Merge 4.4.109 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27
28 #include <asm/irq_regs.h>
29
30 #include "tick-internal.h"
31
32 #include <trace/events/timer.h>
33
34 /*
35 * Per cpu nohz control structure
36 */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39 /*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42 static ktime_t last_jiffies_update;
43
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 return &per_cpu(tick_cpu_sched, cpu);
47 }
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93 }
94
95 /*
96 * Initialize and return retrieve the jiffies update.
97 */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109 }
110
111
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 int cpu = smp_processor_id();
115
116 #ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132 }
133
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153 }
154
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159
160 static bool can_stop_full_tick(void)
161 {
162 WARN_ON_ONCE(!irqs_disabled());
163
164 if (!sched_can_stop_tick()) {
165 trace_tick_stop(0, "more than 1 task in runqueue\n");
166 return false;
167 }
168
169 if (!posix_cpu_timers_can_stop_tick(current)) {
170 trace_tick_stop(0, "posix timers running\n");
171 return false;
172 }
173
174 if (!perf_event_can_stop_tick()) {
175 trace_tick_stop(0, "perf events running\n");
176 return false;
177 }
178
179 /* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 /*
182 * TODO: kick full dynticks CPUs when
183 * sched_clock_stable is set.
184 */
185 if (!sched_clock_stable()) {
186 trace_tick_stop(0, "unstable sched clock\n");
187 /*
188 * Don't allow the user to think they can get
189 * full NO_HZ with this machine.
190 */
191 WARN_ONCE(tick_nohz_full_running,
192 "NO_HZ FULL will not work with unstable sched clock");
193 return false;
194 }
195 #endif
196
197 return true;
198 }
199
200 static void nohz_full_kick_work_func(struct irq_work *work)
201 {
202 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
203 }
204
205 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
206 .func = nohz_full_kick_work_func,
207 };
208
209 /*
210 * Kick this CPU if it's full dynticks in order to force it to
211 * re-evaluate its dependency on the tick and restart it if necessary.
212 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
213 * is NMI safe.
214 */
215 void tick_nohz_full_kick(void)
216 {
217 if (!tick_nohz_full_cpu(smp_processor_id()))
218 return;
219
220 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
221 }
222
223 /*
224 * Kick the CPU if it's full dynticks in order to force it to
225 * re-evaluate its dependency on the tick and restart it if necessary.
226 */
227 void tick_nohz_full_kick_cpu(int cpu)
228 {
229 if (!tick_nohz_full_cpu(cpu))
230 return;
231
232 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
233 }
234
235 static void nohz_full_kick_ipi(void *info)
236 {
237 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
238 }
239
240 /*
241 * Kick all full dynticks CPUs in order to force these to re-evaluate
242 * their dependency on the tick and restart it if necessary.
243 */
244 void tick_nohz_full_kick_all(void)
245 {
246 if (!tick_nohz_full_running)
247 return;
248
249 preempt_disable();
250 smp_call_function_many(tick_nohz_full_mask,
251 nohz_full_kick_ipi, NULL, false);
252 tick_nohz_full_kick();
253 preempt_enable();
254 }
255
256 /*
257 * Re-evaluate the need for the tick as we switch the current task.
258 * It might need the tick due to per task/process properties:
259 * perf events, posix cpu timers, ...
260 */
261 void __tick_nohz_task_switch(void)
262 {
263 unsigned long flags;
264
265 local_irq_save(flags);
266
267 if (!tick_nohz_full_cpu(smp_processor_id()))
268 goto out;
269
270 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
271 tick_nohz_full_kick();
272
273 out:
274 local_irq_restore(flags);
275 }
276
277 /* Parse the boot-time nohz CPU list from the kernel parameters. */
278 static int __init tick_nohz_full_setup(char *str)
279 {
280 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
281 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
282 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
283 free_bootmem_cpumask_var(tick_nohz_full_mask);
284 return 1;
285 }
286 tick_nohz_full_running = true;
287
288 return 1;
289 }
290 __setup("nohz_full=", tick_nohz_full_setup);
291
292 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
293 unsigned long action,
294 void *hcpu)
295 {
296 unsigned int cpu = (unsigned long)hcpu;
297
298 switch (action & ~CPU_TASKS_FROZEN) {
299 case CPU_DOWN_PREPARE:
300 /*
301 * The boot CPU handles housekeeping duty (unbound timers,
302 * workqueues, timekeeping, ...) on behalf of full dynticks
303 * CPUs. It must remain online when nohz full is enabled.
