372 */
373 int tick_nohz_enabled __read_mostly = 1;
374
375 /*
376 * Enable / Disable tickless mode
377 */
378 static int __init setup_tick_nohz(char *str)
379 {
380 if (!strcmp(str, "off"))
381 tick_nohz_enabled = 0;
382 else if (!strcmp(str, "on"))
383 tick_nohz_enabled = 1;
384 else
385 return 0;
386 return 1;
387 }
388
389 __setup("nohz=", setup_tick_nohz);
390
391 /**
392 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
393 *
394 * Called from interrupt entry when the CPU was idle
395 *
396 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
397 * must be updated. Otherwise an interrupt handler could use a stale jiffy
398 * value. We do this unconditionally on any cpu, as we don't know whether the
399 * cpu, which has the update task assigned is in a long sleep.
400 */
401 static void tick_nohz_update_jiffies(ktime_t now)
402 {
403 int cpu = smp_processor_id();
404 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
405 unsigned long flags;
406
407 ts->idle_waketime = now;
408
409 local_irq_save(flags);
410 tick_do_update_jiffies64(now);
411 local_irq_restore(flags);
412
413 touch_softlockup_watchdog();
414 }
415
416 /*
417 * Updates the per cpu time idle statistics counters
418 */
419 static void
420 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
421 {
422 ktime_t delta;
423
424 if (ts->idle_active) {
425 delta = ktime_sub(now, ts->idle_entrytime);
426 if (nr_iowait_cpu(cpu) > 0)
427 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
428 else
429 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
430 ts->idle_entrytime = now;
431 }
432
433 if (last_update_time)
434 *last_update_time = ktime_to_us(now);
435
436 }
437
438 static void tick_nohz_stop_idle(int cpu, ktime_t now)
439 {
440 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
441
442 update_ts_time_stats(cpu, ts, now, NULL);
443 ts->idle_active = 0;
444
445 sched_clock_idle_wakeup_event(0);
446 }
447
448 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
449 {
450 ktime_t now = ktime_get();
451
452 ts->idle_entrytime = now;
453 ts->idle_active = 1;
454 sched_clock_idle_sleep_event();
455 return now;
456 }
457
458 /**
459 * get_cpu_idle_time_us - get the total idle time of a cpu
460 * @cpu: CPU number to query
461 * @last_update_time: variable to store update time in. Do not update
462 * counters if NULL.
463 *
464 * Return the cummulative idle time (since boot) for a given
465 * CPU, in microseconds.
466 *
467 * This time is measured via accounting rather than sampling,
468 * and is as accurate as ktime_get() is.
469 *
470 * This function returns -1 if NOHZ is not enabled.
471 */
472 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
473 {
474 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
475 ktime_t now, idle;
476
477 if (!tick_nohz_enabled)
478 return -1;
479
480 now = ktime_get();
481 if (last_update_time) {
482 update_ts_time_stats(cpu, ts, now, last_update_time);
483 idle = ts->idle_sleeptime;
484 } else {
485 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
486 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
487
488 idle = ktime_add(ts->idle_sleeptime, delta);
489 } else {
490 idle = ts->idle_sleeptime;
491 }
492 }
493
494 return ktime_to_us(idle);
495
496 }
497 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
498
499 /**
500 * get_cpu_iowait_time_us - get the total iowait time of a cpu
501 * @cpu: CPU number to query
502 * @last_update_time: variable to store update time in. Do not update
503 * counters if NULL.
504 *
505 * Return the cummulative iowait time (since boot) for a given
506 * CPU, in microseconds.
507 *
508 * This time is measured via accounting rather than sampling,
509 * and is as accurate as ktime_get() is.
510 *
511 * This function returns -1 if NOHZ is not enabled.
