[RAMEN9610-21380]HID: hiddev: avoid opening a disconnected device
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / time / ntp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NTP state machine interfaces and logic.
4 *
5 * This code was mainly moved from kernel/timer.c and kernel/time.c
6 * Please see those files for relevant copyright info and historical
7 * changelogs.
8 */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/math64.h>
21
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
24
25
26 /*
27 * NTP timekeeping variables:
28 *
29 * Note: All of the NTP state is protected by the timekeeping locks.
30 */
31
32
33 /* USER_HZ period (usecs): */
34 unsigned long tick_usec = USER_TICK_USEC;
35
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long tick_nsec;
38
39 static u64 tick_length;
40 static u64 tick_length_base;
41
42 #define SECS_PER_DAY 86400
43 #define MAX_TICKADJ 500LL /* usecs */
44 #define MAX_TICKADJ_SCALED \
45 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46
47 /*
48 * phase-lock loop variables
49 */
50
51 /*
52 * clock synchronization status
53 *
54 * (TIME_ERROR prevents overwriting the CMOS clock)
55 */
56 static int time_state = TIME_OK;
57
58 /* clock status bits: */
59 static int time_status = STA_UNSYNC;
60
61 /* time adjustment (nsecs): */
62 static s64 time_offset;
63
64 /* pll time constant: */
65 static long time_constant = 2;
66
67 /* maximum error (usecs): */
68 static long time_maxerror = NTP_PHASE_LIMIT;
69
70 /* estimated error (usecs): */
71 static long time_esterror = NTP_PHASE_LIMIT;
72
73 /* frequency offset (scaled nsecs/secs): */
74 static s64 time_freq;
75
76 /* time at last adjustment (secs): */
77 static time64_t time_reftime;
78
79 static long time_adjust;
80
81 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
82 static s64 ntp_tick_adj;
83
84 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
85 static time64_t ntp_next_leap_sec = TIME64_MAX;
86
87 #ifdef CONFIG_NTP_PPS
88
89 /*
90 * The following variables are used when a pulse-per-second (PPS) signal
91 * is available. They establish the engineering parameters of the clock
92 * discipline loop when controlled by the PPS signal.
93 */
94 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
95 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
96 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
97 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
98 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
99 increase pps_shift or consecutive bad
100 intervals to decrease it */
101 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
102
103 static int pps_valid; /* signal watchdog counter */
104 static long pps_tf[3]; /* phase median filter */
105 static long pps_jitter; /* current jitter (ns) */
106 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
107 static int pps_shift; /* current interval duration (s) (shift) */
108 static int pps_intcnt; /* interval counter */
109 static s64 pps_freq; /* frequency offset (scaled ns/s) */
110 static long pps_stabil; /* current stability (scaled ns/s) */
111
112 /*
113 * PPS signal quality monitors
114 */
115 static long pps_calcnt; /* calibration intervals */
116 static long pps_jitcnt; /* jitter limit exceeded */
117 static long pps_stbcnt; /* stability limit exceeded */
118 static long pps_errcnt; /* calibration errors */
119
120
121 /* PPS kernel consumer compensates the whole phase error immediately.
122 * Otherwise, reduce the offset by a fixed factor times the time constant.
123 */
124 static inline s64 ntp_offset_chunk(s64 offset)
125 {
126 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
127 return offset;
128 else
129 return shift_right(offset, SHIFT_PLL + time_constant);
130 }
131
132 static inline void pps_reset_freq_interval(void)
133 {
134 /* the PPS calibration interval may end
135 surprisingly early */
136 pps_shift = PPS_INTMIN;
137 pps_intcnt = 0;
138 }
139
140 /**
141 * pps_clear - Clears the PPS state variables
142 */
143 static inline void pps_clear(void)
144 {
145 pps_reset_freq_interval();
146 pps_tf[0] = 0;
147 pps_tf[1] = 0;
148 pps_tf[2] = 0;
149 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
150 pps_freq = 0;
151 }
152
153 /* Decrease pps_valid to indicate that another second has passed since
154 * the last PPS signal. When it reaches 0, indicate that PPS signal is
155 * missing.
