Merge tag 'md/4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / time / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52
53 #include "timekeeping.h"
54
55 /*
56 * Management arrays for POSIX timers. Timers are now kept in static hash table
57 * with 512 entries.
58 * Timer ids are allocated by local routine, which selects proper hash head by
59 * key, constructed from current->signal address and per signal struct counter.
60 * This keeps timer ids unique per process, but now they can intersect between
61 * processes.
62 */
63
64 /*
65 * Lets keep our timers in a slab cache :-)
66 */
67 static struct kmem_cache *posix_timers_cache;
68
69 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
70 static DEFINE_SPINLOCK(hash_lock);
71
72 /*
73 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
74 * SIGEV values. Here we put out an error if this assumption fails.
75 */
76 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
77 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
78 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
79 #endif
80
81 /*
82 * parisc wants ENOTSUP instead of EOPNOTSUPP
83 */
84 #ifndef ENOTSUP
85 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
86 #else
87 # define ENANOSLEEP_NOTSUP ENOTSUP
88 #endif
89
90 /*
91 * The timer ID is turned into a timer address by idr_find().
92 * Verifying a valid ID consists of:
93 *
94 * a) checking that idr_find() returns other than -1.
95 * b) checking that the timer id matches the one in the timer itself.
96 * c) that the timer owner is in the callers thread group.
97 */
98
99 /*
100 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
101 * to implement others. This structure defines the various
102 * clocks.
103 *
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
111 *
112 * FUNCTIONS: The CLOCKs structure defines possible functions to
113 * handle various clock functions.
114 *
115 * The standard POSIX timer management code assumes the
116 * following: 1.) The k_itimer struct (sched.h) is used for
117 * the timer. 2.) The list, it_lock, it_clock, it_id and
118 * it_pid fields are not modified by timer code.
119 *
120 * Permissions: It is assumed that the clock_settime() function defined
121 * for each clock will take care of permission checks. Some
122 * clocks may be set able by any user (i.e. local process
123 * clocks) others not. Currently the only set able clock we
124 * have is CLOCK_REALTIME and its high res counter part, both of
125 * which we beg off on and pass to do_sys_settimeofday().
126 */
127
128 static struct k_clock posix_clocks[MAX_CLOCKS];
129
130 /*
131 * These ones are defined below.
132 */
133 static int common_nsleep(const clockid_t, int flags, struct timespec64 *t,
134 struct timespec __user *rmtp);
135 static int common_timer_create(struct k_itimer *new_timer);
136 static void common_timer_get(struct k_itimer *, struct itimerspec64 *);
137 static int common_timer_set(struct k_itimer *, int,
138 struct itimerspec64 *, struct itimerspec64 *);
139 static int common_timer_del(struct k_itimer *timer);
140
141 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
142
143 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
144
145 #define lock_timer(tid, flags) \
146 ({ struct k_itimer *__timr; \
147 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
148 __timr; \
149 })
150
151 static int hash(struct signal_struct *sig, unsigned int nr)
152 {
153 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
154 }
155
156 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
157 struct signal_struct *sig,
158 timer_t id)
159 {
160 struct k_itimer *timer;
161
162 hlist_for_each_entry_rcu(timer, head, t_hash) {
163 if ((timer->it_signal == sig) && (timer->it_id == id))
164 return timer;
165 }
166 return NULL;
167 }
168
169 static struct k_itimer *posix_timer_by_id(timer_t id)
170 {
171 struct signal_struct *sig = current->signal;
172 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
173
174 return __posix_timers_find(head, sig, id);
175 }
176
177 static int posix_timer_add(struct k_itimer *timer)
178 {
179 struct signal_struct *sig = current->signal;
