Pull hp-machvec into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34 * SLAB caches for signal bits.
35 */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180
181 /*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209 }
210
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215 if (t->signal->group_stop_count > 0 ||
216 (freezing(t)) ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223
224 void recalc_sigpending(void)
225 {
226 recalc_sigpending_tsk(current);
227 }
228
229 /* Given the mask, find the first available signal that should be serviced. */
230
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263 }
264
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
266 int override_rlimit)
267 {
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->lock = NULL;
281 q->user = get_uid(t->user);
282 }
283 return(q);
284 }
285
286 static inline void __sigqueue_free(struct sigqueue *q)
287 {
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
293 }
294
295 static void flush_sigqueue(struct sigpending *queue)
296 {
297 struct sigqueue *q;
298
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
304 }
305 }
306
307 /*
308 * Flush all pending signals for a task.
309 */
310
311 void
312 flush_signals(struct task_struct *t)
313 {
314 unsigned long flags;
315
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
321 }
322
323 /*
324 * This function expects the tasklist_lock write-locked.
325 */
326 void __exit_sighand(struct task_struct *tsk)
327 {
328 struct sighand_struct * sighand = tsk->sighand;
329
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
334 }
335
336 void exit_sighand(struct task_struct *tsk)
337 {
338 write_lock_irq(&tasklist_lock);
339 __exit_sighand(tsk);
340 write_unlock_irq(&tasklist_lock);
341 }
342
343 /*
344 * This function expects the tasklist_lock write-locked.
345 */
346 void __exit_signal(struct task_struct *tsk)
347 {
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
350
351 if (!sig)
352 BUG();
353 if (!atomic_read(&sig->count))
354 BUG();
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
361 tsk->signal = NULL;
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
364 } else {
365 /*
366 * If there is any task waiting for the group exit
367 * then notify it:
368 */
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
372 }
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
375 tsk->signal = NULL;
376 /*
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
385 */
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
395 }
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
398 if (sig) {
399 /*
400 * We are cleaning up the signal_struct here.
401 */
402 exit_thread_group_keys(sig);
403 kmem_cache_free(signal_cachep, sig);
404 }
405 }
406
407 void exit_signal(struct task_struct *tsk)
408 {
409 write_lock_irq(&tasklist_lock);
410 __exit_signal(tsk);
411 write_unlock_irq(&tasklist_lock);
412 }
413
414 /*
415 * Flush all handlers for a task.
416 */
417
418 void
419 flush_signal_handlers(struct task_struct *t, int force_default)
420 {
421 int i;
422 struct k_sigaction *ka = &t->sighand->action[0];
423 for (i = _NSIG ; i != 0 ; i--) {
424 if (force_default || ka->sa.sa_handler != SIG_IGN)
425 ka->sa.sa_handler = SIG_DFL;
426 ka->sa.sa_flags = 0;
427 sigemptyset(&ka->sa.sa_mask);
428 ka++;
429 }
430 }
431
432
433 /* Notify the system that a driver wants to block all signals for this
434 * process, and wants to be notified if any signals at all were to be
435 * sent/acted upon. If the notifier routine returns non-zero, then the
436 * signal will be acted upon after all. If the notifier routine returns 0,
437 * then then signal will be blocked. Only one block per process is
438 * allowed. priv is a pointer to private data that the notifier routine
439 * can use to determine if the signal should be blocked or not. */
440
441 void
442 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
443 {
444 unsigned long flags;
445
446 spin_lock_irqsave(&current->sighand->siglock, flags);
447 current->notifier_mask = mask;
448 current->notifier_data = priv;
449 current->notifier = notifier;
450 spin_unlock_irqrestore(&current->sighand->siglock, flags);
451 }
452
453 /* Notify the system that blocking has ended. */
454
455 void
456 unblock_all_signals(void)
457 {
458 unsigned long flags;
459
460 spin_lock_irqsave(&current->sighand->siglock, flags);
461 current->notifier = NULL;
462 current->notifier_data = NULL;
463 recalc_sigpending();
464 spin_unlock_irqrestore(&current->sighand->siglock, flags);
465 }
466
467 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
468 {
469 struct sigqueue *q, *first = NULL;
470 int still_pending = 0;
471
472 if (unlikely(!sigismember(&list->signal, sig)))
473 return 0;
474
475 /*
476 * Collect the siginfo appropriate to this signal. Check if
477 * there is another siginfo for the same signal.
478 */
479 list_for_each_entry(q, &list->list, list) {
480 if (q->info.si_signo == sig) {
481 if (first) {
482 still_pending = 1;
483 break;
484 }
485 first = q;
486 }
487 }
488 if (first) {
489 list_del_init(&first->list);
490 copy_siginfo(info, &first->info);
491 __sigqueue_free(first);
492 if (!still_pending)
493 sigdelset(&list->signal, sig);
494 } else {
495
496 /* Ok, it wasn't in the queue. This must be
497 a fast-pathed signal or we must have been
498 out of queue space. So zero out the info.
499 */
500 sigdelset(&list->signal, sig);
501 info->si_signo = sig;
502 info->si_errno = 0;
503 info->si_code = 0;
504 info->si_pid = 0;
505 info->si_uid = 0;
506 }
507 return 1;
508 }
509
510 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
511 siginfo_t *info)
512 {
513 int sig = 0;
514
515 /* SIGKILL must have priority, otherwise it is quite easy
516 * to create an unkillable process, sending sig < SIGKILL
517 * to self */
518 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
519 if (!sigismember(mask, SIGKILL))
520 sig = SIGKILL;
521 }
522
523 if (likely(!sig))
524 sig = next_signal(pending, mask);
525 if (sig) {
526 if (current->notifier) {
527 if (sigismember(current->notifier_mask, sig)) {
528 if (!(current->notifier)(current->notifier_data)) {
529 clear_thread_flag(TIF_SIGPENDING);
530 return 0;
531 }
532 }
533 }
534
535 if (!collect_signal(sig, pending, info))
536 sig = 0;
537
538 }
539 recalc_sigpending();
540
541 return sig;
542 }
543
544 /*
545 * Dequeue a signal and return the element to the caller, which is
546 * expected to free it.
547 *
548 * All callers have to hold the siglock.
549 */
550 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
551 {
552 int signr = __dequeue_signal(&tsk->pending, mask, info);
553 if (!signr)
554 signr = __dequeue_signal(&tsk->signal->shared_pending,
555 mask, info);
556 if (signr && unlikely(sig_kernel_stop(signr))) {
557 /*
558 * Set a marker that we have dequeued a stop signal. Our
559 * caller might release the siglock and then the pending
560 * stop signal it is about to process is no longer in the
561 * pending bitmasks, but must still be cleared by a SIGCONT
562 * (and overruled by a SIGKILL). So those cases clear this
563 * shared flag after we've set it. Note that this flag may
564 * remain set after the signal we return is ignored or
565 * handled. That doesn't matter because its only purpose
566 * is to alert stop-signal processing code when another
567 * processor has come along and cleared the flag.
568 */
569 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
570 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
571 }
572 if ( signr &&
573 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
574 info->si_sys_private){
575 /*
576 * Release the siglock to ensure proper locking order
577 * of timer locks outside of siglocks. Note, we leave
578 * irqs disabled here, since the posix-timers code is
579 * about to disable them again anyway.
580 */
581 spin_unlock(&tsk->sighand->siglock);
582 do_schedule_next_timer(info);
583 spin_lock(&tsk->sighand->siglock);
584 }
585 return signr;
586 }
587
588 /*
589 * Tell a process that it has a new active signal..
590 *
591 * NOTE! we rely on the previous spin_lock to
592 * lock interrupts for us! We can only be called with
593 * "siglock" held, and the local interrupt must
594 * have been disabled when that got acquired!
595 *
596 * No need to set need_resched since signal event passing
597 * goes through ->blocked
598 */
599 void signal_wake_up(struct task_struct *t, int resume)
600 {
601 unsigned int mask;
602
603 set_tsk_thread_flag(t, TIF_SIGPENDING);
604
605 /*
606 * For SIGKILL, we want to wake it up in the stopped/traced case.
607 * We don't check t->state here because there is a race with it
608 * executing another processor and just now entering stopped state.
609 * By using wake_up_state, we ensure the process will wake up and
610 * handle its death signal.
611 */
612 mask = TASK_INTERRUPTIBLE;
613 if (resume)
614 mask |= TASK_STOPPED | TASK_TRACED;
615 if (!wake_up_state(t, mask))
616 kick_process(t);
617 }
618
619 /*
620 * Remove signals in mask from the pending set and queue.
621 * Returns 1 if any signals were found.
622 *
623 * All callers must be holding the siglock.