156 */
157 static inline void pps_dec_valid(void)
158 {
159 if (pps_valid > 0)
160 pps_valid--;
161 else {
162 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
163 STA_PPSWANDER | STA_PPSERROR);
164 pps_clear();
165 }
166 }
167
168 static inline void pps_set_freq(s64 freq)
169 {
170 pps_freq = freq;
171 }
172
173 static inline int is_error_status(int status)
174 {
175 return (status & (STA_UNSYNC|STA_CLOCKERR))
176 /* PPS signal lost when either PPS time or
177 * PPS frequency synchronization requested
178 */
179 || ((status & (STA_PPSFREQ|STA_PPSTIME))
180 && !(status & STA_PPSSIGNAL))
181 /* PPS jitter exceeded when
182 * PPS time synchronization requested */
183 || ((status & (STA_PPSTIME|STA_PPSJITTER))
184 == (STA_PPSTIME|STA_PPSJITTER))
185 /* PPS wander exceeded or calibration error when
186 * PPS frequency synchronization requested
187 */
188 || ((status & STA_PPSFREQ)
189 && (status & (STA_PPSWANDER|STA_PPSERROR)));
190 }
191
192 static inline void pps_fill_timex(struct timex *txc)
193 {
194 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
195 PPM_SCALE_INV, NTP_SCALE_SHIFT);
196 txc->jitter = pps_jitter;
197 if (!(time_status & STA_NANO))
198 txc->jitter /= NSEC_PER_USEC;
199 txc->shift = pps_shift;
200 txc->stabil = pps_stabil;
201 txc->jitcnt = pps_jitcnt;
202 txc->calcnt = pps_calcnt;
203 txc->errcnt = pps_errcnt;
204 txc->stbcnt = pps_stbcnt;
205 }
206
207 #else /* !CONFIG_NTP_PPS */
208
209 static inline s64 ntp_offset_chunk(s64 offset)
210 {
211 return shift_right(offset, SHIFT_PLL + time_constant);
212 }
213
214 static inline void pps_reset_freq_interval(void) {}
215 static inline void pps_clear(void) {}
216 static inline void pps_dec_valid(void) {}
217 static inline void pps_set_freq(s64 freq) {}
218
219 static inline int is_error_status(int status)
220 {
221 return status & (STA_UNSYNC|STA_CLOCKERR);
222 }
223
224 static inline void pps_fill_timex(struct timex *txc)
225 {
226 /* PPS is not implemented, so these are zero */
227 txc->ppsfreq = 0;
228 txc->jitter = 0;
229 txc->shift = 0;
230 txc->stabil = 0;
231 txc->jitcnt = 0;
232 txc->calcnt = 0;
233 txc->errcnt = 0;
234 txc->stbcnt = 0;
235 }
236
237 #endif /* CONFIG_NTP_PPS */
238
239
240 /**
241 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
242 *
243 */
244 static inline int ntp_synced(void)
245 {
246 return !(time_status & STA_UNSYNC);
247 }
248
249
250 /*
251 * NTP methods:
252 */
253
254 /*
255 * Update (tick_length, tick_length_base, tick_nsec), based
256 * on (tick_usec, ntp_tick_adj, time_freq):
257 */
258 static void ntp_update_frequency(void)
259 {
260 u64 second_length;
261 u64 new_base;
262
263 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
264 << NTP_SCALE_SHIFT;
265
266 second_length += ntp_tick_adj;
267 second_length += time_freq;
268
269 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
270 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
271
272 /*
273 * Don't wait for the next second_overflow, apply
274 * the change to the tick length immediately:
275 */
276 tick_length += new_base - tick_length_base;
277 tick_length_base = new_base;
278 }
279
280 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
281 {
282 time_status &= ~STA_MODE;
283
284 if (secs < MINSEC)
285 return 0;
286
287 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
288 return 0;
289
290 time_status |= STA_MODE;
291
292 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
293 }
294
295 static void ntp_update_offset(long offset)
296 {
297 s64 freq_adj;
298 s64 offset64;
299 long secs;
300
301 if (!(time_status & STA_PLL))
302 return;
303
304 if (!(time_status & STA_NANO)) {
305 /* Make sure the multiplication below won't overflow */
306 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
307 offset *= NSEC_PER_USEC;
308 }
309
310 /*
311 * Scale the phase adjustment and
312 * clamp to the operating range.
313 */
314 offset = clamp(offset, -MAXPHASE, MAXPHASE);
315
316 /*
317 * Select how the frequency is to be controlled
318 * and in which mode (PLL or FLL).