512 */
513 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
514 {
515 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
516 ktime_t now, iowait;
517
518 if (!tick_nohz_enabled)
519 return -1;
520
521 now = ktime_get();
522 if (last_update_time) {
523 update_ts_time_stats(cpu, ts, now, last_update_time);
524 iowait = ts->iowait_sleeptime;
525 } else {
526 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
527 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
528
529 iowait = ktime_add(ts->iowait_sleeptime, delta);
530 } else {
531 iowait = ts->iowait_sleeptime;
532 }
533 }
534
535 return ktime_to_us(iowait);
536 }
537 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
538
539 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
540 ktime_t now, int cpu)
541 {
542 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
543 ktime_t last_update, expires, ret = { .tv64 = 0 };
544 unsigned long rcu_delta_jiffies;
545 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
546 u64 time_delta;
547
548 /* Read jiffies and the time when jiffies were updated last */
549 do {
550 seq = read_seqbegin(&jiffies_lock);
551 last_update = last_jiffies_update;
552 last_jiffies = jiffies;
553 time_delta = timekeeping_max_deferment();
554 } while (read_seqretry(&jiffies_lock, seq));
555
556 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
557 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
558 next_jiffies = last_jiffies + 1;
559 delta_jiffies = 1;
560 } else {
561 /* Get the next timer wheel timer */
562 next_jiffies = get_next_timer_interrupt(last_jiffies);
563 delta_jiffies = next_jiffies - last_jiffies;
564 if (rcu_delta_jiffies < delta_jiffies) {
565 next_jiffies = last_jiffies + rcu_delta_jiffies;
566 delta_jiffies = rcu_delta_jiffies;
567 }
568 }
569
570 /*
571 * Do not stop the tick, if we are only one off (or less)
572 * or if the cpu is required for RCU:
573 */
574 if (!ts->tick_stopped && delta_jiffies <= 1)
575 goto out;
576
577 /* Schedule the tick, if we are at least one jiffie off */
578 if ((long)delta_jiffies >= 1) {
579
580 /*
581 * If this cpu is the one which updates jiffies, then
582 * give up the assignment and let it be taken by the
583 * cpu which runs the tick timer next, which might be
584 * this cpu as well. If we don't drop this here the
585 * jiffies might be stale and do_timer() never
586 * invoked. Keep track of the fact that it was the one
587 * which had the do_timer() duty last. If this cpu is
588 * the one which had the do_timer() duty last, we
589 * limit the sleep time to the timekeeping
590 * max_deferement value which we retrieved
591 * above. Otherwise we can sleep as long as we want.
592 */
593 if (cpu == tick_do_timer_cpu) {
594 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
595 ts->do_timer_last = 1;
596 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
597 time_delta = KTIME_MAX;
598 ts->do_timer_last = 0;
599 } else if (!ts->do_timer_last) {
600 time_delta = KTIME_MAX;
601 }
602
603 #ifdef CONFIG_NO_HZ_FULL
604 if (!ts->inidle) {
605 time_delta = min(time_delta,
606 scheduler_tick_max_deferment());
607 }
608 #endif
609
610 /*
611 * calculate the expiry time for the next timer wheel
612 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
613 * that there is no timer pending or at least extremely
614 * far into the future (12 days for HZ=1000). In this
615 * case we set the expiry to the end of time.
616 */
617 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
618 /*
619 * Calculate the time delta for the next timer event.
620 * If the time delta exceeds the maximum time delta
621 * permitted by the current clocksource then adjust
622 * the time delta accordingly to ensure the
623 * clocksource does not wrap.
624 */
625 time_delta = min_t(u64, time_delta,
626 tick_period.tv64 * delta_jiffies);
627 }
628
629 if (time_delta < KTIME_MAX)
630 expires = ktime_add_ns(last_update, time_delta);
631 else
632 expires.tv64 = KTIME_MAX;
633
634 /* Skip reprogram of event if its not changed */
635 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
636 goto out;
637
638 ret = expires;
639
640 /*
641 * nohz_stop_sched_tick can be called several times before
642 * the nohz_restart_sched_tick is called. This happens when
643 * interrupts arrive which do not cause a reschedule. In the
644 * first call we save the current tick time, so we can restart
645 * the scheduler tick in nohz_restart_sched_tick.