624 */
625 static int rm_from_queue(unsigned long mask, struct sigpending *s)
626 {
627 struct sigqueue *q, *n;
628
629 if (!sigtestsetmask(&s->signal, mask))
630 return 0;
631
632 sigdelsetmask(&s->signal, mask);
633 list_for_each_entry_safe(q, n, &s->list, list) {
634 if (q->info.si_signo < SIGRTMIN &&
635 (mask & sigmask(q->info.si_signo))) {
636 list_del_init(&q->list);
637 __sigqueue_free(q);
638 }
639 }
640 return 1;
641 }
642
643 /*
644 * Bad permissions for sending the signal
645 */
646 static int check_kill_permission(int sig, struct siginfo *info,
647 struct task_struct *t)
648 {
649 int error = -EINVAL;
650 if (!valid_signal(sig))
651 return error;
652 error = -EPERM;
653 if ((!info || ((unsigned long)info != 1 &&
654 (unsigned long)info != 2 && SI_FROMUSER(info)))
655 && ((sig != SIGCONT) ||
656 (current->signal->session != t->signal->session))
657 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
658 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
659 && !capable(CAP_KILL))
660 return error;
661
662 error = security_task_kill(t, info, sig);
663 if (!error)
664 audit_signal_info(sig, t); /* Let audit system see the signal */
665 return error;
666 }
667
668 /* forward decl */
669 static void do_notify_parent_cldstop(struct task_struct *tsk,
670 int to_self,
671 int why);
672
673 /*
674 * Handle magic process-wide effects of stop/continue signals.
675 * Unlike the signal actions, these happen immediately at signal-generation
676 * time regardless of blocking, ignoring, or handling. This does the
677 * actual continuing for SIGCONT, but not the actual stopping for stop
678 * signals. The process stop is done as a signal action for SIG_DFL.
679 */
680 static void handle_stop_signal(int sig, struct task_struct *p)
681 {
682 struct task_struct *t;
683
684 if (p->signal->flags & SIGNAL_GROUP_EXIT)
685 /*
686 * The process is in the middle of dying already.
687 */
688 return;
689
690 if (sig_kernel_stop(sig)) {
691 /*
692 * This is a stop signal. Remove SIGCONT from all queues.
693 */
694 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
695 t = p;
696 do {
697 rm_from_queue(sigmask(SIGCONT), &t->pending);
698 t = next_thread(t);
699 } while (t != p);
700 } else if (sig == SIGCONT) {
701 /*
702 * Remove all stop signals from all queues,
703 * and wake all threads.
704 */
705 if (unlikely(p->signal->group_stop_count > 0)) {
706 /*
707 * There was a group stop in progress. We'll
708 * pretend it finished before we got here. We are
709 * obliged to report it to the parent: if the
710 * SIGSTOP happened "after" this SIGCONT, then it
711 * would have cleared this pending SIGCONT. If it
712 * happened "before" this SIGCONT, then the parent
713 * got the SIGCHLD about the stop finishing before
714 * the continue happened. We do the notification
715 * now, and it's as if the stop had finished and
716 * the SIGCHLD was pending on entry to this kill.
717 */
718 p->signal->group_stop_count = 0;
719 p->signal->flags = SIGNAL_STOP_CONTINUED;
720 spin_unlock(&p->sighand->siglock);
721 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
722 spin_lock(&p->sighand->siglock);
723 }
724 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
725 t = p;
726 do {
727 unsigned int state;
728 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
729
730 /*
731 * If there is a handler for SIGCONT, we must make
732 * sure that no thread returns to user mode before
733 * we post the signal, in case it was the only
734 * thread eligible to run the signal handler--then
735 * it must not do anything between resuming and
736 * running the handler. With the TIF_SIGPENDING
737 * flag set, the thread will pause and acquire the
738 * siglock that we hold now and until we've queued
739 * the pending signal.
740 *
741 * Wake up the stopped thread _after_ setting
742 * TIF_SIGPENDING
743 */
744 state = TASK_STOPPED;
745 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
746 set_tsk_thread_flag(t, TIF_SIGPENDING);
747 state |= TASK_INTERRUPTIBLE;
748 }
749 wake_up_state(t, state);
750
751 t = next_thread(t);
752 } while (t != p);
753
754 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
755 /*
756 * We were in fact stopped, and are now continued.
757 * Notify the parent with CLD_CONTINUED.
758 */
759 p->signal->flags = SIGNAL_STOP_CONTINUED;
760 p->signal->group_exit_code = 0;
761 spin_unlock(&p->sighand->siglock);
762 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
763 spin_lock(&p->sighand->siglock);
764 } else {
765 /*
766 * We are not stopped, but there could be a stop
767 * signal in the middle of being processed after
768 * being removed from the queue. Clear that too.
769 */
770 p->signal->flags = 0;
771 }
772 } else if (sig == SIGKILL) {
773 /*
774 * Make sure that any pending stop signal already dequeued
775 * is undone by the wakeup for SIGKILL.
776 */
777 p->signal->flags = 0;
778 }
779 }
780
781 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
782 struct sigpending *signals)
783 {
784 struct sigqueue * q = NULL;
785 int ret = 0;
786
787 /*
788 * fast-pathed signals for kernel-internal things like SIGSTOP
789 * or SIGKILL.
790 */
791 if ((unsigned long)info == 2)
792 goto out_set;
793
794 /* Real-time signals must be queued if sent by sigqueue, or
795 some other real-time mechanism. It is implementation
796 defined whether kill() does so. We attempt to do so, on
797 the principle of least surprise, but since kill is not
798 allowed to fail with EAGAIN when low on memory we just
799 make sure at least one signal gets delivered and don't
800 pass on the info struct. */
801
802 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
803 ((unsigned long) info < 2 ||
804 info->si_code >= 0)));
805 if (q) {
806 list_add_tail(&q->list, &signals->list);
807 switch ((unsigned long) info) {
808 case 0:
809 q->info.si_signo = sig;
810 q->info.si_errno = 0;
811 q->info.si_code = SI_USER;
812 q->info.si_pid = current->pid;
813 q->info.si_uid = current->uid;
814 break;
815 case 1:
816 q->info.si_signo = sig;
817 q->info.si_errno = 0;
818 q->info.si_code = SI_KERNEL;
819 q->info.si_pid = 0;
820 q->info.si_uid = 0;
821 break;
822 default:
823 copy_siginfo(&q->info, info);
824 break;
825 }
826 } else {
827 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
828 && info->si_code != SI_USER)
829 /*
830 * Queue overflow, abort. We may abort if the signal was rt
831 * and sent by user using something other than kill().
832 */
833 return -EAGAIN;
834 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
835 /*
836 * Set up a return to indicate that we dropped
837 * the signal.
838 */
839 ret = info->si_sys_private;
840 }
841
842 out_set:
843 sigaddset(&signals->signal, sig);
844 return ret;
845 }
846
847 #define LEGACY_QUEUE(sigptr, sig) \
848 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
849
850
851 static int
852 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
853 {
854 int ret = 0;
855
856 if (!irqs_disabled())
857 BUG();
858 assert_spin_locked(&t->sighand->siglock);
859
860 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
861 /*
862 * Set up a return to indicate that we dropped the signal.
863 */
864 ret = info->si_sys_private;
865
866 /* Short-circuit ignored signals. */
867 if (sig_ignored(t, sig))
868 goto out;
869
870 /* Support queueing exactly one non-rt signal, so that we
871 can get more detailed information about the cause of
872 the signal. */
873 if (LEGACY_QUEUE(&t->pending, sig))
874 goto out;
875
876 ret = send_signal(sig, info, t, &t->pending);
877 if (!ret && !sigismember(&t->blocked, sig))
878 signal_wake_up(t, sig == SIGKILL);
879 out:
880 return ret;
881 }
882
883 /*
884 * Force a signal that the process can't ignore: if necessary
885 * we unblock the signal and change any SIG_IGN to SIG_DFL.
886 */
887
888 int
889 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
890 {
891 unsigned long int flags;
892 int ret;
893
894 spin_lock_irqsave(&t->sighand->siglock, flags);
895 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
896 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
897 sigdelset(&t->blocked, sig);
898 recalc_sigpending_tsk(t);
899 }
900 ret = specific_send_sig_info(sig, info, t);
901 spin_unlock_irqrestore(&t->sighand->siglock, flags);
902
903 return ret;
904 }
905
906 void
907 force_sig_specific(int sig, struct task_struct *t)
908 {
909 unsigned long int flags;
910
911 spin_lock_irqsave(&t->sighand->siglock, flags);
912 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
913 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
914 sigdelset(&t->blocked, sig);
915 recalc_sigpending_tsk(t);
916 specific_send_sig_info(sig, (void *)2, t);
917 spin_unlock_irqrestore(&t->sighand->siglock, flags);
918 }
919
920 /*
921 * Test if P wants to take SIG. After we've checked all threads with this,
922 * it's equivalent to finding no threads not blocking SIG. Any threads not
923 * blocking SIG were ruled out because they are not running and already
924 * have pending signals. Such threads will dequeue from the shared queue
925 * as soon as they're available, so putting the signal on the shared queue
926 * will be equivalent to sending it to one such thread.
