Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / clocksource.c
1 /*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26 #include <linux/clocksource.h>
27 #include <linux/sysdev.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33
34 void timecounter_init(struct timecounter *tc,
35 const struct cyclecounter *cc,
36 u64 start_tstamp)
37 {
38 tc->cc = cc;
39 tc->cycle_last = cc->read(cc);
40 tc->nsec = start_tstamp;
41 }
42 EXPORT_SYMBOL_GPL(timecounter_init);
43
44 /**
45 * timecounter_read_delta - get nanoseconds since last call of this function
46 * @tc: Pointer to time counter
47 *
48 * When the underlying cycle counter runs over, this will be handled
49 * correctly as long as it does not run over more than once between
50 * calls.
51 *
52 * The first call to this function for a new time counter initializes
53 * the time tracking and returns an undefined result.
54 */
55 static u64 timecounter_read_delta(struct timecounter *tc)
56 {
57 cycle_t cycle_now, cycle_delta;
58 u64 ns_offset;
59
60 /* read cycle counter: */
61 cycle_now = tc->cc->read(tc->cc);
62
63 /* calculate the delta since the last timecounter_read_delta(): */
64 cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
65
66 /* convert to nanoseconds: */
67 ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
68
69 /* update time stamp of timecounter_read_delta() call: */
70 tc->cycle_last = cycle_now;
71
72 return ns_offset;
73 }
74
75 u64 timecounter_read(struct timecounter *tc)
76 {
77 u64 nsec;
78
79 /* increment time by nanoseconds since last call */
80 nsec = timecounter_read_delta(tc);
81 nsec += tc->nsec;
82 tc->nsec = nsec;
83
84 return nsec;
85 }
86 EXPORT_SYMBOL_GPL(timecounter_read);
87
88 u64 timecounter_cyc2time(struct timecounter *tc,
89 cycle_t cycle_tstamp)
90 {
91 u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
92 u64 nsec;
93
94 /*
95 * Instead of always treating cycle_tstamp as more recent
96 * than tc->cycle_last, detect when it is too far in the
97 * future and treat it as old time stamp instead.
98 */
99 if (cycle_delta > tc->cc->mask / 2) {
100 cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101 nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102 } else {
103 nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
104 }
105
106 return nsec;
107 }
108 EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109
110 /**
111 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112 * @mult: pointer to mult variable
113 * @shift: pointer to shift variable
114 * @from: frequency to convert from
115 * @to: frequency to convert to
116 * @minsec: guaranteed runtime conversion range in seconds
117 *
118 * The function evaluates the shift/mult pair for the scaled math
119 * operations of clocksources and clockevents.
120 *
121 * @to and @from are frequency values in HZ. For clock sources @to is
122 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123 * event @to is the counter frequency and @from is NSEC_PER_SEC.
124 *
125 * The @minsec conversion range argument controls the time frame in
126 * seconds which must be covered by the runtime conversion with the
127 * calculated mult and shift factors. This guarantees that no 64bit
128 * overflow happens when the input value of the conversion is
129 * multiplied with the calculated mult factor. Larger ranges may
130 * reduce the conversion accuracy by chosing smaller mult and shift
131 * factors.
132 */
133 void
134 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec)
135 {
136 u64 tmp;
137 u32 sft, sftacc= 32;
138
139 /*
140 * Calculate the shift factor which is limiting the conversion
141 * range:
142 */
143 tmp = ((u64)minsec * from) >> 32;
144 while (tmp) {
145 tmp >>=1;
146 sftacc--;
147 }
148
149 /*
150 * Find the conversion shift/mult pair which has the best
151 * accuracy and fits the maxsec conversion range:
152 */
153 for (sft = 32; sft > 0; sft--) {
154 tmp = (u64) to << sft;
155 do_div(tmp, from);
156 if ((tmp >> sftacc) == 0)
157 break;
158 }
159 *mult = tmp;
160 *shift = sft;
161 }
162
163 /*[Clocksource internal variables]---------
164 * curr_clocksource:
165 * currently selected clocksource.