319 */
320 secs = (long)(__ktime_get_real_seconds() - time_reftime);
321 if (unlikely(time_status & STA_FREQHOLD))
322 secs = 0;
323
324 time_reftime = __ktime_get_real_seconds();
325
326 offset64 = offset;
327 freq_adj = ntp_update_offset_fll(offset64, secs);
328
329 /*
330 * Clamp update interval to reduce PLL gain with low
331 * sampling rate (e.g. intermittent network connection)
332 * to avoid instability.
333 */
334 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
335 secs = 1 << (SHIFT_PLL + 1 + time_constant);
336
337 freq_adj += (offset64 * secs) <<
338 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
339
340 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
341
342 time_freq = max(freq_adj, -MAXFREQ_SCALED);
343
344 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
345 }
346
347 /**
348 * ntp_clear - Clears the NTP state variables
349 */
350 void ntp_clear(void)
351 {
352 time_adjust = 0; /* stop active adjtime() */
353 time_status |= STA_UNSYNC;
354 time_maxerror = NTP_PHASE_LIMIT;
355 time_esterror = NTP_PHASE_LIMIT;
356
357 ntp_update_frequency();
358
359 tick_length = tick_length_base;
360 time_offset = 0;
361
362 ntp_next_leap_sec = TIME64_MAX;
363 /* Clear PPS state variables */
364 pps_clear();
365 }
366
367
368 u64 ntp_tick_length(void)
369 {
370 return tick_length;
371 }
372
373 /**
374 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
375 *
376 * Provides the time of the next leapsecond against CLOCK_REALTIME in
377 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
378 */
379 ktime_t ntp_get_next_leap(void)
380 {
381 ktime_t ret;
382
383 if ((time_state == TIME_INS) && (time_status & STA_INS))
384 return ktime_set(ntp_next_leap_sec, 0);
385 ret = KTIME_MAX;
386 return ret;
387 }
388
389 /*
390 * this routine handles the overflow of the microsecond field
391 *
392 * The tricky bits of code to handle the accurate clock support
393 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
394 * They were originally developed for SUN and DEC kernels.
395 * All the kudos should go to Dave for this stuff.
396 *
397 * Also handles leap second processing, and returns leap offset
398 */
399 int second_overflow(time64_t secs)
400 {
401 s64 delta;
402 int leap = 0;
403 s32 rem;
404
405 /*
406 * Leap second processing. If in leap-insert state at the end of the
407 * day, the system clock is set back one second; if in leap-delete
408 * state, the system clock is set ahead one second.
409 */
410 switch (time_state) {
411 case TIME_OK:
412 if (time_status & STA_INS) {
413 time_state = TIME_INS;
414 div_s64_rem(secs, SECS_PER_DAY, &rem);
415 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
416 } else if (time_status & STA_DEL) {
417 time_state = TIME_DEL;
418 div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
419 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
420 }
421 break;
422 case TIME_INS:
423 if (!(time_status & STA_INS)) {
424 ntp_next_leap_sec = TIME64_MAX;
425 time_state = TIME_OK;
426 } else if (secs == ntp_next_leap_sec) {
427 leap = -1;
428 time_state = TIME_OOP;
429 printk(KERN_NOTICE
430 "Clock: inserting leap second 23:59:60 UTC\n");
431 }
432 break;
433 case TIME_DEL:
434 if (!(time_status & STA_DEL)) {
435 ntp_next_leap_sec = TIME64_MAX;
436 time_state = TIME_OK;
437 } else if (secs == ntp_next_leap_sec) {
438 leap = 1;
439 ntp_next_leap_sec = TIME64_MAX;
440 time_state = TIME_WAIT;
441 printk(KERN_NOTICE
442 "Clock: deleting leap second 23:59:59 UTC\n");
443 }
444 break;
445 case TIME_OOP:
446 ntp_next_leap_sec = TIME64_MAX;
447 time_state = TIME_WAIT;
448 break;
449 case TIME_WAIT:
450 if (!(time_status & (STA_INS | STA_DEL)))
451 time_state = TIME_OK;
