Merge 4.14.23 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 #include <linux/compat.h>
55
56 #include <linux/uaccess.h>
57
58 #include <trace/events/timer.h>
59
60 #include "tick-internal.h"
61
62 /*
63 * The timer bases:
64 *
65 * There are more clockids than hrtimer bases. Thus, we index
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
69 */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
74 .clock_base =
75 {
76 {
77 .index = HRTIMER_BASE_MONOTONIC,
78 .clockid = CLOCK_MONOTONIC,
79 .get_time = &ktime_get,
80 },
81 {
82 .index = HRTIMER_BASE_REALTIME,
83 .clockid = CLOCK_REALTIME,
84 .get_time = &ktime_get_real,
85 },
86 {
87 .index = HRTIMER_BASE_BOOTTIME,
88 .clockid = CLOCK_BOOTTIME,
89 .get_time = &ktime_get_boottime,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 },
96 }
97 };
98
99 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 /* Make sure we catch unsupported clockids */
101 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
102
103 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
104 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
105 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
106 [CLOCK_TAI] = HRTIMER_BASE_TAI,
107 };
108
109 /*
110 * Functions and macros which are different for UP/SMP systems are kept in a
111 * single place
112 */
113 #ifdef CONFIG_SMP
114
115 /*
116 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
117 * such that hrtimer_callback_running() can unconditionally dereference
118 * timer->base->cpu_base
119 */
120 static struct hrtimer_cpu_base migration_cpu_base = {
121 .seq = SEQCNT_ZERO(migration_cpu_base),
122 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
123 };
124
125 #define migration_base migration_cpu_base.clock_base[0]
126
127 /*
128 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129 * means that all timers which are tied to this base via timer->base are
130 * locked, and the base itself is locked too.
131 *
132 * So __run_timers/migrate_timers can safely modify all timers which could
133 * be found on the lists/queues.
134 *
135 * When the timer's base is locked, and the timer removed from list, it is
136 * possible to set timer->base = &migration_base and drop the lock: the timer
137 * remains locked.
138 */
139 static
140 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
141 unsigned long *flags)
142 {
143 struct hrtimer_clock_base *base;
144
145 for (;;) {
146 base = timer->base;
147 if (likely(base != &migration_base)) {
148 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 if (likely(base == timer->base))
150 return base;
151 /* The timer has migrated to another CPU: */
152 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 }
154 cpu_relax();
155 }
156 }
157
158 /*
159 * With HIGHRES=y we do not migrate the timer when it is expiring
160 * before the next event on the target cpu because we cannot reprogram
161 * the target cpu hardware and we would cause it to fire late.
162 *
163 * Called with cpu_base->lock of target cpu held.
164 */
165 static int
166 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 {
168 #ifdef CONFIG_HIGH_RES_TIMERS
169 ktime_t expires;
170
171 if (!new_base->cpu_base->hres_active)
172 return 0;
173
174 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
175 return expires <= new_base->cpu_base->expires_next;
176 #else
177 return 0;
178 #endif
179 }
180
181 #ifdef CONFIG_NO_HZ_COMMON
182 static inline
183 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
184 int pinned)
185 {
186 if (pinned || !base->migration_enabled)
187 return base;
188 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
189 }
190 #else
191 static inline
192 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
193 int pinned)
194 {
195 return base;
196 }
197 #endif
198
199 /*
200 * We switch the timer base to a power-optimized selected CPU target,
201 * if:
202 * - NO_HZ_COMMON is enabled
203 * - timer migration is enabled
204 * - the timer callback is not running
205 * - the timer is not the first expiring timer on the new target
206 *
207 * If one of the above requirements is not fulfilled we move the timer
208 * to the current CPU or leave it on the previously assigned CPU if
209 * the timer callback is currently running.
210 */
211 static inline struct hrtimer_clock_base *
212 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
213 int pinned)
214 {
215 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216 struct hrtimer_clock_base *new_base;
217 int basenum = base->index;
218
219 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
220 new_cpu_base = get_target_base(this_cpu_base, pinned);
221 again:
222 new_base = &new_cpu_base->clock_base[basenum];
223
224 if (base != new_base) {
225 /*
226 * We are trying to move timer to new_base.
227 * However we can't change timer's base while it is running,
228 * so we keep it on the same CPU. No hassle vs. reprogramming
229 * the event source in the high resolution case. The softirq
230 * code will take care of this when the timer function has
231 * completed. There is no conflict as we hold the lock until
232 * the timer is enqueued.
