staging: csr: sme_blocking.c: remove braces around single statement blocks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 }
82 write_sequnlock(&xtime_lock);
83 }
84
85 /*
86 * Initialize and return retrieve the jiffies update.
87 */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99 }
100
101 /*
102 * NOHZ - aka dynamic tick functionality
103 */
104 #ifdef CONFIG_NO_HZ
105 /*
106 * NO HZ enabled ?
107 */
108 int tick_nohz_enabled __read_mostly = 1;
109
110 /*
111 * Enable / Disable tickless mode
112 */
113 static int __init setup_tick_nohz(char *str)
114 {
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
122 }
123
124 __setup("nohz=", setup_tick_nohz);
125
126 /**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
141
142 ts->idle_waketime = now;
143
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
147
148 touch_softlockup_watchdog();
149 }
150
151 /*
152 * Updates the per cpu time idle statistics counters
153 */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 ktime_t delta;
158
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
161 if (nr_iowait_cpu(cpu) > 0)
162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 ts->idle_entrytime = now;
166 }
167
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
170
171 }
172
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
179
180 sched_clock_idle_wakeup_event(0);
181 }
182
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 ktime_t now = ktime_get();
186
187 ts->idle_entrytime = now;
188 ts->idle_active = 1;
189 sched_clock_idle_sleep_event();
190 return now;
191 }
192
193 /**
194 * get_cpu_idle_time_us - get the total idle time of a cpu
195 * @cpu: CPU number to query
196 * @last_update_time: variable to store update time in. Do not update
197 * counters if NULL.
198 *
199 * Return the cummulative idle time (since boot) for a given
200 * CPU, in microseconds.
201 *
202 * This time is measured via accounting rather than sampling,
203 * and is as accurate as ktime_get() is.
204 *
205 * This function returns -1 if NOHZ is not enabled.
206 */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 ktime_t now, idle;
211
212 if (!tick_nohz_enabled)
213 return -1;
214
215 now = ktime_get();
216 if (last_update_time) {
217 update_ts_time_stats(cpu, ts, now, last_update_time);
218 idle = ts->idle_sleeptime;
219 } else {
220 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222
223 idle = ktime_add(ts->idle_sleeptime, delta);
224 } else {
225 idle = ts->idle_sleeptime;
226 }
227 }
228
229 return ktime_to_us(idle);
230
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233
234 /**
235 * get_cpu_iowait_time_us - get the total iowait time of a cpu
236 * @cpu: CPU number to query
237 * @last_update_time: variable to store update time in. Do not update
238 * counters if NULL.
239 *
240 * Return the cummulative iowait time (since boot) for a given
241 * CPU, in microseconds.
242 *
243 * This time is measured via accounting rather than sampling,
244 * and is as accurate as ktime_get() is.
245 *
246 * This function returns -1 if NOHZ is not enabled.