927 */
928 static inline int wants_signal(int sig, struct task_struct *p)
929 {
930 if (sigismember(&p->blocked, sig))
931 return 0;
932 if (p->flags & PF_EXITING)
933 return 0;
934 if (sig == SIGKILL)
935 return 1;
936 if (p->state & (TASK_STOPPED | TASK_TRACED))
937 return 0;
938 return task_curr(p) || !signal_pending(p);
939 }
940
941 static void
942 __group_complete_signal(int sig, struct task_struct *p)
943 {
944 struct task_struct *t;
945
946 /*
947 * Now find a thread we can wake up to take the signal off the queue.
948 *
949 * If the main thread wants the signal, it gets first crack.
950 * Probably the least surprising to the average bear.
951 */
952 if (wants_signal(sig, p))
953 t = p;
954 else if (thread_group_empty(p))
955 /*
956 * There is just one thread and it does not need to be woken.
957 * It will dequeue unblocked signals before it runs again.
958 */
959 return;
960 else {
961 /*
962 * Otherwise try to find a suitable thread.
963 */
964 t = p->signal->curr_target;
965 if (t == NULL)
966 /* restart balancing at this thread */
967 t = p->signal->curr_target = p;
968 BUG_ON(t->tgid != p->tgid);
969
970 while (!wants_signal(sig, t)) {
971 t = next_thread(t);
972 if (t == p->signal->curr_target)
973 /*
974 * No thread needs to be woken.
975 * Any eligible threads will see
976 * the signal in the queue soon.
977 */
978 return;
979 }
980 p->signal->curr_target = t;
981 }
982
983 /*
984 * Found a killable thread. If the signal will be fatal,
985 * then start taking the whole group down immediately.
986 */
987 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
988 !sigismember(&t->real_blocked, sig) &&
989 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
990 /*
991 * This signal will be fatal to the whole group.
992 */
993 if (!sig_kernel_coredump(sig)) {
994 /*
995 * Start a group exit and wake everybody up.
996 * This way we don't have other threads
997 * running and doing things after a slower
998 * thread has the fatal signal pending.
999 */
1000 p->signal->flags = SIGNAL_GROUP_EXIT;
1001 p->signal->group_exit_code = sig;
1002 p->signal->group_stop_count = 0;
1003 t = p;
1004 do {
1005 sigaddset(&t->pending.signal, SIGKILL);
1006 signal_wake_up(t, 1);
1007 t = next_thread(t);
1008 } while (t != p);
1009 return;
1010 }
1011
1012 /*
1013 * There will be a core dump. We make all threads other
1014 * than the chosen one go into a group stop so that nothing
1015 * happens until it gets scheduled, takes the signal off
1016 * the shared queue, and does the core dump. This is a
1017 * little more complicated than strictly necessary, but it
1018 * keeps the signal state that winds up in the core dump
1019 * unchanged from the death state, e.g. which thread had
1020 * the core-dump signal unblocked.
1021 */
1022 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1023 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1024 p->signal->group_stop_count = 0;
1025 p->signal->group_exit_task = t;
1026 t = p;
1027 do {
1028 p->signal->group_stop_count++;
1029 signal_wake_up(t, 0);
1030 t = next_thread(t);
1031 } while (t != p);
1032 wake_up_process(p->signal->group_exit_task);
1033 return;
1034 }
1035
1036 /*
1037 * The signal is already in the shared-pending queue.
1038 * Tell the chosen thread to wake up and dequeue it.
1039 */
1040 signal_wake_up(t, sig == SIGKILL);
1041 return;
1042 }
1043
1044 int
1045 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1046 {
1047 int ret = 0;
1048
1049 assert_spin_locked(&p->sighand->siglock);
1050 handle_stop_signal(sig, p);
1051
1052 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1053 /*
1054 * Set up a return to indicate that we dropped the signal.
1055 */
1056 ret = info->si_sys_private;
1057
1058 /* Short-circuit ignored signals. */
1059 if (sig_ignored(p, sig))
1060 return ret;
1061
1062 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1063 /* This is a non-RT signal and we already have one queued. */
1064 return ret;
1065
1066 /*
1067 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1068 * We always use the shared queue for process-wide signals,
1069 * to avoid several races.
1070 */
1071 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1072 if (unlikely(ret))
1073 return ret;
1074
1075 __group_complete_signal(sig, p);
1076 return 0;
1077 }
1078
1079 /*
1080 * Nuke all other threads in the group.
1081 */
1082 void zap_other_threads(struct task_struct *p)
1083 {
1084 struct task_struct *t;
1085
1086 p->signal->flags = SIGNAL_GROUP_EXIT;
1087 p->signal->group_stop_count = 0;
1088
1089 if (thread_group_empty(p))
1090 return;
1091
1092 for (t = next_thread(p); t != p; t = next_thread(t)) {
1093 /*
1094 * Don't bother with already dead threads
1095 */
1096 if (t->exit_state)
1097 continue;
1098
1099 /*
1100 * We don't want to notify the parent, since we are
1101 * killed as part of a thread group due to another
1102 * thread doing an execve() or similar. So set the
1103 * exit signal to -1 to allow immediate reaping of
1104 * the process. But don't detach the thread group
1105 * leader.
1106 */
1107 if (t != p->group_leader)
1108 t->exit_signal = -1;
1109
1110 sigaddset(&t->pending.signal, SIGKILL);
1111 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1112 signal_wake_up(t, 1);
1113 }
1114 }
1115
1116 /*
1117 * Must be called with the tasklist_lock held for reading!
1118 */
1119 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1120 {
1121 unsigned long flags;
1122 int ret;
1123
1124 ret = check_kill_permission(sig, info, p);
1125 if (!ret && sig && p->sighand) {
1126 spin_lock_irqsave(&p->sighand->siglock, flags);
1127 ret = __group_send_sig_info(sig, info, p);
1128 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1129 }
1130
1131 return ret;
1132 }
1133
1134 /*
1135 * kill_pg_info() sends a signal to a process group: this is what the tty
1136 * control characters do (^C, ^Z etc)
1137 */
1138
1139 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1140 {
1141 struct task_struct *p = NULL;
1142 int retval, success;
1143
1144 if (pgrp <= 0)
1145 return -EINVAL;
1146
1147 success = 0;
1148 retval = -ESRCH;
1149 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1150 int err = group_send_sig_info(sig, info, p);
1151 success |= !err;
1152 retval = err;
1153 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1154 return success ? 0 : retval;
1155 }
1156
1157 int
1158 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1159 {
1160 int retval;
1161
1162 read_lock(&tasklist_lock);
1163 retval = __kill_pg_info(sig, info, pgrp);
1164 read_unlock(&tasklist_lock);
1165
1166 return retval;
1167 }
1168
1169 int
1170 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1171 {
1172 int error;
1173 struct task_struct *p;
1174
1175 read_lock(&tasklist_lock);
1176 p = find_task_by_pid(pid);
1177 error = -ESRCH;
1178 if (p)
1179 error = group_send_sig_info(sig, info, p);
1180 read_unlock(&tasklist_lock);
1181 return error;
1182 }
1183
1184 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1185 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1186 uid_t uid, uid_t euid)
1187 {
1188 int ret = -EINVAL;
1189 struct task_struct *p;
1190
1191 if (!valid_signal(sig))
1192 return ret;
1193
1194 read_lock(&tasklist_lock);
1195 p = find_task_by_pid(pid);
1196 if (!p) {
1197 ret = -ESRCH;
1198 goto out_unlock;
1199 }
1200 if ((!info || ((unsigned long)info != 1 &&
1201 (unsigned long)info != 2 && SI_FROMUSER(info)))
1202 && (euid != p->suid) && (euid != p->uid)
1203 && (uid != p->suid) && (uid != p->uid)) {
1204 ret = -EPERM;
1205 goto out_unlock;
1206 }
1207 if (sig && p->sighand) {
1208 unsigned long flags;
1209 spin_lock_irqsave(&p->sighand->siglock, flags);
1210 ret = __group_send_sig_info(sig, info, p);
1211 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1212 }
1213 out_unlock:
1214 read_unlock(&tasklist_lock);
1215 return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1218
1219 /*
1220 * kill_something_info() interprets pid in interesting ways just like kill(2).
1221 *
1222 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1223 * is probably wrong. Should make it like BSD or SYSV.
1224 */
1225
1226 static int kill_something_info(int sig, struct siginfo *info, int pid)
1227 {
1228 if (!pid) {
1229 return kill_pg_info(sig, info, process_group(current));
1230 } else if (pid == -1) {
1231 int retval = 0, count = 0;
1232 struct task_struct * p;
1233
1234 read_lock(&tasklist_lock);
1235 for_each_process(p) {
1236 if (p->pid > 1 && p->tgid != current->tgid) {
1237 int err = group_send_sig_info(sig, info, p);
1238 ++count;
1239 if (err != -EPERM)
1240 retval = err;
1241 }
1242 }
1243 read_unlock(&tasklist_lock);
1244 return count ? retval : -ESRCH;
1245 } else if (pid < 0) {
1246 return kill_pg_info(sig, info, -pid);
1247 } else {
1248 return kill_proc_info(sig, info, pid);
1249 }
1250 }
1251
1252 /*
1253 * These are for backward compatibility with the rest of the kernel source.