180 int first_free_id = sig->posix_timer_id;
181 struct hlist_head *head;
182 int ret = -ENOENT;
183
184 do {
185 spin_lock(&hash_lock);
186 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
187 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
188 hlist_add_head_rcu(&timer->t_hash, head);
189 ret = sig->posix_timer_id;
190 }
191 if (++sig->posix_timer_id < 0)
192 sig->posix_timer_id = 0;
193 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
194 /* Loop over all possible ids completed */
195 ret = -EAGAIN;
196 spin_unlock(&hash_lock);
197 } while (ret == -ENOENT);
198 return ret;
199 }
200
201 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
202 {
203 spin_unlock_irqrestore(&timr->it_lock, flags);
204 }
205
206 /* Get clock_realtime */
207 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
208 {
209 ktime_get_real_ts64(tp);
210 return 0;
211 }
212
213 /* Set clock_realtime */
214 static int posix_clock_realtime_set(const clockid_t which_clock,
215 const struct timespec64 *tp)
216 {
217 return do_sys_settimeofday64(tp, NULL);
218 }
219
220 static int posix_clock_realtime_adj(const clockid_t which_clock,
221 struct timex *t)
222 {
223 return do_adjtimex(t);
224 }
225
226 /*
227 * Get monotonic time for posix timers
228 */
229 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
230 {
231 ktime_get_ts64(tp);
232 return 0;
233 }
234
235 /*
236 * Get monotonic-raw time for posix timers
237 */
238 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
239 {
240 getrawmonotonic64(tp);
241 return 0;
242 }
243
244
245 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
246 {
247 *tp = current_kernel_time64();
248 return 0;
249 }
250
251 static int posix_get_monotonic_coarse(clockid_t which_clock,
252 struct timespec64 *tp)
253 {
254 *tp = get_monotonic_coarse64();
255 return 0;
256 }
257
258 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
259 {
260 *tp = ktime_to_timespec64(KTIME_LOW_RES);
261 return 0;
262 }
263
264 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
265 {
266 get_monotonic_boottime64(tp);
267 return 0;
268 }
269
270 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
271 {
272 timekeeping_clocktai64(tp);
273 return 0;
274 }
275
276 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
277 {
278 tp->tv_sec = 0;
279 tp->tv_nsec = hrtimer_resolution;
280 return 0;
281 }
282
283 /*
284 * Initialize everything, well, just everything in Posix clocks/timers ;)
285 */
286 static __init int init_posix_timers(void)
287 {
288 struct k_clock clock_realtime = {
289 .clock_getres = posix_get_hrtimer_res,
290 .clock_get = posix_clock_realtime_get,
291 .clock_set = posix_clock_realtime_set,
292 .clock_adj = posix_clock_realtime_adj,
293 .nsleep = common_nsleep,
294 .nsleep_restart = hrtimer_nanosleep_restart,
295 .timer_create = common_timer_create,
296 .timer_set = common_timer_set,
297 .timer_get = common_timer_get,
298 .timer_del = common_timer_del,
299 };
300 struct k_clock clock_monotonic = {
301 .clock_getres = posix_get_hrtimer_res,
302 .clock_get = posix_ktime_get_ts,
303 .nsleep = common_nsleep,
304 .nsleep_restart = hrtimer_nanosleep_restart,
305 .timer_create = common_timer_create,
306 .timer_set = common_timer_set,
307 .timer_get = common_timer_get,
308 .timer_del = common_timer_del,
309 };
310 struct k_clock clock_monotonic_raw = {
311 .clock_getres = posix_get_hrtimer_res,
312 .clock_get = posix_get_monotonic_raw,
313 };
314 struct k_clock clock_realtime_coarse = {
315 .clock_getres = posix_get_coarse_res,
316 .clock_get = posix_get_realtime_coarse,
317 };
318 struct k_clock clock_monotonic_coarse = {
319 .clock_getres = posix_get_coarse_res,
320 .clock_get = posix_get_monotonic_coarse,
321 };
322 struct k_clock clock_tai = {
323 .clock_getres = posix_get_hrtimer_res,
324 .clock_get = posix_get_tai,
325 .nsleep = common_nsleep,
326 .nsleep_restart = hrtimer_nanosleep_restart,
327 .timer_create = common_timer_create,
328 .timer_set = common_timer_set,
329 .timer_get = common_timer_get,
330 .timer_del = common_timer_del,
331 };
332 struct k_clock clock_boottime = {