452 break;
453 }
454
455
456 /* Bump the maxerror field */
457 time_maxerror += MAXFREQ / NSEC_PER_USEC;
458 if (time_maxerror > NTP_PHASE_LIMIT) {
459 time_maxerror = NTP_PHASE_LIMIT;
460 time_status |= STA_UNSYNC;
461 }
462
463 /* Compute the phase adjustment for the next second */
464 tick_length = tick_length_base;
465
466 delta = ntp_offset_chunk(time_offset);
467 time_offset -= delta;
468 tick_length += delta;
469
470 /* Check PPS signal */
471 pps_dec_valid();
472
473 if (!time_adjust)
474 goto out;
475
476 if (time_adjust > MAX_TICKADJ) {
477 time_adjust -= MAX_TICKADJ;
478 tick_length += MAX_TICKADJ_SCALED;
479 goto out;
480 }
481
482 if (time_adjust < -MAX_TICKADJ) {
483 time_adjust += MAX_TICKADJ;
484 tick_length -= MAX_TICKADJ_SCALED;
485 goto out;
486 }
487
488 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
489 << NTP_SCALE_SHIFT;
490 time_adjust = 0;
491
492 out:
493 return leap;
494 }
495
496 #ifdef CONFIG_GENERIC_CMOS_UPDATE
497 int __weak update_persistent_clock(struct timespec now)
498 {
499 return -ENODEV;
500 }
501
502 int __weak update_persistent_clock64(struct timespec64 now64)
503 {
504 struct timespec now;
505
506 now = timespec64_to_timespec(now64);
507 return update_persistent_clock(now);
508 }
509 #endif
510
511 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
512 static void sync_cmos_clock(struct work_struct *work);
513
514 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
515
516 static void sync_cmos_clock(struct work_struct *work)
517 {
518 struct timespec64 now;
519 struct timespec64 next;
520 int fail = 1;
521
522 /*
523 * If we have an externally synchronized Linux clock, then update
524 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
525 * called as close as possible to 500 ms before the new second starts.
526 * This code is run on a timer. If the clock is set, that timer
527 * may not expire at the correct time. Thus, we adjust...
528 * We want the clock to be within a couple of ticks from the target.
529 */
530 if (!ntp_synced()) {
531 /*
532 * Not synced, exit, do not restart a timer (if one is
533 * running, let it run out).
534 */
535 return;
536 }
537
538 getnstimeofday64(&now);
539 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
540 struct timespec64 adjust = now;
541
542 fail = -ENODEV;
543 if (persistent_clock_is_local)
544 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
545 #ifdef CONFIG_GENERIC_CMOS_UPDATE
546 fail = update_persistent_clock64(adjust);
547 #endif
548
549 #ifdef CONFIG_RTC_SYSTOHC
550 if (fail == -ENODEV)
551 fail = rtc_set_ntp_time(adjust);
552 #endif
553 }
554
555 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
556 if (next.tv_nsec <= 0)
557 next.tv_nsec += NSEC_PER_SEC;
558
559 if (!fail || fail == -ENODEV)
560 next.tv_sec = 659;
561 else
562 next.tv_sec = 0;
563
564 if (next.tv_nsec >= NSEC_PER_SEC) {
565 next.tv_sec++;
566 next.tv_nsec -= NSEC_PER_SEC;
567 }
568 queue_delayed_work(system_power_efficient_wq,
569 &sync_cmos_work, timespec64_to_jiffies(&next));
570 }
571
572 void ntp_notify_cmos_timer(void)
573 {
574 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
575 }
576
577 #else
578 void ntp_notify_cmos_timer(void) { }
579 #endif
580
581
582 /*
583 * Propagate a new txc->status value into the NTP state:
584 */
585 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
586 {
587 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
588 time_state = TIME_OK;
589 time_status = STA_UNSYNC;
590 ntp_next_leap_sec = TIME64_MAX;
591 /* restart PPS frequency calibration */
592 pps_reset_freq_interval();
593 }
594
595 /*
596 * If we turn on PLL adjustments then reset the
597 * reference time to current time.