1254 */
1255
1256 /*
1257 * These two are the most common entry points. They send a signal
1258 * just to the specific thread.
1259 */
1260 int
1261 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1262 {
1263 int ret;
1264 unsigned long flags;
1265
1266 /*
1267 * Make sure legacy kernel users don't send in bad values
1268 * (normal paths check this in check_kill_permission).
1269 */
1270 if (!valid_signal(sig))
1271 return -EINVAL;
1272
1273 /*
1274 * We need the tasklist lock even for the specific
1275 * thread case (when we don't need to follow the group
1276 * lists) in order to avoid races with "p->sighand"
1277 * going away or changing from under us.
1278 */
1279 read_lock(&tasklist_lock);
1280 spin_lock_irqsave(&p->sighand->siglock, flags);
1281 ret = specific_send_sig_info(sig, info, p);
1282 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1283 read_unlock(&tasklist_lock);
1284 return ret;
1285 }
1286
1287 int
1288 send_sig(int sig, struct task_struct *p, int priv)
1289 {
1290 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1291 }
1292
1293 /*
1294 * This is the entry point for "process-wide" signals.
1295 * They will go to an appropriate thread in the thread group.
1296 */
1297 int
1298 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1299 {
1300 int ret;
1301 read_lock(&tasklist_lock);
1302 ret = group_send_sig_info(sig, info, p);
1303 read_unlock(&tasklist_lock);
1304 return ret;
1305 }
1306
1307 void
1308 force_sig(int sig, struct task_struct *p)
1309 {
1310 force_sig_info(sig, (void*)1L, p);
1311 }
1312
1313 /*
1314 * When things go south during signal handling, we
1315 * will force a SIGSEGV. And if the signal that caused
1316 * the problem was already a SIGSEGV, we'll want to
1317 * make sure we don't even try to deliver the signal..
1318 */
1319 int
1320 force_sigsegv(int sig, struct task_struct *p)
1321 {
1322 if (sig == SIGSEGV) {
1323 unsigned long flags;
1324 spin_lock_irqsave(&p->sighand->siglock, flags);
1325 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1326 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1327 }
1328 force_sig(SIGSEGV, p);
1329 return 0;
1330 }
1331
1332 int
1333 kill_pg(pid_t pgrp, int sig, int priv)
1334 {
1335 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1336 }
1337
1338 int
1339 kill_proc(pid_t pid, int sig, int priv)
1340 {
1341 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1342 }
1343
1344 /*
1345 * These functions support sending signals using preallocated sigqueue
1346 * structures. This is needed "because realtime applications cannot
1347 * afford to lose notifications of asynchronous events, like timer
1348 * expirations or I/O completions". In the case of Posix Timers
1349 * we allocate the sigqueue structure from the timer_create. If this
1350 * allocation fails we are able to report the failure to the application
1351 * with an EAGAIN error.
1352 */
1353
1354 struct sigqueue *sigqueue_alloc(void)
1355 {
1356 struct sigqueue *q;
1357
1358 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1359 q->flags |= SIGQUEUE_PREALLOC;
1360 return(q);
1361 }
1362
1363 void sigqueue_free(struct sigqueue *q)
1364 {
1365 unsigned long flags;
1366 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1367 /*
1368 * If the signal is still pending remove it from the
1369 * pending queue.
1370 */
1371 if (unlikely(!list_empty(&q->list))) {
1372 read_lock(&tasklist_lock);
1373 spin_lock_irqsave(q->lock, flags);
1374 if (!list_empty(&q->list))
1375 list_del_init(&q->list);
1376 spin_unlock_irqrestore(q->lock, flags);
1377 read_unlock(&tasklist_lock);
1378 }
1379 q->flags &= ~SIGQUEUE_PREALLOC;
1380 __sigqueue_free(q);
1381 }
1382
1383 int
1384 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1385 {
1386 unsigned long flags;
1387 int ret = 0;
1388
1389 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1390 read_lock(&tasklist_lock);
1391
1392 if (unlikely(p->flags & PF_EXITING)) {
1393 ret = -1;
1394 goto out_err;
1395 }
1396
1397 spin_lock_irqsave(&p->sighand->siglock, flags);
1398
1399 if (unlikely(!list_empty(&q->list))) {
1400 /*
1401 * If an SI_TIMER entry is already queue just increment
1402 * the overrun count.
1403 */
1404 if (q->info.si_code != SI_TIMER)
1405 BUG();
1406 q->info.si_overrun++;
1407 goto out;
1408 }
1409 /* Short-circuit ignored signals. */
1410 if (sig_ignored(p, sig)) {
1411 ret = 1;
1412 goto out;
1413 }
1414
1415 q->lock = &p->sighand->siglock;
1416 list_add_tail(&q->list, &p->pending.list);
1417 sigaddset(&p->pending.signal, sig);
1418 if (!sigismember(&p->blocked, sig))
1419 signal_wake_up(p, sig == SIGKILL);
1420
1421 out:
1422 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1423 out_err:
1424 read_unlock(&tasklist_lock);
1425
1426 return ret;
1427 }
1428
1429 int
1430 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1431 {
1432 unsigned long flags;
1433 int ret = 0;
1434
1435 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1436 read_lock(&tasklist_lock);
1437 spin_lock_irqsave(&p->sighand->siglock, flags);
1438 handle_stop_signal(sig, p);
1439
1440 /* Short-circuit ignored signals. */
1441 if (sig_ignored(p, sig)) {
1442 ret = 1;
1443 goto out;
1444 }
1445
1446 if (unlikely(!list_empty(&q->list))) {
1447 /*
1448 * If an SI_TIMER entry is already queue just increment
1449 * the overrun count. Other uses should not try to
1450 * send the signal multiple times.
1451 */
1452 if (q->info.si_code != SI_TIMER)
1453 BUG();
1454 q->info.si_overrun++;
1455 goto out;
1456 }
1457
1458 /*
1459 * Put this signal on the shared-pending queue.
1460 * We always use the shared queue for process-wide signals,
1461 * to avoid several races.
1462 */
1463 q->lock = &p->sighand->siglock;
1464 list_add_tail(&q->list, &p->signal->shared_pending.list);
1465 sigaddset(&p->signal->shared_pending.signal, sig);
1466
1467 __group_complete_signal(sig, p);
1468 out:
1469 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1470 read_unlock(&tasklist_lock);
1471 return(ret);
1472 }
1473
1474 /*
1475 * Wake up any threads in the parent blocked in wait* syscalls.
1476 */
1477 static inline void __wake_up_parent(struct task_struct *p,
1478 struct task_struct *parent)
1479 {
1480 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1481 }
1482
1483 /*
1484 * Let a parent know about the death of a child.
1485 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1486 */
1487
1488 void do_notify_parent(struct task_struct *tsk, int sig)
1489 {
1490 struct siginfo info;
1491 unsigned long flags;
1492 struct sighand_struct *psig;
1493
1494 BUG_ON(sig == -1);
1495
1496 /* do_notify_parent_cldstop should have been called instead. */
1497 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1498
1499 BUG_ON(!tsk->ptrace &&
1500 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1501
1502 info.si_signo = sig;
1503 info.si_errno = 0;
1504 info.si_pid = tsk->pid;
1505 info.si_uid = tsk->uid;
1506
1507 /* FIXME: find out whether or not this is supposed to be c*time. */
1508 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1509 tsk->signal->utime));
1510 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1511 tsk->signal->stime));
1512
1513 info.si_status = tsk->exit_code & 0x7f;
1514 if (tsk->exit_code & 0x80)
1515 info.si_code = CLD_DUMPED;
1516 else if (tsk->exit_code & 0x7f)
1517 info.si_code = CLD_KILLED;
1518 else {
1519 info.si_code = CLD_EXITED;
1520 info.si_status = tsk->exit_code >> 8;
1521 }
1522
1523 psig = tsk->parent->sighand;
1524 spin_lock_irqsave(&psig->siglock, flags);
1525 if (sig == SIGCHLD &&
1526 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1527 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1528 /*
1529 * We are exiting and our parent doesn't care. POSIX.1
1530 * defines special semantics for setting SIGCHLD to SIG_IGN
1531 * or setting the SA_NOCLDWAIT flag: we should be reaped
1532 * automatically and not left for our parent's wait4 call.
1533 * Rather than having the parent do it as a magic kind of
1534 * signal handler, we just set this to tell do_exit that we
1535 * can be cleaned up without becoming a zombie. Note that
1536 * we still call __wake_up_parent in this case, because a
1537 * blocked sys_wait4 might now return -ECHILD.
1538 *
1539 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1540 * is implementation-defined: we do (if you don't want
1541 * it, just use SIG_IGN instead).
