MAINTAINERS: Update amd-iommu F: patterns
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21
22 #include "tick-internal.h"
23
24 /*
25 * Broadcast support for broken x86 hardware, where the local apic
26 * timer stops in C3 state.
27 */
28
29 static struct tick_device tick_broadcast_device;
30 /* FIXME: Use cpumask_var_t. */
31 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
32 static DECLARE_BITMAP(tmpmask, NR_CPUS);
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41
42 /*
43 * Debugging: see timer_list.c
44 */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47 return &tick_broadcast_device;
48 }
49
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52 return to_cpumask(tick_broadcast_mask);
53 }
54
55 /*
56 * Start the device in periodic mode
57 */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60 if (bc)
61 tick_setup_periodic(bc, 1);
62 }
63
64 /*
65 * Check, if the device can be utilized as broadcast device:
66 */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69 if ((tick_broadcast_device.evtdev &&
70 tick_broadcast_device.evtdev->rating >= dev->rating) ||
71 (dev->features & CLOCK_EVT_FEAT_C3STOP))
72 return 0;
73
74 clockevents_exchange_device(NULL, dev);
75 tick_broadcast_device.evtdev = dev;
76 if (!cpumask_empty(tick_get_broadcast_mask()))
77 tick_broadcast_start_periodic(dev);
78 return 1;
79 }
80
81 /*
82 * Check, if the device is the broadcast device
83 */
84 int tick_is_broadcast_device(struct clock_event_device *dev)
85 {
86 return (dev && tick_broadcast_device.evtdev == dev);
87 }
88
89 /*
90 * Check, if the device is disfunctional and a place holder, which
91 * needs to be handled by the broadcast device.
92 */
93 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
94 {
95 unsigned long flags;
96 int ret = 0;
97
98 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
99
100 /*
101 * Devices might be registered with both periodic and oneshot
102 * mode disabled. This signals, that the device needs to be
103 * operated from the broadcast device and is a placeholder for
104 * the cpu local device.
105 */
106 if (!tick_device_is_functional(dev)) {
107 dev->event_handler = tick_handle_periodic;
108 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
109 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
110 ret = 1;
111 } else {
112 /*
113 * When the new device is not affected by the stop
114 * feature and the cpu is marked in the broadcast mask
115 * then clear the broadcast bit.
116 */
117 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
118 int cpu = smp_processor_id();
119
120 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
121 tick_broadcast_clear_oneshot(cpu);
122 }
123 }
124 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
125 return ret;
126 }
127
128 /*
129 * Broadcast the event to the cpus, which are set in the mask (mangled).
130 */
131 static void tick_do_broadcast(struct cpumask *mask)
132 {
133 int cpu = smp_processor_id();
134 struct tick_device *td;
135
136 /*
137 * Check, if the current cpu is in the mask
138 */
139 if (cpumask_test_cpu(cpu, mask)) {
140 cpumask_clear_cpu(cpu, mask);
141 td = &per_cpu(tick_cpu_device, cpu);
142 td->evtdev->event_handler(td->evtdev);
143 }
144
145 if (!cpumask_empty(mask)) {
146 /*
147 * It might be necessary to actually check whether the devices
148 * have different broadcast functions. For now, just use the
149 * one of the first device. This works as long as we have this
150 * misfeature only on x86 (lapic)
151 */
152 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
153 td->evtdev->broadcast(mask);
154 }
155 }
156
157 /*
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
160 */
161 static void tick_do_periodic_broadcast(void)
162 {
163 raw_spin_lock(&tick_broadcast_lock);
164
165 cpumask_and(to_cpumask(tmpmask),
166 cpu_online_mask, tick_get_broadcast_mask());
167 tick_do_broadcast(to_cpumask(tmpmask));
168
169 raw_spin_unlock(&tick_broadcast_lock);
170 }
171
172 /*
173 * Event handler for periodic broadcast ticks
174 */
175 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
176 {
177 ktime_t next;
178
179 tick_do_periodic_broadcast();
180
181 /*
182 * The device is in periodic mode. No reprogramming necessary:
183 */
184 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
185 return;
186
187 /*
188 * Setup the next period for devices, which do not have
189 * periodic mode. We read dev->next_event first and add to it
190 * when the event already expired. clockevents_program_event()
191 * sets dev->next_event only when the event is really
192 * programmed to the device.
