Merge tag 'md/4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30
31 #include <asm/irq_regs.h>
32
33 #include "tick-internal.h"
34
35 #include <trace/events/timer.h>
36
37 /*
38 * Per-CPU nohz control structure
39 */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 return &per_cpu(tick_cpu_sched, cpu);
45 }
46
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49 * The time, when the last jiffy update happened. Protected by jiffies_lock.
50 */
51 static ktime_t last_jiffies_update;
52
53 /*
54 * Must be called with interrupts disabled !
55 */
56 static void tick_do_update_jiffies64(ktime_t now)
57 {
58 unsigned long ticks = 0;
59 ktime_t delta;
60
61 /*
62 * Do a quick check without holding jiffies_lock:
63 */
64 delta = ktime_sub(now, last_jiffies_update);
65 if (delta < tick_period)
66 return;
67
68 /* Reevaluate with jiffies_lock held */
69 write_seqlock(&jiffies_lock);
70
71 delta = ktime_sub(now, last_jiffies_update);
72 if (delta >= tick_period) {
73
74 delta = ktime_sub(delta, tick_period);
75 last_jiffies_update = ktime_add(last_jiffies_update,
76 tick_period);
77
78 /* Slow path for long timeouts */
79 if (unlikely(delta >= tick_period)) {
80 s64 incr = ktime_to_ns(tick_period);
81
82 ticks = ktime_divns(delta, incr);
83
84 last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 incr * ticks);
86 }
87 do_timer(++ticks);
88
89 /* Keep the tick_next_period variable up to date */
90 tick_next_period = ktime_add(last_jiffies_update, tick_period);
91 } else {
92 write_sequnlock(&jiffies_lock);
93 return;
94 }
95 write_sequnlock(&jiffies_lock);
96 update_wall_time();
97 }
98
99 /*
100 * Initialize and return retrieve the jiffies update.
101 */
102 static ktime_t tick_init_jiffy_update(void)
103 {
104 ktime_t period;
105
106 write_seqlock(&jiffies_lock);
107 /* Did we start the jiffies update yet ? */
108 if (last_jiffies_update == 0)
109 last_jiffies_update = tick_next_period;
110 period = last_jiffies_update;
111 write_sequnlock(&jiffies_lock);
112 return period;
113 }
114
115
116 static void tick_sched_do_timer(ktime_t now)
117 {
118 int cpu = smp_processor_id();
119
120 #ifdef CONFIG_NO_HZ_COMMON
121 /*
122 * Check if the do_timer duty was dropped. We don't care about
123 * concurrency: This happens only when the CPU in charge went
124 * into a long sleep. If two CPUs happen to assign themselves to
125 * this duty, then the jiffies update is still serialized by
126 * jiffies_lock.
127 */
128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129 && !tick_nohz_full_cpu(cpu))
130 tick_do_timer_cpu = cpu;
131 #endif
132
133 /* Check, if the jiffies need an update */
134 if (tick_do_timer_cpu == cpu)
135 tick_do_update_jiffies64(now);
136 }
137
138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139 {
140 #ifdef CONFIG_NO_HZ_COMMON
141 /*
142 * When we are idle and the tick is stopped, we have to touch
143 * the watchdog as we might not schedule for a really long
144 * time. This happens on complete idle SMP systems while
145 * waiting on the login prompt. We also increment the "start of
146 * idle" jiffy stamp so the idle accounting adjustment we do
147 * when we go busy again does not account too much ticks.