247 */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 ktime_t now, iowait;
252
253 if (!tick_nohz_enabled)
254 return -1;
255
256 now = ktime_get();
257 if (last_update_time) {
258 update_ts_time_stats(cpu, ts, now, last_update_time);
259 iowait = ts->iowait_sleeptime;
260 } else {
261 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263
264 iowait = ktime_add(ts->iowait_sleeptime, delta);
265 } else {
266 iowait = ts->iowait_sleeptime;
267 }
268 }
269
270 return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273
274 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
275 ktime_t now, int cpu)
276 {
277 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
278 ktime_t last_update, expires, ret = { .tv64 = 0 };
279 unsigned long rcu_delta_jiffies;
280 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
281 u64 time_delta;
282
283 /* Read jiffies and the time when jiffies were updated last */
284 do {
285 seq = read_seqbegin(&xtime_lock);
286 last_update = last_jiffies_update;
287 last_jiffies = jiffies;
288 time_delta = timekeeping_max_deferment();
289 } while (read_seqretry(&xtime_lock, seq));
290
291 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
292 arch_needs_cpu(cpu)) {
293 next_jiffies = last_jiffies + 1;
294 delta_jiffies = 1;
295 } else {
296 /* Get the next timer wheel timer */
297 next_jiffies = get_next_timer_interrupt(last_jiffies);
298 delta_jiffies = next_jiffies - last_jiffies;
299 if (rcu_delta_jiffies < delta_jiffies) {
300 next_jiffies = last_jiffies + rcu_delta_jiffies;
301 delta_jiffies = rcu_delta_jiffies;
302 }
303 }
304 /*
305 * Do not stop the tick, if we are only one off
306 * or if the cpu is required for rcu
307 */
308 if (!ts->tick_stopped && delta_jiffies == 1)
309 goto out;
310
311 /* Schedule the tick, if we are at least one jiffie off */
312 if ((long)delta_jiffies >= 1) {
313
314 /*
315 * If this cpu is the one which updates jiffies, then
316 * give up the assignment and let it be taken by the
317 * cpu which runs the tick timer next, which might be
318 * this cpu as well. If we don't drop this here the
319 * jiffies might be stale and do_timer() never
320 * invoked. Keep track of the fact that it was the one
321 * which had the do_timer() duty last. If this cpu is
322 * the one which had the do_timer() duty last, we
323 * limit the sleep time to the timekeeping
324 * max_deferement value which we retrieved
325 * above. Otherwise we can sleep as long as we want.
326 */
327 if (cpu == tick_do_timer_cpu) {
328 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
329 ts->do_timer_last = 1;
330 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
331 time_delta = KTIME_MAX;
332 ts->do_timer_last = 0;
333 } else if (!ts->do_timer_last) {
334 time_delta = KTIME_MAX;
335 }
336
337 /*
338 * calculate the expiry time for the next timer wheel
339 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
340 * that there is no timer pending or at least extremely
341 * far into the future (12 days for HZ=1000). In this
342 * case we set the expiry to the end of time.
343 */
344 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
345 /*
346 * Calculate the time delta for the next timer event.
347 * If the time delta exceeds the maximum time delta
348 * permitted by the current clocksource then adjust
349 * the time delta accordingly to ensure the
350 * clocksource does not wrap.
351 */
352 time_delta = min_t(u64, time_delta,
353 tick_period.tv64 * delta_jiffies);
354 }
355
356 if (time_delta < KTIME_MAX)
357 expires = ktime_add_ns(last_update, time_delta);
358 else
359 expires.tv64 = KTIME_MAX;
360
361 /* Skip reprogram of event if its not changed */
362 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
363 goto out;
364
365 ret = expires;
366
367 /*
368 * nohz_stop_sched_tick can be called several times before
369 * the nohz_restart_sched_tick is called. This happens when
370 * interrupts arrive which do not cause a reschedule. In the
371 * first call we save the current tick time, so we can restart
372 * the scheduler tick in nohz_restart_sched_tick.
373 */
374 if (!ts->tick_stopped) {
375 nohz_balance_enter_idle(cpu);
376 calc_load_enter_idle();
377
378 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
379 ts->tick_stopped = 1;
380 }
381
382 /*
383 * If the expiration time == KTIME_MAX, then
384 * in this case we simply stop the tick timer.
385 */
386 if (unlikely(expires.tv64 == KTIME_MAX)) {
387 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
388 hrtimer_cancel(&ts->sched_timer);
389 goto out;
390 }
391
392 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
393 hrtimer_start(&ts->sched_timer, expires,
394 HRTIMER_MODE_ABS_PINNED);
395 /* Check, if the timer was already in the past */
396 if (hrtimer_active(&ts->sched_timer))
397 goto out;
398 } else if (!tick_program_event(expires, 0))
399 goto out;
400 /*
401 * We are past the event already. So we crossed a
402 * jiffie boundary. Update jiffies and raise the
403 * softirq.
