Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
34
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include <asm/cacheflush.h>
40 #include "audit.h" /* audit_signal_info() */
41
42 /*
43 * SLAB caches for signal bits.
44 */
45
46 static struct kmem_cache *sigqueue_cachep;
47
48 int print_fatal_signals __read_mostly;
49
50 static void __user *sig_handler(struct task_struct *t, int sig)
51 {
52 return t->sighand->action[sig - 1].sa.sa_handler;
53 }
54
55 static int sig_handler_ignored(void __user *handler, int sig)
56 {
57 /* Is it explicitly or implicitly ignored? */
58 return handler == SIG_IGN ||
59 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 }
61
62 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
63 {
64 void __user *handler;
65
66 handler = sig_handler(t, sig);
67
68 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
69 handler == SIG_DFL && !force)
70 return 1;
71
72 return sig_handler_ignored(handler, sig);
73 }
74
75 static int sig_ignored(struct task_struct *t, int sig, bool force)
76 {
77 /*
78 * Blocked signals are never ignored, since the
79 * signal handler may change by the time it is
80 * unblocked.
81 */
82 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
83 return 0;
84
85 if (!sig_task_ignored(t, sig, force))
86 return 0;
87
88 /*
89 * Tracers may want to know about even ignored signals.
90 */
91 return !t->ptrace;
92 }
93
94 /*
95 * Re-calculate pending state from the set of locally pending
96 * signals, globally pending signals, and blocked signals.
97 */
98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 {
100 unsigned long ready;
101 long i;
102
103 switch (_NSIG_WORDS) {
104 default:
105 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
106 ready |= signal->sig[i] &~ blocked->sig[i];
107 break;
108
109 case 4: ready = signal->sig[3] &~ blocked->sig[3];
110 ready |= signal->sig[2] &~ blocked->sig[2];
111 ready |= signal->sig[1] &~ blocked->sig[1];
112 ready |= signal->sig[0] &~ blocked->sig[0];
113 break;
114
115 case 2: ready = signal->sig[1] &~ blocked->sig[1];
116 ready |= signal->sig[0] &~ blocked->sig[0];
117 break;
118
119 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 }
121 return ready != 0;
122 }
123
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125
126 static int recalc_sigpending_tsk(struct task_struct *t)
127 {
128 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
129 PENDING(&t->pending, &t->blocked) ||
130 PENDING(&t->signal->shared_pending, &t->blocked)) {
131 set_tsk_thread_flag(t, TIF_SIGPENDING);
132 return 1;
133 }
134 /*
135 * We must never clear the flag in another thread, or in current
136 * when it's possible the current syscall is returning -ERESTART*.
137 * So we don't clear it here, and only callers who know they should do.
138 */
139 return 0;
140 }
141
142 /*
143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 */
146 void recalc_sigpending_and_wake(struct task_struct *t)
147 {
148 if (recalc_sigpending_tsk(t))
149 signal_wake_up(t, 0);
150 }
151
152 void recalc_sigpending(void)
153 {
154 if (!recalc_sigpending_tsk(current) && !freezing(current))
155 clear_thread_flag(TIF_SIGPENDING);
156
157 }
158
159 /* Given the mask, find the first available signal that should be serviced. */
160
161 #define SYNCHRONOUS_MASK \
162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 sigmask(SIGTRAP) | sigmask(SIGFPE))
164
165 int next_signal(struct sigpending *pending, sigset_t *mask)
166 {
167 unsigned long i, *s, *m, x;
168 int sig = 0;
169
170 s = pending->signal.sig;
171 m = mask->sig;
172
173 /*
174 * Handle the first word specially: it contains the
175 * synchronous signals that need to be dequeued first.