1542 */
1543 tsk->exit_signal = -1;
1544 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1545 sig = 0;
1546 }
1547 if (valid_signal(sig) && sig > 0)
1548 __group_send_sig_info(sig, &info, tsk->parent);
1549 __wake_up_parent(tsk, tsk->parent);
1550 spin_unlock_irqrestore(&psig->siglock, flags);
1551 }
1552
1553 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1554 {
1555 struct siginfo info;
1556 unsigned long flags;
1557 struct task_struct *parent;
1558 struct sighand_struct *sighand;
1559
1560 if (to_self)
1561 parent = tsk->parent;
1562 else {
1563 tsk = tsk->group_leader;
1564 parent = tsk->real_parent;
1565 }
1566
1567 info.si_signo = SIGCHLD;
1568 info.si_errno = 0;
1569 info.si_pid = tsk->pid;
1570 info.si_uid = tsk->uid;
1571
1572 /* FIXME: find out whether or not this is supposed to be c*time. */
1573 info.si_utime = cputime_to_jiffies(tsk->utime);
1574 info.si_stime = cputime_to_jiffies(tsk->stime);
1575
1576 info.si_code = why;
1577 switch (why) {
1578 case CLD_CONTINUED:
1579 info.si_status = SIGCONT;
1580 break;
1581 case CLD_STOPPED:
1582 info.si_status = tsk->signal->group_exit_code & 0x7f;
1583 break;
1584 case CLD_TRAPPED:
1585 info.si_status = tsk->exit_code & 0x7f;
1586 break;
1587 default:
1588 BUG();
1589 }
1590
1591 sighand = parent->sighand;
1592 spin_lock_irqsave(&sighand->siglock, flags);
1593 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1594 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1595 __group_send_sig_info(SIGCHLD, &info, parent);
1596 /*
1597 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1598 */
1599 __wake_up_parent(tsk, parent);
1600 spin_unlock_irqrestore(&sighand->siglock, flags);
1601 }
1602
1603 /*
1604 * This must be called with current->sighand->siglock held.
1605 *
1606 * This should be the path for all ptrace stops.
1607 * We always set current->last_siginfo while stopped here.
1608 * That makes it a way to test a stopped process for
1609 * being ptrace-stopped vs being job-control-stopped.
1610 *
1611 * If we actually decide not to stop at all because the tracer is gone,
1612 * we leave nostop_code in current->exit_code.
1613 */
1614 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1615 {
1616 /*
1617 * If there is a group stop in progress,
1618 * we must participate in the bookkeeping.
1619 */
1620 if (current->signal->group_stop_count > 0)
1621 --current->signal->group_stop_count;
1622
1623 current->last_siginfo = info;
1624 current->exit_code = exit_code;
1625
1626 /* Let the debugger run. */
1627 set_current_state(TASK_TRACED);
1628 spin_unlock_irq(&current->sighand->siglock);
1629 read_lock(&tasklist_lock);
1630 if (likely(current->ptrace & PT_PTRACED) &&
1631 likely(current->parent != current->real_parent ||
1632 !(current->ptrace & PT_ATTACHED)) &&
1633 (likely(current->parent->signal != current->signal) ||
1634 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1635 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1636 read_unlock(&tasklist_lock);
1637 schedule();
1638 } else {
1639 /*
1640 * By the time we got the lock, our tracer went away.
1641 * Don't stop here.
1642 */
1643 read_unlock(&tasklist_lock);
1644 set_current_state(TASK_RUNNING);
1645 current->exit_code = nostop_code;
1646 }
1647
1648 /*
1649 * We are back. Now reacquire the siglock before touching
1650 * last_siginfo, so that we are sure to have synchronized with
1651 * any signal-sending on another CPU that wants to examine it.
1652 */
1653 spin_lock_irq(&current->sighand->siglock);
1654 current->last_siginfo = NULL;
1655
1656 /*
1657 * Queued signals ignored us while we were stopped for tracing.
1658 * So check for any that we should take before resuming user mode.
1659 */
1660 recalc_sigpending();
1661 }
1662
1663 void ptrace_notify(int exit_code)
1664 {
1665 siginfo_t info;
1666
1667 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1668
1669 memset(&info, 0, sizeof info);
1670 info.si_signo = SIGTRAP;
1671 info.si_code = exit_code;
1672 info.si_pid = current->pid;
1673 info.si_uid = current->uid;
1674
1675 /* Let the debugger run. */
1676 spin_lock_irq(&current->sighand->siglock);
1677 ptrace_stop(exit_code, 0, &info);
1678 spin_unlock_irq(&current->sighand->siglock);
1679 }
1680
1681 static void
1682 finish_stop(int stop_count)
1683 {
1684 int to_self;
1685
1686 /*
1687 * If there are no other threads in the group, or if there is
1688 * a group stop in progress and we are the last to stop,
1689 * report to the parent. When ptraced, every thread reports itself.
1690 */
1691 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1692 to_self = 1;
1693 else if (stop_count == 0)
1694 to_self = 0;
1695 else
1696 goto out;
1697
1698 read_lock(&tasklist_lock);
1699 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1700 read_unlock(&tasklist_lock);
1701
1702 out:
1703 schedule();
1704 /*
1705 * Now we don't run again until continued.
1706 */
1707 current->exit_code = 0;
1708 }
1709
1710 /*
1711 * This performs the stopping for SIGSTOP and other stop signals.
1712 * We have to stop all threads in the thread group.
1713 * Returns nonzero if we've actually stopped and released the siglock.
1714 * Returns zero if we didn't stop and still hold the siglock.
1715 */
1716 static int
1717 do_signal_stop(int signr)
1718 {
1719 struct signal_struct *sig = current->signal;
1720 struct sighand_struct *sighand = current->sighand;
1721 int stop_count = -1;
1722
1723 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1724 return 0;
1725
1726 if (sig->group_stop_count > 0) {
1727 /*
1728 * There is a group stop in progress. We don't need to
1729 * start another one.
1730 */
1731 signr = sig->group_exit_code;
1732 stop_count = --sig->group_stop_count;
1733 current->exit_code = signr;
1734 set_current_state(TASK_STOPPED);
1735 if (stop_count == 0)
1736 sig->flags = SIGNAL_STOP_STOPPED;
1737 spin_unlock_irq(&sighand->siglock);
1738 }
1739 else if (thread_group_empty(current)) {
1740 /*
1741 * Lock must be held through transition to stopped state.
1742 */
1743 current->exit_code = current->signal->group_exit_code = signr;
1744 set_current_state(TASK_STOPPED);
1745 sig->flags = SIGNAL_STOP_STOPPED;
1746 spin_unlock_irq(&sighand->siglock);
1747 }
1748 else {
1749 /*
1750 * There is no group stop already in progress.
1751 * We must initiate one now, but that requires
1752 * dropping siglock to get both the tasklist lock
1753 * and siglock again in the proper order. Note that
1754 * this allows an intervening SIGCONT to be posted.
1755 * We need to check for that and bail out if necessary.
1756 */
1757 struct task_struct *t;
1758
1759 spin_unlock_irq(&sighand->siglock);
1760
1761 /* signals can be posted during this window */
1762
1763 read_lock(&tasklist_lock);
1764 spin_lock_irq(&sighand->siglock);
1765
1766 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1767 /*
1768 * Another stop or continue happened while we
1769 * didn't have the lock. We can just swallow this
1770 * signal now. If we raced with a SIGCONT, that
1771 * should have just cleared it now. If we raced
1772 * with another processor delivering a stop signal,
1773 * then the SIGCONT that wakes us up should clear it.
1774 */
1775 read_unlock(&tasklist_lock);
1776 return 0;
1777 }
1778
1779 if (sig->group_stop_count == 0) {
1780 sig->group_exit_code = signr;
1781 stop_count = 0;
1782 for (t = next_thread(current); t != current;
1783 t = next_thread(t))
1784 /*
1785 * Setting state to TASK_STOPPED for a group
1786 * stop is always done with the siglock held,
1787 * so this check has no races.
1788 */
1789 if (!t->exit_state &&
1790 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1791 stop_count++;
1792 signal_wake_up(t, 0);
1793 }
1794 sig->group_stop_count = stop_count;
1795 }
1796 else {
1797 /* A race with another thread while unlocked. */
1798 signr = sig->group_exit_code;
1799 stop_count = --sig->group_stop_count;
1800 }
1801
1802 current->exit_code = signr;
1803 set_current_state(TASK_STOPPED);
1804 if (stop_count == 0)
1805 sig->flags = SIGNAL_STOP_STOPPED;
1806
1807 spin_unlock_irq(&sighand->siglock);
1808 read_unlock(&tasklist_lock);
1809 }
1810
1811 finish_stop(stop_count);
1812 return 1;
1813 }
1814
1815 /*
1816 * Do appropriate magic when group_stop_count > 0.
1817 * We return nonzero if we stopped, after releasing the siglock.
1818 * We return zero if we still hold the siglock and should look
1819 * for another signal without checking group_stop_count again.