304 */
305 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
306 return NOTIFY_BAD;
307 break;
308 }
309 return NOTIFY_OK;
310 }
311
312 static int tick_nohz_init_all(void)
313 {
314 int err = -1;
315
316 #ifdef CONFIG_NO_HZ_FULL_ALL
317 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
318 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
319 return err;
320 }
321 err = 0;
322 cpumask_setall(tick_nohz_full_mask);
323 tick_nohz_full_running = true;
324 #endif
325 return err;
326 }
327
328 void __init tick_nohz_init(void)
329 {
330 int cpu;
331
332 if (!tick_nohz_full_running) {
333 if (tick_nohz_init_all() < 0)
334 return;
335 }
336
337 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
338 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
339 cpumask_clear(tick_nohz_full_mask);
340 tick_nohz_full_running = false;
341 return;
342 }
343
344 /*
345 * Full dynticks uses irq work to drive the tick rescheduling on safe
346 * locking contexts. But then we need irq work to raise its own
347 * interrupts to avoid circular dependency on the tick
348 */
349 if (!arch_irq_work_has_interrupt()) {
350 pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
351 "support irq work self-IPIs\n");
352 cpumask_clear(tick_nohz_full_mask);
353 cpumask_copy(housekeeping_mask, cpu_possible_mask);
354 tick_nohz_full_running = false;
355 return;
356 }
357
358 cpu = smp_processor_id();
359
360 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
361 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
362 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
363 }
364
365 cpumask_andnot(housekeeping_mask,
366 cpu_possible_mask, tick_nohz_full_mask);
367
368 for_each_cpu(cpu, tick_nohz_full_mask)
369 context_tracking_cpu_set(cpu);
370
371 cpu_notifier(tick_nohz_cpu_down_callback, 0);
372 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
373 cpumask_pr_args(tick_nohz_full_mask));
374
375 /*
376 * We need at least one CPU to handle housekeeping work such
377 * as timekeeping, unbound timers, workqueues, ...
378 */
379 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
380 }
381 #endif
382
383 /*
384 * NOHZ - aka dynamic tick functionality
385 */
386 #ifdef CONFIG_NO_HZ_COMMON
387 /*
388 * NO HZ enabled ?
389 */
390 static int tick_nohz_enabled __read_mostly = 1;
391 unsigned long tick_nohz_active __read_mostly;
392 /*
393 * Enable / Disable tickless mode
394 */
395 static int __init setup_tick_nohz(char *str)
396 {
397 if (!strcmp(str, "off"))
398 tick_nohz_enabled = 0;
399 else if (!strcmp(str, "on"))
400 tick_nohz_enabled = 1;
401 else
402 return 0;
403 return 1;
404 }
405
406 __setup("nohz=", setup_tick_nohz);
407
408 int tick_nohz_tick_stopped(void)
409 {
410 return __this_cpu_read(tick_cpu_sched.tick_stopped);
411 }
412
413 /**
414 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
415 *
416 * Called from interrupt entry when the CPU was idle
417 *
418 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
419 * must be updated. Otherwise an interrupt handler could use a stale jiffy
420 * value. We do this unconditionally on any cpu, as we don't know whether the
421 * cpu, which has the update task assigned is in a long sleep.
422 */
423 static void tick_nohz_update_jiffies(ktime_t now)
424 {
425 unsigned long flags;
426
427 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
428
429 local_irq_save(flags);
430 tick_do_update_jiffies64(now);
431 local_irq_restore(flags);
432
433 touch_softlockup_watchdog();
434 }
435
436 /*
437 * Updates the per cpu time idle statistics counters
438 */
439 static void
440 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
441 {
442 ktime_t delta;
443
444 if (ts->idle_active) {
445 delta = ktime_sub(now, ts->idle_entrytime);
446 if (nr_iowait_cpu(cpu) > 0)
447 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
448 else
449 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
450 ts->idle_entrytime = now;
451 }
452
453 if (last_update_time)
454 *last_update_time = ktime_to_us(now);
455
456 }
457
458 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
459 {
460 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
461 ts->idle_active = 0;
462
463 sched_clock_idle_wakeup_event(0);
464 }
465
466 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
467 {
468 ktime_t now = ktime_get();
469
470 ts->idle_entrytime = now;
471 ts->idle_active = 1;
472 sched_clock_idle_sleep_event();
473 return now;
474 }
475
476 /**
477 * get_cpu_idle_time_us - get the total idle time of a cpu
478 * @cpu: CPU number to query
479 * @last_update_time: variable to store update time in. Do not update
480 * counters if NULL.