193 */
194 for (next = dev->next_event; ;) {
195 next = ktime_add(next, tick_period);
196
197 if (!clockevents_program_event(dev, next, false))
198 return;
199 tick_do_periodic_broadcast();
200 }
201 }
202
203 /*
204 * Powerstate information: The system enters/leaves a state, where
205 * affected devices might stop
206 */
207 static void tick_do_broadcast_on_off(unsigned long *reason)
208 {
209 struct clock_event_device *bc, *dev;
210 struct tick_device *td;
211 unsigned long flags;
212 int cpu, bc_stopped;
213
214 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
215
216 cpu = smp_processor_id();
217 td = &per_cpu(tick_cpu_device, cpu);
218 dev = td->evtdev;
219 bc = tick_broadcast_device.evtdev;
220
221 /*
222 * Is the device not affected by the powerstate ?
223 */
224 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225 goto out;
226
227 if (!tick_device_is_functional(dev))
228 goto out;
229
230 bc_stopped = cpumask_empty(tick_get_broadcast_mask());
231
232 switch (*reason) {
233 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
234 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
235 if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
236 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
237 if (tick_broadcast_device.mode ==
238 TICKDEV_MODE_PERIODIC)
239 clockevents_shutdown(dev);
240 }
241 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
242 tick_broadcast_force = 1;
243 break;
244 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
245 if (!tick_broadcast_force &&
246 cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
247 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
248 if (tick_broadcast_device.mode ==
249 TICKDEV_MODE_PERIODIC)
250 tick_setup_periodic(dev, 0);
251 }
252 break;
253 }
254
255 if (cpumask_empty(tick_get_broadcast_mask())) {
256 if (!bc_stopped)
257 clockevents_shutdown(bc);
258 } else if (bc_stopped) {
259 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260 tick_broadcast_start_periodic(bc);
261 else
262 tick_broadcast_setup_oneshot(bc);
263 }
264 out:
265 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266 }
267
268 /*
269 * Powerstate information: The system enters/leaves a state, where
270 * affected devices might stop.
271 */
272 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273 {
274 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
275 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276 "offline CPU #%d\n", *oncpu);
277 else
278 tick_do_broadcast_on_off(&reason);
279 }
280
281 /*
282 * Set the periodic handler depending on broadcast on/off
283 */
284 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
285 {
286 if (!broadcast)
287 dev->event_handler = tick_handle_periodic;
288 else
289 dev->event_handler = tick_handle_periodic_broadcast;
290 }
291
292 /*
293 * Remove a CPU from broadcasting
294 */
295 void tick_shutdown_broadcast(unsigned int *cpup)
296 {
297 struct clock_event_device *bc;
298 unsigned long flags;
299 unsigned int cpu = *cpup;
300
301 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
302
303 bc = tick_broadcast_device.evtdev;
304 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
305
306 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
307 if (bc && cpumask_empty(tick_get_broadcast_mask()))
308 clockevents_shutdown(bc);
309 }
310
311 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312 }
313
314 void tick_suspend_broadcast(void)
315 {
316 struct clock_event_device *bc;
317 unsigned long flags;
318
319 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
320
321 bc = tick_broadcast_device.evtdev;
322 if (bc)
323 clockevents_shutdown(bc);
324
325 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326 }
327
328 int tick_resume_broadcast(void)