166 * clocksource_list:
167 * linked list with the registered clocksources
168 * clocksource_mutex:
169 * protects manipulations to curr_clocksource and the clocksource_list
170 * override_name:
171 * Name of the user-specified clocksource.
172 */
173 static struct clocksource *curr_clocksource;
174 static LIST_HEAD(clocksource_list);
175 static DEFINE_MUTEX(clocksource_mutex);
176 static char override_name[32];
177 static int finished_booting;
178
179 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
180 static void clocksource_watchdog_work(struct work_struct *work);
181
182 static LIST_HEAD(watchdog_list);
183 static struct clocksource *watchdog;
184 static struct timer_list watchdog_timer;
185 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
186 static DEFINE_SPINLOCK(watchdog_lock);
187 static cycle_t watchdog_last;
188 static int watchdog_running;
189
190 static int clocksource_watchdog_kthread(void *data);
191 static void __clocksource_change_rating(struct clocksource *cs, int rating);
192
193 /*
194 * Interval: 0.5sec Threshold: 0.0625s
195 */
196 #define WATCHDOG_INTERVAL (HZ >> 1)
197 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
198
199 static void clocksource_watchdog_work(struct work_struct *work)
200 {
201 /*
202 * If kthread_run fails the next watchdog scan over the
203 * watchdog_list will find the unstable clock again.
204 */
205 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
206 }
207
208 static void __clocksource_unstable(struct clocksource *cs)
209 {
210 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
211 cs->flags |= CLOCK_SOURCE_UNSTABLE;
212 if (finished_booting)
213 schedule_work(&watchdog_work);
214 }
215
216 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
217 {
218 printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
219 cs->name, delta);
220 __clocksource_unstable(cs);
221 }
222
223 /**
224 * clocksource_mark_unstable - mark clocksource unstable via watchdog
225 * @cs: clocksource to be marked unstable
226 *
227 * This function is called instead of clocksource_change_rating from
228 * cpu hotplug code to avoid a deadlock between the clocksource mutex
229 * and the cpu hotplug mutex. It defers the update of the clocksource
230 * to the watchdog thread.
231 */
232 void clocksource_mark_unstable(struct clocksource *cs)
233 {
234 unsigned long flags;
235
236 spin_lock_irqsave(&watchdog_lock, flags);
237 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
238 if (list_empty(&cs->wd_list))
239 list_add(&cs->wd_list, &watchdog_list);
240 __clocksource_unstable(cs);
241 }
242 spin_unlock_irqrestore(&watchdog_lock, flags);
243 }
244
245 static void clocksource_watchdog(unsigned long data)
246 {
247 struct clocksource *cs;
248 cycle_t csnow, wdnow;
249 int64_t wd_nsec, cs_nsec;
250 int next_cpu;
251
252 spin_lock(&watchdog_lock);
253 if (!watchdog_running)
254 goto out;
255
256 wdnow = watchdog->read(watchdog);
257 wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask,
258 watchdog->mult, watchdog->shift);
259 watchdog_last = wdnow;
260
261 list_for_each_entry(cs, &watchdog_list, wd_list) {
262
263 /* Clocksource already marked unstable? */
264 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
265 if (finished_booting)
266 schedule_work(&watchdog_work);
267 continue;
268 }
269
270 csnow = cs->read(cs);
271
272 /* Clocksource initialized ? */
273 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
274 cs->flags |= CLOCK_SOURCE_WATCHDOG;
275 cs->wd_last = csnow;
276 continue;
277 }
278
279 /* Check the deviation from the watchdog clocksource. */
280 cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) &
281 cs->mask, cs->mult, cs->shift);
282 cs->wd_last = csnow;
283 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
284 clocksource_unstable(cs, cs_nsec - wd_nsec);
285 continue;
286 }
287
288 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
289 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
290 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
291 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
292 /*
293 * We just marked the clocksource as highres-capable,
294 * notify the rest of the system as well so that we
295 * transition into high-res mode:
296 */
297 tick_clock_notify();
298 }
299 }
300
301 /*
302 * Cycle through CPUs to check if the CPUs stay synchronized
303 * to each other.