176 */
177 x = *s &~ *m;
178 if (x) {
179 if (x & SYNCHRONOUS_MASK)
180 x &= SYNCHRONOUS_MASK;
181 sig = ffz(~x) + 1;
182 return sig;
183 }
184
185 switch (_NSIG_WORDS) {
186 default:
187 for (i = 1; i < _NSIG_WORDS; ++i) {
188 x = *++s &~ *++m;
189 if (!x)
190 continue;
191 sig = ffz(~x) + i*_NSIG_BPW + 1;
192 break;
193 }
194 break;
195
196 case 2:
197 x = s[1] &~ m[1];
198 if (!x)
199 break;
200 sig = ffz(~x) + _NSIG_BPW + 1;
201 break;
202
203 case 1:
204 /* Nothing to do */
205 break;
206 }
207
208 return sig;
209 }
210
211 static inline void print_dropped_signal(int sig)
212 {
213 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214
215 if (!print_fatal_signals)
216 return;
217
218 if (!__ratelimit(&ratelimit_state))
219 return;
220
221 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 current->comm, current->pid, sig);
223 }
224
225 /**
226 * task_set_jobctl_pending - set jobctl pending bits
227 * @task: target task
228 * @mask: pending bits to set
229 *
230 * Clear @mask from @task->jobctl. @mask must be subset of
231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
233 * cleared. If @task is already being killed or exiting, this function
234 * becomes noop.
235 *
236 * CONTEXT:
237 * Must be called with @task->sighand->siglock held.
238 *
239 * RETURNS:
240 * %true if @mask is set, %false if made noop because @task was dying.
241 */
242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 {
244 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
245 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
246 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247
248 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
249 return false;
250
251 if (mask & JOBCTL_STOP_SIGMASK)
252 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253
254 task->jobctl |= mask;
255 return true;
256 }
257
258 /**
259 * task_clear_jobctl_trapping - clear jobctl trapping bit
260 * @task: target task
261 *
262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263 * Clear it and wake up the ptracer. Note that we don't need any further
264 * locking. @task->siglock guarantees that @task->parent points to the
265 * ptracer.
266 *
267 * CONTEXT:
268 * Must be called with @task->sighand->siglock held.
269 */
270 void task_clear_jobctl_trapping(struct task_struct *task)
271 {
272 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
273 task->jobctl &= ~JOBCTL_TRAPPING;
274 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
275 }
276 }
277
278 /**
279 * task_clear_jobctl_pending - clear jobctl pending bits
280 * @task: target task
281 * @mask: pending bits to clear
282 *
283 * Clear @mask from @task->jobctl. @mask must be subset of
284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
285 * STOP bits are cleared together.
286 *
287 * If clearing of @mask leaves no stop or trap pending, this function calls
288 * task_clear_jobctl_trapping().
289 *
290 * CONTEXT:
291 * Must be called with @task->sighand->siglock held.
292 */
293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 {
295 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296
297 if (mask & JOBCTL_STOP_PENDING)
298 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299
300 task->jobctl &= ~mask;
301
302 if (!(task->jobctl & JOBCTL_PENDING_MASK))
303 task_clear_jobctl_trapping(task);
304 }
305
306 /**
307 * task_participate_group_stop - participate in a group stop
308 * @task: task participating in a group stop
309 *
310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311 * Group stop states are cleared and the group stop count is consumed if
312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
313 * stop, the appropriate %SIGNAL_* flags are set.
314 *
315 * CONTEXT:
316 * Must be called with @task->sighand->siglock held.
317 *
318 * RETURNS:
319 * %true if group stop completion should be notified to the parent, %false
320 * otherwise.
321 */
322 static bool task_participate_group_stop(struct task_struct *task)
323 {
324 struct signal_struct *sig = task->signal;
325 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326
327 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328
329 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330
331 if (!consume)
332 return false;
333
334 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
335 sig->group_stop_count--;
336
337 /*
338 * Tell the caller to notify completion iff we are entering into a
339 * fresh group stop. Read comment in do_signal_stop() for details.
340 */
341 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
342 sig->flags = SIGNAL_STOP_STOPPED;
343 return true;
344 }
345 return false;
346 }
347
348 /*
349 * allocate a new signal queue record
350 * - this may be called without locks if and only if t == current, otherwise an
351 * appropriate lock must be held to stop the target task from exiting
352 */
353 static struct sigqueue *
354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 {
356 struct sigqueue *q = NULL;
357 struct user_struct *user;
358
359 /*
360 * Protect access to @t credentials. This can go away when all
361 * callers hold rcu read lock.