646 */
647 if (!ts->tick_stopped) {
648 nohz_balance_enter_idle(cpu);
649 calc_load_enter_idle();
650
651 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
652 ts->tick_stopped = 1;
653 trace_tick_stop(1, " ");
654 }
655
656 /*
657 * If the expiration time == KTIME_MAX, then
658 * in this case we simply stop the tick timer.
659 */
660 if (unlikely(expires.tv64 == KTIME_MAX)) {
661 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
662 hrtimer_cancel(&ts->sched_timer);
663 goto out;
664 }
665
666 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
667 hrtimer_start(&ts->sched_timer, expires,
668 HRTIMER_MODE_ABS_PINNED);
669 /* Check, if the timer was already in the past */
670 if (hrtimer_active(&ts->sched_timer))
671 goto out;
672 } else if (!tick_program_event(expires, 0))
673 goto out;
674 /*
675 * We are past the event already. So we crossed a
676 * jiffie boundary. Update jiffies and raise the
677 * softirq.
678 */
679 tick_do_update_jiffies64(ktime_get());
680 }
681 raise_softirq_irqoff(TIMER_SOFTIRQ);
682 out:
683 ts->next_jiffies = next_jiffies;
684 ts->last_jiffies = last_jiffies;
685 ts->sleep_length = ktime_sub(dev->next_event, now);
686
687 return ret;
688 }
689
690 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
691 {
692 #ifdef CONFIG_NO_HZ_FULL
693 int cpu = smp_processor_id();
694
695 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
696 return;
697
698 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
699 return;
700
701 if (!can_stop_full_tick())
702 return;
703
704 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
705 #endif
706 }
707
708 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
709 {
710 /*
711 * If this cpu is offline and it is the one which updates
712 * jiffies, then give up the assignment and let it be taken by
713 * the cpu which runs the tick timer next. If we don't drop
714 * this here the jiffies might be stale and do_timer() never
715 * invoked.
716 */
717 if (unlikely(!cpu_online(cpu))) {
718 if (cpu == tick_do_timer_cpu)
719 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
720 return false;
721 }
722
723 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
724 return false;
725
726 if (need_resched())
727 return false;
728
729 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
730 static int ratelimit;
731
732 if (ratelimit < 10 &&
733 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
734 pr_warn("NOHZ: local_softirq_pending %02x\n",
735 (unsigned int) local_softirq_pending());
736 ratelimit++;
737 }
738 return false;
739 }
740
741 if (have_nohz_full_mask) {
742 /*
743 * Keep the tick alive to guarantee timekeeping progression
744 * if there are full dynticks CPUs around
745 */
746 if (tick_do_timer_cpu == cpu)
747 return false;
748 /*
749 * Boot safety: make sure the timekeeping duty has been
750 * assigned before entering dyntick-idle mode,
751 */
752 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
753 return false;
754 }
755
756 return true;
757 }
758
759 static void __tick_nohz_idle_enter(struct tick_sched *ts)
760 {
761 ktime_t now, expires;
762 int cpu = smp_processor_id();
763
764 now = tick_nohz_start_idle(cpu, ts);
765
766 if (can_stop_idle_tick(cpu, ts)) {
767 int was_stopped = ts->tick_stopped;
768
769 ts->idle_calls++;
770
771 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
772 if (expires.tv64 > 0LL) {
773 ts->idle_sleeps++;
774 ts->idle_expires = expires;
775 }
776
777 if (!was_stopped && ts->tick_stopped)
778 ts->idle_jiffies = ts->last_jiffies;
779 }
780 }
781
782 /**
783 * tick_nohz_idle_enter - stop the idle tick from the idle task
784 *
785 * When the next event is more than a tick into the future, stop the idle tick
786 * Called when we start the idle loop.
787 *
788 * The arch is responsible of calling:
789 *
790 * - rcu_idle_enter() after its last use of RCU before the CPU is put
791 * to sleep.
792 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
793 */
794 void tick_nohz_idle_enter(void)
795 {
796 struct tick_sched *ts;
797
798 WARN_ON_ONCE(irqs_disabled());
799
800 /*
801 * Update the idle state in the scheduler domain hierarchy
802 * when tick_nohz_stop_sched_tick() is called from the idle loop.