481 *
482 * Return the cummulative idle time (since boot) for a given
483 * CPU, in microseconds.
484 *
485 * This time is measured via accounting rather than sampling,
486 * and is as accurate as ktime_get() is.
487 *
488 * This function returns -1 if NOHZ is not enabled.
489 */
490 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
491 {
492 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
493 ktime_t now, idle;
494
495 if (!tick_nohz_active)
496 return -1;
497
498 now = ktime_get();
499 if (last_update_time) {
500 update_ts_time_stats(cpu, ts, now, last_update_time);
501 idle = ts->idle_sleeptime;
502 } else {
503 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
504 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
505
506 idle = ktime_add(ts->idle_sleeptime, delta);
507 } else {
508 idle = ts->idle_sleeptime;
509 }
510 }
511
512 return ktime_to_us(idle);
513
514 }
515 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
516
517 /**
518 * get_cpu_iowait_time_us - get the total iowait time of a cpu
519 * @cpu: CPU number to query
520 * @last_update_time: variable to store update time in. Do not update
521 * counters if NULL.
522 *
523 * Return the cummulative iowait time (since boot) for a given
524 * CPU, in microseconds.
525 *
526 * This time is measured via accounting rather than sampling,
527 * and is as accurate as ktime_get() is.
528 *
529 * This function returns -1 if NOHZ is not enabled.
530 */
531 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
532 {
533 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
534 ktime_t now, iowait;
535
536 if (!tick_nohz_active)
537 return -1;
538
539 now = ktime_get();
540 if (last_update_time) {
541 update_ts_time_stats(cpu, ts, now, last_update_time);
542 iowait = ts->iowait_sleeptime;
543 } else {
544 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
545 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
546
547 iowait = ktime_add(ts->iowait_sleeptime, delta);
548 } else {
549 iowait = ts->iowait_sleeptime;
550 }
551 }
552
553 return ktime_to_us(iowait);
554 }
555 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
556
557 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
558 {
559 hrtimer_cancel(&ts->sched_timer);
560 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
561
562 /* Forward the time to expire in the future */
563 hrtimer_forward(&ts->sched_timer, now, tick_period);
564
565 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
566 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
567 else
568 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
569 }
570
571 static inline bool local_timer_softirq_pending(void)
572 {
573 return local_softirq_pending() & TIMER_SOFTIRQ;
574 }
575
576 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
577 ktime_t now, int cpu)
578 {
579 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
580 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
581 unsigned long seq, basejiff;
582 ktime_t tick;
583
584 /* Read jiffies and the time when jiffies were updated last */
585 do {
586 seq = read_seqbegin(&jiffies_lock);
587 basemono = last_jiffies_update.tv64;
588 basejiff = jiffies;
589 } while (read_seqretry(&jiffies_lock, seq));
590 ts->last_jiffies = basejiff;
591
592 /*
593 * Keep the periodic tick, when RCU, architecture or irq_work
594 * requests it.
595 * Aside of that check whether the local timer softirq is
596 * pending. If so its a bad idea to call get_next_timer_interrupt()
597 * because there is an already expired timer, so it will request
598 * immeditate expiry, which rearms the hardware timer with a
599 * minimal delta which brings us back to this place
600 * immediately. Lather, rinse and repeat...
601 */
602 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
603 irq_work_needs_cpu() || local_timer_softirq_pending()) {
604 next_tick = basemono + TICK_NSEC;
605 } else {
606 /*
607 * Get the next pending timer. If high resolution
608 * timers are enabled this only takes the timer wheel
609 * timers into account. If high resolution timers are
610 * disabled this also looks at the next expiring
611 * hrtimer.