233 */
234 if (unlikely(hrtimer_callback_running(timer)))
235 return base;
236
237 /* See the comment in lock_hrtimer_base() */
238 timer->base = &migration_base;
239 raw_spin_unlock(&base->cpu_base->lock);
240 raw_spin_lock(&new_base->cpu_base->lock);
241
242 if (new_cpu_base != this_cpu_base &&
243 hrtimer_check_target(timer, new_base)) {
244 raw_spin_unlock(&new_base->cpu_base->lock);
245 raw_spin_lock(&base->cpu_base->lock);
246 new_cpu_base = this_cpu_base;
247 timer->base = base;
248 goto again;
249 }
250 timer->base = new_base;
251 } else {
252 if (new_cpu_base != this_cpu_base &&
253 hrtimer_check_target(timer, new_base)) {
254 new_cpu_base = this_cpu_base;
255 goto again;
256 }
257 }
258 return new_base;
259 }
260
261 #else /* CONFIG_SMP */
262
263 static inline struct hrtimer_clock_base *
264 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
265 {
266 struct hrtimer_clock_base *base = timer->base;
267
268 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269
270 return base;
271 }
272
273 # define switch_hrtimer_base(t, b, p) (b)
274
275 #endif /* !CONFIG_SMP */
276
277 /*
278 * Functions for the union type storage format of ktime_t which are
279 * too large for inlining:
280 */
281 #if BITS_PER_LONG < 64
282 /*
283 * Divide a ktime value by a nanosecond value
284 */
285 s64 __ktime_divns(const ktime_t kt, s64 div)
286 {
287 int sft = 0;
288 s64 dclc;
289 u64 tmp;
290
291 dclc = ktime_to_ns(kt);
292 tmp = dclc < 0 ? -dclc : dclc;
293
294 /* Make sure the divisor is less than 2^32: */
295 while (div >> 32) {
296 sft++;
297 div >>= 1;
298 }
299 tmp >>= sft;
300 do_div(tmp, (unsigned long) div);
301 return dclc < 0 ? -tmp : tmp;
302 }
303 EXPORT_SYMBOL_GPL(__ktime_divns);
304 #endif /* BITS_PER_LONG >= 64 */
305
306 /*
307 * Add two ktime values and do a safety check for overflow:
308 */
309 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 {
311 ktime_t res = ktime_add_unsafe(lhs, rhs);
312
313 /*
314 * We use KTIME_SEC_MAX here, the maximum timeout which we can
315 * return to user space in a timespec:
316 */
317 if (res < 0 || res < lhs || res < rhs)
318 res = ktime_set(KTIME_SEC_MAX, 0);
319
320 return res;
321 }
322
323 EXPORT_SYMBOL_GPL(ktime_add_safe);
324
325 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326
327 static struct debug_obj_descr hrtimer_debug_descr;
328
329 static void *hrtimer_debug_hint(void *addr)
330 {
331 return ((struct hrtimer *) addr)->function;
332 }
333
334 /*
335 * fixup_init is called when:
336 * - an active object is initialized
337 */
338 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 {
340 struct hrtimer *timer = addr;
341
342 switch (state) {
343 case ODEBUG_STATE_ACTIVE:
344 hrtimer_cancel(timer);
345 debug_object_init(timer, &hrtimer_debug_descr);
346 return true;
347 default:
348 return false;
349 }
350 }
351
352 /*
353 * fixup_activate is called when:
354 * - an active object is activated
355 * - an unknown non-static object is activated
356 */
357 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 {
359 switch (state) {
360 case ODEBUG_STATE_ACTIVE:
361 WARN_ON(1);
362
363 default:
364 return false;
365 }
366 }
367
368 /*
369 * fixup_free is called when:
370 * - an active object is freed
371 */
372 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 struct hrtimer *timer = addr;
375
376 switch (state) {
377 case ODEBUG_STATE_ACTIVE:
378 hrtimer_cancel(timer);
379 debug_object_free(timer, &hrtimer_debug_descr);
380 return true;
381 default:
382 return false;
383 }
384 }
385
386 static struct debug_obj_descr hrtimer_debug_descr = {
387 .name = "hrtimer",
388 .debug_hint = hrtimer_debug_hint,
389 .fixup_init = hrtimer_fixup_init,
390 .fixup_activate = hrtimer_fixup_activate,
391 .fixup_free = hrtimer_fixup_free,
392 };
393
394 static inline void debug_hrtimer_init(struct hrtimer *timer)
395 {
396 debug_object_init(timer, &hrtimer_debug_descr);
397 }
398
399 static inline void debug_hrtimer_activate(struct hrtimer *timer)
400 {
401 debug_object_activate(timer, &hrtimer_debug_descr);
402 }
403
404 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
405 {
406 debug_object_deactivate(timer, &hrtimer_debug_descr);
407 }
408
409 static inline void debug_hrtimer_free(struct hrtimer *timer)
410 {
411 debug_object_free(timer, &hrtimer_debug_descr);
412 }
413
414 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
415 enum hrtimer_mode mode);
416
417 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
418 enum hrtimer_mode mode)
419 {
420 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
421 __hrtimer_init(timer, clock_id, mode);
422 }
423 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424
425 void destroy_hrtimer_on_stack(struct hrtimer *timer)
426 {
427 debug_object_free(timer, &hrtimer_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430
431 #else
432 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
434 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
435 #endif
436
437 static inline void
438 debug_init(struct hrtimer *timer, clockid_t clockid,
439 enum hrtimer_mode mode)
440 {
441 debug_hrtimer_init(timer);
442 trace_hrtimer_init(timer, clockid, mode);
443 }
444
445 static inline void debug_activate(struct hrtimer *timer)
446 {
447 debug_hrtimer_activate(timer);
448 trace_hrtimer_start(timer);
449 }
450
451 static inline void debug_deactivate(struct hrtimer *timer)
452 {
453 debug_hrtimer_deactivate(timer);
454 trace_hrtimer_cancel(timer);
455 }
456
457 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
458 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
459 struct hrtimer *timer)
460 {
461 #ifdef CONFIG_HIGH_RES_TIMERS
462 cpu_base->next_timer = timer;
463 #endif
464 }
465
466 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
467 {
468 struct hrtimer_clock_base *base = cpu_base->clock_base;
469 unsigned int active = cpu_base->active_bases;
470 ktime_t expires, expires_next = KTIME_MAX;
471
472 hrtimer_update_next_timer(cpu_base, NULL);
473 for (; active; base++, active >>= 1) {
474 struct timerqueue_node *next;
475 struct hrtimer *timer;
476
477 if (!(active & 0x01))
478 continue;
479
480 next = timerqueue_getnext(&base->active);
481 timer = container_of(next, struct hrtimer, node);
482 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
483 if (expires < expires_next) {
484 expires_next = expires;
485 hrtimer_update_next_timer(cpu_base, timer);
486 }
487 }
488 /*
489 * clock_was_set() might have changed base->offset of any of
490 * the clock bases so the result might be negative. Fix it up
491 * to prevent a false positive in clockevents_program_event().
492 */
493 if (expires_next < 0)
494 expires_next = 0;
495 return expires_next;
496 }
497 #endif
498
499 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
500 {
501 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
502 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
503 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
504
505 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
506 offs_real, offs_boot, offs_tai);
507 }
508
509 /* High resolution timer related functions */
510 #ifdef CONFIG_HIGH_RES_TIMERS
511
512 /*
513 * High resolution timer enabled ?
514 */
515 static bool hrtimer_hres_enabled __read_mostly = true;
516 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
517 EXPORT_SYMBOL_GPL(hrtimer_resolution);
518
519 /*
520 * Enable / Disable high resolution mode
521 */
522 static int __init setup_hrtimer_hres(char *str)
523 {
524 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
525 }
526
527 __setup("highres=", setup_hrtimer_hres);
528
529 /*
530 * hrtimer_high_res_enabled - query, if the highres mode is enabled
531 */
532 static inline int hrtimer_is_hres_enabled(void)
533 {
534 return hrtimer_hres_enabled;
535 }
536
537 /*
538 * Is the high resolution mode active ?