1820 */
1821 static inline int handle_group_stop(void)
1822 {
1823 int stop_count;
1824
1825 if (current->signal->group_exit_task == current) {
1826 /*
1827 * Group stop is so we can do a core dump,
1828 * We are the initiating thread, so get on with it.
1829 */
1830 current->signal->group_exit_task = NULL;
1831 return 0;
1832 }
1833
1834 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1835 /*
1836 * Group stop is so another thread can do a core dump,
1837 * or else we are racing against a death signal.
1838 * Just punt the stop so we can get the next signal.
1839 */
1840 return 0;
1841
1842 /*
1843 * There is a group stop in progress. We stop
1844 * without any associated signal being in our queue.
1845 */
1846 stop_count = --current->signal->group_stop_count;
1847 if (stop_count == 0)
1848 current->signal->flags = SIGNAL_STOP_STOPPED;
1849 current->exit_code = current->signal->group_exit_code;
1850 set_current_state(TASK_STOPPED);
1851 spin_unlock_irq(&current->sighand->siglock);
1852 finish_stop(stop_count);
1853 return 1;
1854 }
1855
1856 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1857 struct pt_regs *regs, void *cookie)
1858 {
1859 sigset_t *mask = &current->blocked;
1860 int signr = 0;
1861
1862 relock:
1863 spin_lock_irq(&current->sighand->siglock);
1864 for (;;) {
1865 struct k_sigaction *ka;
1866
1867 if (unlikely(current->signal->group_stop_count > 0) &&
1868 handle_group_stop())
1869 goto relock;
1870
1871 signr = dequeue_signal(current, mask, info);
1872
1873 if (!signr)
1874 break; /* will return 0 */
1875
1876 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1877 ptrace_signal_deliver(regs, cookie);
1878
1879 /* Let the debugger run. */
1880 ptrace_stop(signr, signr, info);
1881
1882 /* We're back. Did the debugger cancel the sig? */
1883 signr = current->exit_code;
1884 if (signr == 0)
1885 continue;
1886
1887 current->exit_code = 0;
1888
1889 /* Update the siginfo structure if the signal has
1890 changed. If the debugger wanted something
1891 specific in the siginfo structure then it should
1892 have updated *info via PTRACE_SETSIGINFO. */
1893 if (signr != info->si_signo) {
1894 info->si_signo = signr;
1895 info->si_errno = 0;
1896 info->si_code = SI_USER;
1897 info->si_pid = current->parent->pid;
1898 info->si_uid = current->parent->uid;
1899 }
1900
1901 /* If the (new) signal is now blocked, requeue it. */
1902 if (sigismember(&current->blocked, signr)) {
1903 specific_send_sig_info(signr, info, current);
1904 continue;
1905 }
1906 }
1907
1908 ka = &current->sighand->action[signr-1];
1909 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1910 continue;
1911 if (ka->sa.sa_handler != SIG_DFL) {
1912 /* Run the handler. */
1913 *return_ka = *ka;
1914
1915 if (ka->sa.sa_flags & SA_ONESHOT)
1916 ka->sa.sa_handler = SIG_DFL;
1917
1918 break; /* will return non-zero "signr" value */
1919 }
1920
1921 /*
1922 * Now we are doing the default action for this signal.
1923 */
1924 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1925 continue;
1926
1927 /* Init gets no signals it doesn't want. */
1928 if (current->pid == 1)
1929 continue;
1930
1931 if (sig_kernel_stop(signr)) {
1932 /*
1933 * The default action is to stop all threads in
1934 * the thread group. The job control signals
1935 * do nothing in an orphaned pgrp, but SIGSTOP
1936 * always works. Note that siglock needs to be
1937 * dropped during the call to is_orphaned_pgrp()
1938 * because of lock ordering with tasklist_lock.
1939 * This allows an intervening SIGCONT to be posted.
1940 * We need to check for that and bail out if necessary.
1941 */
1942 if (signr != SIGSTOP) {
1943 spin_unlock_irq(&current->sighand->siglock);
1944
1945 /* signals can be posted during this window */
1946
1947 if (is_orphaned_pgrp(process_group(current)))
1948 goto relock;
1949
1950 spin_lock_irq(&current->sighand->siglock);
1951 }
1952
1953 if (likely(do_signal_stop(signr))) {
1954 /* It released the siglock. */
1955 goto relock;
1956 }
1957
1958 /*
1959 * We didn't actually stop, due to a race
1960 * with SIGCONT or something like that.
1961 */
1962 continue;
1963 }
1964
1965 spin_unlock_irq(&current->sighand->siglock);
1966
1967 /*
1968 * Anything else is fatal, maybe with a core dump.
1969 */
1970 current->flags |= PF_SIGNALED;
1971 if (sig_kernel_coredump(signr)) {
1972 /*
1973 * If it was able to dump core, this kills all
1974 * other threads in the group and synchronizes with
1975 * their demise. If we lost the race with another
1976 * thread getting here, it set group_exit_code
1977 * first and our do_group_exit call below will use
1978 * that value and ignore the one we pass it.
1979 */
1980 do_coredump((long)signr, signr, regs);
1981 }
1982
1983 /*
1984 * Death signals, no core dump.
1985 */
1986 do_group_exit(signr);
1987 /* NOTREACHED */
1988 }
1989 spin_unlock_irq(&current->sighand->siglock);
1990 return signr;
1991 }
1992
1993 EXPORT_SYMBOL(recalc_sigpending);
1994 EXPORT_SYMBOL_GPL(dequeue_signal);
1995 EXPORT_SYMBOL(flush_signals);
1996 EXPORT_SYMBOL(force_sig);
1997 EXPORT_SYMBOL(kill_pg);
1998 EXPORT_SYMBOL(kill_proc);
1999 EXPORT_SYMBOL(ptrace_notify);
2000 EXPORT_SYMBOL(send_sig);
2001 EXPORT_SYMBOL(send_sig_info);
2002 EXPORT_SYMBOL(sigprocmask);
2003 EXPORT_SYMBOL(block_all_signals);
2004 EXPORT_SYMBOL(unblock_all_signals);
2005
2006
2007 /*
2008 * System call entry points.
2009 */
2010
2011 asmlinkage long sys_restart_syscall(void)
2012 {
2013 struct restart_block *restart = &current_thread_info()->restart_block;
2014 return restart->fn(restart);
2015 }
2016
2017 long do_no_restart_syscall(struct restart_block *param)
2018 {
2019 return -EINTR;
2020 }
2021
2022 /*
2023 * We don't need to get the kernel lock - this is all local to this
2024 * particular thread.. (and that's good, because this is _heavily_
2025 * used by various programs)
2026 */
2027
2028 /*
2029 * This is also useful for kernel threads that want to temporarily
2030 * (or permanently) block certain signals.
2031 *
2032 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2033 * interface happily blocks "unblockable" signals like SIGKILL
2034 * and friends.
2035 */
2036 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2037 {
2038 int error;
2039 sigset_t old_block;
2040
2041 spin_lock_irq(&current->sighand->siglock);
2042 old_block = current->blocked;
2043 error = 0;
2044 switch (how) {
2045 case SIG_BLOCK:
2046 sigorsets(&current->blocked, &current->blocked, set);
2047 break;
2048 case SIG_UNBLOCK:
2049 signandsets(&current->blocked, &current->blocked, set);
2050 break;
2051 case SIG_SETMASK:
2052 current->blocked = *set;
2053 break;
2054 default:
2055 error = -EINVAL;
2056 }
2057 recalc_sigpending();
2058 spin_unlock_irq(&current->sighand->siglock);
2059 if (oldset)
2060 *oldset = old_block;
2061 return error;
2062 }
2063
2064 asmlinkage long
2065 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2066 {
2067 int error = -EINVAL;
2068 sigset_t old_set, new_set;
2069
2070 /* XXX: Don't preclude handling different sized sigset_t's. */
2071 if (sigsetsize != sizeof(sigset_t))
2072 goto out;
2073
2074 if (set) {
2075 error = -EFAULT;
2076 if (copy_from_user(&new_set, set, sizeof(*set)))
2077 goto out;
2078 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2079
2080 error = sigprocmask(how, &new_set, &old_set);
2081 if (error)
2082 goto out;
2083 if (oset)
2084 goto set_old;
2085 } else if (oset) {
2086 spin_lock_irq(&current->sighand->siglock);
2087 old_set = current->blocked;
2088 spin_unlock_irq(&current->sighand->siglock);
2089
2090 set_old:
2091 error = -EFAULT;
2092 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2093 goto out;
2094 }
2095 error = 0;
2096 out:
2097 return error;
2098 }
2099
2100 long do_sigpending(void __user *set, unsigned long sigsetsize)
2101 {
2102 long error = -EINVAL;
2103 sigset_t pending;
2104
2105 if (sigsetsize > sizeof(sigset_t))
2106 goto out;
2107
2108 spin_lock_irq(&current->sighand->siglock);
2109 sigorsets(&pending, &current->pending.signal,
2110 &current->signal->shared_pending.signal);
2111 spin_unlock_irq(&current->sighand->siglock);
2112
2113 /* Outside the lock because only this thread touches it. */
2114 sigandsets(&pending, &current->blocked, &pending);
2115
2116 error = -EFAULT;
2117 if (!copy_to_user(set, &pending, sigsetsize))
2118 error = 0;
2119
2120 out:
2121 return error;
2122 }
2123
2124 asmlinkage long
2125 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2126 {
2127 return do_sigpending(set, sigsetsize);
2128 }
2129
2130 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2131
2132 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2133 {
2134 int err;
2135
2136 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2137 return -EFAULT;
2138 if (from->si_code < 0)
2139 return __copy_to_user(to, from, sizeof(siginfo_t))
2140 ? -EFAULT : 0;
2141 /*
2142 * If you change siginfo_t structure, please be sure
2143 * this code is fixed accordingly.