148 */
149 if (ts->tick_stopped) {
150 touch_softlockup_watchdog_sched();
151 if (is_idle_task(current))
152 ts->idle_jiffies++;
153 }
154 #endif
155 update_process_times(user_mode(regs));
156 profile_tick(CPU_PROFILING);
157 }
158 #endif
159
160 #ifdef CONFIG_NO_HZ_FULL
161 cpumask_var_t tick_nohz_full_mask;
162 cpumask_var_t housekeeping_mask;
163 bool tick_nohz_full_running;
164 static atomic_t tick_dep_mask;
165
166 static bool check_tick_dependency(atomic_t *dep)
167 {
168 int val = atomic_read(dep);
169
170 if (val & TICK_DEP_MASK_POSIX_TIMER) {
171 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
172 return true;
173 }
174
175 if (val & TICK_DEP_MASK_PERF_EVENTS) {
176 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
177 return true;
178 }
179
180 if (val & TICK_DEP_MASK_SCHED) {
181 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
182 return true;
183 }
184
185 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
186 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
187 return true;
188 }
189
190 return false;
191 }
192
193 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
194 {
195 WARN_ON_ONCE(!irqs_disabled());
196
197 if (unlikely(!cpu_online(cpu)))
198 return false;
199
200 if (check_tick_dependency(&tick_dep_mask))
201 return false;
202
203 if (check_tick_dependency(&ts->tick_dep_mask))
204 return false;
205
206 if (check_tick_dependency(&current->tick_dep_mask))
207 return false;
208
209 if (check_tick_dependency(&current->signal->tick_dep_mask))
210 return false;
211
212 return true;
213 }
214
215 static void nohz_full_kick_func(struct irq_work *work)
216 {
217 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
218 }
219
220 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
221 .func = nohz_full_kick_func,
222 };
223
224 /*
225 * Kick this CPU if it's full dynticks in order to force it to
226 * re-evaluate its dependency on the tick and restart it if necessary.
227 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
228 * is NMI safe.
229 */
230 static void tick_nohz_full_kick(void)
231 {
232 if (!tick_nohz_full_cpu(smp_processor_id()))
233 return;
234
235 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
236 }
237
238 /*
239 * Kick the CPU if it's full dynticks in order to force it to
240 * re-evaluate its dependency on the tick and restart it if necessary.
241 */
242 void tick_nohz_full_kick_cpu(int cpu)
243 {
244 if (!tick_nohz_full_cpu(cpu))
245 return;
246
247 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
248 }
249
250 /*
251 * Kick all full dynticks CPUs in order to force these to re-evaluate
252 * their dependency on the tick and restart it if necessary.
253 */
254 static void tick_nohz_full_kick_all(void)
255 {
256 int cpu;
257
258 if (!tick_nohz_full_running)
259 return;
260
261 preempt_disable();
262 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
263 tick_nohz_full_kick_cpu(cpu);
264 preempt_enable();
265 }
266
267 static void tick_nohz_dep_set_all(atomic_t *dep,
268 enum tick_dep_bits bit)
269 {
270 int prev;
271
272 prev = atomic_fetch_or(BIT(bit), dep);
273 if (!prev)
274 tick_nohz_full_kick_all();
275 }
276
277 /*
278 * Set a global tick dependency. Used by perf events that rely on freq and
279 * by unstable clock.
280 */
281 void tick_nohz_dep_set(enum tick_dep_bits bit)
282 {
283 tick_nohz_dep_set_all(&tick_dep_mask, bit);
284 }
285
286 void tick_nohz_dep_clear(enum tick_dep_bits bit)
287 {
288 atomic_andnot(BIT(bit), &tick_dep_mask);
289 }
290
291 /*
292 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
293 * manage events throttling.
294 */
295 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
296 {
297 int prev;
298 struct tick_sched *ts;
299
300 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
301
302 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
303 if (!prev) {
304 preempt_disable();
305 /* Perf needs local kick that is NMI safe */
306 if (cpu == smp_processor_id()) {
307 tick_nohz_full_kick();
308 } else {
309 /* Remote irq work not NMI-safe */
310 if (!WARN_ON_ONCE(in_nmi()))
311 tick_nohz_full_kick_cpu(cpu);
312 }
313 preempt_enable();
314 }
315 }
316
317 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
318 {
319 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
320
321 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
322 }
323
324 /*
325 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
326 * per task timers.
327 */
328 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
329 {
330 /*
331 * We could optimize this with just kicking the target running the task
332 * if that noise matters for nohz full users.
333 */
334 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
335 }
336
337 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
338 {
339 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
340 }
341
342 /*
343 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
344 * per process timers.
345 */
346 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
347 {
348 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
349 }
350
351 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
352 {
353 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
354 }
355
356 /*
357 * Re-evaluate the need for the tick as we switch the current task.
358 * It might need the tick due to per task/process properties:
359 * perf events, posix CPU timers, ...