404 */
405 tick_do_update_jiffies64(ktime_get());
406 }
407 raise_softirq_irqoff(TIMER_SOFTIRQ);
408 out:
409 ts->next_jiffies = next_jiffies;
410 ts->last_jiffies = last_jiffies;
411 ts->sleep_length = ktime_sub(dev->next_event, now);
412
413 return ret;
414 }
415
416 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
417 {
418 /*
419 * If this cpu is offline and it is the one which updates
420 * jiffies, then give up the assignment and let it be taken by
421 * the cpu which runs the tick timer next. If we don't drop
422 * this here the jiffies might be stale and do_timer() never
423 * invoked.
424 */
425 if (unlikely(!cpu_online(cpu))) {
426 if (cpu == tick_do_timer_cpu)
427 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
428 }
429
430 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
431 return false;
432
433 if (need_resched())
434 return false;
435
436 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
437 static int ratelimit;
438
439 if (ratelimit < 10 &&
440 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
441 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
442 (unsigned int) local_softirq_pending());
443 ratelimit++;
444 }
445 return false;
446 }
447
448 return true;
449 }
450
451 static void __tick_nohz_idle_enter(struct tick_sched *ts)
452 {
453 ktime_t now, expires;
454 int cpu = smp_processor_id();
455
456 now = tick_nohz_start_idle(cpu, ts);
457
458 if (can_stop_idle_tick(cpu, ts)) {
459 int was_stopped = ts->tick_stopped;
460
461 ts->idle_calls++;
462
463 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
464 if (expires.tv64 > 0LL) {
465 ts->idle_sleeps++;
466 ts->idle_expires = expires;
467 }
468
469 if (!was_stopped && ts->tick_stopped)
470 ts->idle_jiffies = ts->last_jiffies;
471 }
472 }
473
474 /**
475 * tick_nohz_idle_enter - stop the idle tick from the idle task
476 *
477 * When the next event is more than a tick into the future, stop the idle tick
478 * Called when we start the idle loop.
479 *
480 * The arch is responsible of calling:
481 *
482 * - rcu_idle_enter() after its last use of RCU before the CPU is put
483 * to sleep.
484 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
485 */
486 void tick_nohz_idle_enter(void)
487 {
488 struct tick_sched *ts;
489
490 WARN_ON_ONCE(irqs_disabled());
491
492 /*
493 * Update the idle state in the scheduler domain hierarchy
494 * when tick_nohz_stop_sched_tick() is called from the idle loop.
495 * State will be updated to busy during the first busy tick after
496 * exiting idle.
497 */
498 set_cpu_sd_state_idle();
499
500 local_irq_disable();
501
502 ts = &__get_cpu_var(tick_cpu_sched);
503 /*
504 * set ts->inidle unconditionally. even if the system did not
505 * switch to nohz mode the cpu frequency governers rely on the
506 * update of the idle time accounting in tick_nohz_start_idle().
507 */
508 ts->inidle = 1;
509 __tick_nohz_idle_enter(ts);
510
511 local_irq_enable();
512 }
513
514 /**
515 * tick_nohz_irq_exit - update next tick event from interrupt exit
516 *
517 * When an interrupt fires while we are idle and it doesn't cause
518 * a reschedule, it may still add, modify or delete a timer, enqueue
519 * an RCU callback, etc...
520 * So we need to re-calculate and reprogram the next tick event.
