Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24
25 #include <asm/irq_regs.h>
26
27 #include "tick-internal.h"
28
29 /*
30 * Per cpu nohz control structure
31 */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33
34 /*
35 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 */
37 static ktime_t last_jiffies_update;
38
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 return &per_cpu(tick_cpu_sched, cpu);
42 }
43
44 /*
45 * Must be called with interrupts disabled !
46 */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 unsigned long ticks = 0;
50 ktime_t delta;
51
52 /*
53 * Do a quick check without holding xtime_lock:
54 */
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
58
59 /* Reevalute with xtime_lock held */
60 write_seqlock(&xtime_lock);
61
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
64
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
68
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
72
73 ticks = ktime_divns(delta, incr);
74
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
77 }
78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 }
83 write_sequnlock(&xtime_lock);
84 }
85
86 /*
87 * Initialize and return retrieve the jiffies update.
88 */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 ktime_t period;
92
93 write_seqlock(&xtime_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&xtime_lock);
99 return period;
100 }
101
102 /*
103 * NOHZ - aka dynamic tick functionality
104 */
105 #ifdef CONFIG_NO_HZ
106 /*
107 * NO HZ enabled ?
108 */
109 static int tick_nohz_enabled __read_mostly = 1;
110
111 /*
112 * Enable / Disable tickless mode
113 */
114 static int __init setup_tick_nohz(char *str)
115 {
116 if (!strcmp(str, "off"))
117 tick_nohz_enabled = 0;
118 else if (!strcmp(str, "on"))
119 tick_nohz_enabled = 1;
120 else
121 return 0;
122 return 1;
123 }
124
125 __setup("nohz=", setup_tick_nohz);
126
127 /**
128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 *
130 * Called from interrupt entry when the CPU was idle
131 *
132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133 * must be updated. Otherwise an interrupt handler could use a stale jiffy
134 * value. We do this unconditionally on any cpu, as we don't know whether the
135 * cpu, which has the update task assigned is in a long sleep.
136 */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 int cpu = smp_processor_id();
140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 unsigned long flags;
142
143 cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 ts->idle_waketime = now;
145
146 local_irq_save(flags);
147 tick_do_update_jiffies64(now);
148 local_irq_restore(flags);
149
150 touch_softlockup_watchdog();
151 }
152
153 /*
154 * Updates the per cpu time idle statistics counters
155 */
156 static void
157 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
158 {
159 ktime_t delta;
160
161 if (ts->idle_active) {
162 delta = ktime_sub(now, ts->idle_entrytime);
163 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 if (nr_iowait_cpu(cpu) > 0)
165 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
166 ts->idle_entrytime = now;
167 }
168
169 if (last_update_time)
170 *last_update_time = ktime_to_us(now);
171
172 }
173
174 static void tick_nohz_stop_idle(int cpu, ktime_t now)
175 {
176 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
177
178 update_ts_time_stats(cpu, ts, now, NULL);
179 ts->idle_active = 0;
180
181 sched_clock_idle_wakeup_event(0);
182 }
183
184 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
185 {
186 ktime_t now;
187
188 now = ktime_get();
189
190 update_ts_time_stats(cpu, ts, now, NULL);
191
192 ts->idle_entrytime = now;
193 ts->idle_active = 1;
194 sched_clock_idle_sleep_event();
195 return now;
196 }
197
198 /**
199 * get_cpu_idle_time_us - get the total idle time of a cpu
200 * @cpu: CPU number to query
201 * @last_update_time: variable to store update time in
202 *
203 * Return the cummulative idle time (since boot) for a given
204 * CPU, in microseconds. The idle time returned includes
205 * the iowait time (unlike what "top" and co report).
206 *
207 * This time is measured via accounting rather than sampling,
208 * and is as accurate as ktime_get() is.
209 *
210 * This function returns -1 if NOHZ is not enabled.
211 */
212 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
213 {
214 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
215
216 if (!tick_nohz_enabled)
217 return -1;
218
219 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
220
221 return ktime_to_us(ts->idle_sleeptime);
222 }
223 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
224
225 /*
226 * get_cpu_iowait_time_us - get the total iowait time of a cpu
227 * @cpu: CPU number to query
228 * @last_update_time: variable to store update time in
229 *
230 * Return the cummulative iowait time (since boot) for a given
231 * CPU, in microseconds.
232 *
233 * This time is measured via accounting rather than sampling,
234 * and is as accurate as ktime_get() is.
235 *
236 * This function returns -1 if NOHZ is not enabled.