803 * State will be updated to busy during the first busy tick after
804 * exiting idle.
805 */
806 set_cpu_sd_state_idle();
807
808 local_irq_disable();
809
810 ts = &__get_cpu_var(tick_cpu_sched);
811 /*
812 * set ts->inidle unconditionally. even if the system did not
813 * switch to nohz mode the cpu frequency governers rely on the
814 * update of the idle time accounting in tick_nohz_start_idle().
815 */
816 ts->inidle = 1;
817 __tick_nohz_idle_enter(ts);
818
819 local_irq_enable();
820 }
821 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
822
823 /**
824 * tick_nohz_irq_exit - update next tick event from interrupt exit
825 *
826 * When an interrupt fires while we are idle and it doesn't cause
827 * a reschedule, it may still add, modify or delete a timer, enqueue
828 * an RCU callback, etc...
829 * So we need to re-calculate and reprogram the next tick event.
830 */
831 void tick_nohz_irq_exit(void)
832 {
833 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
834
835 if (ts->inidle) {
836 /* Cancel the timer because CPU already waken up from the C-states*/
837 menu_hrtimer_cancel();
838 __tick_nohz_idle_enter(ts);
839 } else {
840 tick_nohz_full_stop_tick(ts);
841 }
842 }
843
844 /**
845 * tick_nohz_get_sleep_length - return the length of the current sleep
846 *
847 * Called from power state control code with interrupts disabled
848 */
849 ktime_t tick_nohz_get_sleep_length(void)
850 {
851 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
852
853 return ts->sleep_length;
854 }
855
856 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
857 {
858 hrtimer_cancel(&ts->sched_timer);
859 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
860
861 while (1) {
862 /* Forward the time to expire in the future */
863 hrtimer_forward(&ts->sched_timer, now, tick_period);
864
865 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
866 hrtimer_start_expires(&ts->sched_timer,
867 HRTIMER_MODE_ABS_PINNED);
868 /* Check, if the timer was already in the past */
869 if (hrtimer_active(&ts->sched_timer))
870 break;
871 } else {
872 if (!tick_program_event(
873 hrtimer_get_expires(&ts->sched_timer), 0))
874 break;
875 }
876 /* Reread time and update jiffies */
877 now = ktime_get();
878 tick_do_update_jiffies64(now);
879 }
880 }
881
882 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
883 {
884 /* Update jiffies first */
885 tick_do_update_jiffies64(now);
886 update_cpu_load_nohz();
887
888 calc_load_exit_idle();
889 touch_softlockup_watchdog();
890 /*
891 * Cancel the scheduled timer and restore the tick
892 */
893 ts->tick_stopped = 0;
894 ts->idle_exittime = now;
895
896 tick_nohz_restart(ts, now);
897 }
898
899 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
900 {
901 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
902 unsigned long ticks;
903
904 if (vtime_accounting_enabled())
905 return;
906 /*
907 * We stopped the tick in idle. Update process times would miss the
908 * time we slept as update_process_times does only a 1 tick
909 * accounting. Enforce that this is accounted to idle !
910 */
911 ticks = jiffies - ts->idle_jiffies;
912 /*
913 * We might be one off. Do not randomly account a huge number of ticks!
914 */
915 if (ticks && ticks < LONG_MAX)
916 account_idle_ticks(ticks);
917 #endif
918 }
919
920 /**
921 * tick_nohz_idle_exit - restart the idle tick from the idle task
922 *
923 * Restart the idle tick when the CPU is woken up from idle
924 * This also exit the RCU extended quiescent state. The CPU
925 * can use RCU again after this function is called.