360 */
361 void __tick_nohz_task_switch(void)
362 {
363 unsigned long flags;
364 struct tick_sched *ts;
365
366 local_irq_save(flags);
367
368 if (!tick_nohz_full_cpu(smp_processor_id()))
369 goto out;
370
371 ts = this_cpu_ptr(&tick_cpu_sched);
372
373 if (ts->tick_stopped) {
374 if (atomic_read(&current->tick_dep_mask) ||
375 atomic_read(&current->signal->tick_dep_mask))
376 tick_nohz_full_kick();
377 }
378 out:
379 local_irq_restore(flags);
380 }
381
382 /* Parse the boot-time nohz CPU list from the kernel parameters. */
383 static int __init tick_nohz_full_setup(char *str)
384 {
385 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
386 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
387 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
388 free_bootmem_cpumask_var(tick_nohz_full_mask);
389 return 1;
390 }
391 tick_nohz_full_running = true;
392
393 return 1;
394 }
395 __setup("nohz_full=", tick_nohz_full_setup);
396
397 static int tick_nohz_cpu_down(unsigned int cpu)
398 {
399 /*
400 * The boot CPU handles housekeeping duty (unbound timers,
401 * workqueues, timekeeping, ...) on behalf of full dynticks
402 * CPUs. It must remain online when nohz full is enabled.
403 */
404 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
405 return -EBUSY;
406 return 0;
407 }
408
409 static int tick_nohz_init_all(void)
410 {
411 int err = -1;
412
413 #ifdef CONFIG_NO_HZ_FULL_ALL
414 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
415 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
416 return err;
417 }
418 err = 0;
419 cpumask_setall(tick_nohz_full_mask);
420 tick_nohz_full_running = true;
421 #endif
422 return err;
423 }
424
425 void __init tick_nohz_init(void)
426 {
427 int cpu, ret;
428
429 if (!tick_nohz_full_running) {
430 if (tick_nohz_init_all() < 0)
431 return;
432 }
433
434 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
435 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
436 cpumask_clear(tick_nohz_full_mask);
437 tick_nohz_full_running = false;
438 return;
439 }
440
441 /*
442 * Full dynticks uses irq work to drive the tick rescheduling on safe
443 * locking contexts. But then we need irq work to raise its own
444 * interrupts to avoid circular dependency on the tick
445 */
446 if (!arch_irq_work_has_interrupt()) {
447 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
448 cpumask_clear(tick_nohz_full_mask);
449 cpumask_copy(housekeeping_mask, cpu_possible_mask);
450 tick_nohz_full_running = false;
451 return;
452 }
453
454 cpu = smp_processor_id();
455
456 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
457 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
458 cpu);
459 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
460 }
461
462 cpumask_andnot(housekeeping_mask,
463 cpu_possible_mask, tick_nohz_full_mask);
464
465 for_each_cpu(cpu, tick_nohz_full_mask)
466 context_tracking_cpu_set(cpu);
467
468 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
469 "kernel/nohz:predown", NULL,
470 tick_nohz_cpu_down);
471 WARN_ON(ret < 0);
472 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
473 cpumask_pr_args(tick_nohz_full_mask));
474
475 /*
476 * We need at least one CPU to handle housekeeping work such
477 * as timekeeping, unbound timers, workqueues, ...
478 */
479 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
480 }
481 #endif
482
483 /*
484 * NOHZ - aka dynamic tick functionality
485 */
486 #ifdef CONFIG_NO_HZ_COMMON
487 /*
488 * NO HZ enabled ?
489 */
490 bool tick_nohz_enabled __read_mostly = true;
491 unsigned long tick_nohz_active __read_mostly;
492 /*
493 * Enable / Disable tickless mode
494 */
495 static int __init setup_tick_nohz(char *str)
496 {
497 return (kstrtobool(str, &tick_nohz_enabled) == 0);
498 }
499
500 __setup("nohz=", setup_tick_nohz);
501
502 int tick_nohz_tick_stopped(void)
503 {
504 return __this_cpu_read(tick_cpu_sched.tick_stopped);
505 }
506
507 /**
508 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
509 *
510 * Called from interrupt entry when the CPU was idle
511 *
512 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
513 * must be updated. Otherwise an interrupt handler could use a stale jiffy
514 * value. We do this unconditionally on any CPU, as we don't know whether the
515 * CPU, which has the update task assigned is in a long sleep.