612 */
613 next_tmr = get_next_timer_interrupt(basejiff, basemono);
614 ts->next_timer = next_tmr;
615 /* Take the next rcu event into account */
616 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
617 }
618
619 /*
620 * If the tick is due in the next period, keep it ticking or
621 * restart it proper.
622 */
623 delta = next_tick - basemono;
624 if (delta <= (u64)TICK_NSEC) {
625 tick.tv64 = 0;
626 if (!ts->tick_stopped)
627 goto out;
628 if (delta == 0) {
629 /* Tick is stopped, but required now. Enforce it */
630 tick_nohz_restart(ts, now);
631 goto out;
632 }
633 }
634
635 /*
636 * If this cpu is the one which updates jiffies, then give up
637 * the assignment and let it be taken by the cpu which runs
638 * the tick timer next, which might be this cpu as well. If we
639 * don't drop this here the jiffies might be stale and
640 * do_timer() never invoked. Keep track of the fact that it
641 * was the one which had the do_timer() duty last. If this cpu
642 * is the one which had the do_timer() duty last, we limit the
643 * sleep time to the timekeeping max_deferement value.
644 * Otherwise we can sleep as long as we want.
645 */
646 delta = timekeeping_max_deferment();
647 if (cpu == tick_do_timer_cpu) {
648 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
649 ts->do_timer_last = 1;
650 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
651 delta = KTIME_MAX;
652 ts->do_timer_last = 0;
653 } else if (!ts->do_timer_last) {
654 delta = KTIME_MAX;
655 }
656
657 #ifdef CONFIG_NO_HZ_FULL
658 /* Limit the tick delta to the maximum scheduler deferment */
659 if (!ts->inidle)
660 delta = min(delta, scheduler_tick_max_deferment());
661 #endif
662
663 /* Calculate the next expiry time */
664 if (delta < (KTIME_MAX - basemono))
665 expires = basemono + delta;
666 else
667 expires = KTIME_MAX;
668
669 expires = min_t(u64, expires, next_tick);
670 tick.tv64 = expires;
671
672 /* Skip reprogram of event if its not changed */
673 if (ts->tick_stopped && (expires == dev->next_event.tv64))
674 goto out;
675
676 /*
677 * nohz_stop_sched_tick can be called several times before
678 * the nohz_restart_sched_tick is called. This happens when
679 * interrupts arrive which do not cause a reschedule. In the
680 * first call we save the current tick time, so we can restart
681 * the scheduler tick in nohz_restart_sched_tick.
682 */
683 if (!ts->tick_stopped) {
684 nohz_balance_enter_idle(cpu);
685 calc_load_enter_idle();
686
687 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
688 ts->tick_stopped = 1;
689 trace_tick_stop(1, " ");
690 }
691
692 /*
693 * If the expiration time == KTIME_MAX, then we simply stop
694 * the tick timer.
695 */
696 if (unlikely(expires == KTIME_MAX)) {
697 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
698 hrtimer_cancel(&ts->sched_timer);
699 goto out;
700 }
701
702 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
703 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
704 else
705 tick_program_event(tick, 1);
706 out:
707 /* Update the estimated sleep length */
708 ts->sleep_length = ktime_sub(dev->next_event, now);
709 return tick;
710 }
711
712 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
713 {
714 /* Update jiffies first */
715 tick_do_update_jiffies64(now);
716 update_cpu_load_nohz();
717
718 calc_load_exit_idle();
719 touch_softlockup_watchdog();
720 /*
721 * Cancel the scheduled timer and restore the tick
722 */
723 ts->tick_stopped = 0;
724 ts->idle_exittime = now;
725
726 tick_nohz_restart(ts, now);
727 }
728
729 static void tick_nohz_full_update_tick(struct tick_sched *ts)
730 {
731 #ifdef CONFIG_NO_HZ_FULL
732 int cpu = smp_processor_id();
733
734 if (!tick_nohz_full_cpu(cpu))
735 return;
736
737 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
738 return;
739
740 if (can_stop_full_tick())
741 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
742 else if (ts->tick_stopped)
743 tick_nohz_restart_sched_tick(ts, ktime_get());
744 #endif
745 }
746
747 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
748 {
749 /*
750 * If this cpu is offline and it is the one which updates
751 * jiffies, then give up the assignment and let it be taken by
752 * the cpu which runs the tick timer next. If we don't drop
753 * this here the jiffies might be stale and do_timer() never
754 * invoked.