362 */
363 rcu_read_lock();
364 user = get_uid(__task_cred(t)->user);
365 atomic_inc(&user->sigpending);
366 rcu_read_unlock();
367
368 if (override_rlimit ||
369 atomic_read(&user->sigpending) <=
370 task_rlimit(t, RLIMIT_SIGPENDING)) {
371 q = kmem_cache_alloc(sigqueue_cachep, flags);
372 } else {
373 print_dropped_signal(sig);
374 }
375
376 if (unlikely(q == NULL)) {
377 atomic_dec(&user->sigpending);
378 free_uid(user);
379 } else {
380 INIT_LIST_HEAD(&q->list);
381 q->flags = 0;
382 q->user = user;
383 }
384
385 return q;
386 }
387
388 static void __sigqueue_free(struct sigqueue *q)
389 {
390 if (q->flags & SIGQUEUE_PREALLOC)
391 return;
392 atomic_dec(&q->user->sigpending);
393 free_uid(q->user);
394 kmem_cache_free(sigqueue_cachep, q);
395 }
396
397 void flush_sigqueue(struct sigpending *queue)
398 {
399 struct sigqueue *q;
400
401 sigemptyset(&queue->signal);
402 while (!list_empty(&queue->list)) {
403 q = list_entry(queue->list.next, struct sigqueue , list);
404 list_del_init(&q->list);
405 __sigqueue_free(q);
406 }
407 }
408
409 /*
410 * Flush all pending signals for a task.
411 */
412 void __flush_signals(struct task_struct *t)
413 {
414 clear_tsk_thread_flag(t, TIF_SIGPENDING);
415 flush_sigqueue(&t->pending);
416 flush_sigqueue(&t->signal->shared_pending);
417 }
418
419 void flush_signals(struct task_struct *t)
420 {
421 unsigned long flags;
422
423 spin_lock_irqsave(&t->sighand->siglock, flags);
424 __flush_signals(t);
425 spin_unlock_irqrestore(&t->sighand->siglock, flags);
426 }
427
428 static void __flush_itimer_signals(struct sigpending *pending)
429 {
430 sigset_t signal, retain;
431 struct sigqueue *q, *n;
432
433 signal = pending->signal;
434 sigemptyset(&retain);
435
436 list_for_each_entry_safe(q, n, &pending->list, list) {
437 int sig = q->info.si_signo;
438
439 if (likely(q->info.si_code != SI_TIMER)) {
440 sigaddset(&retain, sig);
441 } else {
442 sigdelset(&signal, sig);
443 list_del_init(&q->list);
444 __sigqueue_free(q);
445 }
446 }
447
448 sigorsets(&pending->signal, &signal, &retain);
449 }
450
451 void flush_itimer_signals(void)
452 {
453 struct task_struct *tsk = current;
454 unsigned long flags;
455
456 spin_lock_irqsave(&tsk->sighand->siglock, flags);
457 __flush_itimer_signals(&tsk->pending);
458 __flush_itimer_signals(&tsk->signal->shared_pending);
459 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
460 }
461
462 void ignore_signals(struct task_struct *t)
463 {
464 int i;
465
466 for (i = 0; i < _NSIG; ++i)
467 t->sighand->action[i].sa.sa_handler = SIG_IGN;
468
469 flush_signals(t);
470 }
471
472 /*
473 * Flush all handlers for a task.
474 */
475
476 void
477 flush_signal_handlers(struct task_struct *t, int force_default)
478 {
479 int i;
480 struct k_sigaction *ka = &t->sighand->action[0];
481 for (i = _NSIG ; i != 0 ; i--) {
482 if (force_default || ka->sa.sa_handler != SIG_IGN)
483 ka->sa.sa_handler = SIG_DFL;
484 ka->sa.sa_flags = 0;
485 sigemptyset(&ka->sa.sa_mask);
486 ka++;
487 }
488 }
489
490 int unhandled_signal(struct task_struct *tsk, int sig)
491 {
492 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
493 if (is_global_init(tsk))
494 return 1;
495 if (handler != SIG_IGN && handler != SIG_DFL)
496 return 0;
497 /* if ptraced, let the tracer determine */
498 return !tsk->ptrace;
499 }
500
501 /*
502 * Notify the system that a driver wants to block all signals for this
503 * process, and wants to be notified if any signals at all were to be
504 * sent/acted upon. If the notifier routine returns non-zero, then the
505 * signal will be acted upon after all. If the notifier routine returns 0,
506 * then then signal will be blocked. Only one block per process is
507 * allowed. priv is a pointer to private data that the notifier routine
508 * can use to determine if the signal should be blocked or not.