516 */
517 static void tick_nohz_update_jiffies(ktime_t now)
518 {
519 unsigned long flags;
520
521 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
522
523 local_irq_save(flags);
524 tick_do_update_jiffies64(now);
525 local_irq_restore(flags);
526
527 touch_softlockup_watchdog_sched();
528 }
529
530 /*
531 * Updates the per-CPU time idle statistics counters
532 */
533 static void
534 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
535 {
536 ktime_t delta;
537
538 if (ts->idle_active) {
539 delta = ktime_sub(now, ts->idle_entrytime);
540 if (nr_iowait_cpu(cpu) > 0)
541 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
542 else
543 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
544 ts->idle_entrytime = now;
545 }
546
547 if (last_update_time)
548 *last_update_time = ktime_to_us(now);
549
550 }
551
552 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
553 {
554 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
555 ts->idle_active = 0;
556
557 sched_clock_idle_wakeup_event(0);
558 }
559
560 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
561 {
562 ktime_t now = ktime_get();
563
564 ts->idle_entrytime = now;
565 ts->idle_active = 1;
566 sched_clock_idle_sleep_event();
567 return now;
568 }
569
570 /**
571 * get_cpu_idle_time_us - get the total idle time of a CPU
572 * @cpu: CPU number to query
573 * @last_update_time: variable to store update time in. Do not update
574 * counters if NULL.
575 *
576 * Return the cumulative idle time (since boot) for a given
577 * CPU, in microseconds.
578 *
579 * This time is measured via accounting rather than sampling,
580 * and is as accurate as ktime_get() is.
581 *
582 * This function returns -1 if NOHZ is not enabled.
583 */
584 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
585 {
586 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
587 ktime_t now, idle;
588
589 if (!tick_nohz_active)
590 return -1;
591
592 now = ktime_get();
593 if (last_update_time) {
594 update_ts_time_stats(cpu, ts, now, last_update_time);
595 idle = ts->idle_sleeptime;
596 } else {
597 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
598 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
599
600 idle = ktime_add(ts->idle_sleeptime, delta);
601 } else {
602 idle = ts->idle_sleeptime;
603 }
604 }
605
606 return ktime_to_us(idle);
607
608 }
609 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
610
611 /**
612 * get_cpu_iowait_time_us - get the total iowait time of a CPU
613 * @cpu: CPU number to query
614 * @last_update_time: variable to store update time in. Do not update
615 * counters if NULL.
616 *
617 * Return the cumulative iowait time (since boot) for a given
618 * CPU, in microseconds.
619 *
620 * This time is measured via accounting rather than sampling,
621 * and is as accurate as ktime_get() is.
622 *
623 * This function returns -1 if NOHZ is not enabled.
624 */
625 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
626 {
627 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
628 ktime_t now, iowait;
629
630 if (!tick_nohz_active)
631 return -1;
632
633 now = ktime_get();
634 if (last_update_time) {
635 update_ts_time_stats(cpu, ts, now, last_update_time);
636 iowait = ts->iowait_sleeptime;
637 } else {
638 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
639 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
640
641 iowait = ktime_add(ts->iowait_sleeptime, delta);
642 } else {
643 iowait = ts->iowait_sleeptime;
644 }
645 }
646
647 return ktime_to_us(iowait);
648 }
649 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
650
651 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
652 {
653 hrtimer_cancel(&ts->sched_timer);
654 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
655
656 /* Forward the time to expire in the future */
657 hrtimer_forward(&ts->sched_timer, now, tick_period);
658
659 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
660 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
661 else
662 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
663 }
664
665 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
666 ktime_t now, int cpu)
667 {
668 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
669 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
670 unsigned long seq, basejiff;
671 ktime_t tick;
672
673 /* Read jiffies and the time when jiffies were updated last */
674 do {
675 seq = read_seqbegin(&jiffies_lock);
676 basemono = last_jiffies_update;
677 basejiff = jiffies;
678 } while (read_seqretry(&jiffies_lock, seq));
679 ts->last_jiffies = basejiff;
680
681 if (rcu_needs_cpu(basemono, &next_rcu) ||
682 arch_needs_cpu() || irq_work_needs_cpu()) {
683 next_tick = basemono + TICK_NSEC;
684 } else {
685 /*
686 * Get the next pending timer. If high resolution
687 * timers are enabled this only takes the timer wheel
688 * timers into account. If high resolution timers are
689 * disabled this also looks at the next expiring
690 * hrtimer.