237 */
238 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
239 {
240 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
241
242 if (!tick_nohz_enabled)
243 return -1;
244
245 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
246
247 return ktime_to_us(ts->iowait_sleeptime);
248 }
249 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
250
251 /**
252 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
253 *
254 * When the next event is more than a tick into the future, stop the idle tick
255 * Called either from the idle loop or from irq_exit() when an idle period was
256 * just interrupted by an interrupt which did not cause a reschedule.
257 */
258 void tick_nohz_stop_sched_tick(int inidle)
259 {
260 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
261 struct tick_sched *ts;
262 ktime_t last_update, expires, now;
263 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
264 u64 time_delta;
265 int cpu;
266
267 local_irq_save(flags);
268
269 cpu = smp_processor_id();
270 ts = &per_cpu(tick_cpu_sched, cpu);
271
272 /*
273 * Call to tick_nohz_start_idle stops the last_update_time from being
274 * updated. Thus, it must not be called in the event we are called from
275 * irq_exit() with the prior state different than idle.
276 */
277 if (!inidle && !ts->inidle)
278 goto end;
279
280 /*
281 * Set ts->inidle unconditionally. Even if the system did not
282 * switch to NOHZ mode the cpu frequency governers rely on the
283 * update of the idle time accounting in tick_nohz_start_idle().
284 */
285 ts->inidle = 1;
286
287 now = tick_nohz_start_idle(cpu, ts);
288
289 /*
290 * If this cpu is offline and it is the one which updates
291 * jiffies, then give up the assignment and let it be taken by
292 * the cpu which runs the tick timer next. If we don't drop
293 * this here the jiffies might be stale and do_timer() never
294 * invoked.
295 */
296 if (unlikely(!cpu_online(cpu))) {
297 if (cpu == tick_do_timer_cpu)
298 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
299 }
300
301 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
302 goto end;
303
304 if (need_resched())
305 goto end;
306
307 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
308 static int ratelimit;
309
310 if (ratelimit < 10) {
311 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
312 (unsigned int) local_softirq_pending());
313 ratelimit++;
314 }
315 goto end;
316 }
317
318 ts->idle_calls++;
319 /* Read jiffies and the time when jiffies were updated last */
320 do {
321 seq = read_seqbegin(&xtime_lock);
322 last_update = last_jiffies_update;
323 last_jiffies = jiffies;
324 time_delta = timekeeping_max_deferment();
325 } while (read_seqretry(&xtime_lock, seq));
326
327 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
328 arch_needs_cpu(cpu)) {
329 next_jiffies = last_jiffies + 1;
330 delta_jiffies = 1;
331 } else {
332 /* Get the next timer wheel timer */
333 next_jiffies = get_next_timer_interrupt(last_jiffies);
334 delta_jiffies = next_jiffies - last_jiffies;
335 }
336 /*
337 * Do not stop the tick, if we are only one off
338 * or if the cpu is required for rcu
339 */
340 if (!ts->tick_stopped && delta_jiffies == 1)
341 goto out;
342
343 /* Schedule the tick, if we are at least one jiffie off */
344 if ((long)delta_jiffies >= 1) {
345
346 /*
347 * If this cpu is the one which updates jiffies, then
348 * give up the assignment and let it be taken by the
349 * cpu which runs the tick timer next, which might be
350 * this cpu as well. If we don't drop this here the
351 * jiffies might be stale and do_timer() never
352 * invoked. Keep track of the fact that it was the one
353 * which had the do_timer() duty last. If this cpu is
354 * the one which had the do_timer() duty last, we
355 * limit the sleep time to the timekeeping
356 * max_deferement value which we retrieved
357 * above. Otherwise we can sleep as long as we want.
358 */
359 if (cpu == tick_do_timer_cpu) {
360 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
361 ts->do_timer_last = 1;
362 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
363 time_delta = KTIME_MAX;
364 ts->do_timer_last = 0;
365 } else if (!ts->do_timer_last) {
366 time_delta = KTIME_MAX;
367 }
368
369 /*
370 * calculate the expiry time for the next timer wheel
371 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
372 * that there is no timer pending or at least extremely
373 * far into the future (12 days for HZ=1000). In this
374 * case we set the expiry to the end of time.
375 */
376 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
377 /*
378 * Calculate the time delta for the next timer event.
379 * If the time delta exceeds the maximum time delta
380 * permitted by the current clocksource then adjust
381 * the time delta accordingly to ensure the
382 * clocksource does not wrap.