304 */
305 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
306 if (next_cpu >= nr_cpu_ids)
307 next_cpu = cpumask_first(cpu_online_mask);
308 watchdog_timer.expires += WATCHDOG_INTERVAL;
309 add_timer_on(&watchdog_timer, next_cpu);
310 out:
311 spin_unlock(&watchdog_lock);
312 }
313
314 static inline void clocksource_start_watchdog(void)
315 {
316 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
317 return;
318 init_timer(&watchdog_timer);
319 watchdog_timer.function = clocksource_watchdog;
320 watchdog_last = watchdog->read(watchdog);
321 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
322 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
323 watchdog_running = 1;
324 }
325
326 static inline void clocksource_stop_watchdog(void)
327 {
328 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
329 return;
330 del_timer(&watchdog_timer);
331 watchdog_running = 0;
332 }
333
334 static inline void clocksource_reset_watchdog(void)
335 {
336 struct clocksource *cs;
337
338 list_for_each_entry(cs, &watchdog_list, wd_list)
339 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
340 }
341
342 static void clocksource_resume_watchdog(void)
343 {
344 unsigned long flags;
345
346 /*
347 * We use trylock here to avoid a potential dead lock when
348 * kgdb calls this code after the kernel has been stopped with
349 * watchdog_lock held. When watchdog_lock is held we just
350 * return and accept, that the watchdog might trigger and mark
351 * the monitored clock source (usually TSC) unstable.
352 *
353 * This does not affect the other caller clocksource_resume()
354 * because at this point the kernel is UP, interrupts are
355 * disabled and nothing can hold watchdog_lock.
356 */
357 if (!spin_trylock_irqsave(&watchdog_lock, flags))
358 return;
359 clocksource_reset_watchdog();
360 spin_unlock_irqrestore(&watchdog_lock, flags);
361 }
362
363 static void clocksource_enqueue_watchdog(struct clocksource *cs)
364 {
365 unsigned long flags;
366
367 spin_lock_irqsave(&watchdog_lock, flags);
368 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
369 /* cs is a clocksource to be watched. */
370 list_add(&cs->wd_list, &watchdog_list);
371 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
372 } else {
373 /* cs is a watchdog. */
374 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
375 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
376 /* Pick the best watchdog. */
377 if (!watchdog || cs->rating > watchdog->rating) {
378 watchdog = cs;
379 /* Reset watchdog cycles */
380 clocksource_reset_watchdog();
381 }
382 }
383 /* Check if the watchdog timer needs to be started. */
384 clocksource_start_watchdog();
385 spin_unlock_irqrestore(&watchdog_lock, flags);
386 }
387
388 static void clocksource_dequeue_watchdog(struct clocksource *cs)
389 {
390 struct clocksource *tmp;
391 unsigned long flags;
392
393 spin_lock_irqsave(&watchdog_lock, flags);
394 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
395 /* cs is a watched clocksource. */
396 list_del_init(&cs->wd_list);
397 } else if (cs == watchdog) {
398 /* Reset watchdog cycles */
399 clocksource_reset_watchdog();
400 /* Current watchdog is removed. Find an alternative. */
401 watchdog = NULL;
402 list_for_each_entry(tmp, &clocksource_list, list) {
403 if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
404 continue;
405 if (!watchdog || tmp->rating > watchdog->rating)
406 watchdog = tmp;
407 }
408 }
409 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
410 /* Check if the watchdog timer needs to be stopped. */
411 clocksource_stop_watchdog();
412 spin_unlock_irqrestore(&watchdog_lock, flags);
413 }
414
415 static int clocksource_watchdog_kthread(void *data)
416 {
417 struct clocksource *cs, *tmp;
418 unsigned long flags;
419 LIST_HEAD(unstable);
420
421 mutex_lock(&clocksource_mutex);
422 spin_lock_irqsave(&watchdog_lock, flags);