691 */
692 next_tmr = get_next_timer_interrupt(basejiff, basemono);
693 ts->next_timer = next_tmr;
694 /* Take the next rcu event into account */
695 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
696 }
697
698 /*
699 * If the tick is due in the next period, keep it ticking or
700 * force prod the timer.
701 */
702 delta = next_tick - basemono;
703 if (delta <= (u64)TICK_NSEC) {
704 tick = 0;
705
706 /*
707 * Tell the timer code that the base is not idle, i.e. undo
708 * the effect of get_next_timer_interrupt():
709 */
710 timer_clear_idle();
711 /*
712 * We've not stopped the tick yet, and there's a timer in the
713 * next period, so no point in stopping it either, bail.
714 */
715 if (!ts->tick_stopped)
716 goto out;
717
718 /*
719 * If, OTOH, we did stop it, but there's a pending (expired)
720 * timer reprogram the timer hardware to fire now.
721 *
722 * We will not restart the tick proper, just prod the timer
723 * hardware into firing an interrupt to process the pending
724 * timers. Just like tick_irq_exit() will not restart the tick
725 * for 'normal' interrupts.
726 *
727 * Only once we exit the idle loop will we re-enable the tick,
728 * see tick_nohz_idle_exit().
729 */
730 if (delta == 0) {
731 tick_nohz_restart(ts, now);
732 goto out;
733 }
734 }
735
736 /*
737 * If this CPU is the one which updates jiffies, then give up
738 * the assignment and let it be taken by the CPU which runs
739 * the tick timer next, which might be this CPU as well. If we
740 * don't drop this here the jiffies might be stale and
741 * do_timer() never invoked. Keep track of the fact that it
742 * was the one which had the do_timer() duty last. If this CPU
743 * is the one which had the do_timer() duty last, we limit the
744 * sleep time to the timekeeping max_deferment value.
745 * Otherwise we can sleep as long as we want.
746 */
747 delta = timekeeping_max_deferment();
748 if (cpu == tick_do_timer_cpu) {
749 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
750 ts->do_timer_last = 1;
751 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
752 delta = KTIME_MAX;
753 ts->do_timer_last = 0;
754 } else if (!ts->do_timer_last) {
755 delta = KTIME_MAX;
756 }
757
758 #ifdef CONFIG_NO_HZ_FULL
759 /* Limit the tick delta to the maximum scheduler deferment */
760 if (!ts->inidle)
761 delta = min(delta, scheduler_tick_max_deferment());
762 #endif
763
764 /* Calculate the next expiry time */
765 if (delta < (KTIME_MAX - basemono))
766 expires = basemono + delta;
767 else
768 expires = KTIME_MAX;
769
770 expires = min_t(u64, expires, next_tick);
771 tick = expires;
772
773 /* Skip reprogram of event if its not changed */
774 if (ts->tick_stopped && (expires == dev->next_event))
775 goto out;
776
777 /*
778 * nohz_stop_sched_tick can be called several times before
779 * the nohz_restart_sched_tick is called. This happens when
780 * interrupts arrive which do not cause a reschedule. In the
781 * first call we save the current tick time, so we can restart
782 * the scheduler tick in nohz_restart_sched_tick.
783 */
784 if (!ts->tick_stopped) {
785 nohz_balance_enter_idle(cpu);
786 calc_load_enter_idle();
787 cpu_load_update_nohz_start();
788
789 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
790 ts->tick_stopped = 1;
791 trace_tick_stop(1, TICK_DEP_MASK_NONE);
792 }
793
794 /*
795 * If the expiration time == KTIME_MAX, then we simply stop
796 * the tick timer.