539 */
540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
541 {
542 return cpu_base->hres_active;
543 }
544
545 static inline int hrtimer_hres_active(void)
546 {
547 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 }
549
550 /*
551 * Reprogram the event source with checking both queues for the
552 * next event
553 * Called with interrupts disabled and base->lock held
554 */
555 static void
556 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557 {
558 ktime_t expires_next;
559
560 if (!cpu_base->hres_active)
561 return;
562
563 expires_next = __hrtimer_get_next_event(cpu_base);
564
565 if (skip_equal && expires_next == cpu_base->expires_next)
566 return;
567
568 cpu_base->expires_next = expires_next;
569
570 /*
571 * If a hang was detected in the last timer interrupt then we
572 * leave the hang delay active in the hardware. We want the
573 * system to make progress. That also prevents the following
574 * scenario:
575 * T1 expires 50ms from now
576 * T2 expires 5s from now
577 *
578 * T1 is removed, so this code is called and would reprogram
579 * the hardware to 5s from now. Any hrtimer_start after that
580 * will not reprogram the hardware due to hang_detected being
581 * set. So we'd effectivly block all timers until the T2 event
582 * fires.
583 */
584 if (cpu_base->hang_detected)
585 return;
586
587 tick_program_event(cpu_base->expires_next, 1);
588 }
589
590 /*
591 * When a timer is enqueued and expires earlier than the already enqueued
592 * timers, we have to check, whether it expires earlier than the timer for
593 * which the clock event device was armed.
594 *
595 * Called with interrupts disabled and base->cpu_base.lock held
596 */
597 static void hrtimer_reprogram(struct hrtimer *timer,
598 struct hrtimer_clock_base *base)
599 {
600 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602
603 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604
605 /*
606 * If the timer is not on the current cpu, we cannot reprogram
607 * the other cpus clock event device.
608 */
609 if (base->cpu_base != cpu_base)
610 return;
611
612 /*
613 * If the hrtimer interrupt is running, then it will
614 * reevaluate the clock bases and reprogram the clock event
615 * device. The callbacks are always executed in hard interrupt
616 * context so we don't need an extra check for a running
617 * callback.
618 */
619 if (cpu_base->in_hrtirq)
620 return;
621
622 /*
623 * CLOCK_REALTIME timer might be requested with an absolute
624 * expiry time which is less than base->offset. Set it to 0.
625 */
626 if (expires < 0)
627 expires = 0;
628
629 if (expires >= cpu_base->expires_next)
630 return;
631
632 /* Update the pointer to the next expiring timer */
633 cpu_base->next_timer = timer;
634
635 /*
636 * If a hang was detected in the last timer interrupt then we
637 * do not schedule a timer which is earlier than the expiry
638 * which we enforced in the hang detection. We want the system
639 * to make progress.
640 */
641 if (cpu_base->hang_detected)
642 return;
643
644 /*
645 * Program the timer hardware. We enforce the expiry for
646 * events which are already in the past.
647 */
648 cpu_base->expires_next = expires;
649 tick_program_event(expires, 1);
650 }
651
652 /*
653 * Initialize the high resolution related parts of cpu_base
654 */
655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656 {
657 base->expires_next = KTIME_MAX;
658 base->hang_detected = 0;
659 base->hres_active = 0;
660 base->next_timer = NULL;
661 }
662
663 /*
664 * Retrigger next event is called after clock was set
665 *
666 * Called with interrupts disabled via on_each_cpu()
667 */
668 static void retrigger_next_event(void *arg)
669 {
670 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
671
672 if (!base->hres_active)
673 return;
674
675 raw_spin_lock(&base->lock);
676 hrtimer_update_base(base);
677 hrtimer_force_reprogram(base, 0);
678 raw_spin_unlock(&base->lock);
679 }
680
681 /*
682 * Switch to high resolution mode
683 */
684 static void hrtimer_switch_to_hres(void)
685 {
686 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
687
688 if (tick_init_highres()) {
689 printk(KERN_WARNING "Could not switch to high resolution "
690 "mode on CPU %d\n", base->cpu);
691 return;
692 }
693 base->hres_active = 1;
694 hrtimer_resolution = HIGH_RES_NSEC;
695
696 tick_setup_sched_timer();
697 /* "Retrigger" the interrupt to get things going */
698 retrigger_next_event(NULL);
699 }
700
701 static void clock_was_set_work(struct work_struct *work)
702 {
703 clock_was_set();
704 }
705
706 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
707
708 /*
709 * Called from timekeeping and resume code to reprogram the hrtimer
710 * interrupt device on all cpus.
711 */
712 void clock_was_set_delayed(void)
713 {
714 schedule_work(&hrtimer_work);
715 }
716
717 #else
718
719 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
720 static inline int hrtimer_hres_active(void) { return 0; }
721 static inline int hrtimer_is_hres_enabled(void) { return 0; }
722 static inline void hrtimer_switch_to_hres(void) { }
723 static inline void
724 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
725 static inline int hrtimer_reprogram(struct hrtimer *timer,
726 struct hrtimer_clock_base *base)
727 {
728 return 0;
729 }
730 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
731 static inline void retrigger_next_event(void *arg) { }
732
733 #endif /* CONFIG_HIGH_RES_TIMERS */
734
735 /*
736 * Clock realtime was set
737 *
738 * Change the offset of the realtime clock vs. the monotonic
739 * clock.
740 *
741 * We might have to reprogram the high resolution timer interrupt. On
742 * SMP we call the architecture specific code to retrigger _all_ high
743 * resolution timer interrupts. On UP we just disable interrupts and
744 * call the high resolution interrupt code.
745 */
746 void clock_was_set(void)
747 {
748 #ifdef CONFIG_HIGH_RES_TIMERS
749 /* Retrigger the CPU local events everywhere */
750 on_each_cpu(retrigger_next_event, NULL, 1);
751 #endif
752 timerfd_clock_was_set();
753 }
754
755 /*
756 * During resume we might have to reprogram the high resolution timer
757 * interrupt on all online CPUs. However, all other CPUs will be
758 * stopped with IRQs interrupts disabled so the clock_was_set() call
759 * must be deferred.