423 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
424 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
425 list_del_init(&cs->wd_list);
426 list_add(&cs->wd_list, &unstable);
427 }
428 /* Check if the watchdog timer needs to be stopped. */
429 clocksource_stop_watchdog();
430 spin_unlock_irqrestore(&watchdog_lock, flags);
431
432 /* Needs to be done outside of watchdog lock */
433 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
434 list_del_init(&cs->wd_list);
435 __clocksource_change_rating(cs, 0);
436 }
437 mutex_unlock(&clocksource_mutex);
438 return 0;
439 }
440
441 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
442
443 static void clocksource_enqueue_watchdog(struct clocksource *cs)
444 {
445 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447 }
448
449 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
450 static inline void clocksource_resume_watchdog(void) { }
451 static inline int clocksource_watchdog_kthread(void *data) { return 0; }
452
453 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
454
455 /**
456 * clocksource_suspend - suspend the clocksource(s)
457 */
458 void clocksource_suspend(void)
459 {
460 struct clocksource *cs;
461
462 list_for_each_entry_reverse(cs, &clocksource_list, list)
463 if (cs->suspend)
464 cs->suspend(cs);
465 }
466
467 /**
468 * clocksource_resume - resume the clocksource(s)
469 */
470 void clocksource_resume(void)
471 {
472 struct clocksource *cs;
473
474 list_for_each_entry(cs, &clocksource_list, list)
475 if (cs->resume)
476 cs->resume(cs);
477
478 clocksource_resume_watchdog();
479 }
480
481 /**
482 * clocksource_touch_watchdog - Update watchdog
483 *
484 * Update the watchdog after exception contexts such as kgdb so as not
485 * to incorrectly trip the watchdog. This might fail when the kernel
486 * was stopped in code which holds watchdog_lock.
487 */
488 void clocksource_touch_watchdog(void)
489 {
490 clocksource_resume_watchdog();
491 }
492
493 /**
494 * clocksource_max_deferment - Returns max time the clocksource can be deferred
495 * @cs: Pointer to clocksource
496 *
497 */
498 static u64 clocksource_max_deferment(struct clocksource *cs)
499 {
500 u64 max_nsecs, max_cycles;
501
502 /*
503 * Calculate the maximum number of cycles that we can pass to the
504 * cyc2ns function without overflowing a 64-bit signed result. The
505 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
506 * is equivalent to the below.
507 * max_cycles < (2^63)/cs->mult
508 * max_cycles < 2^(log2((2^63)/cs->mult))
509 * max_cycles < 2^(log2(2^63) - log2(cs->mult))
510 * max_cycles < 2^(63 - log2(cs->mult))
511 * max_cycles < 1 << (63 - log2(cs->mult))
512 * Please note that we add 1 to the result of the log2 to account for
513 * any rounding errors, ensure the above inequality is satisfied and
514 * no overflow will occur.
515 */
516 max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
517
518 /*
519 * The actual maximum number of cycles we can defer the clocksource is
520 * determined by the minimum of max_cycles and cs->mask.
521 */
522 max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
523 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
524
525 /*
526 * To ensure that the clocksource does not wrap whilst we are idle,
527 * limit the time the clocksource can be deferred by 12.5%. Please
528 * note a margin of 12.5% is used because this can be computed with
529 * a shift, versus say 10% which would require division.
530 */
531 return max_nsecs - (max_nsecs >> 5);
532 }
533
534 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
535
536 /**
537 * clocksource_select - Select the best clocksource available
538 *
539 * Private function. Must hold clocksource_mutex when called.
540 *
541 * Select the clocksource with the best rating, or the clocksource,
542 * which is selected by userspace override.