2144 * It should never copy any pad contained in the structure
2145 * to avoid security leaks, but must copy the generic
2146 * 3 ints plus the relevant union member.
2147 */
2148 err = __put_user(from->si_signo, &to->si_signo);
2149 err |= __put_user(from->si_errno, &to->si_errno);
2150 err |= __put_user((short)from->si_code, &to->si_code);
2151 switch (from->si_code & __SI_MASK) {
2152 case __SI_KILL:
2153 err |= __put_user(from->si_pid, &to->si_pid);
2154 err |= __put_user(from->si_uid, &to->si_uid);
2155 break;
2156 case __SI_TIMER:
2157 err |= __put_user(from->si_tid, &to->si_tid);
2158 err |= __put_user(from->si_overrun, &to->si_overrun);
2159 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 break;
2161 case __SI_POLL:
2162 err |= __put_user(from->si_band, &to->si_band);
2163 err |= __put_user(from->si_fd, &to->si_fd);
2164 break;
2165 case __SI_FAULT:
2166 err |= __put_user(from->si_addr, &to->si_addr);
2167 #ifdef __ARCH_SI_TRAPNO
2168 err |= __put_user(from->si_trapno, &to->si_trapno);
2169 #endif
2170 break;
2171 case __SI_CHLD:
2172 err |= __put_user(from->si_pid, &to->si_pid);
2173 err |= __put_user(from->si_uid, &to->si_uid);
2174 err |= __put_user(from->si_status, &to->si_status);
2175 err |= __put_user(from->si_utime, &to->si_utime);
2176 err |= __put_user(from->si_stime, &to->si_stime);
2177 break;
2178 case __SI_RT: /* This is not generated by the kernel as of now. */
2179 case __SI_MESGQ: /* But this is */
2180 err |= __put_user(from->si_pid, &to->si_pid);
2181 err |= __put_user(from->si_uid, &to->si_uid);
2182 err |= __put_user(from->si_ptr, &to->si_ptr);
2183 break;
2184 default: /* this is just in case for now ... */
2185 err |= __put_user(from->si_pid, &to->si_pid);
2186 err |= __put_user(from->si_uid, &to->si_uid);
2187 break;
2188 }
2189 return err;
2190 }
2191
2192 #endif
2193
2194 asmlinkage long
2195 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2196 siginfo_t __user *uinfo,
2197 const struct timespec __user *uts,
2198 size_t sigsetsize)
2199 {
2200 int ret, sig;
2201 sigset_t these;
2202 struct timespec ts;
2203 siginfo_t info;
2204 long timeout = 0;
2205
2206 /* XXX: Don't preclude handling different sized sigset_t's. */
2207 if (sigsetsize != sizeof(sigset_t))
2208 return -EINVAL;
2209
2210 if (copy_from_user(&these, uthese, sizeof(these)))
2211 return -EFAULT;
2212
2213 /*
2214 * Invert the set of allowed signals to get those we
2215 * want to block.
2216 */
2217 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2218 signotset(&these);
2219
2220 if (uts) {
2221 if (copy_from_user(&ts, uts, sizeof(ts)))
2222 return -EFAULT;
2223 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2224 || ts.tv_sec < 0)
2225 return -EINVAL;
2226 }
2227
2228 spin_lock_irq(&current->sighand->siglock);
2229 sig = dequeue_signal(current, &these, &info);
2230 if (!sig) {
2231 timeout = MAX_SCHEDULE_TIMEOUT;
2232 if (uts)
2233 timeout = (timespec_to_jiffies(&ts)
2234 + (ts.tv_sec || ts.tv_nsec));
2235
2236 if (timeout) {
2237 /* None ready -- temporarily unblock those we're
2238 * interested while we are sleeping in so that we'll
2239 * be awakened when they arrive. */
2240 current->real_blocked = current->blocked;
2241 sigandsets(&current->blocked, &current->blocked, &these);
2242 recalc_sigpending();
2243 spin_unlock_irq(&current->sighand->siglock);
2244
2245 timeout = schedule_timeout_interruptible(timeout);
2246
2247 try_to_freeze();
2248 spin_lock_irq(&current->sighand->siglock);
2249 sig = dequeue_signal(current, &these, &info);
2250 current->blocked = current->real_blocked;
2251 siginitset(&current->real_blocked, 0);
2252 recalc_sigpending();
2253 }
2254 }
2255 spin_unlock_irq(&current->sighand->siglock);
2256
2257 if (sig) {
2258 ret = sig;
2259 if (uinfo) {
2260 if (copy_siginfo_to_user(uinfo, &info))
2261 ret = -EFAULT;
2262 }
2263 } else {
2264 ret = -EAGAIN;
2265 if (timeout)
2266 ret = -EINTR;
2267 }
2268
2269 return ret;
2270 }
2271
2272 asmlinkage long
2273 sys_kill(int pid, int sig)
2274 {
2275 struct siginfo info;
2276
2277 info.si_signo = sig;
2278 info.si_errno = 0;
2279 info.si_code = SI_USER;
2280 info.si_pid = current->tgid;
2281 info.si_uid = current->uid;
2282
2283 return kill_something_info(sig, &info, pid);
2284 }
2285
2286 /**
2287 * sys_tgkill - send signal to one specific thread
2288 * @tgid: the thread group ID of the thread
2289 * @pid: the PID of the thread
2290 * @sig: signal to be sent
2291 *
2292 * This syscall also checks the tgid and returns -ESRCH even if the PID
2293 * exists but it's not belonging to the target process anymore. This
2294 * method solves the problem of threads exiting and PIDs getting reused.
2295 */
2296 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2297 {
2298 struct siginfo info;
2299 int error;
2300 struct task_struct *p;
2301
2302 /* This is only valid for single tasks */
2303 if (pid <= 0 || tgid <= 0)
2304 return -EINVAL;
2305
2306 info.si_signo = sig;
2307 info.si_errno = 0;
2308 info.si_code = SI_TKILL;
2309 info.si_pid = current->tgid;
2310 info.si_uid = current->uid;
2311
2312 read_lock(&tasklist_lock);
2313 p = find_task_by_pid(pid);
2314 error = -ESRCH;
2315 if (p && (p->tgid == tgid)) {
2316 error = check_kill_permission(sig, &info, p);
2317 /*
2318 * The null signal is a permissions and process existence
2319 * probe. No signal is actually delivered.
2320 */
2321 if (!error && sig && p->sighand) {
2322 spin_lock_irq(&p->sighand->siglock);
2323 handle_stop_signal(sig, p);
2324 error = specific_send_sig_info(sig, &info, p);
2325 spin_unlock_irq(&p->sighand->siglock);
2326 }
2327 }
2328 read_unlock(&tasklist_lock);
2329 return error;
2330 }
2331
2332 /*
2333 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2334 */
2335 asmlinkage long
2336 sys_tkill(int pid, int sig)
2337 {
2338 struct siginfo info;
2339 int error;
2340 struct task_struct *p;
2341
2342 /* This is only valid for single tasks */
2343 if (pid <= 0)
2344 return -EINVAL;
2345
2346 info.si_signo = sig;
2347 info.si_errno = 0;
2348 info.si_code = SI_TKILL;
2349 info.si_pid = current->tgid;
2350 info.si_uid = current->uid;
2351
2352 read_lock(&tasklist_lock);
2353 p = find_task_by_pid(pid);
2354 error = -ESRCH;
2355 if (p) {
2356 error = check_kill_permission(sig, &info, p);
2357 /*
2358 * The null signal is a permissions and process existence
2359 * probe. No signal is actually delivered.
2360 */
2361 if (!error && sig && p->sighand) {
2362 spin_lock_irq(&p->sighand->siglock);
2363 handle_stop_signal(sig, p);
2364 error = specific_send_sig_info(sig, &info, p);
2365 spin_unlock_irq(&p->sighand->siglock);
2366 }
2367 }
2368 read_unlock(&tasklist_lock);
2369 return error;
2370 }
2371
2372 asmlinkage long
2373 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2374 {
2375 siginfo_t info;
2376
2377 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2378 return -EFAULT;
2379
2380 /* Not even root can pretend to send signals from the kernel.