333 .clock_getres = posix_get_hrtimer_res,
334 .clock_get = posix_get_boottime,
335 .nsleep = common_nsleep,
336 .nsleep_restart = hrtimer_nanosleep_restart,
337 .timer_create = common_timer_create,
338 .timer_set = common_timer_set,
339 .timer_get = common_timer_get,
340 .timer_del = common_timer_del,
341 };
342
343 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
344 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
345 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
346 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
347 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
348 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
349 posix_timers_register_clock(CLOCK_TAI, &clock_tai);
350
351 posix_timers_cache = kmem_cache_create("posix_timers_cache",
352 sizeof (struct k_itimer), 0, SLAB_PANIC,
353 NULL);
354 return 0;
355 }
356
357 __initcall(init_posix_timers);
358
359 static void schedule_next_timer(struct k_itimer *timr)
360 {
361 struct hrtimer *timer = &timr->it.real.timer;
362
363 if (timr->it.real.interval == 0)
364 return;
365
366 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
367 timer->base->get_time(),
368 timr->it.real.interval);
369
370 timr->it_overrun_last = timr->it_overrun;
371 timr->it_overrun = -1;
372 ++timr->it_requeue_pending;
373 hrtimer_restart(timer);
374 }
375
376 /*
377 * This function is exported for use by the signal deliver code. It is
378 * called just prior to the info block being released and passes that
379 * block to us. It's function is to update the overrun entry AND to
380 * restart the timer. It should only be called if the timer is to be
381 * restarted (i.e. we have flagged this in the sys_private entry of the
382 * info block).
383 *
384 * To protect against the timer going away while the interrupt is queued,
385 * we require that the it_requeue_pending flag be set.
386 */
387 void do_schedule_next_timer(struct siginfo *info)
388 {
389 struct k_itimer *timr;
390 unsigned long flags;
391
392 timr = lock_timer(info->si_tid, &flags);
393
394 if (timr && timr->it_requeue_pending == info->si_sys_private) {
395 if (timr->it_clock < 0)
396 posix_cpu_timer_schedule(timr);
397 else
398 schedule_next_timer(timr);
399
400 info->si_overrun += timr->it_overrun_last;
401 }
402
403 if (timr)
404 unlock_timer(timr, flags);
405 }
406
407 int posix_timer_event(struct k_itimer *timr, int si_private)
408 {
409 struct task_struct *task;
410 int shared, ret = -1;
411 /*
412 * FIXME: if ->sigq is queued we can race with
413 * dequeue_signal()->do_schedule_next_timer().
414 *
415 * If dequeue_signal() sees the "right" value of
416 * si_sys_private it calls do_schedule_next_timer().
417 * We re-queue ->sigq and drop ->it_lock().
418 * do_schedule_next_timer() locks the timer
419 * and re-schedules it while ->sigq is pending.
420 * Not really bad, but not that we want.
421 */
422 timr->sigq->info.si_sys_private = si_private;
423
424 rcu_read_lock();
425 task = pid_task(timr->it_pid, PIDTYPE_PID);
426 if (task) {
427 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
428 ret = send_sigqueue(timr->sigq, task, shared);
429 }
430 rcu_read_unlock();
431 /* If we failed to send the signal the timer stops. */
432 return ret > 0;
433 }
434 EXPORT_SYMBOL_GPL(posix_timer_event);
435
436 /*
437 * This function gets called when a POSIX.1b interval timer expires. It
438 * is used as a callback from the kernel internal timer. The
439 * run_timer_list code ALWAYS calls with interrupts on.
440
441 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
442 */
443 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
444 {
445 struct k_itimer *timr;
446 unsigned long flags;
447 int si_private = 0;
448 enum hrtimer_restart ret = HRTIMER_NORESTART;
449
450 timr = container_of(timer, struct k_itimer, it.real.timer);
451 spin_lock_irqsave(&timr->it_lock, flags);
452
453 if (timr->it.real.interval != 0)
454 si_private = ++timr->it_requeue_pending;
455
456 if (posix_timer_event(timr, si_private)) {
457 /*
458 * signal was not sent because of sig_ignor
459 * we will not get a call back to restart it AND
460 * it should be restarted.