543 */
544 static void clocksource_select(void)
545 {
546 struct clocksource *best, *cs;
547
548 if (!finished_booting || list_empty(&clocksource_list))
549 return;
550 /* First clocksource on the list has the best rating. */
551 best = list_first_entry(&clocksource_list, struct clocksource, list);
552 /* Check for the override clocksource. */
553 list_for_each_entry(cs, &clocksource_list, list) {
554 if (strcmp(cs->name, override_name) != 0)
555 continue;
556 /*
557 * Check to make sure we don't switch to a non-highres
558 * capable clocksource if the tick code is in oneshot
559 * mode (highres or nohz)
560 */
561 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
562 tick_oneshot_mode_active()) {
563 /* Override clocksource cannot be used. */
564 printk(KERN_WARNING "Override clocksource %s is not "
565 "HRT compatible. Cannot switch while in "
566 "HRT/NOHZ mode\n", cs->name);
567 override_name[0] = 0;
568 } else
569 /* Override clocksource can be used. */
570 best = cs;
571 break;
572 }
573 if (curr_clocksource != best) {
574 printk(KERN_INFO "Switching to clocksource %s\n", best->name);
575 curr_clocksource = best;
576 timekeeping_notify(curr_clocksource);
577 }
578 }
579
580 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
581
582 static inline void clocksource_select(void) { }
583
584 #endif
585
586 /*
587 * clocksource_done_booting - Called near the end of core bootup
588 *
589 * Hack to avoid lots of clocksource churn at boot time.
590 * We use fs_initcall because we want this to start before
591 * device_initcall but after subsys_initcall.
592 */
593 static int __init clocksource_done_booting(void)
594 {
595 mutex_lock(&clocksource_mutex);
596 curr_clocksource = clocksource_default_clock();
597 mutex_unlock(&clocksource_mutex);
598
599 finished_booting = 1;
600
601 /*
602 * Run the watchdog first to eliminate unstable clock sources
603 */
604 clocksource_watchdog_kthread(NULL);
605
606 mutex_lock(&clocksource_mutex);
607 clocksource_select();
608 mutex_unlock(&clocksource_mutex);
609 return 0;
610 }
611 fs_initcall(clocksource_done_booting);
612
613 /*
614 * Enqueue the clocksource sorted by rating
615 */
616 static void clocksource_enqueue(struct clocksource *cs)
617 {
618 struct list_head *entry = &clocksource_list;
619 struct clocksource *tmp;
620
621 list_for_each_entry(tmp, &clocksource_list, list)
622 /* Keep track of the place, where to insert */
623 if (tmp->rating >= cs->rating)
624 entry = &tmp->list;
625 list_add(&cs->list, entry);
626 }
627
628
629 /*
630 * Maximum time we expect to go between ticks. This includes idle
631 * tickless time. It provides the trade off between selecting a
632 * mult/shift pair that is very precise but can only handle a short
633 * period of time, vs. a mult/shift pair that can handle long periods
634 * of time but isn't as precise.
635 *
636 * This is a subsystem constant, and actual hardware limitations
637 * may override it (ie: clocksources that wrap every 3 seconds).
638 */
639 #define MAX_UPDATE_LENGTH 5 /* Seconds */
640
641 /**
642 * __clocksource_updatefreq_scale - Used update clocksource with new freq
643 * @t: clocksource to be registered
644 * @scale: Scale factor multiplied against freq to get clocksource hz
645 * @freq: clocksource frequency (cycles per second) divided by scale
646 *
647 * This should only be called from the clocksource->enable() method.
648 *
649 * This *SHOULD NOT* be called directly! Please use the
650 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
651 */
652 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
653 {
654 /*
655 * Ideally we want to use some of the limits used in
656 * clocksource_max_deferment, to provide a more informed
657 * MAX_UPDATE_LENGTH. But for now this just gets the
658 * register interface working properly.