926 */
927 void tick_nohz_idle_exit(void)
928 {
929 int cpu = smp_processor_id();
930 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
931 ktime_t now;
932
933 local_irq_disable();
934
935 WARN_ON_ONCE(!ts->inidle);
936
937 ts->inidle = 0;
938
939 /* Cancel the timer because CPU already waken up from the C-states*/
940 menu_hrtimer_cancel();
941 if (ts->idle_active || ts->tick_stopped)
942 now = ktime_get();
943
944 if (ts->idle_active)
945 tick_nohz_stop_idle(cpu, now);
946
947 if (ts->tick_stopped) {
948 tick_nohz_restart_sched_tick(ts, now);
949 tick_nohz_account_idle_ticks(ts);
950 }
951
952 local_irq_enable();
953 }
954 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
955
956 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
957 {
958 hrtimer_forward(&ts->sched_timer, now, tick_period);
959 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
960 }
961
962 /*
963 * The nohz low res interrupt handler
964 */
965 static void tick_nohz_handler(struct clock_event_device *dev)
966 {
967 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
968 struct pt_regs *regs = get_irq_regs();
969 ktime_t now = ktime_get();
970
971 dev->next_event.tv64 = KTIME_MAX;
972
973 tick_sched_do_timer(now);
974 tick_sched_handle(ts, regs);
975
976 while (tick_nohz_reprogram(ts, now)) {
977 now = ktime_get();
978 tick_do_update_jiffies64(now);
979 }
980 }
981
982 /**
983 * tick_nohz_switch_to_nohz - switch to nohz mode
984 */
985 static void tick_nohz_switch_to_nohz(void)
986 {
987 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
988 ktime_t next;
989
990 if (!tick_nohz_enabled)
991 return;
992
993 local_irq_disable();
994 if (tick_switch_to_oneshot(tick_nohz_handler)) {
995 local_irq_enable();
996 return;
997 }
998
999 ts->nohz_mode = NOHZ_MODE_LOWRES;
1000
1001 /*
1002 * Recycle the hrtimer in ts, so we can share the
1003 * hrtimer_forward with the highres code.
1004 */
1005 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1006 /* Get the next period */
1007 next = tick_init_jiffy_update();
1008
1009 for (;;) {
1010 hrtimer_set_expires(&ts->sched_timer, next);
1011 if (!tick_program_event(next, 0))
1012 break;
1013 next = ktime_add(next, tick_period);
1014 }
1015 local_irq_enable();
1016 }
1017
1018 /*
1019 * When NOHZ is enabled and the tick is stopped, we need to kick the
1020 * tick timer from irq_enter() so that the jiffies update is kept
1021 * alive during long running softirqs. That's ugly as hell, but
1022 * correctness is key even if we need to fix the offending softirq in
1023 * the first place.
1024 *
1025 * Note, this is different to tick_nohz_restart. We just kick the
1026 * timer and do not touch the other magic bits which need to be done
1027 * when idle is left.
1028 */
1029 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1030 {
1031 #if 0
1032 /* Switch back to 2.6.27 behaviour */
1033
1034 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1035 ktime_t delta;
1036
1037 /*
1038 * Do not touch the tick device, when the next expiry is either
1039 * already reached or less/equal than the tick period.
1040 */
1041 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1042 if (delta.tv64 <= tick_period.tv64)
1043 return;
1044
1045 tick_nohz_restart(ts, now);
1046 #endif
1047 }
1048
1049 static inline void tick_check_nohz(int cpu)
1050 {
1051 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1052 ktime_t now;
1053
1054 if (!ts->idle_active && !ts->tick_stopped)
1055 return;
1056 now = ktime_get();
1057 if (ts->idle_active)
1058 tick_nohz_stop_idle(cpu, now);
1059 if (ts->tick_stopped) {
1060 tick_nohz_update_jiffies(now);
1061 tick_nohz_kick_tick(cpu, now);
1062 }
1063 }
1064
1065 #else
1066
1067 static inline void tick_nohz_switch_to_nohz(void) { }
1068 static inline void tick_check_nohz(int cpu) { }
1069
1070 #endif /* CONFIG_NO_HZ_COMMON */
1071
1072 /*
1073 * Called from irq_enter to notify about the possible interruption of idle()
1074 */
1075 void tick_check_idle(int cpu)
1076 {
1077 tick_check_oneshot_broadcast(cpu);
1078 tick_check_nohz(cpu);
1079 }
1080
1081 /*
1082 * High resolution timer specific code
1083 */
1084 #ifdef CONFIG_HIGH_RES_TIMERS
1085 /*
1086 * We rearm the timer until we get disabled by the idle code.