461 */
462 if (timr->it.real.interval != 0) {
463 ktime_t now = hrtimer_cb_get_time(timer);
464
465 /*
466 * FIXME: What we really want, is to stop this
467 * timer completely and restart it in case the
468 * SIG_IGN is removed. This is a non trivial
469 * change which involves sighand locking
470 * (sigh !), which we don't want to do late in
471 * the release cycle.
472 *
473 * For now we just let timers with an interval
474 * less than a jiffie expire every jiffie to
475 * avoid softirq starvation in case of SIG_IGN
476 * and a very small interval, which would put
477 * the timer right back on the softirq pending
478 * list. By moving now ahead of time we trick
479 * hrtimer_forward() to expire the timer
480 * later, while we still maintain the overrun
481 * accuracy, but have some inconsistency in
482 * the timer_gettime() case. This is at least
483 * better than a starved softirq. A more
484 * complex fix which solves also another related
485 * inconsistency is already in the pipeline.
486 */
487 #ifdef CONFIG_HIGH_RES_TIMERS
488 {
489 ktime_t kj = NSEC_PER_SEC / HZ;
490
491 if (timr->it.real.interval < kj)
492 now = ktime_add(now, kj);
493 }
494 #endif
495 timr->it_overrun += (unsigned int)
496 hrtimer_forward(timer, now,
497 timr->it.real.interval);
498 ret = HRTIMER_RESTART;
499 ++timr->it_requeue_pending;
500 }
501 }
502
503 unlock_timer(timr, flags);
504 return ret;
505 }
506
507 static struct pid *good_sigevent(sigevent_t * event)
508 {
509 struct task_struct *rtn = current->group_leader;
510
511 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
512 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
513 !same_thread_group(rtn, current) ||
514 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
515 return NULL;
516
517 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
518 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
519 return NULL;
520
521 return task_pid(rtn);
522 }
523
524 void posix_timers_register_clock(const clockid_t clock_id,
525 struct k_clock *new_clock)
526 {
527 if ((unsigned) clock_id >= MAX_CLOCKS) {
528 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
529 clock_id);
530 return;
531 }
532
533 if (!new_clock->clock_get) {
534 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
535 clock_id);
536 return;
537 }
538 if (!new_clock->clock_getres) {
539 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
540 clock_id);
541 return;
542 }
543
544 posix_clocks[clock_id] = *new_clock;
545 }
546 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
547
548 static struct k_itimer * alloc_posix_timer(void)
549 {
550 struct k_itimer *tmr;
551 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
552 if (!tmr)
553 return tmr;
554 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
555 kmem_cache_free(posix_timers_cache, tmr);
556 return NULL;
557 }
558 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
559 return tmr;
560 }
561
562 static void k_itimer_rcu_free(struct rcu_head *head)
563 {
564 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
565
566 kmem_cache_free(posix_timers_cache, tmr);
567 }
568
569 #define IT_ID_SET 1
570 #define IT_ID_NOT_SET 0
571 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
572 {
573 if (it_id_set) {
574 unsigned long flags;
575 spin_lock_irqsave(&hash_lock, flags);
576 hlist_del_rcu(&tmr->t_hash);
577 spin_unlock_irqrestore(&hash_lock, flags);
578 }
579 put_pid(tmr->it_pid);
580 sigqueue_free(tmr->sigq);
581 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
582 }
583
584 static struct k_clock *clockid_to_kclock(const clockid_t id)
585 {
586 if (id < 0)
587 return (id & CLOCKFD_MASK) == CLOCKFD ?