659 */
660 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
661 NSEC_PER_SEC/scale,
662 MAX_UPDATE_LENGTH*scale);
663 cs->max_idle_ns = clocksource_max_deferment(cs);
664 }
665 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
666
667 /**
668 * __clocksource_register_scale - Used to install new clocksources
669 * @t: clocksource to be registered
670 * @scale: Scale factor multiplied against freq to get clocksource hz
671 * @freq: clocksource frequency (cycles per second) divided by scale
672 *
673 * Returns -EBUSY if registration fails, zero otherwise.
674 *
675 * This *SHOULD NOT* be called directly! Please use the
676 * clocksource_register_hz() or clocksource_register_khz helper functions.
677 */
678 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
679 {
680
681 /* Intialize mult/shift and max_idle_ns */
682 __clocksource_updatefreq_scale(cs, scale, freq);
683
684 /* Add clocksource to the clcoksource list */
685 mutex_lock(&clocksource_mutex);
686 clocksource_enqueue(cs);
687 clocksource_select();
688 clocksource_enqueue_watchdog(cs);
689 mutex_unlock(&clocksource_mutex);
690 return 0;
691 }
692 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
693
694
695 /**
696 * clocksource_register - Used to install new clocksources
697 * @t: clocksource to be registered
698 *
699 * Returns -EBUSY if registration fails, zero otherwise.
700 */
701 int clocksource_register(struct clocksource *cs)
702 {
703 /* calculate max idle time permitted for this clocksource */
704 cs->max_idle_ns = clocksource_max_deferment(cs);
705
706 mutex_lock(&clocksource_mutex);
707 clocksource_enqueue(cs);
708 clocksource_select();
709 clocksource_enqueue_watchdog(cs);
710 mutex_unlock(&clocksource_mutex);
711 return 0;
712 }
713 EXPORT_SYMBOL(clocksource_register);
714
715 static void __clocksource_change_rating(struct clocksource *cs, int rating)
716 {
717 list_del(&cs->list);
718 cs->rating = rating;
719 clocksource_enqueue(cs);
720 clocksource_select();
721 }
722
723 /**
724 * clocksource_change_rating - Change the rating of a registered clocksource
725 */
726 void clocksource_change_rating(struct clocksource *cs, int rating)
727 {
728 mutex_lock(&clocksource_mutex);
729 __clocksource_change_rating(cs, rating);
730 mutex_unlock(&clocksource_mutex);
731 }
732 EXPORT_SYMBOL(clocksource_change_rating);
733
734 /**
735 * clocksource_unregister - remove a registered clocksource
736 */
737 void clocksource_unregister(struct clocksource *cs)
738 {
739 mutex_lock(&clocksource_mutex);
740 clocksource_dequeue_watchdog(cs);
741 list_del(&cs->list);
742 clocksource_select();
743 mutex_unlock(&clocksource_mutex);
744 }
745 EXPORT_SYMBOL(clocksource_unregister);
746
747 #ifdef CONFIG_SYSFS
748 /**
749 * sysfs_show_current_clocksources - sysfs interface for current clocksource
750 * @dev: unused
751 * @buf: char buffer to be filled with clocksource list
752 *
753 * Provides sysfs interface for listing current clocksource.
754 */
755 static ssize_t
756 sysfs_show_current_clocksources(struct sys_device *dev,
757 struct sysdev_attribute *attr, char *buf)
758 {
759 ssize_t count = 0;
760
761 mutex_lock(&clocksource_mutex);
762 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
763 mutex_unlock(&clocksource_mutex);
764
765 return count;
766 }
767
768 /**
769 * sysfs_override_clocksource - interface for manually overriding clocksource
770 * @dev: unused
771 * @buf: name of override clocksource
772 * @count: length of buffer
773 *
774 * Takes input from sysfs interface for manually overriding the default
775 * clocksource selection.