383 */
384 time_delta = min_t(u64, time_delta,
385 tick_period.tv64 * delta_jiffies);
386 }
387
388 if (time_delta < KTIME_MAX)
389 expires = ktime_add_ns(last_update, time_delta);
390 else
391 expires.tv64 = KTIME_MAX;
392
393 if (delta_jiffies > 1)
394 cpumask_set_cpu(cpu, nohz_cpu_mask);
395
396 /* Skip reprogram of event if its not changed */
397 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
398 goto out;
399
400 /*
401 * nohz_stop_sched_tick can be called several times before
402 * the nohz_restart_sched_tick is called. This happens when
403 * interrupts arrive which do not cause a reschedule. In the
404 * first call we save the current tick time, so we can restart
405 * the scheduler tick in nohz_restart_sched_tick.
406 */
407 if (!ts->tick_stopped) {
408 select_nohz_load_balancer(1);
409
410 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
411 ts->tick_stopped = 1;
412 ts->idle_jiffies = last_jiffies;
413 rcu_enter_nohz();
414 }
415
416 ts->idle_sleeps++;
417
418 /* Mark expires */
419 ts->idle_expires = expires;
420
421 /*
422 * If the expiration time == KTIME_MAX, then
423 * in this case we simply stop the tick timer.
424 */
425 if (unlikely(expires.tv64 == KTIME_MAX)) {
426 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
427 hrtimer_cancel(&ts->sched_timer);
428 goto out;
429 }
430
431 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
432 hrtimer_start(&ts->sched_timer, expires,
433 HRTIMER_MODE_ABS_PINNED);
434 /* Check, if the timer was already in the past */
435 if (hrtimer_active(&ts->sched_timer))
436 goto out;
437 } else if (!tick_program_event(expires, 0))
438 goto out;
439 /*
440 * We are past the event already. So we crossed a
441 * jiffie boundary. Update jiffies and raise the
442 * softirq.
443 */
444 tick_do_update_jiffies64(ktime_get());
445 cpumask_clear_cpu(cpu, nohz_cpu_mask);
446 }
447 raise_softirq_irqoff(TIMER_SOFTIRQ);
448 out:
449 ts->next_jiffies = next_jiffies;
450 ts->last_jiffies = last_jiffies;
451 ts->sleep_length = ktime_sub(dev->next_event, now);
452 end:
453 local_irq_restore(flags);
454 }
455
456 /**
457 * tick_nohz_get_sleep_length - return the length of the current sleep
458 *
459 * Called from power state control code with interrupts disabled
460 */
461 ktime_t tick_nohz_get_sleep_length(void)
462 {
463 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
464
465 return ts->sleep_length;
466 }
467
468 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
469 {
470 hrtimer_cancel(&ts->sched_timer);
471 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
472
473 while (1) {
474 /* Forward the time to expire in the future */
475 hrtimer_forward(&ts->sched_timer, now, tick_period);
476
477 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
478 hrtimer_start_expires(&ts->sched_timer,
479 HRTIMER_MODE_ABS_PINNED);
480 /* Check, if the timer was already in the past */
481 if (hrtimer_active(&ts->sched_timer))
482 break;
483 } else {
484 if (!tick_program_event(
485 hrtimer_get_expires(&ts->sched_timer), 0))
486 break;
487 }
488 /* Update jiffies and reread time */
489 tick_do_update_jiffies64(now);
490 now = ktime_get();
491 }
492 }
493
494 /**
495 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
496 *
497 * Restart the idle tick when the CPU is woken up from idle
498 */
499 void tick_nohz_restart_sched_tick(void)
500 {
501 int cpu = smp_processor_id();
502 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
503 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
504 unsigned long ticks;
505 #endif
506 ktime_t now;
507
508 local_irq_disable();
509 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
510 now = ktime_get();
511
512 if (ts->idle_active)
513 tick_nohz_stop_idle(cpu, now);
514
515 if (!ts->inidle || !ts->tick_stopped) {
516 ts->inidle = 0;
517 local_irq_enable();
518 return;
519 }
520
521 ts->inidle = 0;
522
523 rcu_exit_nohz();
524
525 /* Update jiffies first */
526 select_nohz_load_balancer(0);
527 tick_do_update_jiffies64(now);
528 cpumask_clear_cpu(cpu, nohz_cpu_mask);
529
530 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
531 /*
532 * We stopped the tick in idle. Update process times would miss the
533 * time we slept as update_process_times does only a 1 tick
534 * accounting. Enforce that this is accounted to idle !
535 */
536 ticks = jiffies - ts->idle_jiffies;
537 /*
538 * We might be one off. Do not randomly account a huge number of ticks!