588 &clock_posix_dynamic : &clock_posix_cpu;
589
590 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
591 return NULL;
592 return &posix_clocks[id];
593 }
594
595 static int common_timer_create(struct k_itimer *new_timer)
596 {
597 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
598 return 0;
599 }
600
601 /* Create a POSIX.1b interval timer. */
602
603 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
604 struct sigevent __user *, timer_event_spec,
605 timer_t __user *, created_timer_id)
606 {
607 struct k_clock *kc = clockid_to_kclock(which_clock);
608 struct k_itimer *new_timer;
609 int error, new_timer_id;
610 sigevent_t event;
611 int it_id_set = IT_ID_NOT_SET;
612
613 if (!kc)
614 return -EINVAL;
615 if (!kc->timer_create)
616 return -EOPNOTSUPP;
617
618 new_timer = alloc_posix_timer();
619 if (unlikely(!new_timer))
620 return -EAGAIN;
621
622 spin_lock_init(&new_timer->it_lock);
623 new_timer_id = posix_timer_add(new_timer);
624 if (new_timer_id < 0) {
625 error = new_timer_id;
626 goto out;
627 }
628
629 it_id_set = IT_ID_SET;
630 new_timer->it_id = (timer_t) new_timer_id;
631 new_timer->it_clock = which_clock;
632 new_timer->it_overrun = -1;
633
634 if (timer_event_spec) {
635 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
636 error = -EFAULT;
637 goto out;
638 }
639 rcu_read_lock();
640 new_timer->it_pid = get_pid(good_sigevent(&event));
641 rcu_read_unlock();
642 if (!new_timer->it_pid) {
643 error = -EINVAL;
644 goto out;
645 }
646 } else {
647 memset(&event.sigev_value, 0, sizeof(event.sigev_value));
648 event.sigev_notify = SIGEV_SIGNAL;
649 event.sigev_signo = SIGALRM;
650 event.sigev_value.sival_int = new_timer->it_id;
651 new_timer->it_pid = get_pid(task_tgid(current));
652 }
653
654 new_timer->it_sigev_notify = event.sigev_notify;
655 new_timer->sigq->info.si_signo = event.sigev_signo;
656 new_timer->sigq->info.si_value = event.sigev_value;
657 new_timer->sigq->info.si_tid = new_timer->it_id;
658 new_timer->sigq->info.si_code = SI_TIMER;
659
660 if (copy_to_user(created_timer_id,
661 &new_timer_id, sizeof (new_timer_id))) {
662 error = -EFAULT;
663 goto out;
664 }
665
666 error = kc->timer_create(new_timer);
667 if (error)
668 goto out;
669
670 spin_lock_irq(&current->sighand->siglock);
671 new_timer->it_signal = current->signal;
672 list_add(&new_timer->list, &current->signal->posix_timers);
673 spin_unlock_irq(&current->sighand->siglock);
674
675 return 0;
676 /*
677 * In the case of the timer belonging to another task, after
678 * the task is unlocked, the timer is owned by the other task
679 * and may cease to exist at any time. Don't use or modify
680 * new_timer after the unlock call.
681 */
682 out:
683 release_posix_timer(new_timer, it_id_set);
684 return error;
685 }
686
687 /*
688 * Locking issues: We need to protect the result of the id look up until
689 * we get the timer locked down so it is not deleted under us. The
690 * removal is done under the idr spinlock so we use that here to bridge
691 * the find to the timer lock. To avoid a dead lock, the timer id MUST
692 * be release with out holding the timer lock.
693 */
694 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
695 {
696 struct k_itimer *timr;
697
698 /*
699 * timer_t could be any type >= int and we want to make sure any
700 * @timer_id outside positive int range fails lookup.
701 */
702 if ((unsigned long long)timer_id > INT_MAX)
703 return NULL;
704
705 rcu_read_lock();
706 timr = posix_timer_by_id(timer_id);
707 if (timr) {
708 spin_lock_irqsave(&timr->it_lock, *flags);
709 if (timr->it_signal == current->signal) {
710 rcu_read_unlock();
711 return timr;
712 }
713 spin_unlock_irqrestore(&timr->it_lock, *flags);
714 }
715 rcu_read_unlock();
716
717 return NULL;
718 }
719
720 /*
721 * Get the time remaining on a POSIX.1b interval timer. This function
722 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
723 * mess with irq.
724 *
725 * We have a couple of messes to clean up here. First there is the case
726 * of a timer that has a requeue pending. These timers should appear to
727 * be in the timer list with an expiry as if we were to requeue them
728 * now.
729 *
730 * The second issue is the SIGEV_NONE timer which may be active but is
731 * not really ever put in the timer list (to save system resources).