797 */
798 if (unlikely(expires == KTIME_MAX)) {
799 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
800 hrtimer_cancel(&ts->sched_timer);
801 goto out;
802 }
803
804 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
805 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
806 else
807 tick_program_event(tick, 1);
808 out:
809 /* Update the estimated sleep length */
810 ts->sleep_length = ktime_sub(dev->next_event, now);
811 return tick;
812 }
813
814 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
815 {
816 /* Update jiffies first */
817 tick_do_update_jiffies64(now);
818 cpu_load_update_nohz_stop();
819
820 /*
821 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
822 * the clock forward checks in the enqueue path:
823 */
824 timer_clear_idle();
825
826 calc_load_exit_idle();
827 touch_softlockup_watchdog_sched();
828 /*
829 * Cancel the scheduled timer and restore the tick
830 */
831 ts->tick_stopped = 0;
832 ts->idle_exittime = now;
833
834 tick_nohz_restart(ts, now);
835 }
836
837 static void tick_nohz_full_update_tick(struct tick_sched *ts)
838 {
839 #ifdef CONFIG_NO_HZ_FULL
840 int cpu = smp_processor_id();
841
842 if (!tick_nohz_full_cpu(cpu))
843 return;
844
845 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
846 return;
847
848 if (can_stop_full_tick(cpu, ts))
849 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
850 else if (ts->tick_stopped)
851 tick_nohz_restart_sched_tick(ts, ktime_get());
852 #endif
853 }
854
855 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
856 {
857 /*
858 * If this CPU is offline and it is the one which updates
859 * jiffies, then give up the assignment and let it be taken by
860 * the CPU which runs the tick timer next. If we don't drop
861 * this here the jiffies might be stale and do_timer() never
862 * invoked.
863 */
864 if (unlikely(!cpu_online(cpu))) {
865 if (cpu == tick_do_timer_cpu)
866 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
867 return false;
868 }
869
870 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
871 ts->sleep_length = NSEC_PER_SEC / HZ;
872 return false;
873 }
874
875 if (need_resched())
876 return false;
877
878 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
879 static int ratelimit;
880
881 if (ratelimit < 10 &&
882 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
883 pr_warn("NOHZ: local_softirq_pending %02x\n",
884 (unsigned int) local_softirq_pending());
885 ratelimit++;
886 }
887 return false;
888 }
889
890 if (tick_nohz_full_enabled()) {
891 /*
892 * Keep the tick alive to guarantee timekeeping progression
893 * if there are full dynticks CPUs around
894 */
895 if (tick_do_timer_cpu == cpu)
896 return false;
897 /*
898 * Boot safety: make sure the timekeeping duty has been
899 * assigned before entering dyntick-idle mode,
900 */
901 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
902 return false;
903 }
904
905 return true;
906 }
907
908 static void __tick_nohz_idle_enter(struct tick_sched *ts)
909 {
910 ktime_t now, expires;
911 int cpu = smp_processor_id();
912
913 now = tick_nohz_start_idle(ts);
914
915 if (can_stop_idle_tick(cpu, ts)) {
916 int was_stopped = ts->tick_stopped;
917
918 ts->idle_calls++;
919
920 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
921 if (expires > 0LL) {
922 ts->idle_sleeps++;
923 ts->idle_expires = expires;
924 }
925
926 if (!was_stopped && ts->tick_stopped)
927 ts->idle_jiffies = ts->last_jiffies;
928 }
929 }
930
931 /**
932 * tick_nohz_idle_enter - stop the idle tick from the idle task
933 *
934 * When the next event is more than a tick into the future, stop the idle tick
935 * Called when we start the idle loop.
936 *
937 * The arch is responsible of calling:
938 *
939 * - rcu_idle_enter() after its last use of RCU before the CPU is put
940 * to sleep.
941 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
942 */
943 void tick_nohz_idle_enter(void)
944 {
945 struct tick_sched *ts;
946
947 WARN_ON_ONCE(irqs_disabled());
948
949 /*
950 * Update the idle state in the scheduler domain hierarchy
951 * when tick_nohz_stop_sched_tick() is called from the idle loop.
952 * State will be updated to busy during the first busy tick after
953 * exiting idle.
954 */
955 set_cpu_sd_state_idle();
956
957 local_irq_disable();
958
959 ts = this_cpu_ptr(&tick_cpu_sched);
960 ts->inidle = 1;
961 __tick_nohz_idle_enter(ts);
962
963 local_irq_enable();
964 }
965
966 /**
967 * tick_nohz_irq_exit - update next tick event from interrupt exit
968 *
969 * When an interrupt fires while we are idle and it doesn't cause
970 * a reschedule, it may still add, modify or delete a timer, enqueue
971 * an RCU callback, etc...
972 * So we need to re-calculate and reprogram the next tick event.