2381 Nor can they impersonate a kill(), which adds source info. */
2382 if (info.si_code >= 0)
2383 return -EPERM;
2384 info.si_signo = sig;
2385
2386 /* POSIX.1b doesn't mention process groups. */
2387 return kill_proc_info(sig, &info, pid);
2388 }
2389
2390 int
2391 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2392 {
2393 struct k_sigaction *k;
2394
2395 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2396 return -EINVAL;
2397
2398 k = &current->sighand->action[sig-1];
2399
2400 spin_lock_irq(&current->sighand->siglock);
2401 if (signal_pending(current)) {
2402 /*
2403 * If there might be a fatal signal pending on multiple
2404 * threads, make sure we take it before changing the action.
2405 */
2406 spin_unlock_irq(&current->sighand->siglock);
2407 return -ERESTARTNOINTR;
2408 }
2409
2410 if (oact)
2411 *oact = *k;
2412
2413 if (act) {
2414 /*
2415 * POSIX 3.3.1.3:
2416 * "Setting a signal action to SIG_IGN for a signal that is
2417 * pending shall cause the pending signal to be discarded,
2418 * whether or not it is blocked."
2419 *
2420 * "Setting a signal action to SIG_DFL for a signal that is
2421 * pending and whose default action is to ignore the signal
2422 * (for example, SIGCHLD), shall cause the pending signal to
2423 * be discarded, whether or not it is blocked"
2424 */
2425 if (act->sa.sa_handler == SIG_IGN ||
2426 (act->sa.sa_handler == SIG_DFL &&
2427 sig_kernel_ignore(sig))) {
2428 /*
2429 * This is a fairly rare case, so we only take the
2430 * tasklist_lock once we're sure we'll need it.
2431 * Now we must do this little unlock and relock
2432 * dance to maintain the lock hierarchy.
2433 */
2434 struct task_struct *t = current;
2435 spin_unlock_irq(&t->sighand->siglock);
2436 read_lock(&tasklist_lock);
2437 spin_lock_irq(&t->sighand->siglock);
2438 *k = *act;
2439 sigdelsetmask(&k->sa.sa_mask,
2440 sigmask(SIGKILL) | sigmask(SIGSTOP));
2441 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2442 do {
2443 rm_from_queue(sigmask(sig), &t->pending);
2444 recalc_sigpending_tsk(t);
2445 t = next_thread(t);
2446 } while (t != current);
2447 spin_unlock_irq(&current->sighand->siglock);
2448 read_unlock(&tasklist_lock);
2449 return 0;
2450 }
2451
2452 *k = *act;
2453 sigdelsetmask(&k->sa.sa_mask,
2454 sigmask(SIGKILL) | sigmask(SIGSTOP));
2455 }
2456
2457 spin_unlock_irq(&current->sighand->siglock);
2458 return 0;
2459 }
2460
2461 int
2462 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2463 {
2464 stack_t oss;
2465 int error;
2466
2467 if (uoss) {
2468 oss.ss_sp = (void __user *) current->sas_ss_sp;
2469 oss.ss_size = current->sas_ss_size;
2470 oss.ss_flags = sas_ss_flags(sp);
2471 }
2472
2473 if (uss) {
2474 void __user *ss_sp;
2475 size_t ss_size;
2476 int ss_flags;
2477
2478 error = -EFAULT;
2479 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2480 || __get_user(ss_sp, &uss->ss_sp)
2481 || __get_user(ss_flags, &uss->ss_flags)
2482 || __get_user(ss_size, &uss->ss_size))
2483 goto out;
2484
2485 error = -EPERM;
2486 if (on_sig_stack(sp))
2487 goto out;
2488
2489 error = -EINVAL;
2490 /*
2491 *
2492 * Note - this code used to test ss_flags incorrectly
2493 * old code may have been written using ss_flags==0
2494 * to mean ss_flags==SS_ONSTACK (as this was the only
2495 * way that worked) - this fix preserves that older
2496 * mechanism
2497 */
2498 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2499 goto out;
2500
2501 if (ss_flags == SS_DISABLE) {
2502 ss_size = 0;
2503 ss_sp = NULL;
2504 } else {
2505 error = -ENOMEM;
2506 if (ss_size < MINSIGSTKSZ)
2507 goto out;
2508 }
2509
2510 current->sas_ss_sp = (unsigned long) ss_sp;
2511 current->sas_ss_size = ss_size;
2512 }
2513
2514 if (uoss) {
2515 error = -EFAULT;
2516 if (copy_to_user(uoss, &oss, sizeof(oss)))
2517 goto out;
2518 }
2519
2520 error = 0;
2521 out:
2522 return error;
2523 }
2524
2525 #ifdef __ARCH_WANT_SYS_SIGPENDING
2526
2527 asmlinkage long
2528 sys_sigpending(old_sigset_t __user *set)
2529 {
2530 return do_sigpending(set, sizeof(*set));
2531 }
2532
2533 #endif
2534
2535 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2536 /* Some platforms have their own version with special arguments others
2537 support only sys_rt_sigprocmask. */
2538
2539 asmlinkage long
2540 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2541 {
2542 int error;
2543 old_sigset_t old_set, new_set;
2544
2545 if (set) {
2546 error = -EFAULT;
2547 if (copy_from_user(&new_set, set, sizeof(*set)))
2548 goto out;
2549 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2550
2551 spin_lock_irq(&current->sighand->siglock);
2552 old_set = current->blocked.sig[0];
2553
2554 error = 0;
2555 switch (how) {
2556 default:
2557 error = -EINVAL;
2558 break;
2559 case SIG_BLOCK:
2560 sigaddsetmask(&current->blocked, new_set);
2561 break;
2562 case SIG_UNBLOCK:
2563 sigdelsetmask(&current->blocked, new_set);
2564 break;
2565 case SIG_SETMASK:
2566 current->blocked.sig[0] = new_set;
2567 break;
2568 }
2569
2570 recalc_sigpending();
2571 spin_unlock_irq(&current->sighand->siglock);
2572 if (error)
2573 goto out;
2574 if (oset)
2575 goto set_old;
2576 } else if (oset) {
2577 old_set = current->blocked.sig[0];
2578 set_old:
2579 error = -EFAULT;
2580 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2581 goto out;
2582 }
2583 error = 0;
2584 out:
2585 return error;
2586 }
2587 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2588
2589 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2590 asmlinkage long
2591 sys_rt_sigaction(int sig,
2592 const struct sigaction __user *act,
2593 struct sigaction __user *oact,
2594 size_t sigsetsize)
2595 {
2596 struct k_sigaction new_sa, old_sa;
2597 int ret = -EINVAL;
2598
2599 /* XXX: Don't preclude handling different sized sigset_t's. */
2600 if (sigsetsize != sizeof(sigset_t))
2601 goto out;
2602
2603 if (act) {
2604 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2605 return -EFAULT;
2606 }
2607
2608 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2609
2610 if (!ret && oact) {
2611 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2612 return -EFAULT;
2613 }
2614 out:
2615 return ret;
2616 }
2617 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2618
2619 #ifdef __ARCH_WANT_SYS_SGETMASK
2620
2621 /*
2622 * For backwards compatibility. Functionality superseded by sigprocmask.
2623 */
2624 asmlinkage long
2625 sys_sgetmask(void)
2626 {
2627 /* SMP safe */
2628 return current->blocked.sig[0];
2629 }
2630
2631 asmlinkage long
2632 sys_ssetmask(int newmask)
2633 {
2634 int old;
2635
2636 spin_lock_irq(&current->sighand->siglock);
2637 old = current->blocked.sig[0];
2638
2639 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2640 sigmask(SIGSTOP)));
2641 recalc_sigpending();
2642 spin_unlock_irq(&current->sighand->siglock);
2643
2644 return old;
2645 }
2646 #endif /* __ARCH_WANT_SGETMASK */
2647
2648 #ifdef __ARCH_WANT_SYS_SIGNAL
2649 /*
2650 * For backwards compatibility. Functionality superseded by sigaction.
2651 */
2652 asmlinkage unsigned long
2653 sys_signal(int sig, __sighandler_t handler)
2654 {
2655 struct k_sigaction new_sa, old_sa;
2656 int ret;
2657
2658 new_sa.sa.sa_handler = handler;
2659 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2660
2661 ret = do_sigaction(sig, &new_sa, &old_sa);
2662
2663 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2664 }
2665 #endif /* __ARCH_WANT_SYS_SIGNAL */
2666
2667 #ifdef __ARCH_WANT_SYS_PAUSE
2668
2669 asmlinkage long
2670 sys_pause(void)
2671 {
2672 current->state = TASK_INTERRUPTIBLE;
2673 schedule();
2674 return -ERESTARTNOHAND;
2675 }
2676
2677 #endif
2678
2679 void __init signals_init(void)
2680 {
2681 sigqueue_cachep =
2682 kmem_cache_create("sigqueue",
2683 sizeof(struct sigqueue),
2684 __alignof__(struct sigqueue),
2685 SLAB_PANIC, NULL, NULL);
2686 }