598 */
599 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
600 time_reftime = __ktime_get_real_seconds();
601
602 /* only set allowed bits */
603 time_status &= STA_RONLY;
604 time_status |= txc->status & ~STA_RONLY;
605 }
606
607
608 static inline void process_adjtimex_modes(struct timex *txc,
609 struct timespec64 *ts,
610 s32 *time_tai)
611 {
612 if (txc->modes & ADJ_STATUS)
613 process_adj_status(txc, ts);
614
615 if (txc->modes & ADJ_NANO)
616 time_status |= STA_NANO;
617
618 if (txc->modes & ADJ_MICRO)
619 time_status &= ~STA_NANO;
620
621 if (txc->modes & ADJ_FREQUENCY) {
622 time_freq = txc->freq * PPM_SCALE;
623 time_freq = min(time_freq, MAXFREQ_SCALED);
624 time_freq = max(time_freq, -MAXFREQ_SCALED);
625 /* update pps_freq */
626 pps_set_freq(time_freq);
627 }
628
629 if (txc->modes & ADJ_MAXERROR)
630 time_maxerror = txc->maxerror;
631
632 if (txc->modes & ADJ_ESTERROR)
633 time_esterror = txc->esterror;
634
635 if (txc->modes & ADJ_TIMECONST) {
636 time_constant = txc->constant;
637 if (!(time_status & STA_NANO))
638 time_constant += 4;
639 time_constant = min(time_constant, (long)MAXTC);
640 time_constant = max(time_constant, 0l);
641 }
642
643 if (txc->modes & ADJ_TAI && txc->constant > 0)
644 *time_tai = txc->constant;
645
646 if (txc->modes & ADJ_OFFSET)
647 ntp_update_offset(txc->offset);
648
649 if (txc->modes & ADJ_TICK)
650 tick_usec = txc->tick;
651
652 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
653 ntp_update_frequency();
654 }
655
656
657
658 /**
659 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
660 */
661 int ntp_validate_timex(struct timex *txc)
662 {
663 if (txc->modes & ADJ_ADJTIME) {
664 /* singleshot must not be used with any other mode bits */
665 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
666 return -EINVAL;
667 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
668 !capable(CAP_SYS_TIME))
669 return -EPERM;
670 } else {
671 /* In order to modify anything, you gotta be super-user! */
672 if (txc->modes && !capable(CAP_SYS_TIME))
673 return -EPERM;
674 /*
675 * if the quartz is off by more than 10% then
676 * something is VERY wrong!
677 */
678 if (txc->modes & ADJ_TICK &&
679 (txc->tick < 900000/USER_HZ ||
680 txc->tick > 1100000/USER_HZ))
681 return -EINVAL;
682 }
683
684 if (txc->modes & ADJ_SETOFFSET) {
685 /* In order to inject time, you gotta be super-user! */
686 if (!capable(CAP_SYS_TIME))
687 return -EPERM;
688
689 if (txc->modes & ADJ_NANO) {
690 struct timespec ts;
691
692 ts.tv_sec = txc->time.tv_sec;
693 ts.tv_nsec = txc->time.tv_usec;
694 if (!timespec_inject_offset_valid(&ts))
695 return -EINVAL;
696
697 } else {
698 if (!timeval_inject_offset_valid(&txc->time))
699 return -EINVAL;
700 }
701 }
702
703 /*
704 * Check for potential multiplication overflows that can
705 * only happen on 64-bit systems:
706 */
707 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
708 if (LLONG_MIN / PPM_SCALE > txc->freq)
709 return -EINVAL;
710 if (LLONG_MAX / PPM_SCALE < txc->freq)
711 return -EINVAL;
712 }
713
714 return 0;
715 }
716
717
718 /*
719 * adjtimex mainly allows reading (and writing, if superuser) of
720 * kernel time-keeping variables. used by xntpd.