521 */
522 void tick_nohz_irq_exit(void)
523 {
524 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
525
526 if (!ts->inidle)
527 return;
528
529 __tick_nohz_idle_enter(ts);
530 }
531
532 /**
533 * tick_nohz_get_sleep_length - return the length of the current sleep
534 *
535 * Called from power state control code with interrupts disabled
536 */
537 ktime_t tick_nohz_get_sleep_length(void)
538 {
539 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
540
541 return ts->sleep_length;
542 }
543
544 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
545 {
546 hrtimer_cancel(&ts->sched_timer);
547 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
548
549 while (1) {
550 /* Forward the time to expire in the future */
551 hrtimer_forward(&ts->sched_timer, now, tick_period);
552
553 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
554 hrtimer_start_expires(&ts->sched_timer,
555 HRTIMER_MODE_ABS_PINNED);
556 /* Check, if the timer was already in the past */
557 if (hrtimer_active(&ts->sched_timer))
558 break;
559 } else {
560 if (!tick_program_event(
561 hrtimer_get_expires(&ts->sched_timer), 0))
562 break;
563 }
564 /* Reread time and update jiffies */
565 now = ktime_get();
566 tick_do_update_jiffies64(now);
567 }
568 }
569
570 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
571 {
572 /* Update jiffies first */
573 tick_do_update_jiffies64(now);
574 update_cpu_load_nohz();
575
576 calc_load_exit_idle();
577 touch_softlockup_watchdog();
578 /*
579 * Cancel the scheduled timer and restore the tick
580 */
581 ts->tick_stopped = 0;
582 ts->idle_exittime = now;
583
584 tick_nohz_restart(ts, now);
585 }
586
587 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
588 {
589 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
590 unsigned long ticks;
591 /*
592 * We stopped the tick in idle. Update process times would miss the
593 * time we slept as update_process_times does only a 1 tick
594 * accounting. Enforce that this is accounted to idle !
595 */
596 ticks = jiffies - ts->idle_jiffies;
597 /*
598 * We might be one off. Do not randomly account a huge number of ticks!
599 */
600 if (ticks && ticks < LONG_MAX)
601 account_idle_ticks(ticks);
602 #endif
603 }
604
605 /**
606 * tick_nohz_idle_exit - restart the idle tick from the idle task
607 *
608 * Restart the idle tick when the CPU is woken up from idle
609 * This also exit the RCU extended quiescent state. The CPU
610 * can use RCU again after this function is called.
611 */
612 void tick_nohz_idle_exit(void)
613 {
614 int cpu = smp_processor_id();
615 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
616 ktime_t now;
617
618 local_irq_disable();
619
620 WARN_ON_ONCE(!ts->inidle);
621
622 ts->inidle = 0;
623
624 if (ts->idle_active || ts->tick_stopped)
625 now = ktime_get();
626
627 if (ts->idle_active)
628 tick_nohz_stop_idle(cpu, now);
629
630 if (ts->tick_stopped) {
631 tick_nohz_restart_sched_tick(ts, now);
632 tick_nohz_account_idle_ticks(ts);
633 }
634
635 local_irq_enable();
636 }
637
638 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
639 {
640 hrtimer_forward(&ts->sched_timer, now, tick_period);
641 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
642 }
643
644 /*
645 * The nohz low res interrupt handler
646 */
647 static void tick_nohz_handler(struct clock_event_device *dev)
648 {
649 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
650 struct pt_regs *regs = get_irq_regs();
651 int cpu = smp_processor_id();
652 ktime_t now = ktime_get();
653
654 dev->next_event.tv64 = KTIME_MAX;
655
656 /*
657 * Check if the do_timer duty was dropped. We don't care about
658 * concurrency: This happens only when the cpu in charge went
659 * into a long sleep. If two cpus happen to assign themself to
660 * this duty, then the jiffies update is still serialized by
661 * xtime_lock.
662 */
663 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
664 tick_do_timer_cpu = cpu;
665
666 /* Check, if the jiffies need an update */
667 if (tick_do_timer_cpu == cpu)
668 tick_do_update_jiffies64(now);
669
670 /*
671 * When we are idle and the tick is stopped, we have to touch
672 * the watchdog as we might not schedule for a really long
673 * time. This happens on complete idle SMP systems while
674 * waiting on the login prompt. We also increment the "start
675 * of idle" jiffy stamp so the idle accounting adjustment we
676 * do when we go busy again does not account too much ticks.