509 */
510 void
511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
512 {
513 unsigned long flags;
514
515 spin_lock_irqsave(&current->sighand->siglock, flags);
516 current->notifier_mask = mask;
517 current->notifier_data = priv;
518 current->notifier = notifier;
519 spin_unlock_irqrestore(&current->sighand->siglock, flags);
520 }
521
522 /* Notify the system that blocking has ended. */
523
524 void
525 unblock_all_signals(void)
526 {
527 unsigned long flags;
528
529 spin_lock_irqsave(&current->sighand->siglock, flags);
530 current->notifier = NULL;
531 current->notifier_data = NULL;
532 recalc_sigpending();
533 spin_unlock_irqrestore(&current->sighand->siglock, flags);
534 }
535
536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
537 {
538 struct sigqueue *q, *first = NULL;
539
540 /*
541 * Collect the siginfo appropriate to this signal. Check if
542 * there is another siginfo for the same signal.
543 */
544 list_for_each_entry(q, &list->list, list) {
545 if (q->info.si_signo == sig) {
546 if (first)
547 goto still_pending;
548 first = q;
549 }
550 }
551
552 sigdelset(&list->signal, sig);
553
554 if (first) {
555 still_pending:
556 list_del_init(&first->list);
557 copy_siginfo(info, &first->info);
558 __sigqueue_free(first);
559 } else {
560 /*
561 * Ok, it wasn't in the queue. This must be
562 * a fast-pathed signal or we must have been
563 * out of queue space. So zero out the info.
564 */
565 info->si_signo = sig;
566 info->si_errno = 0;
567 info->si_code = SI_USER;
568 info->si_pid = 0;
569 info->si_uid = 0;
570 }
571 }
572
573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
574 siginfo_t *info)
575 {
576 int sig = next_signal(pending, mask);
577
578 if (sig) {
579 if (current->notifier) {
580 if (sigismember(current->notifier_mask, sig)) {
581 if (!(current->notifier)(current->notifier_data)) {
582 clear_thread_flag(TIF_SIGPENDING);
583 return 0;
584 }
585 }
586 }
587
588 collect_signal(sig, pending, info);
589 }
590
591 return sig;
592 }
593
594 /*
595 * Dequeue a signal and return the element to the caller, which is
596 * expected to free it.
597 *
598 * All callers have to hold the siglock.
599 */
600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
601 {
602 int signr;
603
604 /* We only dequeue private signals from ourselves, we don't let
605 * signalfd steal them
606 */
607 signr = __dequeue_signal(&tsk->pending, mask, info);
608 if (!signr) {
609 signr = __dequeue_signal(&tsk->signal->shared_pending,
610 mask, info);
611 /*
612 * itimer signal ?
613 *
614 * itimers are process shared and we restart periodic
615 * itimers in the signal delivery path to prevent DoS
616 * attacks in the high resolution timer case. This is
617 * compliant with the old way of self-restarting
618 * itimers, as the SIGALRM is a legacy signal and only
619 * queued once. Changing the restart behaviour to
620 * restart the timer in the signal dequeue path is
621 * reducing the timer noise on heavy loaded !highres
622 * systems too.