1087 * Called with interrupts disabled.
1088 */
1089 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1090 {
1091 struct tick_sched *ts =
1092 container_of(timer, struct tick_sched, sched_timer);
1093 struct pt_regs *regs = get_irq_regs();
1094 ktime_t now = ktime_get();
1095
1096 tick_sched_do_timer(now);
1097
1098 /*
1099 * Do not call, when we are not in irq context and have
1100 * no valid regs pointer
1101 */
1102 if (regs)
1103 tick_sched_handle(ts, regs);
1104
1105 hrtimer_forward(timer, now, tick_period);
1106
1107 return HRTIMER_RESTART;
1108 }
1109
1110 static int sched_skew_tick;
1111
1112 static int __init skew_tick(char *str)
1113 {
1114 get_option(&str, &sched_skew_tick);
1115
1116 return 0;
1117 }
1118 early_param("skew_tick", skew_tick);
1119
1120 /**
1121 * tick_setup_sched_timer - setup the tick emulation timer
1122 */
1123 void tick_setup_sched_timer(void)
1124 {
1125 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1126 ktime_t now = ktime_get();
1127
1128 /*
1129 * Emulate tick processing via per-CPU hrtimers:
1130 */
1131 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1132 ts->sched_timer.function = tick_sched_timer;
1133
1134 /* Get the next period (per cpu) */
1135 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1136
1137 /* Offset the tick to avert jiffies_lock contention. */
1138 if (sched_skew_tick) {
1139 u64 offset = ktime_to_ns(tick_period) >> 1;
1140 do_div(offset, num_possible_cpus());
1141 offset *= smp_processor_id();
1142 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1143 }
1144
1145 for (;;) {
1146 hrtimer_forward(&ts->sched_timer, now, tick_period);
1147 hrtimer_start_expires(&ts->sched_timer,
1148 HRTIMER_MODE_ABS_PINNED);
1149 /* Check, if the timer was already in the past */
1150 if (hrtimer_active(&ts->sched_timer))
1151 break;
1152 now = ktime_get();
1153 }
1154
1155 #ifdef CONFIG_NO_HZ_COMMON
1156 if (tick_nohz_enabled)
1157 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1158 #endif
1159 }
1160 #endif /* HIGH_RES_TIMERS */
1161
1162 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1163 void tick_cancel_sched_timer(int cpu)
1164 {
1165 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1166
1167 # ifdef CONFIG_HIGH_RES_TIMERS
1168 if (ts->sched_timer.base)
1169 hrtimer_cancel(&ts->sched_timer);
1170 # endif
1171
1172 memset(ts, 0, sizeof(*ts));
1173 }
1174 #endif
1175
1176 /**
1177 * Async notification about clocksource changes
1178 */
1179 void tick_clock_notify(void)
1180 {
1181 int cpu;
1182
1183 for_each_possible_cpu(cpu)
1184 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1185 }
1186
1187 /*
1188 * Async notification about clock event changes
1189 */
1190 void tick_oneshot_notify(void)
1191 {
1192 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1193
1194 set_bit(0, &ts->check_clocks);
1195 }
1196
1197 /**
1198 * Check, if a change happened, which makes oneshot possible.
1199 *
1200 * Called cyclic from the hrtimer softirq (driven by the timer
1201 * softirq) allow_nohz signals, that we can switch into low-res nohz
1202 * mode, because high resolution timers are disabled (either compile
1203 * or runtime).
1204 */
1205 int tick_check_oneshot_change(int allow_nohz)
1206 {
1207 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1208
1209 if (!test_and_clear_bit(0, &ts->check_clocks))
1210 return 0;
1211
1212 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1213 return 0;
1214
1215 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1216 return 0;
1217
1218 if (!allow_nohz)
1219 return 1;
1220
1221 tick_nohz_switch_to_nohz();
1222 return 0;
1223 }