539 */
540 if (ticks && ticks < LONG_MAX)
541 account_idle_ticks(ticks);
542 #endif
543
544 touch_softlockup_watchdog();
545 /*
546 * Cancel the scheduled timer and restore the tick
547 */
548 ts->tick_stopped = 0;
549 ts->idle_exittime = now;
550
551 tick_nohz_restart(ts, now);
552
553 local_irq_enable();
554 }
555
556 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
557 {
558 hrtimer_forward(&ts->sched_timer, now, tick_period);
559 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
560 }
561
562 /*
563 * The nohz low res interrupt handler
564 */
565 static void tick_nohz_handler(struct clock_event_device *dev)
566 {
567 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
568 struct pt_regs *regs = get_irq_regs();
569 int cpu = smp_processor_id();
570 ktime_t now = ktime_get();
571
572 dev->next_event.tv64 = KTIME_MAX;
573
574 /*
575 * Check if the do_timer duty was dropped. We don't care about
576 * concurrency: This happens only when the cpu in charge went
577 * into a long sleep. If two cpus happen to assign themself to
578 * this duty, then the jiffies update is still serialized by
579 * xtime_lock.
580 */
581 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
582 tick_do_timer_cpu = cpu;
583
584 /* Check, if the jiffies need an update */
585 if (tick_do_timer_cpu == cpu)
586 tick_do_update_jiffies64(now);
587
588 /*
589 * When we are idle and the tick is stopped, we have to touch
590 * the watchdog as we might not schedule for a really long
591 * time. This happens on complete idle SMP systems while
592 * waiting on the login prompt. We also increment the "start
593 * of idle" jiffy stamp so the idle accounting adjustment we
594 * do when we go busy again does not account too much ticks.
595 */
596 if (ts->tick_stopped) {
597 touch_softlockup_watchdog();
598 ts->idle_jiffies++;
599 }
600
601 update_process_times(user_mode(regs));
602 profile_tick(CPU_PROFILING);
603
604 while (tick_nohz_reprogram(ts, now)) {
605 now = ktime_get();
606 tick_do_update_jiffies64(now);
607 }
608 }
609
610 /**
611 * tick_nohz_switch_to_nohz - switch to nohz mode
612 */
613 static void tick_nohz_switch_to_nohz(void)
614 {
615 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
616 ktime_t next;
617
618 if (!tick_nohz_enabled)
619 return;
620
621 local_irq_disable();
622 if (tick_switch_to_oneshot(tick_nohz_handler)) {
623 local_irq_enable();
624 return;
625 }
626
627 ts->nohz_mode = NOHZ_MODE_LOWRES;
628
629 /*
630 * Recycle the hrtimer in ts, so we can share the
631 * hrtimer_forward with the highres code.
632 */
633 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
634 /* Get the next period */
635 next = tick_init_jiffy_update();
636
637 for (;;) {
638 hrtimer_set_expires(&ts->sched_timer, next);
639 if (!tick_program_event(next, 0))
640 break;
641 next = ktime_add(next, tick_period);
642 }
643 local_irq_enable();
644
645 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
646 smp_processor_id());
647 }
648
649 /*
650 * When NOHZ is enabled and the tick is stopped, we need to kick the
651 * tick timer from irq_enter() so that the jiffies update is kept
652 * alive during long running softirqs. That's ugly as hell, but
653 * correctness is key even if we need to fix the offending softirq in
654 * the first place.
655 *
656 * Note, this is different to tick_nohz_restart. We just kick the
657 * timer and do not touch the other magic bits which need to be done
658 * when idle is left.
659 */
660 static void tick_nohz_kick_tick(int cpu, ktime_t now)
661 {
662 #if 0
663 /* Switch back to 2.6.27 behaviour */
664
665 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
666 ktime_t delta;
667
668 /*
669 * Do not touch the tick device, when the next expiry is either
670 * already reached or less/equal than the tick period.
671 */
672 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
673 if (delta.tv64 <= tick_period.tv64)
674 return;
675
676 tick_nohz_restart(ts, now);
677 #endif
678 }
679
680 static inline void tick_check_nohz(int cpu)
681 {
682 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
683 ktime_t now;
684
685 if (!ts->idle_active && !ts->tick_stopped)
686 return;
687 now = ktime_get();
688 if (ts->idle_active)
689 tick_nohz_stop_idle(cpu, now);
690 if (ts->tick_stopped) {
691 tick_nohz_update_jiffies(now);
692 tick_nohz_kick_tick(cpu, now);
693 }
694 }
695
696 #else
697
698 static inline void tick_nohz_switch_to_nohz(void) { }
699 static inline void tick_check_nohz(int cpu) { }
700
701 #endif /* NO_HZ */
702
703 /*
704 * Called from irq_enter to notify about the possible interruption of idle()
705 */
706 void tick_check_idle(int cpu)
707 {
708 tick_check_oneshot_broadcast(cpu);
709 tick_check_nohz(cpu);
710 }
711
712 /*
713 * High resolution timer specific code
714 */
715 #ifdef CONFIG_HIGH_RES_TIMERS
716 /*
717 * We rearm the timer until we get disabled by the idle code.