623 */
624 if (unlikely(signr == SIGALRM)) {
625 struct hrtimer *tmr = &tsk->signal->real_timer;
626
627 if (!hrtimer_is_queued(tmr) &&
628 tsk->signal->it_real_incr.tv64 != 0) {
629 hrtimer_forward(tmr, tmr->base->get_time(),
630 tsk->signal->it_real_incr);
631 hrtimer_restart(tmr);
632 }
633 }
634 }
635
636 recalc_sigpending();
637 if (!signr)
638 return 0;
639
640 if (unlikely(sig_kernel_stop(signr))) {
641 /*
642 * Set a marker that we have dequeued a stop signal. Our
643 * caller might release the siglock and then the pending
644 * stop signal it is about to process is no longer in the
645 * pending bitmasks, but must still be cleared by a SIGCONT
646 * (and overruled by a SIGKILL). So those cases clear this
647 * shared flag after we've set it. Note that this flag may
648 * remain set after the signal we return is ignored or
649 * handled. That doesn't matter because its only purpose
650 * is to alert stop-signal processing code when another
651 * processor has come along and cleared the flag.
652 */
653 current->jobctl |= JOBCTL_STOP_DEQUEUED;
654 }
655 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
656 /*
657 * Release the siglock to ensure proper locking order
658 * of timer locks outside of siglocks. Note, we leave
659 * irqs disabled here, since the posix-timers code is
660 * about to disable them again anyway.
661 */
662 spin_unlock(&tsk->sighand->siglock);
663 do_schedule_next_timer(info);
664 spin_lock(&tsk->sighand->siglock);
665 }
666 return signr;
667 }
668
669 /*
670 * Tell a process that it has a new active signal..
671 *
672 * NOTE! we rely on the previous spin_lock to
673 * lock interrupts for us! We can only be called with
674 * "siglock" held, and the local interrupt must
675 * have been disabled when that got acquired!
676 *
677 * No need to set need_resched since signal event passing
678 * goes through ->blocked
679 */
680 void signal_wake_up(struct task_struct *t, int resume)
681 {
682 unsigned int mask;
683
684 set_tsk_thread_flag(t, TIF_SIGPENDING);
685
686 /*
687 * For SIGKILL, we want to wake it up in the stopped/traced/killable
688 * case. We don't check t->state here because there is a race with it
689 * executing another processor and just now entering stopped state.
690 * By using wake_up_state, we ensure the process will wake up and
691 * handle its death signal.
692 */
693 mask = TASK_INTERRUPTIBLE;
694 if (resume)
695 mask |= TASK_WAKEKILL;
696 if (!wake_up_state(t, mask))
697 kick_process(t);
698 }
699
700 /*
701 * Remove signals in mask from the pending set and queue.
702 * Returns 1 if any signals were found.
703 *
704 * All callers must be holding the siglock.
705 *
706 * This version takes a sigset mask and looks at all signals,
707 * not just those in the first mask word.
708 */
709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 {
711 struct sigqueue *q, *n;
712 sigset_t m;
713
714 sigandsets(&m, mask, &s->signal);
715 if (sigisemptyset(&m))
716 return 0;
717
718 sigandnsets(&s->signal, &s->signal, mask);
719 list_for_each_entry_safe(q, n, &s->list, list) {
720 if (sigismember(mask, q->info.si_signo)) {
721 list_del_init(&q->list);
722 __sigqueue_free(q);
723 }
724 }
725 return 1;
726 }
727 /*
728 * Remove signals in mask from the pending set and queue.
729 * Returns 1 if any signals were found.
730 *
731 * All callers must be holding the siglock.