755 */
756 if (unlikely(!cpu_online(cpu))) {
757 if (cpu == tick_do_timer_cpu)
758 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
759 return false;
760 }
761
762 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
763 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
764 return false;
765 }
766
767 if (need_resched())
768 return false;
769
770 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
771 static int ratelimit;
772
773 if (ratelimit < 10 &&
774 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
775 pr_warn("NOHZ: local_softirq_pending %02x\n",
776 (unsigned int) local_softirq_pending());
777 ratelimit++;
778 }
779 return false;
780 }
781
782 if (tick_nohz_full_enabled()) {
783 /*
784 * Keep the tick alive to guarantee timekeeping progression
785 * if there are full dynticks CPUs around
786 */
787 if (tick_do_timer_cpu == cpu)
788 return false;
789 /*
790 * Boot safety: make sure the timekeeping duty has been
791 * assigned before entering dyntick-idle mode,
792 */
793 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
794 return false;
795 }
796
797 return true;
798 }
799
800 static void __tick_nohz_idle_enter(struct tick_sched *ts)
801 {
802 ktime_t now, expires;
803 int cpu = smp_processor_id();
804
805 now = tick_nohz_start_idle(ts);
806
807 if (can_stop_idle_tick(cpu, ts)) {
808 int was_stopped = ts->tick_stopped;
809
810 ts->idle_calls++;
811
812 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
813 if (expires.tv64 > 0LL) {
814 ts->idle_sleeps++;
815 ts->idle_expires = expires;
816 }
817
818 if (!was_stopped && ts->tick_stopped)
819 ts->idle_jiffies = ts->last_jiffies;
820 }
821 }
822
823 /**
824 * tick_nohz_idle_enter - stop the idle tick from the idle task
825 *
826 * When the next event is more than a tick into the future, stop the idle tick
827 * Called when we start the idle loop.
828 *
829 * The arch is responsible of calling:
830 *
831 * - rcu_idle_enter() after its last use of RCU before the CPU is put
832 * to sleep.
833 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
834 */
835 void tick_nohz_idle_enter(void)
836 {
837 struct tick_sched *ts;
838
839 WARN_ON_ONCE(irqs_disabled());
840
841 /*
842 * Update the idle state in the scheduler domain hierarchy
843 * when tick_nohz_stop_sched_tick() is called from the idle loop.
844 * State will be updated to busy during the first busy tick after
845 * exiting idle.
846 */
847 set_cpu_sd_state_idle();
848
849 local_irq_disable();
850
851 ts = this_cpu_ptr(&tick_cpu_sched);
852 ts->inidle = 1;
853 __tick_nohz_idle_enter(ts);
854
855 local_irq_enable();
856 }
857
858 /**
859 * tick_nohz_irq_exit - update next tick event from interrupt exit
860 *
861 * When an interrupt fires while we are idle and it doesn't cause
862 * a reschedule, it may still add, modify or delete a timer, enqueue
863 * an RCU callback, etc...
864 * So we need to re-calculate and reprogram the next tick event.
865 */
866 void tick_nohz_irq_exit(void)
867 {
868 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
869
870 if (ts->inidle)
871 __tick_nohz_idle_enter(ts);
872 else
873 tick_nohz_full_update_tick(ts);
874 }
875
876 /**
877 * tick_nohz_get_sleep_length - return the length of the current sleep
878 *
879 * Called from power state control code with interrupts disabled
880 */
881 ktime_t tick_nohz_get_sleep_length(void)
882 {
883 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
884
885 return ts->sleep_length;
886 }
887
888 /**
889 * tick_nohz_get_idle_calls - return the current idle calls counter value
890 *
891 * Called from the schedutil frequency scaling governor in scheduler context.
892 */
893 unsigned long tick_nohz_get_idle_calls(void)
894 {
895 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
896
897 return ts->idle_calls;
898 }
899
900 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
901 {
902 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
903 unsigned long ticks;
904
905 if (vtime_accounting_enabled())
906 return;
907 /*
908 * We stopped the tick in idle. Update process times would miss the
909 * time we slept as update_process_times does only a 1 tick
910 * accounting. Enforce that this is accounted to idle !