329 {
330 struct clock_event_device *bc;
331 unsigned long flags;
332 int broadcast = 0;
333
334 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
335
336 bc = tick_broadcast_device.evtdev;
337
338 if (bc) {
339 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
340
341 switch (tick_broadcast_device.mode) {
342 case TICKDEV_MODE_PERIODIC:
343 if (!cpumask_empty(tick_get_broadcast_mask()))
344 tick_broadcast_start_periodic(bc);
345 broadcast = cpumask_test_cpu(smp_processor_id(),
346 tick_get_broadcast_mask());
347 break;
348 case TICKDEV_MODE_ONESHOT:
349 broadcast = tick_resume_broadcast_oneshot(bc);
350 break;
351 }
352 }
353 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
354
355 return broadcast;
356 }
357
358
359 #ifdef CONFIG_TICK_ONESHOT
360
361 /* FIXME: use cpumask_var_t. */
362 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
363
364 /*
365 * Exposed for debugging: see timer_list.c
366 */
367 struct cpumask *tick_get_broadcast_oneshot_mask(void)
368 {
369 return to_cpumask(tick_broadcast_oneshot_mask);
370 }
371
372 static int tick_broadcast_set_event(ktime_t expires, int force)
373 {
374 struct clock_event_device *bc = tick_broadcast_device.evtdev;
375
376 return clockevents_program_event(bc, expires, force);
377 }
378
379 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
380 {
381 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
382 return 0;
383 }
384
385 /*
386 * Called from irq_enter() when idle was interrupted to reenable the
387 * per cpu device.
388 */
389 void tick_check_oneshot_broadcast(int cpu)
390 {
391 if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
392 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
393
394 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
395 }
396 }
397
398 /*
399 * Handle oneshot mode broadcasting
400 */
401 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
402 {
403 struct tick_device *td;
404 ktime_t now, next_event;
405 int cpu;
406
407 raw_spin_lock(&tick_broadcast_lock);
408 again:
409 dev->next_event.tv64 = KTIME_MAX;
410 next_event.tv64 = KTIME_MAX;
411 cpumask_clear(to_cpumask(tmpmask));
412 now = ktime_get();
413 /* Find all expired events */
414 for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
415 td = &per_cpu(tick_cpu_device, cpu);
416 if (td->evtdev->next_event.tv64 <= now.tv64)
417 cpumask_set_cpu(cpu, to_cpumask(tmpmask));
418 else if (td->evtdev->next_event.tv64 < next_event.tv64)
419 next_event.tv64 = td->evtdev->next_event.tv64;
420 }
421
422 /*
423 * Wakeup the cpus which have an expired event.
424 */
425 tick_do_broadcast(to_cpumask(tmpmask));
426
427 /*
428 * Two reasons for reprogram:
429 *
430 * - The global event did not expire any CPU local
431 * events. This happens in dyntick mode, as the maximum PIT
432 * delta is quite small.
433 *
434 * - There are pending events on sleeping CPUs which were not
435 * in the event mask
436 */
437 if (next_event.tv64 != KTIME_MAX) {
438 /*
439 * Rearm the broadcast device. If event expired,
440 * repeat the above
441 */
442 if (tick_broadcast_set_event(next_event, 0))
443 goto again;
444 }
445 raw_spin_unlock(&tick_broadcast_lock);
446 }
447
448 /*
449 * Powerstate information: The system enters/leaves a state, where
450 * affected devices might stop
451 */
452 void tick_broadcast_oneshot_control(unsigned long reason)
453 {
454 struct clock_event_device *bc, *dev;
455 struct tick_device *td;
456 unsigned long flags;
457 int cpu;
458
459 /*
460 * Periodic mode does not care about the enter/exit of power
461 * states
462 */
463 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
464 return;
465
466 /*
467 * We are called with preemtion disabled from the depth of the
468 * idle code, so we can't be moved away.