732 */
733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 {
735 struct sigqueue *q, *n;
736
737 if (!sigtestsetmask(&s->signal, mask))
738 return 0;
739
740 sigdelsetmask(&s->signal, mask);
741 list_for_each_entry_safe(q, n, &s->list, list) {
742 if (q->info.si_signo < SIGRTMIN &&
743 (mask & sigmask(q->info.si_signo))) {
744 list_del_init(&q->list);
745 __sigqueue_free(q);
746 }
747 }
748 return 1;
749 }
750
751 static inline int is_si_special(const struct siginfo *info)
752 {
753 return info <= SEND_SIG_FORCED;
754 }
755
756 static inline bool si_fromuser(const struct siginfo *info)
757 {
758 return info == SEND_SIG_NOINFO ||
759 (!is_si_special(info) && SI_FROMUSER(info));
760 }
761
762 /*
763 * called with RCU read lock from check_kill_permission()
764 */
765 static int kill_ok_by_cred(struct task_struct *t)
766 {
767 const struct cred *cred = current_cred();
768 const struct cred *tcred = __task_cred(t);
769
770 if (cred->user->user_ns == tcred->user->user_ns &&
771 (cred->euid == tcred->suid ||
772 cred->euid == tcred->uid ||
773 cred->uid == tcred->suid ||
774 cred->uid == tcred->uid))
775 return 1;
776
777 if (ns_capable(tcred->user->user_ns, CAP_KILL))
778 return 1;
779
780 return 0;
781 }
782
783 /*
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
786 */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 struct task_struct *t)
789 {
790 struct pid *sid;
791 int error;
792
793 if (!valid_signal(sig))
794 return -EINVAL;
795
796 if (!si_fromuser(info))
797 return 0;
798
799 error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 if (error)
801 return error;
802
803 if (!same_thread_group(current, t) &&
804 !kill_ok_by_cred(t)) {
805 switch (sig) {
806 case SIGCONT:
807 sid = task_session(t);
808 /*
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
811 */
812 if (!sid || sid == task_session(current))
813 break;
814 default:
815 return -EPERM;
816 }
817 }
818
819 return security_task_kill(t, info, sig, 0);
820 }
821
822 /**
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
825 *
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
828 * ptracer.
829 *
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
835 *
836 * CONTEXT:
837 * Must be called with @task->sighand->siglock held.
838 */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 assert_spin_locked(&t->sighand->siglock);
843
844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847
848 /*
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
854 *
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
857 */
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 struct signal_struct *signal = p->signal;
861 struct task_struct *t;
862
863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 /*
865 * The process is in the middle of dying, nothing to do.
866 */
867 } else if (sig_kernel_stop(sig)) {
868 /*
869 * This is a stop signal. Remove SIGCONT from all queues.
870 */
871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 t = p;
873 do {
874 rm_from_queue(sigmask(SIGCONT), &t->pending);
875 } while_each_thread(p, t);
876 } else if (sig == SIGCONT) {
877 unsigned int why;
878 /*
879 * Remove all stop signals from all queues, wake all threads.
880 */
881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 t = p;
883 do {
884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 if (likely(!(t->ptrace & PT_SEIZED)))
887 wake_up_state(t, __TASK_STOPPED);
888 else
889 ptrace_trap_notify(t);
890 } while_each_thread(p, t);
891
892 /*
893 * Notify the parent with CLD_CONTINUED if we were stopped.
894 *
895 * If we were in the middle of a group stop, we pretend it
896 * was already finished, and then continued. Since SIGCHLD
897 * doesn't queue we report only CLD_STOPPED, as if the next
898 * CLD_CONTINUED was dropped.
899 */
900 why = 0;
901 if (signal->flags & SIGNAL_STOP_STOPPED)
902 why |= SIGNAL_CLD_CONTINUED;
903 else if (signal->group_stop_count)
904 why |= SIGNAL_CLD_STOPPED;
905
906 if (why) {
907 /*
908 * The first thread which returns from do_signal_stop()
909 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 * notify its parent. See get_signal_to_deliver().
911 */
912 signal->flags = why | SIGNAL_STOP_CONTINUED;
913 signal->group_stop_count = 0;
914 signal->group_exit_code = 0;
915 }
916 }
917
918 return !sig_ignored(p, sig, force);
919 }
920
921 /*
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
928 */
929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 if (sigismember(&p->blocked, sig))
932 return 0;
933 if (p->flags & PF_EXITING)
934 return 0;
935 if (sig == SIGKILL)
936 return 1;
937 if (task_is_stopped_or_traced(p))
938 return 0;
939 return task_curr(p) || !signal_pending(p);
940 }
941
942 static void complete_signal(int sig, struct task_struct *p, int group)
943 {
944 struct signal_struct *signal = p->signal;
945 struct task_struct *t;
946
947 /*
948 * Now find a thread we can wake up to take the signal off the queue.