732 * This timer may be expired, and if so, we will do it here. Otherwise
733 * it is the same as a requeue pending timer WRT to what we should
734 * report.
735 */
736 static void
737 common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
738 {
739 ktime_t now, remaining, iv;
740 struct hrtimer *timer = &timr->it.real.timer;
741
742 memset(cur_setting, 0, sizeof(*cur_setting));
743
744 iv = timr->it.real.interval;
745
746 /* interval timer ? */
747 if (iv)
748 cur_setting->it_interval = ktime_to_timespec64(iv);
749 else if (!hrtimer_active(timer) &&
750 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
751 return;
752
753 now = timer->base->get_time();
754
755 /*
756 * When a requeue is pending or this is a SIGEV_NONE
757 * timer move the expiry time forward by intervals, so
758 * expiry is > now.
759 */
760 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING ||
761 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
762 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
763
764 remaining = __hrtimer_expires_remaining_adjusted(timer, now);
765 /* Return 0 only, when the timer is expired and not pending */
766 if (remaining <= 0) {
767 /*
768 * A single shot SIGEV_NONE timer must return 0, when
769 * it is expired !
770 */
771 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
772 cur_setting->it_value.tv_nsec = 1;
773 } else
774 cur_setting->it_value = ktime_to_timespec64(remaining);
775 }
776
777 /* Get the time remaining on a POSIX.1b interval timer. */
778 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
779 struct itimerspec __user *, setting)
780 {
781 struct itimerspec64 cur_setting64;
782 struct itimerspec cur_setting;
783 struct k_itimer *timr;
784 struct k_clock *kc;
785 unsigned long flags;
786 int ret = 0;
787
788 timr = lock_timer(timer_id, &flags);
789 if (!timr)
790 return -EINVAL;
791
792 kc = clockid_to_kclock(timr->it_clock);
793 if (WARN_ON_ONCE(!kc || !kc->timer_get))
794 ret = -EINVAL;
795 else
796 kc->timer_get(timr, &cur_setting64);
797
798 unlock_timer(timr, flags);
799
800 cur_setting = itimerspec64_to_itimerspec(&cur_setting64);
801 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
802 return -EFAULT;
803
804 return ret;
805 }
806
807 /*
808 * Get the number of overruns of a POSIX.1b interval timer. This is to
809 * be the overrun of the timer last delivered. At the same time we are
810 * accumulating overruns on the next timer. The overrun is frozen when
811 * the signal is delivered, either at the notify time (if the info block
812 * is not queued) or at the actual delivery time (as we are informed by
813 * the call back to do_schedule_next_timer(). So all we need to do is
814 * to pick up the frozen overrun.
815 */
816 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
817 {
818 struct k_itimer *timr;
819 int overrun;
820 unsigned long flags;
821
822 timr = lock_timer(timer_id, &flags);
823 if (!timr)
824 return -EINVAL;
825
826 overrun = timr->it_overrun_last;
827 unlock_timer(timr, flags);
828
829 return overrun;
830 }
831
832 /* Set a POSIX.1b interval timer. */
833 /* timr->it_lock is taken. */
834 static int
835 common_timer_set(struct k_itimer *timr, int flags,
836 struct itimerspec64 *new_setting, struct itimerspec64 *old_setting)
837 {
838 struct hrtimer *timer = &timr->it.real.timer;
839 enum hrtimer_mode mode;
840
841 if (old_setting)
842 common_timer_get(timr, old_setting);
843
844 /* disable the timer */
845 timr->it.real.interval = 0;
846 /*
847 * careful here. If smp we could be in the "fire" routine which will
848 * be spinning as we hold the lock. But this is ONLY an SMP issue.