721 */
722 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
723 {
724 int result;
725
726 if (txc->modes & ADJ_ADJTIME) {
727 long save_adjust = time_adjust;
728
729 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
730 /* adjtime() is independent from ntp_adjtime() */
731 time_adjust = txc->offset;
732 ntp_update_frequency();
733 }
734 txc->offset = save_adjust;
735 } else {
736
737 /* If there are input parameters, then process them: */
738 if (txc->modes)
739 process_adjtimex_modes(txc, ts, time_tai);
740
741 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
742 NTP_SCALE_SHIFT);
743 if (!(time_status & STA_NANO))
744 txc->offset /= NSEC_PER_USEC;
745 }
746
747 result = time_state; /* mostly `TIME_OK' */
748 /* check for errors */
749 if (is_error_status(time_status))
750 result = TIME_ERROR;
751
752 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
753 PPM_SCALE_INV, NTP_SCALE_SHIFT);
754 txc->maxerror = time_maxerror;
755 txc->esterror = time_esterror;
756 txc->status = time_status;
757 txc->constant = time_constant;
758 txc->precision = 1;
759 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
760 txc->tick = tick_usec;
761 txc->tai = *time_tai;
762
763 /* fill PPS status fields */
764 pps_fill_timex(txc);
765
766 txc->time.tv_sec = (time_t)ts->tv_sec;
767 txc->time.tv_usec = ts->tv_nsec;
768 if (!(time_status & STA_NANO))
769 txc->time.tv_usec /= NSEC_PER_USEC;
770
771 /* Handle leapsec adjustments */
772 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
773 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
774 result = TIME_OOP;
775 txc->tai++;
776 txc->time.tv_sec--;
777 }
778 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
779 result = TIME_WAIT;
780 txc->tai--;
781 txc->time.tv_sec++;
782 }
783 if ((time_state == TIME_OOP) &&
784 (ts->tv_sec == ntp_next_leap_sec)) {
785 result = TIME_WAIT;
786 }
787 }
788
789 return result;
790 }
791
792 #ifdef CONFIG_NTP_PPS
793
794 /* actually struct pps_normtime is good old struct timespec, but it is
795 * semantically different (and it is the reason why it was invented):
796 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
797 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
798 struct pps_normtime {
799 s64 sec; /* seconds */
800 long nsec; /* nanoseconds */
801 };
802
803 /* normalize the timestamp so that nsec is in the
804 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
805 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
806 {
807 struct pps_normtime norm = {
808 .sec = ts.tv_sec,
809 .nsec = ts.tv_nsec
810 };
811
812 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
813 norm.nsec -= NSEC_PER_SEC;
814 norm.sec++;
815 }
816
817 return norm;
818 }
819
820 /* get current phase correction and jitter */
821 static inline long pps_phase_filter_get(long *jitter)
822 {
823 *jitter = pps_tf[0] - pps_tf[1];
824 if (*jitter < 0)
825 *jitter = -*jitter;
826
827 /* TODO: test various filters */
828 return pps_tf[0];
829 }
830
831 /* add the sample to the phase filter */
832 static inline void pps_phase_filter_add(long err)
833 {
834 pps_tf[2] = pps_tf[1];
835 pps_tf[1] = pps_tf[0];
836 pps_tf[0] = err;
837 }
838
839 /* decrease frequency calibration interval length.
840 * It is halved after four consecutive unstable intervals.
841 */
842 static inline void pps_dec_freq_interval(void)
843 {
844 if (--pps_intcnt <= -PPS_INTCOUNT) {
845 pps_intcnt = -PPS_INTCOUNT;
846 if (pps_shift > PPS_INTMIN) {
847 pps_shift--;
848 pps_intcnt = 0;
849 }
850 }
851 }
852
853 /* increase frequency calibration interval length.
854 * It is doubled after four consecutive stable intervals.
855 */
856 static inline void pps_inc_freq_interval(void)
857 {
858 if (++pps_intcnt >= PPS_INTCOUNT) {
859 pps_intcnt = PPS_INTCOUNT;
860 if (pps_shift < PPS_INTMAX) {
861 pps_shift++;
862 pps_intcnt = 0;
863 }
864 }
865 }
866
867 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
868 * timestamps
869 *
870 * At the end of the calibration interval the difference between the
871 * first and last MONOTONIC_RAW clock timestamps divided by the length
872 * of the interval becomes the frequency update. If the interval was
873 * too long, the data are discarded.
874 * Returns the difference between old and new frequency values.
875 */
876 static long hardpps_update_freq(struct pps_normtime freq_norm)
877 {
878 long delta, delta_mod;
879 s64 ftemp;
880
881 /* check if the frequency interval was too long */
882 if (freq_norm.sec > (2 << pps_shift)) {
883 time_status |= STA_PPSERROR;
884 pps_errcnt++;
885 pps_dec_freq_interval();
886 printk_deferred(KERN_ERR
887 "hardpps: PPSERROR: interval too long - %lld s\n",
888 freq_norm.sec);
889 return 0;
890 }
891
892 /* here the raw frequency offset and wander (stability) is
893 * calculated. If the wander is less than the wander threshold
894 * the interval is increased; otherwise it is decreased.