760 */
761 void hrtimers_resume(void)
762 {
763 WARN_ONCE(!irqs_disabled(),
764 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
765
766 /* Retrigger on the local CPU */
767 retrigger_next_event(NULL);
768 /* And schedule a retrigger for all others */
769 clock_was_set_delayed();
770 }
771
772 /*
773 * Counterpart to lock_hrtimer_base above:
774 */
775 static inline
776 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
777 {
778 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
779 }
780
781 /**
782 * hrtimer_forward - forward the timer expiry
783 * @timer: hrtimer to forward
784 * @now: forward past this time
785 * @interval: the interval to forward
786 *
787 * Forward the timer expiry so it will expire in the future.
788 * Returns the number of overruns.
789 *
790 * Can be safely called from the callback function of @timer. If
791 * called from other contexts @timer must neither be enqueued nor
792 * running the callback and the caller needs to take care of
793 * serialization.
794 *
795 * Note: This only updates the timer expiry value and does not requeue
796 * the timer.
797 */
798 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
799 {
800 u64 orun = 1;
801 ktime_t delta;
802
803 delta = ktime_sub(now, hrtimer_get_expires(timer));
804
805 if (delta < 0)
806 return 0;
807
808 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
809 return 0;
810
811 if (interval < hrtimer_resolution)
812 interval = hrtimer_resolution;
813
814 if (unlikely(delta >= interval)) {
815 s64 incr = ktime_to_ns(interval);
816
817 orun = ktime_divns(delta, incr);
818 hrtimer_add_expires_ns(timer, incr * orun);
819 if (hrtimer_get_expires_tv64(timer) > now)
820 return orun;
821 /*
822 * This (and the ktime_add() below) is the
823 * correction for exact:
824 */
825 orun++;
826 }
827 hrtimer_add_expires(timer, interval);
828
829 return orun;
830 }
831 EXPORT_SYMBOL_GPL(hrtimer_forward);
832
833 /*
834 * enqueue_hrtimer - internal function to (re)start a timer
835 *
836 * The timer is inserted in expiry order. Insertion into the
837 * red black tree is O(log(n)). Must hold the base lock.
838 *
839 * Returns 1 when the new timer is the leftmost timer in the tree.
840 */
841 static int enqueue_hrtimer(struct hrtimer *timer,
842 struct hrtimer_clock_base *base)
843 {
844 debug_activate(timer);
845
846 base->cpu_base->active_bases |= 1 << base->index;
847
848 timer->state = HRTIMER_STATE_ENQUEUED;
849
850 return timerqueue_add(&base->active, &timer->node);
851 }
852
853 /*
854 * __remove_hrtimer - internal function to remove a timer
855 *
856 * Caller must hold the base lock.
857 *
858 * High resolution timer mode reprograms the clock event device when the
859 * timer is the one which expires next. The caller can disable this by setting
860 * reprogram to zero. This is useful, when the context does a reprogramming
861 * anyway (e.g. timer interrupt)
862 */
863 static void __remove_hrtimer(struct hrtimer *timer,
864 struct hrtimer_clock_base *base,
865 u8 newstate, int reprogram)
866 {
867 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
868 u8 state = timer->state;
869
870 timer->state = newstate;
871 if (!(state & HRTIMER_STATE_ENQUEUED))
872 return;
873
874 if (!timerqueue_del(&base->active, &timer->node))
875 cpu_base->active_bases &= ~(1 << base->index);
876
877 #ifdef CONFIG_HIGH_RES_TIMERS
878 /*
879 * Note: If reprogram is false we do not update
880 * cpu_base->next_timer. This happens when we remove the first
881 * timer on a remote cpu. No harm as we never dereference
882 * cpu_base->next_timer. So the worst thing what can happen is
883 * an superflous call to hrtimer_force_reprogram() on the
884 * remote cpu later on if the same timer gets enqueued again.
885 */
886 if (reprogram && timer == cpu_base->next_timer)
887 hrtimer_force_reprogram(cpu_base, 1);
888 #endif
889 }
890
891 /*
892 * remove hrtimer, called with base lock held
893 */
894 static inline int
895 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
896 {
897 if (hrtimer_is_queued(timer)) {
898 u8 state = timer->state;
899 int reprogram;
900
901 /*
902 * Remove the timer and force reprogramming when high
903 * resolution mode is active and the timer is on the current
904 * CPU. If we remove a timer on another CPU, reprogramming is
905 * skipped. The interrupt event on this CPU is fired and
906 * reprogramming happens in the interrupt handler. This is a
907 * rare case and less expensive than a smp call.
908 */
909 debug_deactivate(timer);
910 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
911
912 if (!restart)
913 state = HRTIMER_STATE_INACTIVE;
914
915 __remove_hrtimer(timer, base, state, reprogram);
916 return 1;
917 }
918 return 0;
919 }
920
921 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
922 const enum hrtimer_mode mode)
923 {
924 #ifdef CONFIG_TIME_LOW_RES
925 /*
926 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
927 * granular time values. For relative timers we add hrtimer_resolution
928 * (i.e. one jiffie) to prevent short timeouts.
929 */
930 timer->is_rel = mode & HRTIMER_MODE_REL;
931 if (timer->is_rel)
932 tim = ktime_add_safe(tim, hrtimer_resolution);
933 #endif
934 return tim;
935 }
936
937 /**
938 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
939 * @timer: the timer to be added
940 * @tim: expiry time
941 * @delta_ns: "slack" range for the timer
942 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
943 * relative (HRTIMER_MODE_REL)
944 */
945 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
946 u64 delta_ns, const enum hrtimer_mode mode)
947 {
948 struct hrtimer_clock_base *base, *new_base;
949 unsigned long flags;
950 int leftmost;
951
952 base = lock_hrtimer_base(timer, &flags);
953
954 /* Remove an active timer from the queue: */
955 remove_hrtimer(timer, base, true);
956
957 if (mode & HRTIMER_MODE_REL)
958 tim = ktime_add_safe(tim, base->get_time());
959
960 tim = hrtimer_update_lowres(timer, tim, mode);
961
962 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
963
964 /* Switch the timer base, if necessary: */
965 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
966
967 leftmost = enqueue_hrtimer(timer, new_base);
968 if (!leftmost)
969 goto unlock;
970
971 if (!hrtimer_is_hres_active(timer)) {
972 /*
973 * Kick to reschedule the next tick to handle the new timer
974 * on dynticks target.