776 */
777 static ssize_t sysfs_override_clocksource(struct sys_device *dev,
778 struct sysdev_attribute *attr,
779 const char *buf, size_t count)
780 {
781 size_t ret = count;
782
783 /* strings from sysfs write are not 0 terminated! */
784 if (count >= sizeof(override_name))
785 return -EINVAL;
786
787 /* strip of \n: */
788 if (buf[count-1] == '\n')
789 count--;
790
791 mutex_lock(&clocksource_mutex);
792
793 if (count > 0)
794 memcpy(override_name, buf, count);
795 override_name[count] = 0;
796 clocksource_select();
797
798 mutex_unlock(&clocksource_mutex);
799
800 return ret;
801 }
802
803 /**
804 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
805 * @dev: unused
806 * @buf: char buffer to be filled with clocksource list
807 *
808 * Provides sysfs interface for listing registered clocksources
809 */
810 static ssize_t
811 sysfs_show_available_clocksources(struct sys_device *dev,
812 struct sysdev_attribute *attr,
813 char *buf)
814 {
815 struct clocksource *src;
816 ssize_t count = 0;
817
818 mutex_lock(&clocksource_mutex);
819 list_for_each_entry(src, &clocksource_list, list) {
820 /*
821 * Don't show non-HRES clocksource if the tick code is
822 * in one shot mode (highres=on or nohz=on)
823 */
824 if (!tick_oneshot_mode_active() ||
825 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
826 count += snprintf(buf + count,
827 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
828 "%s ", src->name);
829 }
830 mutex_unlock(&clocksource_mutex);
831
832 count += snprintf(buf + count,
833 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
834
835 return count;
836 }
837
838 /*
839 * Sysfs setup bits:
840 */
841 static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
842 sysfs_override_clocksource);
843
844 static SYSDEV_ATTR(available_clocksource, 0444,
845 sysfs_show_available_clocksources, NULL);
846
847 static struct sysdev_class clocksource_sysclass = {
848 .name = "clocksource",
849 };
850
851 static struct sys_device device_clocksource = {
852 .id = 0,
853 .cls = &clocksource_sysclass,
854 };
855
856 static int __init init_clocksource_sysfs(void)
857 {
858 int error = sysdev_class_register(&clocksource_sysclass);
859
860 if (!error)
861 error = sysdev_register(&device_clocksource);
862 if (!error)
863 error = sysdev_create_file(
864 &device_clocksource,
865 &attr_current_clocksource);
866 if (!error)
867 error = sysdev_create_file(
868 &device_clocksource,
869 &attr_available_clocksource);
870 return error;
871 }
872
873 device_initcall(init_clocksource_sysfs);
874 #endif /* CONFIG_SYSFS */
875
876 /**
877 * boot_override_clocksource - boot clock override
878 * @str: override name
879 *
880 * Takes a clocksource= boot argument and uses it
881 * as the clocksource override name.
882 */
883 static int __init boot_override_clocksource(char* str)
884 {
885 mutex_lock(&clocksource_mutex);
886 if (str)
887 strlcpy(override_name, str, sizeof(override_name));
888 mutex_unlock(&clocksource_mutex);
889 return 1;
890 }
891
892 __setup("clocksource=", boot_override_clocksource);
893
894 /**
895 * boot_override_clock - Compatibility layer for deprecated boot option
896 * @str: override name
897 *
898 * DEPRECATED! Takes a clock= boot argument and uses it
899 * as the clocksource override name
900 */
901 static int __init boot_override_clock(char* str)
902 {
903 if (!strcmp(str, "pmtmr")) {
904 printk("Warning: clock=pmtmr is deprecated. "
905 "Use clocksource=acpi_pm.\n");
906 return boot_override_clocksource("acpi_pm");
907 }
908 printk("Warning! clock= boot option is deprecated. "
909 "Use clocksource=xyz\n");
910 return boot_override_clocksource(str);
911 }
912
913 __setup("clock=", boot_override_clock);