677 */
678 if (ts->tick_stopped) {
679 touch_softlockup_watchdog();
680 ts->idle_jiffies++;
681 }
682
683 update_process_times(user_mode(regs));
684 profile_tick(CPU_PROFILING);
685
686 while (tick_nohz_reprogram(ts, now)) {
687 now = ktime_get();
688 tick_do_update_jiffies64(now);
689 }
690 }
691
692 /**
693 * tick_nohz_switch_to_nohz - switch to nohz mode
694 */
695 static void tick_nohz_switch_to_nohz(void)
696 {
697 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
698 ktime_t next;
699
700 if (!tick_nohz_enabled)
701 return;
702
703 local_irq_disable();
704 if (tick_switch_to_oneshot(tick_nohz_handler)) {
705 local_irq_enable();
706 return;
707 }
708
709 ts->nohz_mode = NOHZ_MODE_LOWRES;
710
711 /*
712 * Recycle the hrtimer in ts, so we can share the
713 * hrtimer_forward with the highres code.
714 */
715 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
716 /* Get the next period */
717 next = tick_init_jiffy_update();
718
719 for (;;) {
720 hrtimer_set_expires(&ts->sched_timer, next);
721 if (!tick_program_event(next, 0))
722 break;
723 next = ktime_add(next, tick_period);
724 }
725 local_irq_enable();
726 }
727
728 /*
729 * When NOHZ is enabled and the tick is stopped, we need to kick the
730 * tick timer from irq_enter() so that the jiffies update is kept
731 * alive during long running softirqs. That's ugly as hell, but
732 * correctness is key even if we need to fix the offending softirq in
733 * the first place.
734 *
735 * Note, this is different to tick_nohz_restart. We just kick the
736 * timer and do not touch the other magic bits which need to be done
737 * when idle is left.
738 */
739 static void tick_nohz_kick_tick(int cpu, ktime_t now)
740 {
741 #if 0
742 /* Switch back to 2.6.27 behaviour */
743
744 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
745 ktime_t delta;
746
747 /*
748 * Do not touch the tick device, when the next expiry is either
749 * already reached or less/equal than the tick period.
750 */
751 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
752 if (delta.tv64 <= tick_period.tv64)
753 return;
754
755 tick_nohz_restart(ts, now);
756 #endif
757 }
758
759 static inline void tick_check_nohz(int cpu)
760 {
761 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
762 ktime_t now;
763
764 if (!ts->idle_active && !ts->tick_stopped)
765 return;
766 now = ktime_get();
767 if (ts->idle_active)
768 tick_nohz_stop_idle(cpu, now);
769 if (ts->tick_stopped) {
770 tick_nohz_update_jiffies(now);
771 tick_nohz_kick_tick(cpu, now);
772 }
773 }
774
775 #else
776
777 static inline void tick_nohz_switch_to_nohz(void) { }
778 static inline void tick_check_nohz(int cpu) { }
779
780 #endif /* NO_HZ */
781
782 /*
783 * Called from irq_enter to notify about the possible interruption of idle()
784 */
785 void tick_check_idle(int cpu)
786 {
787 tick_check_oneshot_broadcast(cpu);
788 tick_check_nohz(cpu);
789 }
790
791 /*
792 * High resolution timer specific code
793 */
794 #ifdef CONFIG_HIGH_RES_TIMERS
795 /*
796 * We rearm the timer until we get disabled by the idle code.
797 * Called with interrupts disabled and timer->base->cpu_base->lock held.
798 */
799 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
800 {
801 struct tick_sched *ts =
802 container_of(timer, struct tick_sched, sched_timer);
803 struct pt_regs *regs = get_irq_regs();
804 ktime_t now = ktime_get();
805 int cpu = smp_processor_id();
806
807 #ifdef CONFIG_NO_HZ
808 /*
809 * Check if the do_timer duty was dropped. We don't care about
810 * concurrency: This happens only when the cpu in charge went
811 * into a long sleep. If two cpus happen to assign themself to
812 * this duty, then the jiffies update is still serialized by
813 * xtime_lock.