973 */
974 void tick_nohz_irq_exit(void)
975 {
976 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
977
978 if (ts->inidle)
979 __tick_nohz_idle_enter(ts);
980 else
981 tick_nohz_full_update_tick(ts);
982 }
983
984 /**
985 * tick_nohz_get_sleep_length - return the length of the current sleep
986 *
987 * Called from power state control code with interrupts disabled
988 */
989 ktime_t tick_nohz_get_sleep_length(void)
990 {
991 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
992
993 return ts->sleep_length;
994 }
995
996 /**
997 * tick_nohz_get_idle_calls - return the current idle calls counter value
998 *
999 * Called from the schedutil frequency scaling governor in scheduler context.
1000 */
1001 unsigned long tick_nohz_get_idle_calls(void)
1002 {
1003 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1004
1005 return ts->idle_calls;
1006 }
1007
1008 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1009 {
1010 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1011 unsigned long ticks;
1012
1013 if (vtime_accounting_cpu_enabled())
1014 return;
1015 /*
1016 * We stopped the tick in idle. Update process times would miss the
1017 * time we slept as update_process_times does only a 1 tick
1018 * accounting. Enforce that this is accounted to idle !
1019 */
1020 ticks = jiffies - ts->idle_jiffies;
1021 /*
1022 * We might be one off. Do not randomly account a huge number of ticks!
1023 */
1024 if (ticks && ticks < LONG_MAX)
1025 account_idle_ticks(ticks);
1026 #endif
1027 }
1028
1029 /**
1030 * tick_nohz_idle_exit - restart the idle tick from the idle task
1031 *
1032 * Restart the idle tick when the CPU is woken up from idle
1033 * This also exit the RCU extended quiescent state. The CPU
1034 * can use RCU again after this function is called.
1035 */
1036 void tick_nohz_idle_exit(void)
1037 {
1038 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1039 ktime_t now;
1040
1041 local_irq_disable();
1042
1043 WARN_ON_ONCE(!ts->inidle);
1044
1045 ts->inidle = 0;
1046
1047 if (ts->idle_active || ts->tick_stopped)
1048 now = ktime_get();
1049
1050 if (ts->idle_active)
1051 tick_nohz_stop_idle(ts, now);
1052
1053 if (ts->tick_stopped) {
1054 tick_nohz_restart_sched_tick(ts, now);
1055 tick_nohz_account_idle_ticks(ts);
1056 }
1057
1058 local_irq_enable();
1059 }
1060
1061 /*
1062 * The nohz low res interrupt handler
1063 */
1064 static void tick_nohz_handler(struct clock_event_device *dev)
1065 {
1066 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1067 struct pt_regs *regs = get_irq_regs();
1068 ktime_t now = ktime_get();
1069
1070 dev->next_event = KTIME_MAX;
1071
1072 tick_sched_do_timer(now);
1073 tick_sched_handle(ts, regs);
1074
1075 /* No need to reprogram if we are running tickless */
1076 if (unlikely(ts->tick_stopped))
1077 return;
1078
1079 hrtimer_forward(&ts->sched_timer, now, tick_period);
1080 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1081 }
1082
1083 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1084 {
1085 if (!tick_nohz_enabled)
1086 return;
1087 ts->nohz_mode = mode;
1088 /* One update is enough */
1089 if (!test_and_set_bit(0, &tick_nohz_active))
1090 timers_update_migration(true);
1091 }
1092
1093 /**
1094 * tick_nohz_switch_to_nohz - switch to nohz mode
1095 */
1096 static void tick_nohz_switch_to_nohz(void)
1097 {
1098 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1099 ktime_t next;
1100
1101 if (!tick_nohz_enabled)
1102 return;
1103
1104 if (tick_switch_to_oneshot(tick_nohz_handler))
1105 return;
1106
1107 /*
1108 * Recycle the hrtimer in ts, so we can share the
1109 * hrtimer_forward with the highres code.
1110 */
1111 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1112 /* Get the next period */
1113 next = tick_init_jiffy_update();
1114
1115 hrtimer_set_expires(&ts->sched_timer, next);
1116 hrtimer_forward_now(&ts->sched_timer, tick_period);
1117 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1118 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1119 }
1120
1121 static inline void tick_nohz_irq_enter(void)
1122 {
1123 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1124 ktime_t now;
1125
1126 if (!ts->idle_active && !ts->tick_stopped)
1127 return;
1128 now = ktime_get();
1129 if (ts->idle_active)
1130 tick_nohz_stop_idle(ts, now);
1131 if (ts->tick_stopped)
1132 tick_nohz_update_jiffies(now);
1133 }
1134
1135 #else
1136
1137 static inline void tick_nohz_switch_to_nohz(void) { }
1138 static inline void tick_nohz_irq_enter(void) { }
1139 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1140
1141 #endif /* CONFIG_NO_HZ_COMMON */
1142
1143 /*
1144 * Called from irq_enter to notify about the possible interruption of idle()
1145 */
1146 void tick_irq_enter(void)
1147 {
1148 tick_check_oneshot_broadcast_this_cpu();
1149 tick_nohz_irq_enter();
1150 }
1151
1152 /*
1153 * High resolution timer specific code
1154 */
1155 #ifdef CONFIG_HIGH_RES_TIMERS
1156 /*
1157 * We rearm the timer until we get disabled by the idle code.