911 */
912 ticks = jiffies - ts->idle_jiffies;
913 /*
914 * We might be one off. Do not randomly account a huge number of ticks!
915 */
916 if (ticks && ticks < LONG_MAX)
917 account_idle_ticks(ticks);
918 #endif
919 }
920
921 /**
922 * tick_nohz_idle_exit - restart the idle tick from the idle task
923 *
924 * Restart the idle tick when the CPU is woken up from idle
925 * This also exit the RCU extended quiescent state. The CPU
926 * can use RCU again after this function is called.
927 */
928 void tick_nohz_idle_exit(void)
929 {
930 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
931 ktime_t now;
932
933 local_irq_disable();
934
935 WARN_ON_ONCE(!ts->inidle);
936
937 ts->inidle = 0;
938
939 if (ts->idle_active || ts->tick_stopped)
940 now = ktime_get();
941
942 if (ts->idle_active)
943 tick_nohz_stop_idle(ts, now);
944
945 if (ts->tick_stopped) {
946 tick_nohz_restart_sched_tick(ts, now);
947 tick_nohz_account_idle_ticks(ts);
948 }
949
950 local_irq_enable();
951 }
952
953 /*
954 * The nohz low res interrupt handler
955 */
956 static void tick_nohz_handler(struct clock_event_device *dev)
957 {
958 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
959 struct pt_regs *regs = get_irq_regs();
960 ktime_t now = ktime_get();
961
962 dev->next_event.tv64 = KTIME_MAX;
963
964 tick_sched_do_timer(now);
965 tick_sched_handle(ts, regs);
966
967 /* No need to reprogram if we are running tickless */
968 if (unlikely(ts->tick_stopped))
969 return;
970
971 hrtimer_forward(&ts->sched_timer, now, tick_period);
972 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
973 }
974
975 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
976 {
977 if (!tick_nohz_enabled)
978 return;
979 ts->nohz_mode = mode;
980 /* One update is enough */
981 if (!test_and_set_bit(0, &tick_nohz_active))
982 timers_update_migration(true);
983 }
984
985 /**
986 * tick_nohz_switch_to_nohz - switch to nohz mode
987 */
988 static void tick_nohz_switch_to_nohz(void)
989 {
990 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
991 ktime_t next;
992
993 if (!tick_nohz_enabled)
994 return;
995
996 if (tick_switch_to_oneshot(tick_nohz_handler))
997 return;
998
999 /*
1000 * Recycle the hrtimer in ts, so we can share the
1001 * hrtimer_forward with the highres code.
1002 */
1003 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1004 /* Get the next period */
1005 next = tick_init_jiffy_update();
1006
1007 hrtimer_set_expires(&ts->sched_timer, next);
1008 hrtimer_forward_now(&ts->sched_timer, tick_period);
1009 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1010 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1011 }
1012
1013 /*
1014 * When NOHZ is enabled and the tick is stopped, we need to kick the
1015 * tick timer from irq_enter() so that the jiffies update is kept
1016 * alive during long running softirqs. That's ugly as hell, but
1017 * correctness is key even if we need to fix the offending softirq in
1018 * the first place.
1019 *
1020 * Note, this is different to tick_nohz_restart. We just kick the
1021 * timer and do not touch the other magic bits which need to be done
1022 * when idle is left.
1023 */
1024 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1025 {
1026 #if 0
1027 /* Switch back to 2.6.27 behaviour */
1028 ktime_t delta;
1029
1030 /*
1031 * Do not touch the tick device, when the next expiry is either
1032 * already reached or less/equal than the tick period.
1033 */
1034 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1035 if (delta.tv64 <= tick_period.tv64)
1036 return;
1037
1038 tick_nohz_restart(ts, now);
1039 #endif
1040 }
1041
1042 static inline void tick_nohz_irq_enter(void)
1043 {
1044 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1045 ktime_t now;
1046
1047 if (!ts->idle_active && !ts->tick_stopped)
1048 return;
1049 now = ktime_get();
1050 if (ts->idle_active)
1051 tick_nohz_stop_idle(ts, now);
1052 if (ts->tick_stopped) {
1053 tick_nohz_update_jiffies(now);
1054 tick_nohz_kick_tick(ts, now);
1055 }
1056 }
1057
1058 #else
1059
1060 static inline void tick_nohz_switch_to_nohz(void) { }
1061 static inline void tick_nohz_irq_enter(void) { }
1062 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1063
1064 #endif /* CONFIG_NO_HZ_COMMON */
1065
1066 /*
1067 * Called from irq_enter to notify about the possible interruption of idle()
1068 */
1069 void tick_irq_enter(void)
1070 {
1071 tick_check_oneshot_broadcast_this_cpu();
1072 tick_nohz_irq_enter();
1073 }
1074
1075 /*
1076 * High resolution timer specific code
1077 */
1078 #ifdef CONFIG_HIGH_RES_TIMERS
1079 /*
1080 * We rearm the timer until we get disabled by the idle code.