469 */
470 cpu = smp_processor_id();
471 td = &per_cpu(tick_cpu_device, cpu);
472 dev = td->evtdev;
473
474 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
475 return;
476
477 bc = tick_broadcast_device.evtdev;
478
479 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
480 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
481 if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
482 cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
483 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
484 if (dev->next_event.tv64 < bc->next_event.tv64)
485 tick_broadcast_set_event(dev->next_event, 1);
486 }
487 } else {
488 if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
489 cpumask_clear_cpu(cpu,
490 tick_get_broadcast_oneshot_mask());
491 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
492 if (dev->next_event.tv64 != KTIME_MAX)
493 tick_program_event(dev->next_event, 1);
494 }
495 }
496 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
497 }
498
499 /*
500 * Reset the one shot broadcast for a cpu
501 *
502 * Called with tick_broadcast_lock held
503 */
504 static void tick_broadcast_clear_oneshot(int cpu)
505 {
506 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
507 }
508
509 static void tick_broadcast_init_next_event(struct cpumask *mask,
510 ktime_t expires)
511 {
512 struct tick_device *td;
513 int cpu;
514
515 for_each_cpu(cpu, mask) {
516 td = &per_cpu(tick_cpu_device, cpu);
517 if (td->evtdev)
518 td->evtdev->next_event = expires;
519 }
520 }
521
522 /**
523 * tick_broadcast_setup_oneshot - setup the broadcast device
524 */
525 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
526 {
527 int cpu = smp_processor_id();
528
529 /* Set it up only once ! */
530 if (bc->event_handler != tick_handle_oneshot_broadcast) {
531 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
532
533 bc->event_handler = tick_handle_oneshot_broadcast;
534 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
535
536 /* Take the do_timer update */
537 tick_do_timer_cpu = cpu;
538
539 /*
540 * We must be careful here. There might be other CPUs
541 * waiting for periodic broadcast. We need to set the
542 * oneshot_mask bits for those and program the
543 * broadcast device to fire.
544 */
545 cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
546 cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
547 cpumask_or(tick_get_broadcast_oneshot_mask(),
548 tick_get_broadcast_oneshot_mask(),
549 to_cpumask(tmpmask));
550
551 if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
552 tick_broadcast_init_next_event(to_cpumask(tmpmask),
553 tick_next_period);
554 tick_broadcast_set_event(tick_next_period, 1);
555 } else
556 bc->next_event.tv64 = KTIME_MAX;
557 } else {
558 /*
559 * The first cpu which switches to oneshot mode sets
560 * the bit for all other cpus which are in the general
561 * (periodic) broadcast mask. So the bit is set and
562 * would prevent the first broadcast enter after this
563 * to program the bc device.
564 */
565 tick_broadcast_clear_oneshot(cpu);
566 }
567 }
568
569 /*
570 * Select oneshot operating mode for the broadcast device
571 */
572 void tick_broadcast_switch_to_oneshot(void)
573 {
574 struct clock_event_device *bc;
575 unsigned long flags;
576
577 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
578
579 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
580 bc = tick_broadcast_device.evtdev;
581 if (bc)
582 tick_broadcast_setup_oneshot(bc);
583 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
584 }
585
586
587 /*
588 * Remove a dead CPU from broadcasting
589 */
590 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
591 {
592 unsigned long flags;
593 unsigned int cpu = *cpup;
594
595 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
596
597 /*
598 * Clear the broadcast mask flag for the dead cpu, but do not
599 * stop the broadcast device!
600 */
601 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
602
603 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
604 }
605
606 /*
607 * Check, whether the broadcast device is in one shot mode
608 */
609 int tick_broadcast_oneshot_active(void)
610 {
611 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
612 }
613
614 /*
615 * Check whether the broadcast device supports oneshot.
616 */
617 bool tick_broadcast_oneshot_available(void)
618 {
619 struct clock_event_device *bc = tick_broadcast_device.evtdev;
620
621 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
622 }
623
624 #endif