949 *
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
952 */
953 if (wants_signal(sig, p))
954 t = p;
955 else if (!group || thread_group_empty(p))
956 /*
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
959 */
960 return;
961 else {
962 /*
963 * Otherwise try to find a suitable thread.
964 */
965 t = signal->curr_target;
966 while (!wants_signal(sig, t)) {
967 t = next_thread(t);
968 if (t == signal->curr_target)
969 /*
970 * No thread needs to be woken.
971 * Any eligible threads will see
972 * the signal in the queue soon.
973 */
974 return;
975 }
976 signal->curr_target = t;
977 }
978
979 /*
980 * Found a killable thread. If the signal will be fatal,
981 * then start taking the whole group down immediately.
982 */
983 if (sig_fatal(p, sig) &&
984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 !sigismember(&t->real_blocked, sig) &&
986 (sig == SIGKILL || !t->ptrace)) {
987 /*
988 * This signal will be fatal to the whole group.
989 */
990 if (!sig_kernel_coredump(sig)) {
991 /*
992 * Start a group exit and wake everybody up.
993 * This way we don't have other threads
994 * running and doing things after a slower
995 * thread has the fatal signal pending.
996 */
997 signal->flags = SIGNAL_GROUP_EXIT;
998 signal->group_exit_code = sig;
999 signal->group_stop_count = 0;
1000 t = p;
1001 do {
1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 sigaddset(&t->pending.signal, SIGKILL);
1004 signal_wake_up(t, 1);
1005 } while_each_thread(p, t);
1006 return;
1007 }
1008 }
1009
1010 /*
1011 * The signal is already in the shared-pending queue.
1012 * Tell the chosen thread to wake up and dequeue it.
1013 */
1014 signal_wake_up(t, sig == SIGKILL);
1015 return;
1016 }
1017
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 {
1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021 }
1022
1023 /*
1024 * map the uid in struct cred into user namespace *ns
1025 */
1026 static inline uid_t map_cred_ns(const struct cred *cred,
1027 struct user_namespace *ns)
1028 {
1029 return user_ns_map_uid(ns, cred, cred->uid);
1030 }
1031
1032 #ifdef CONFIG_USER_NS
1033 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1034 {
1035 if (current_user_ns() == task_cred_xxx(t, user_ns))
1036 return;
1037
1038 if (SI_FROMKERNEL(info))
1039 return;
1040
1041 info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns),
1042 current_cred(), info->si_uid);
1043 }
1044 #else
1045 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1046 {
1047 return;
1048 }
1049 #endif
1050
1051 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1052 int group, int from_ancestor_ns)
1053 {
1054 struct sigpending *pending;
1055 struct sigqueue *q;
1056 int override_rlimit;
1057 int ret = 0, result;
1058
1059 assert_spin_locked(&t->sighand->siglock);
1060
1061 result = TRACE_SIGNAL_IGNORED;
1062 if (!prepare_signal(sig, t,
1063 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1064 goto ret;
1065
1066 pending = group ? &t->signal->shared_pending : &t->pending;
1067 /*
1068 * Short-circuit ignored signals and support queuing
1069 * exactly one non-rt signal, so that we can get more
1070 * detailed information about the cause of the signal.
1071 */
1072 result = TRACE_SIGNAL_ALREADY_PENDING;
1073 if (legacy_queue(pending, sig))
1074 goto ret;
1075
1076 result = TRACE_SIGNAL_DELIVERED;
1077 /*
1078 * fast-pathed signals for kernel-internal things like SIGSTOP
1079 * or SIGKILL.
1080 */
1081 if (info == SEND_SIG_FORCED)
1082 goto out_set;
1083
1084 /*
1085 * Real-time signals must be queued if sent by sigqueue, or
1086 * some other real-time mechanism. It is implementation
1087 * defined whether kill() does so. We attempt to do so, on
1088 * the principle of least surprise, but since kill is not
1089 * allowed to fail with EAGAIN when low on memory we just
1090 * make sure at least one signal gets delivered and don't
1091 * pass on the info struct.