849 */
850 if (hrtimer_try_to_cancel(timer) < 0)
851 return TIMER_RETRY;
852
853 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
854 ~REQUEUE_PENDING;
855 timr->it_overrun_last = 0;
856
857 /* switch off the timer when it_value is zero */
858 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
859 return 0;
860
861 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
862 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
863 timr->it.real.timer.function = posix_timer_fn;
864
865 hrtimer_set_expires(timer, timespec64_to_ktime(new_setting->it_value));
866
867 /* Convert interval */
868 timr->it.real.interval = timespec64_to_ktime(new_setting->it_interval);
869
870 /* SIGEV_NONE timers are not queued ! See common_timer_get */
871 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
872 /* Setup correct expiry time for relative timers */
873 if (mode == HRTIMER_MODE_REL) {
874 hrtimer_add_expires(timer, timer->base->get_time());
875 }
876 return 0;
877 }
878
879 hrtimer_start_expires(timer, mode);
880 return 0;
881 }
882
883 /* Set a POSIX.1b interval timer */
884 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
885 const struct itimerspec __user *, new_setting,
886 struct itimerspec __user *, old_setting)
887 {
888 struct itimerspec64 new_spec64, old_spec64;
889 struct itimerspec64 *rtn = old_setting ? &old_spec64 : NULL;
890 struct itimerspec new_spec, old_spec;
891 struct k_itimer *timr;
892 unsigned long flag;
893 struct k_clock *kc;
894 int error = 0;
895
896 if (!new_setting)
897 return -EINVAL;
898
899 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
900 return -EFAULT;
901 new_spec64 = itimerspec_to_itimerspec64(&new_spec);
902
903 if (!timespec64_valid(&new_spec64.it_interval) ||
904 !timespec64_valid(&new_spec64.it_value))
905 return -EINVAL;
906 retry:
907 timr = lock_timer(timer_id, &flag);
908 if (!timr)
909 return -EINVAL;
910
911 kc = clockid_to_kclock(timr->it_clock);
912 if (WARN_ON_ONCE(!kc || !kc->timer_set))
913 error = -EINVAL;
914 else
915 error = kc->timer_set(timr, flags, &new_spec64, rtn);
916
917 unlock_timer(timr, flag);
918 if (error == TIMER_RETRY) {
919 rtn = NULL; // We already got the old time...
920 goto retry;
921 }
922
923 old_spec = itimerspec64_to_itimerspec(&old_spec64);
924 if (old_setting && !error &&
925 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
926 error = -EFAULT;
927
928 return error;
929 }
930
931 static int common_timer_del(struct k_itimer *timer)
932 {
933 timer->it.real.interval = 0;
934
935 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
936 return TIMER_RETRY;
937 return 0;
938 }
939
940 static inline int timer_delete_hook(struct k_itimer *timer)
941 {
942 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
943
944 if (WARN_ON_ONCE(!kc || !kc->timer_del))
945 return -EINVAL;
946 return kc->timer_del(timer);
947 }
948
949 /* Delete a POSIX.1b interval timer. */
950 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
951 {
952 struct k_itimer *timer;
953 unsigned long flags;
954
955 retry_delete:
956 timer = lock_timer(timer_id, &flags);
957 if (!timer)
958 return -EINVAL;
959
960 if (timer_delete_hook(timer) == TIMER_RETRY) {
961 unlock_timer(timer, flags);
962 goto retry_delete;
963 }
964
965 spin_lock(&current->sighand->siglock);
966 list_del(&timer->list);
967 spin_unlock(&current->sighand->siglock);
968 /*
969 * This keeps any tasks waiting on the spin lock from thinking
970 * they got something (see the lock code above).
971 */
972 timer->it_signal = NULL;
973
974 unlock_timer(timer, flags);
975 release_posix_timer(timer, IT_ID_SET);
976 return 0;
977 }
978
979 /*
980 * return timer owned by the process, used by exit_itimers
981 */
982 static void itimer_delete(struct k_itimer *timer)
983 {
984 unsigned long flags;
985
986 retry_delete:
987 spin_lock_irqsave(&timer->it_lock, flags);
988
989 if (timer_delete_hook(timer) == TIMER_RETRY) {
990 unlock_timer(timer, flags);
991 goto retry_delete;
992 }
993 list_del(&timer->list);
994 /*
995 * This keeps any tasks waiting on the spin lock from thinking
996 * they got something (see the lock code above).