895 */
896 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
897 freq_norm.sec);
898 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
899 pps_freq = ftemp;
900 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
901 printk_deferred(KERN_WARNING
902 "hardpps: PPSWANDER: change=%ld\n", delta);
903 time_status |= STA_PPSWANDER;
904 pps_stbcnt++;
905 pps_dec_freq_interval();
906 } else { /* good sample */
907 pps_inc_freq_interval();
908 }
909
910 /* the stability metric is calculated as the average of recent
911 * frequency changes, but is used only for performance
912 * monitoring
913 */
914 delta_mod = delta;
915 if (delta_mod < 0)
916 delta_mod = -delta_mod;
917 pps_stabil += (div_s64(((s64)delta_mod) <<
918 (NTP_SCALE_SHIFT - SHIFT_USEC),
919 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
920
921 /* if enabled, the system clock frequency is updated */
922 if ((time_status & STA_PPSFREQ) != 0 &&
923 (time_status & STA_FREQHOLD) == 0) {
924 time_freq = pps_freq;
925 ntp_update_frequency();
926 }
927
928 return delta;
929 }
930
931 /* correct REALTIME clock phase error against PPS signal */
932 static void hardpps_update_phase(long error)
933 {
934 long correction = -error;
935 long jitter;
936
937 /* add the sample to the median filter */
938 pps_phase_filter_add(correction);
939 correction = pps_phase_filter_get(&jitter);
940
941 /* Nominal jitter is due to PPS signal noise. If it exceeds the
942 * threshold, the sample is discarded; otherwise, if so enabled,
943 * the time offset is updated.
944 */
945 if (jitter > (pps_jitter << PPS_POPCORN)) {
946 printk_deferred(KERN_WARNING
947 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
948 jitter, (pps_jitter << PPS_POPCORN));
949 time_status |= STA_PPSJITTER;
950 pps_jitcnt++;
951 } else if (time_status & STA_PPSTIME) {
952 /* correct the time using the phase offset */
953 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
954 NTP_INTERVAL_FREQ);
955 /* cancel running adjtime() */
956 time_adjust = 0;
957 }
958 /* update jitter */
959 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
960 }
961
962 /*
963 * __hardpps() - discipline CPU clock oscillator to external PPS signal
964 *
965 * This routine is called at each PPS signal arrival in order to
966 * discipline the CPU clock oscillator to the PPS signal. It takes two
967 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
968 * is used to correct clock phase error and the latter is used to
969 * correct the frequency.
970 *
971 * This code is based on David Mills's reference nanokernel
972 * implementation. It was mostly rewritten but keeps the same idea.
973 */
974 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
975 {
976 struct pps_normtime pts_norm, freq_norm;
977
978 pts_norm = pps_normalize_ts(*phase_ts);
979
980 /* clear the error bits, they will be set again if needed */
981 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
982
983 /* indicate signal presence */
984 time_status |= STA_PPSSIGNAL;
985 pps_valid = PPS_VALID;
986
987 /* when called for the first time,
988 * just start the frequency interval */
989 if (unlikely(pps_fbase.tv_sec == 0)) {
990 pps_fbase = *raw_ts;
991 return;
992 }
993
994 /* ok, now we have a base for frequency calculation */
995 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
996
997 /* check that the signal is in the range
998 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
999 if ((freq_norm.sec == 0) ||
1000 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1001 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1002 time_status |= STA_PPSJITTER;
1003 /* restart the frequency calibration interval */
1004 pps_fbase = *raw_ts;
1005 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1006 return;
1007 }
1008
1009 /* signal is ok */
1010
1011 /* check if the current frequency interval is finished */
1012 if (freq_norm.sec >= (1 << pps_shift)) {
1013 pps_calcnt++;
1014 /* restart the frequency calibration interval */
1015 pps_fbase = *raw_ts;
1016 hardpps_update_freq(freq_norm);
1017 }
1018
1019 hardpps_update_phase(pts_norm.nsec);
1020
1021 }
1022 #endif /* CONFIG_NTP_PPS */
1023
1024 static int __init ntp_tick_adj_setup(char *str)
1025 {
1026 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1027
1028 if (rc)
1029 return rc;
1030 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1031
1032 return 1;
1033 }
1034
1035 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1036
1037 void __init ntp_init(void)
1038 {
1039 ntp_clear();
1040 }