1081 * Called with interrupts disabled.
1082 */
1083 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1084 {
1085 struct tick_sched *ts =
1086 container_of(timer, struct tick_sched, sched_timer);
1087 struct pt_regs *regs = get_irq_regs();
1088 ktime_t now = ktime_get();
1089
1090 tick_sched_do_timer(now);
1091
1092 /*
1093 * Do not call, when we are not in irq context and have
1094 * no valid regs pointer
1095 */
1096 if (regs)
1097 tick_sched_handle(ts, regs);
1098
1099 /* No need to reprogram if we are in idle or full dynticks mode */
1100 if (unlikely(ts->tick_stopped))
1101 return HRTIMER_NORESTART;
1102
1103 hrtimer_forward(timer, now, tick_period);
1104
1105 return HRTIMER_RESTART;
1106 }
1107
1108 static int sched_skew_tick;
1109
1110 static int __init skew_tick(char *str)
1111 {
1112 get_option(&str, &sched_skew_tick);
1113
1114 return 0;
1115 }
1116 early_param("skew_tick", skew_tick);
1117
1118 /**
1119 * tick_setup_sched_timer - setup the tick emulation timer
1120 */
1121 void tick_setup_sched_timer(void)
1122 {
1123 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1124 ktime_t now = ktime_get();
1125
1126 /*
1127 * Emulate tick processing via per-CPU hrtimers:
1128 */
1129 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1130 ts->sched_timer.function = tick_sched_timer;
1131
1132 /* Get the next period (per cpu) */
1133 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1134
1135 /* Offset the tick to avert jiffies_lock contention. */
1136 if (sched_skew_tick) {
1137 u64 offset = ktime_to_ns(tick_period) >> 1;
1138 do_div(offset, num_possible_cpus());
1139 offset *= smp_processor_id();
1140 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1141 }
1142
1143 hrtimer_forward(&ts->sched_timer, now, tick_period);
1144 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1145 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1146 }
1147 #endif /* HIGH_RES_TIMERS */
1148
1149 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1150 void tick_cancel_sched_timer(int cpu)
1151 {
1152 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1153
1154 # ifdef CONFIG_HIGH_RES_TIMERS
1155 if (ts->sched_timer.base)
1156 hrtimer_cancel(&ts->sched_timer);
1157 # endif
1158
1159 memset(ts, 0, sizeof(*ts));
1160 }
1161 #endif
1162
1163 /**
1164 * Async notification about clocksource changes
1165 */
1166 void tick_clock_notify(void)
1167 {
1168 int cpu;
1169
1170 for_each_possible_cpu(cpu)
1171 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1172 }
1173
1174 /*
1175 * Async notification about clock event changes
1176 */
1177 void tick_oneshot_notify(void)
1178 {
1179 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1180
1181 set_bit(0, &ts->check_clocks);
1182 }
1183
1184 /**
1185 * Check, if a change happened, which makes oneshot possible.
1186 *
1187 * Called cyclic from the hrtimer softirq (driven by the timer
1188 * softirq) allow_nohz signals, that we can switch into low-res nohz
1189 * mode, because high resolution timers are disabled (either compile
1190 * or runtime). Called with interrupts disabled.
1191 */
1192 int tick_check_oneshot_change(int allow_nohz)
1193 {
1194 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1195
1196 if (!test_and_clear_bit(0, &ts->check_clocks))
1197 return 0;
1198
1199 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1200 return 0;
1201
1202 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1203 return 0;
1204
1205 if (!allow_nohz)
1206 return 1;
1207
1208 tick_nohz_switch_to_nohz();
1209 return 0;
1210 }