997 */
998 timer->it_signal = NULL;
999
1000 unlock_timer(timer, flags);
1001 release_posix_timer(timer, IT_ID_SET);
1002 }
1003
1004 /*
1005 * This is called by do_exit or de_thread, only when there are no more
1006 * references to the shared signal_struct.
1007 */
1008 void exit_itimers(struct signal_struct *sig)
1009 {
1010 struct k_itimer *tmr;
1011
1012 while (!list_empty(&sig->posix_timers)) {
1013 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1014 itimer_delete(tmr);
1015 }
1016 }
1017
1018 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1019 const struct timespec __user *, tp)
1020 {
1021 struct k_clock *kc = clockid_to_kclock(which_clock);
1022 struct timespec64 new_tp64;
1023 struct timespec new_tp;
1024
1025 if (!kc || !kc->clock_set)
1026 return -EINVAL;
1027
1028 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1029 return -EFAULT;
1030 new_tp64 = timespec_to_timespec64(new_tp);
1031
1032 return kc->clock_set(which_clock, &new_tp64);
1033 }
1034
1035 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1036 struct timespec __user *,tp)
1037 {
1038 struct k_clock *kc = clockid_to_kclock(which_clock);
1039 struct timespec64 kernel_tp64;
1040 struct timespec kernel_tp;
1041 int error;
1042
1043 if (!kc)
1044 return -EINVAL;
1045
1046 error = kc->clock_get(which_clock, &kernel_tp64);
1047 kernel_tp = timespec64_to_timespec(kernel_tp64);
1048
1049 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1050 error = -EFAULT;
1051
1052 return error;
1053 }
1054
1055 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1056 struct timex __user *, utx)
1057 {
1058 struct k_clock *kc = clockid_to_kclock(which_clock);
1059 struct timex ktx;
1060 int err;
1061
1062 if (!kc)
1063 return -EINVAL;
1064 if (!kc->clock_adj)
1065 return -EOPNOTSUPP;
1066
1067 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1068 return -EFAULT;
1069
1070 err = kc->clock_adj(which_clock, &ktx);
1071
1072 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1073 return -EFAULT;
1074
1075 return err;
1076 }
1077
1078 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1079 struct timespec __user *, tp)
1080 {
1081 struct k_clock *kc = clockid_to_kclock(which_clock);
1082 struct timespec64 rtn_tp64;
1083 struct timespec rtn_tp;
1084 int error;
1085
1086 if (!kc)
1087 return -EINVAL;
1088
1089 error = kc->clock_getres(which_clock, &rtn_tp64);
1090 rtn_tp = timespec64_to_timespec(rtn_tp64);
1091
1092 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1093 error = -EFAULT;
1094
1095 return error;
1096 }
1097
1098 /*
1099 * nanosleep for monotonic and realtime clocks
1100 */
1101 static int common_nsleep(const clockid_t which_clock, int flags,
1102 struct timespec64 *tsave, struct timespec __user *rmtp)
1103 {
1104 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1105 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1106 which_clock);
1107 }
1108
1109 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1110 const struct timespec __user *, rqtp,
1111 struct timespec __user *, rmtp)
1112 {
1113 struct k_clock *kc = clockid_to_kclock(which_clock);
1114 struct timespec64 t64;
1115 struct timespec t;
1116
1117 if (!kc)
1118 return -EINVAL;
1119 if (!kc->nsleep)
1120 return -ENANOSLEEP_NOTSUP;
1121
1122 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1123 return -EFAULT;
1124
1125 t64 = timespec_to_timespec64(t);
1126 if (!timespec64_valid(&t64))
1127 return -EINVAL;
1128
1129 return kc->nsleep(which_clock, flags, &t64, rmtp);
1130 }
1131
1132 /*
1133 * This will restart clock_nanosleep. This is required only by
1134 * compat_clock_nanosleep_restart for now.
1135 */
1136 long clock_nanosleep_restart(struct restart_block *restart_block)
1137 {
1138 clockid_t which_clock = restart_block->nanosleep.clockid;
1139 struct k_clock *kc = clockid_to_kclock(which_clock);
1140
1141 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1142 return -EINVAL;
1143
1144 return kc->nsleep_restart(restart_block);
1145 }