975 */
976 if (new_base->cpu_base->nohz_active)
977 wake_up_nohz_cpu(new_base->cpu_base->cpu);
978 } else {
979 hrtimer_reprogram(timer, new_base);
980 }
981 unlock:
982 unlock_hrtimer_base(timer, &flags);
983 }
984 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
985
986 /**
987 * hrtimer_try_to_cancel - try to deactivate a timer
988 * @timer: hrtimer to stop
989 *
990 * Returns:
991 * 0 when the timer was not active
992 * 1 when the timer was active
993 * -1 when the timer is currently executing the callback function and
994 * cannot be stopped
995 */
996 int hrtimer_try_to_cancel(struct hrtimer *timer)
997 {
998 struct hrtimer_clock_base *base;
999 unsigned long flags;
1000 int ret = -1;
1001
1002 /*
1003 * Check lockless first. If the timer is not active (neither
1004 * enqueued nor running the callback, nothing to do here. The
1005 * base lock does not serialize against a concurrent enqueue,
1006 * so we can avoid taking it.
1007 */
1008 if (!hrtimer_active(timer))
1009 return 0;
1010
1011 base = lock_hrtimer_base(timer, &flags);
1012
1013 if (!hrtimer_callback_running(timer))
1014 ret = remove_hrtimer(timer, base, false);
1015
1016 unlock_hrtimer_base(timer, &flags);
1017
1018 return ret;
1019
1020 }
1021 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1022
1023 /**
1024 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1025 * @timer: the timer to be cancelled
1026 *
1027 * Returns:
1028 * 0 when the timer was not active
1029 * 1 when the timer was active
1030 */
1031 int hrtimer_cancel(struct hrtimer *timer)
1032 {
1033 for (;;) {
1034 int ret = hrtimer_try_to_cancel(timer);
1035
1036 if (ret >= 0)
1037 return ret;
1038 cpu_relax();
1039 }
1040 }
1041 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1042
1043 /**
1044 * hrtimer_get_remaining - get remaining time for the timer
1045 * @timer: the timer to read
1046 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1047 */
1048 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1049 {
1050 unsigned long flags;
1051 ktime_t rem;
1052
1053 lock_hrtimer_base(timer, &flags);
1054 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1055 rem = hrtimer_expires_remaining_adjusted(timer);
1056 else
1057 rem = hrtimer_expires_remaining(timer);
1058 unlock_hrtimer_base(timer, &flags);
1059
1060 return rem;
1061 }
1062 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1063
1064 #ifdef CONFIG_NO_HZ_COMMON
1065 /**
1066 * hrtimer_get_next_event - get the time until next expiry event
1067 *
1068 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1069 */
1070 u64 hrtimer_get_next_event(void)
1071 {
1072 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1073 u64 expires = KTIME_MAX;
1074 unsigned long flags;
1075
1076 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1077
1078 if (!__hrtimer_hres_active(cpu_base))
1079 expires = __hrtimer_get_next_event(cpu_base);
1080
1081 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1082
1083 return expires;
1084 }
1085 #endif
1086
1087 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1088 {
1089 if (likely(clock_id < MAX_CLOCKS)) {
1090 int base = hrtimer_clock_to_base_table[clock_id];
1091
1092 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1093 return base;
1094 }
1095 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1096 return HRTIMER_BASE_MONOTONIC;
1097 }
1098
1099 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1100 enum hrtimer_mode mode)
1101 {
1102 struct hrtimer_cpu_base *cpu_base;
1103 int base;
1104
1105 memset(timer, 0, sizeof(struct hrtimer));
1106
1107 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1108
1109 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1110 clock_id = CLOCK_MONOTONIC;
1111
1112 base = hrtimer_clockid_to_base(clock_id);
1113 timer->base = &cpu_base->clock_base[base];
1114 timerqueue_init(&timer->node);
1115 }
1116
1117 /**
1118 * hrtimer_init - initialize a timer to the given clock
1119 * @timer: the timer to be initialized
1120 * @clock_id: the clock to be used
1121 * @mode: timer mode abs/rel
1122 */
1123 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1124 enum hrtimer_mode mode)
1125 {
1126 debug_init(timer, clock_id, mode);
1127 __hrtimer_init(timer, clock_id, mode);
1128 }
1129 EXPORT_SYMBOL_GPL(hrtimer_init);
1130
1131 /*
1132 * A timer is active, when it is enqueued into the rbtree or the
1133 * callback function is running or it's in the state of being migrated
1134 * to another cpu.
1135 *
1136 * It is important for this function to not return a false negative.
1137 */
1138 bool hrtimer_active(const struct hrtimer *timer)
1139 {
1140 struct hrtimer_cpu_base *cpu_base;
1141 unsigned int seq;
1142
1143 do {
1144 cpu_base = READ_ONCE(timer->base->cpu_base);
1145 seq = raw_read_seqcount_begin(&cpu_base->seq);
1146
1147 if (timer->state != HRTIMER_STATE_INACTIVE ||
1148 cpu_base->running == timer)
1149 return true;
1150
1151 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1152 cpu_base != READ_ONCE(timer->base->cpu_base));
1153
1154 return false;
1155 }
1156 EXPORT_SYMBOL_GPL(hrtimer_active);
1157
1158 /*
1159 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1160 * distinct sections:
1161 *
1162 * - queued: the timer is queued
1163 * - callback: the timer is being ran
1164 * - post: the timer is inactive or (re)queued
1165 *
1166 * On the read side we ensure we observe timer->state and cpu_base->running
1167 * from the same section, if anything changed while we looked at it, we retry.
1168 * This includes timer->base changing because sequence numbers alone are
1169 * insufficient for that.
1170 *
1171 * The sequence numbers are required because otherwise we could still observe
1172 * a false negative if the read side got smeared over multiple consequtive
1173 * __run_hrtimer() invocations.
1174 */
1175
1176 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1177 struct hrtimer_clock_base *base,
1178 struct hrtimer *timer, ktime_t *now)
1179 {
1180 enum hrtimer_restart (*fn)(struct hrtimer *);
1181 int restart;
1182
1183 lockdep_assert_held(&cpu_base->lock);
1184
1185 debug_deactivate(timer);
1186 cpu_base->running = timer;
1187
1188 /*
1189 * Separate the ->running assignment from the ->state assignment.
1190 *
1191 * As with a regular write barrier, this ensures the read side in
1192 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1193 * timer->state == INACTIVE.