1158 * Called with interrupts disabled.
1159 */
1160 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1161 {
1162 struct tick_sched *ts =
1163 container_of(timer, struct tick_sched, sched_timer);
1164 struct pt_regs *regs = get_irq_regs();
1165 ktime_t now = ktime_get();
1166
1167 tick_sched_do_timer(now);
1168
1169 /*
1170 * Do not call, when we are not in irq context and have
1171 * no valid regs pointer
1172 */
1173 if (regs)
1174 tick_sched_handle(ts, regs);
1175
1176 /* No need to reprogram if we are in idle or full dynticks mode */
1177 if (unlikely(ts->tick_stopped))
1178 return HRTIMER_NORESTART;
1179
1180 hrtimer_forward(timer, now, tick_period);
1181
1182 return HRTIMER_RESTART;
1183 }
1184
1185 static int sched_skew_tick;
1186
1187 static int __init skew_tick(char *str)
1188 {
1189 get_option(&str, &sched_skew_tick);
1190
1191 return 0;
1192 }
1193 early_param("skew_tick", skew_tick);
1194
1195 /**
1196 * tick_setup_sched_timer - setup the tick emulation timer
1197 */
1198 void tick_setup_sched_timer(void)
1199 {
1200 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1201 ktime_t now = ktime_get();
1202
1203 /*
1204 * Emulate tick processing via per-CPU hrtimers:
1205 */
1206 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1207 ts->sched_timer.function = tick_sched_timer;
1208
1209 /* Get the next period (per-CPU) */
1210 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1211
1212 /* Offset the tick to avert jiffies_lock contention. */
1213 if (sched_skew_tick) {
1214 u64 offset = ktime_to_ns(tick_period) >> 1;
1215 do_div(offset, num_possible_cpus());
1216 offset *= smp_processor_id();
1217 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1218 }
1219
1220 hrtimer_forward(&ts->sched_timer, now, tick_period);
1221 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1222 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1223 }
1224 #endif /* HIGH_RES_TIMERS */
1225
1226 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1227 void tick_cancel_sched_timer(int cpu)
1228 {
1229 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1230
1231 # ifdef CONFIG_HIGH_RES_TIMERS
1232 if (ts->sched_timer.base)
1233 hrtimer_cancel(&ts->sched_timer);
1234 # endif
1235
1236 memset(ts, 0, sizeof(*ts));
1237 }
1238 #endif
1239
1240 /**
1241 * Async notification about clocksource changes
1242 */
1243 void tick_clock_notify(void)
1244 {
1245 int cpu;
1246
1247 for_each_possible_cpu(cpu)
1248 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1249 }
1250
1251 /*
1252 * Async notification about clock event changes
1253 */
1254 void tick_oneshot_notify(void)
1255 {
1256 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1257
1258 set_bit(0, &ts->check_clocks);
1259 }
1260
1261 /**
1262 * Check, if a change happened, which makes oneshot possible.
1263 *
1264 * Called cyclic from the hrtimer softirq (driven by the timer
1265 * softirq) allow_nohz signals, that we can switch into low-res nohz
1266 * mode, because high resolution timers are disabled (either compile
1267 * or runtime). Called with interrupts disabled.
1268 */
1269 int tick_check_oneshot_change(int allow_nohz)
1270 {
1271 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1272
1273 if (!test_and_clear_bit(0, &ts->check_clocks))
1274 return 0;
1275
1276 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1277 return 0;
1278
1279 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1280 return 0;
1281
1282 if (!allow_nohz)
1283 return 1;
1284
1285 tick_nohz_switch_to_nohz();
1286 return 0;
1287 }