718 * Called with interrupts disabled and timer->base->cpu_base->lock held.
719 */
720 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
721 {
722 struct tick_sched *ts =
723 container_of(timer, struct tick_sched, sched_timer);
724 struct pt_regs *regs = get_irq_regs();
725 ktime_t now = ktime_get();
726 int cpu = smp_processor_id();
727
728 #ifdef CONFIG_NO_HZ
729 /*
730 * Check if the do_timer duty was dropped. We don't care about
731 * concurrency: This happens only when the cpu in charge went
732 * into a long sleep. If two cpus happen to assign themself to
733 * this duty, then the jiffies update is still serialized by
734 * xtime_lock.
735 */
736 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
737 tick_do_timer_cpu = cpu;
738 #endif
739
740 /* Check, if the jiffies need an update */
741 if (tick_do_timer_cpu == cpu)
742 tick_do_update_jiffies64(now);
743
744 /*
745 * Do not call, when we are not in irq context and have
746 * no valid regs pointer
747 */
748 if (regs) {
749 /*
750 * When we are idle and the tick is stopped, we have to touch
751 * the watchdog as we might not schedule for a really long
752 * time. This happens on complete idle SMP systems while
753 * waiting on the login prompt. We also increment the "start of
754 * idle" jiffy stamp so the idle accounting adjustment we do
755 * when we go busy again does not account too much ticks.
756 */
757 if (ts->tick_stopped) {
758 touch_softlockup_watchdog();
759 ts->idle_jiffies++;
760 }
761 update_process_times(user_mode(regs));
762 profile_tick(CPU_PROFILING);
763 }
764
765 hrtimer_forward(timer, now, tick_period);
766
767 return HRTIMER_RESTART;
768 }
769
770 /**
771 * tick_setup_sched_timer - setup the tick emulation timer
772 */
773 void tick_setup_sched_timer(void)
774 {
775 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
776 ktime_t now = ktime_get();
777
778 /*
779 * Emulate tick processing via per-CPU hrtimers:
780 */
781 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
782 ts->sched_timer.function = tick_sched_timer;
783
784 /* Get the next period (per cpu) */
785 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
786
787 for (;;) {
788 hrtimer_forward(&ts->sched_timer, now, tick_period);
789 hrtimer_start_expires(&ts->sched_timer,
790 HRTIMER_MODE_ABS_PINNED);
791 /* Check, if the timer was already in the past */
792 if (hrtimer_active(&ts->sched_timer))
793 break;
794 now = ktime_get();
795 }
796
797 #ifdef CONFIG_NO_HZ
798 if (tick_nohz_enabled)
799 ts->nohz_mode = NOHZ_MODE_HIGHRES;
800 #endif
801 }
802 #endif /* HIGH_RES_TIMERS */
803
804 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
805 void tick_cancel_sched_timer(int cpu)
806 {
807 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
808
809 # ifdef CONFIG_HIGH_RES_TIMERS
810 if (ts->sched_timer.base)
811 hrtimer_cancel(&ts->sched_timer);
812 # endif
813
814 ts->nohz_mode = NOHZ_MODE_INACTIVE;
815 }
816 #endif
817
818 /**
819 * Async notification about clocksource changes
820 */
821 void tick_clock_notify(void)
822 {
823 int cpu;
824
825 for_each_possible_cpu(cpu)
826 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
827 }
828
829 /*
830 * Async notification about clock event changes
831 */
832 void tick_oneshot_notify(void)
833 {
834 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
835
836 set_bit(0, &ts->check_clocks);
837 }
838
839 /**
840 * Check, if a change happened, which makes oneshot possible.
841 *
842 * Called cyclic from the hrtimer softirq (driven by the timer
843 * softirq) allow_nohz signals, that we can switch into low-res nohz
844 * mode, because high resolution timers are disabled (either compile
845 * or runtime).
846 */
847 int tick_check_oneshot_change(int allow_nohz)
848 {
849 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
850
851 if (!test_and_clear_bit(0, &ts->check_clocks))
852 return 0;
853
854 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
855 return 0;
856
857 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
858 return 0;
859
860 if (!allow_nohz)
861 return 1;
862
863 tick_nohz_switch_to_nohz();
864 return 0;
865 }