1194 */
1195 raw_write_seqcount_barrier(&cpu_base->seq);
1196
1197 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1198 fn = timer->function;
1199
1200 /*
1201 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1202 * timer is restarted with a period then it becomes an absolute
1203 * timer. If its not restarted it does not matter.
1204 */
1205 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1206 timer->is_rel = false;
1207
1208 /*
1209 * Because we run timers from hardirq context, there is no chance
1210 * they get migrated to another cpu, therefore its safe to unlock
1211 * the timer base.
1212 */
1213 raw_spin_unlock(&cpu_base->lock);
1214 trace_hrtimer_expire_entry(timer, now);
1215 restart = fn(timer);
1216 trace_hrtimer_expire_exit(timer);
1217 raw_spin_lock(&cpu_base->lock);
1218
1219 /*
1220 * Note: We clear the running state after enqueue_hrtimer and
1221 * we do not reprogram the event hardware. Happens either in
1222 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1223 *
1224 * Note: Because we dropped the cpu_base->lock above,
1225 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1226 * for us already.
1227 */
1228 if (restart != HRTIMER_NORESTART &&
1229 !(timer->state & HRTIMER_STATE_ENQUEUED))
1230 enqueue_hrtimer(timer, base);
1231
1232 /*
1233 * Separate the ->running assignment from the ->state assignment.
1234 *
1235 * As with a regular write barrier, this ensures the read side in
1236 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1237 * timer->state == INACTIVE.
1238 */
1239 raw_write_seqcount_barrier(&cpu_base->seq);
1240
1241 WARN_ON_ONCE(cpu_base->running != timer);
1242 cpu_base->running = NULL;
1243 }
1244
1245 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1246 {
1247 struct hrtimer_clock_base *base = cpu_base->clock_base;
1248 unsigned int active = cpu_base->active_bases;
1249
1250 for (; active; base++, active >>= 1) {
1251 struct timerqueue_node *node;
1252 ktime_t basenow;
1253
1254 if (!(active & 0x01))
1255 continue;
1256
1257 basenow = ktime_add(now, base->offset);
1258
1259 while ((node = timerqueue_getnext(&base->active))) {
1260 struct hrtimer *timer;
1261
1262 timer = container_of(node, struct hrtimer, node);
1263
1264 /*
1265 * The immediate goal for using the softexpires is
1266 * minimizing wakeups, not running timers at the
1267 * earliest interrupt after their soft expiration.
1268 * This allows us to avoid using a Priority Search
1269 * Tree, which can answer a stabbing querry for
1270 * overlapping intervals and instead use the simple
1271 * BST we already have.
1272 * We don't add extra wakeups by delaying timers that
1273 * are right-of a not yet expired timer, because that
1274 * timer will have to trigger a wakeup anyway.
1275 */
1276 if (basenow < hrtimer_get_softexpires_tv64(timer))
1277 break;
1278
1279 __run_hrtimer(cpu_base, base, timer, &basenow);
1280 }
1281 }
1282 }
1283
1284 #ifdef CONFIG_HIGH_RES_TIMERS
1285
1286 /*
1287 * High resolution timer interrupt
1288 * Called with interrupts disabled
1289 */
1290 void hrtimer_interrupt(struct clock_event_device *dev)
1291 {
1292 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1293 ktime_t expires_next, now, entry_time, delta;
1294 int retries = 0;
1295
1296 BUG_ON(!cpu_base->hres_active);
1297 cpu_base->nr_events++;
1298 dev->next_event = KTIME_MAX;
1299
1300 raw_spin_lock(&cpu_base->lock);
1301 entry_time = now = hrtimer_update_base(cpu_base);
1302 retry:
1303 cpu_base->in_hrtirq = 1;
1304 /*
1305 * We set expires_next to KTIME_MAX here with cpu_base->lock
1306 * held to prevent that a timer is enqueued in our queue via
1307 * the migration code. This does not affect enqueueing of
1308 * timers which run their callback and need to be requeued on
1309 * this CPU.
1310 */
1311 cpu_base->expires_next = KTIME_MAX;
1312
1313 __hrtimer_run_queues(cpu_base, now);
1314
1315 /* Reevaluate the clock bases for the next expiry */
1316 expires_next = __hrtimer_get_next_event(cpu_base);
1317 /*
1318 * Store the new expiry value so the migration code can verify
1319 * against it.
1320 */
1321 cpu_base->expires_next = expires_next;
1322 cpu_base->in_hrtirq = 0;
1323 raw_spin_unlock(&cpu_base->lock);
1324
1325 /* Reprogramming necessary ? */
1326 if (!tick_program_event(expires_next, 0)) {
1327 cpu_base->hang_detected = 0;
1328 return;
1329 }
1330
1331 /*
1332 * The next timer was already expired due to:
1333 * - tracing
1334 * - long lasting callbacks
1335 * - being scheduled away when running in a VM
1336 *
1337 * We need to prevent that we loop forever in the hrtimer
1338 * interrupt routine. We give it 3 attempts to avoid
1339 * overreacting on some spurious event.
1340 *
1341 * Acquire base lock for updating the offsets and retrieving
1342 * the current time.
1343 */
1344 raw_spin_lock(&cpu_base->lock);
1345 now = hrtimer_update_base(cpu_base);
1346 cpu_base->nr_retries++;
1347 if (++retries < 3)
1348 goto retry;
1349 /*
1350 * Give the system a chance to do something else than looping
1351 * here. We stored the entry time, so we know exactly how long
1352 * we spent here. We schedule the next event this amount of
1353 * time away.
1354 */
1355 cpu_base->nr_hangs++;
1356 cpu_base->hang_detected = 1;
1357 raw_spin_unlock(&cpu_base->lock);
1358 delta = ktime_sub(now, entry_time);
1359 if ((unsigned int)delta > cpu_base->max_hang_time)
1360 cpu_base->max_hang_time = (unsigned int) delta;
1361 /*
1362 * Limit it to a sensible value as we enforce a longer
1363 * delay. Give the CPU at least 100ms to catch up.