814 */
815 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
816 tick_do_timer_cpu = cpu;
817 #endif
818
819 /* Check, if the jiffies need an update */
820 if (tick_do_timer_cpu == cpu)
821 tick_do_update_jiffies64(now);
822
823 /*
824 * Do not call, when we are not in irq context and have
825 * no valid regs pointer
826 */
827 if (regs) {
828 /*
829 * When we are idle and the tick is stopped, we have to touch
830 * the watchdog as we might not schedule for a really long
831 * time. This happens on complete idle SMP systems while
832 * waiting on the login prompt. We also increment the "start of
833 * idle" jiffy stamp so the idle accounting adjustment we do
834 * when we go busy again does not account too much ticks.
835 */
836 if (ts->tick_stopped) {
837 touch_softlockup_watchdog();
838 if (is_idle_task(current))
839 ts->idle_jiffies++;
840 }
841 update_process_times(user_mode(regs));
842 profile_tick(CPU_PROFILING);
843 }
844
845 hrtimer_forward(timer, now, tick_period);
846
847 return HRTIMER_RESTART;
848 }
849
850 static int sched_skew_tick;
851
852 static int __init skew_tick(char *str)
853 {
854 get_option(&str, &sched_skew_tick);
855
856 return 0;
857 }
858 early_param("skew_tick", skew_tick);
859
860 /**
861 * tick_setup_sched_timer - setup the tick emulation timer
862 */
863 void tick_setup_sched_timer(void)
864 {
865 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
866 ktime_t now = ktime_get();
867
868 /*
869 * Emulate tick processing via per-CPU hrtimers:
870 */
871 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
872 ts->sched_timer.function = tick_sched_timer;
873
874 /* Get the next period (per cpu) */
875 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
876
877 /* Offset the tick to avert xtime_lock contention. */
878 if (sched_skew_tick) {
879 u64 offset = ktime_to_ns(tick_period) >> 1;
880 do_div(offset, num_possible_cpus());
881 offset *= smp_processor_id();
882 hrtimer_add_expires_ns(&ts->sched_timer, offset);
883 }
884
885 for (;;) {
886 hrtimer_forward(&ts->sched_timer, now, tick_period);
887 hrtimer_start_expires(&ts->sched_timer,
888 HRTIMER_MODE_ABS_PINNED);
889 /* Check, if the timer was already in the past */
890 if (hrtimer_active(&ts->sched_timer))
891 break;
892 now = ktime_get();
893 }
894
895 #ifdef CONFIG_NO_HZ
896 if (tick_nohz_enabled)
897 ts->nohz_mode = NOHZ_MODE_HIGHRES;
898 #endif
899 }
900 #endif /* HIGH_RES_TIMERS */
901
902 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
903 void tick_cancel_sched_timer(int cpu)
904 {
905 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
906
907 # ifdef CONFIG_HIGH_RES_TIMERS
908 if (ts->sched_timer.base)
909 hrtimer_cancel(&ts->sched_timer);
910 # endif
911
912 ts->nohz_mode = NOHZ_MODE_INACTIVE;
913 }
914 #endif
915
916 /**
917 * Async notification about clocksource changes
918 */
919 void tick_clock_notify(void)
920 {
921 int cpu;
922
923 for_each_possible_cpu(cpu)
924 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
925 }
926
927 /*
928 * Async notification about clock event changes
929 */
930 void tick_oneshot_notify(void)
931 {
932 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
933
934 set_bit(0, &ts->check_clocks);
935 }
936
937 /**
938 * Check, if a change happened, which makes oneshot possible.
939 *
940 * Called cyclic from the hrtimer softirq (driven by the timer
941 * softirq) allow_nohz signals, that we can switch into low-res nohz
942 * mode, because high resolution timers are disabled (either compile
943 * or runtime).
944 */
945 int tick_check_oneshot_change(int allow_nohz)
946 {
947 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
948
949 if (!test_and_clear_bit(0, &ts->check_clocks))
950 return 0;
951
952 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
953 return 0;
954
955 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
956 return 0;
957
958 if (!allow_nohz)
959 return 1;
960
961 tick_nohz_switch_to_nohz();
962 return 0;
963 }