1364 */
1365 if (delta > 100 * NSEC_PER_MSEC)
1366 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1367 else
1368 expires_next = ktime_add(now, delta);
1369 tick_program_event(expires_next, 1);
1370 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1371 ktime_to_ns(delta));
1372 }
1373
1374 /* called with interrupts disabled */
1375 static inline void __hrtimer_peek_ahead_timers(void)
1376 {
1377 struct tick_device *td;
1378
1379 if (!hrtimer_hres_active())
1380 return;
1381
1382 td = this_cpu_ptr(&tick_cpu_device);
1383 if (td && td->evtdev)
1384 hrtimer_interrupt(td->evtdev);
1385 }
1386
1387 #else /* CONFIG_HIGH_RES_TIMERS */
1388
1389 static inline void __hrtimer_peek_ahead_timers(void) { }
1390
1391 #endif /* !CONFIG_HIGH_RES_TIMERS */
1392
1393 /*
1394 * Called from run_local_timers in hardirq context every jiffy
1395 */
1396 void hrtimer_run_queues(void)
1397 {
1398 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1399 ktime_t now;
1400
1401 if (__hrtimer_hres_active(cpu_base))
1402 return;
1403
1404 /*
1405 * This _is_ ugly: We have to check periodically, whether we
1406 * can switch to highres and / or nohz mode. The clocksource
1407 * switch happens with xtime_lock held. Notification from
1408 * there only sets the check bit in the tick_oneshot code,
1409 * otherwise we might deadlock vs. xtime_lock.
1410 */
1411 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1412 hrtimer_switch_to_hres();
1413 return;
1414 }
1415
1416 raw_spin_lock(&cpu_base->lock);
1417 now = hrtimer_update_base(cpu_base);
1418 __hrtimer_run_queues(cpu_base, now);
1419 raw_spin_unlock(&cpu_base->lock);
1420 }
1421
1422 /*
1423 * Sleep related functions:
1424 */
1425 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1426 {
1427 struct hrtimer_sleeper *t =
1428 container_of(timer, struct hrtimer_sleeper, timer);
1429 struct task_struct *task = t->task;
1430
1431 t->task = NULL;
1432 if (task)
1433 wake_up_process(task);
1434
1435 return HRTIMER_NORESTART;
1436 }
1437
1438 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1439 {
1440 sl->timer.function = hrtimer_wakeup;
1441 sl->task = task;
1442 }
1443 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1444
1445 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1446 {
1447 switch(restart->nanosleep.type) {
1448 #ifdef CONFIG_COMPAT
1449 case TT_COMPAT:
1450 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1451 return -EFAULT;
1452 break;
1453 #endif
1454 case TT_NATIVE:
1455 if (put_timespec64(ts, restart->nanosleep.rmtp))
1456 return -EFAULT;
1457 break;
1458 default:
1459 BUG();
1460 }
1461 return -ERESTART_RESTARTBLOCK;
1462 }
1463
1464 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1465 {
1466 struct restart_block *restart;
1467
1468 hrtimer_init_sleeper(t, current);
1469
1470 do {
1471 set_current_state(TASK_INTERRUPTIBLE);
1472 hrtimer_start_expires(&t->timer, mode);
1473
1474 if (likely(t->task))
1475 freezable_schedule();
1476
1477 hrtimer_cancel(&t->timer);
1478 mode = HRTIMER_MODE_ABS;
1479
1480 } while (t->task && !signal_pending(current));
1481
1482 __set_current_state(TASK_RUNNING);
1483
1484 if (!t->task)
1485 return 0;
1486
1487 restart = &current->restart_block;
1488 if (restart->nanosleep.type != TT_NONE) {
1489 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1490 struct timespec64 rmt;
1491
1492 if (rem <= 0)
1493 return 0;
1494 rmt = ktime_to_timespec64(rem);
1495
1496 return nanosleep_copyout(restart, &rmt);
1497 }
1498 return -ERESTART_RESTARTBLOCK;
1499 }
1500
1501 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1502 {
1503 struct hrtimer_sleeper t;
1504 int ret;
1505
1506 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1507 HRTIMER_MODE_ABS);
1508 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1509
1510 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1511 destroy_hrtimer_on_stack(&t.timer);
1512 return ret;
1513 }
1514
1515 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1516 const enum hrtimer_mode mode, const clockid_t clockid)
1517 {
1518 struct restart_block *restart;
1519 struct hrtimer_sleeper t;
1520 int ret = 0;
1521 u64 slack;
1522
1523 slack = current->timer_slack_ns;
1524 if (dl_task(current) || rt_task(current))
1525 slack = 0;
1526
1527 hrtimer_init_on_stack(&t.timer, clockid, mode);
1528 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1529 ret = do_nanosleep(&t, mode);
1530 if (ret != -ERESTART_RESTARTBLOCK)
1531 goto out;
1532
1533 /* Absolute timers do not update the rmtp value and restart: */
1534 if (mode == HRTIMER_MODE_ABS) {
1535 ret = -ERESTARTNOHAND;
1536 goto out;
1537 }
1538
1539 restart = &current->restart_block;
1540 restart->fn = hrtimer_nanosleep_restart;
1541 restart->nanosleep.clockid = t.timer.base->clockid;
1542 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1543 out:
1544 destroy_hrtimer_on_stack(&t.timer);
1545 return ret;
1546 }
1547
1548 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1549 struct timespec __user *, rmtp)
1550 {
1551 struct timespec64 tu;
1552
1553 if (get_timespec64(&tu, rqtp))
1554 return -EFAULT;
1555
1556 if (!timespec64_valid(&tu))
1557 return -EINVAL;
1558
1559 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1560 current->restart_block.nanosleep.rmtp = rmtp;
1561 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1562 }
1563
1564 #ifdef CONFIG_COMPAT
1565
1566 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1567 struct compat_timespec __user *, rmtp)
1568 {
1569 struct timespec64 tu;
1570
1571 if (compat_get_timespec64(&tu, rqtp))
1572 return -EFAULT;
1573
1574 if (!timespec64_valid(&tu))
1575 return -EINVAL;
1576
1577 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1578 current->restart_block.nanosleep.compat_rmtp = rmtp;
1579 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1580 }
1581 #endif
1582
1583 /*
1584 * Functions related to boot-time initialization:
1585 */
1586 int hrtimers_prepare_cpu(unsigned int cpu)
1587 {
1588 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1589 int i;
1590
1591 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1592 cpu_base->clock_base[i].cpu_base = cpu_base;
1593 timerqueue_init_head(&cpu_base->clock_base[i].active);
1594 }
1595
1596 cpu_base->active_bases = 0;
1597 cpu_base->cpu = cpu;
1598 hrtimer_init_hres(cpu_base);
1599 return 0;
1600 }
1601
1602 #ifdef CONFIG_HOTPLUG_CPU
1603
1604 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1605 struct hrtimer_clock_base *new_base)
1606 {
1607 struct hrtimer *timer;
1608 struct timerqueue_node *node;
1609
1610 while ((node = timerqueue_getnext(&old_base->active))) {
1611 timer = container_of(node, struct hrtimer, node);
1612 BUG_ON(hrtimer_callback_running(timer));
1613 debug_deactivate(timer);
1614
1615 /*
1616 * Mark it as ENQUEUED not INACTIVE otherwise the
1617 * timer could be seen as !active and just vanish away
1618 * under us on another CPU
1619 */
1620 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1621 timer->base = new_base;
1622 /*
1623 * Enqueue the timers on the new cpu. This does not
1624 * reprogram the event device in case the timer
1625 * expires before the earliest on this CPU, but we run
1626 * hrtimer_interrupt after we migrated everything to
1627 * sort out already expired timers and reprogram the
1628 * event device.
1629 */
1630 enqueue_hrtimer(timer, new_base);
1631 }
1632 }
1633
1634 int hrtimers_dead_cpu(unsigned int scpu)
1635 {
1636 struct hrtimer_cpu_base *old_base, *new_base;
1637 int i;
1638
1639 BUG_ON(cpu_online(scpu));
1640 tick_cancel_sched_timer(scpu);
1641
1642 local_irq_disable();
1643 old_base = &per_cpu(hrtimer_bases, scpu);
1644 new_base = this_cpu_ptr(&hrtimer_bases);
1645 /*
1646 * The caller is globally serialized and nobody else
1647 * takes two locks at once, deadlock is not possible.
1648 */
1649 raw_spin_lock(&new_base->lock);
1650 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1651
1652 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1653 migrate_hrtimer_list(&old_base->clock_base[i],
1654 &new_base->clock_base[i]);
1655 }
1656
1657 raw_spin_unlock(&old_base->lock);
1658 raw_spin_unlock(&new_base->lock);
1659
1660 /* Check, if we got expired work to do */
1661 __hrtimer_peek_ahead_timers();
1662 local_irq_enable();
1663 return 0;
1664 }
1665
1666 #endif /* CONFIG_HOTPLUG_CPU */
1667
1668 void __init hrtimers_init(void)
1669 {
1670 hrtimers_prepare_cpu(smp_processor_id());
1671 }
1672
1673 /**
1674 * schedule_hrtimeout_range_clock - sleep until timeout
1675 * @expires: timeout value (ktime_t)
1676 * @delta: slack in expires timeout (ktime_t)
1677 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1678 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1679 */
1680 int __sched
1681 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1682 const enum hrtimer_mode mode, int clock)
1683 {
1684 struct hrtimer_sleeper t;
1685
1686 /*
1687 * Optimize when a zero timeout value is given. It does not
1688 * matter whether this is an absolute or a relative time.
1689 */
1690 if (expires && *expires == 0) {
1691 __set_current_state(TASK_RUNNING);
1692 return 0;
1693 }
1694
1695 /*
1696 * A NULL parameter means "infinite"
1697 */
1698 if (!expires) {
1699 schedule();
1700 return -EINTR;
1701 }
1702
1703 hrtimer_init_on_stack(&t.timer, clock, mode);
1704 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1705
1706 hrtimer_init_sleeper(&t, current);
1707
1708 hrtimer_start_expires(&t.timer, mode);
1709
1710 if (likely(t.task))
1711 schedule();
1712
1713 hrtimer_cancel(&t.timer);
1714 destroy_hrtimer_on_stack(&t.timer);
1715
1716 __set_current_state(TASK_RUNNING);
1717
1718 return !t.task ? 0 : -EINTR;
1719 }
1720
1721 /**
1722 * schedule_hrtimeout_range - sleep until timeout
1723 * @expires: timeout value (ktime_t)
1724 * @delta: slack in expires timeout (ktime_t)
1725 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1726 *
1727 * Make the current task sleep until the given expiry time has
1728 * elapsed. The routine will return immediately unless
1729 * the current task state has been set (see set_current_state()).
1730 *
1731 * The @delta argument gives the kernel the freedom to schedule the
1732 * actual wakeup to a time that is both power and performance friendly.
1733 * The kernel give the normal best effort behavior for "@expires+@delta",
1734 * but may decide to fire the timer earlier, but no earlier than @expires.
1735 *
1736 * You can set the task state as follows -
1737 *
1738 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1739 * pass before the routine returns unless the current task is explicitly
1740 * woken up, (e.g. by wake_up_process()).
1741 *
1742 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1743 * delivered to the current task or the current task is explicitly woken
1744 * up.
1745 *
1746 * The current task state is guaranteed to be TASK_RUNNING when this
1747 * routine returns.
1748 *
1749 * Returns 0 when the timer has expired. If the task was woken before the
1750 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1751 * by an explicit wakeup, it returns -EINTR.
1752 */
1753 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1754 const enum hrtimer_mode mode)
1755 {
1756 return schedule_hrtimeout_range_clock(expires, delta, mode,
1757 CLOCK_MONOTONIC);
1758 }
1759 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1760
1761 /**
1762 * schedule_hrtimeout - sleep until timeout
1763 * @expires: timeout value (ktime_t)
1764 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1765 *
1766 * Make the current task sleep until the given expiry time has
1767 * elapsed. The routine will return immediately unless
1768 * the current task state has been set (see set_current_state()).
1769 *
1770 * You can set the task state as follows -
1771 *
1772 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1773 * pass before the routine returns unless the current task is explicitly
1774 * woken up, (e.g. by wake_up_process()).
1775 *
1776 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1777 * delivered to the current task or the current task is explicitly woken
1778 * up.
1779 *
1780 * The current task state is guaranteed to be TASK_RUNNING when this
1781 * routine returns.
1782 *
1783 * Returns 0 when the timer has expired. If the task was woken before the
1784 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1785 * by an explicit wakeup, it returns -EINTR.
1786 */
1787 int __sched schedule_hrtimeout(ktime_t *expires,
1788 const enum hrtimer_mode mode)
1789 {
1790 return schedule_hrtimeout_range(expires, 0, mode);
1791 }
1792 EXPORT_SYMBOL_GPL(schedule_hrtimeout);