1092 */
1093 if (sig < SIGRTMIN)
1094 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1095 else
1096 override_rlimit = 0;
1097
1098 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1099 override_rlimit);
1100 if (q) {
1101 list_add_tail(&q->list, &pending->list);
1102 switch ((unsigned long) info) {
1103 case (unsigned long) SEND_SIG_NOINFO:
1104 q->info.si_signo = sig;
1105 q->info.si_errno = 0;
1106 q->info.si_code = SI_USER;
1107 q->info.si_pid = task_tgid_nr_ns(current,
1108 task_active_pid_ns(t));
1109 q->info.si_uid = current_uid();
1110 break;
1111 case (unsigned long) SEND_SIG_PRIV:
1112 q->info.si_signo = sig;
1113 q->info.si_errno = 0;
1114 q->info.si_code = SI_KERNEL;
1115 q->info.si_pid = 0;
1116 q->info.si_uid = 0;
1117 break;
1118 default:
1119 copy_siginfo(&q->info, info);
1120 if (from_ancestor_ns)
1121 q->info.si_pid = 0;
1122 break;
1123 }
1124
1125 userns_fixup_signal_uid(&q->info, t);
1126
1127 } else if (!is_si_special(info)) {
1128 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1129 /*
1130 * Queue overflow, abort. We may abort if the
1131 * signal was rt and sent by user using something
1132 * other than kill().
1133 */
1134 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1135 ret = -EAGAIN;
1136 goto ret;
1137 } else {
1138 /*
1139 * This is a silent loss of information. We still
1140 * send the signal, but the *info bits are lost.
1141 */
1142 result = TRACE_SIGNAL_LOSE_INFO;
1143 }
1144 }
1145
1146 out_set:
1147 signalfd_notify(t, sig);
1148 sigaddset(&pending->signal, sig);
1149 complete_signal(sig, t, group);
1150 ret:
1151 trace_signal_generate(sig, info, t, group, result);
1152 return ret;
1153 }
1154
1155 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1156 int group)
1157 {
1158 int from_ancestor_ns = 0;
1159
1160 #ifdef CONFIG_PID_NS
1161 from_ancestor_ns = si_fromuser(info) &&
1162 !task_pid_nr_ns(current, task_active_pid_ns(t));
1163 #endif
1164
1165 return __send_signal(sig, info, t, group, from_ancestor_ns);
1166 }
1167
1168 static void print_fatal_signal(struct pt_regs *regs, int signr)
1169 {
1170 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1171 current->comm, task_pid_nr(current), signr);
1172
1173 #if defined(__i386__) && !defined(__arch_um__)
1174 printk("code at %08lx: ", regs->ip);
1175 {
1176 int i;
1177 for (i = 0; i < 16; i++) {
1178 unsigned char insn;
1179
1180 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1181 break;
1182 printk("%02x ", insn);
1183 }
1184 }
1185 #endif
1186 printk("\n");
1187 preempt_disable();
1188 show_regs(regs);
1189 preempt_enable();
1190 }
1191
1192 static int __init setup_print_fatal_signals(char *str)
1193 {
1194 get_option (&str, &print_fatal_signals);
1195
1196 return 1;
1197 }
1198
1199 __setup("print-fatal-signals=", setup_print_fatal_signals);
1200
1201 int
1202 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1203 {
1204 return send_signal(sig, info, p, 1);
1205 }
1206
1207 static int
1208 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1209 {
1210 return send_signal(sig, info, t, 0);
1211 }
1212
1213 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1214 bool group)
1215 {
1216 unsigned long flags;
1217 int ret = -ESRCH;
1218
1219 if (lock_task_sighand(p, &flags)) {
1220 ret = send_signal(sig, info, p, group);
1221 unlock_task_sighand(p, &flags);
1222 }
1223
1224 return ret;
1225 }
1226
1227 /*
1228 * Force a signal that the process can't ignore: if necessary
1229 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1230 *
1231 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1232 * since we do not want to have a signal handler that was blocked
1233 * be invoked when user space had explicitly blocked it.
1234 *
1235 * We don't want to have recursive SIGSEGV's etc, for example,
1236 * that is why we also clear SIGNAL_UNKILLABLE.
1237 */
1238 int
1239 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1240 {
1241 unsigned long int flags;
1242 int ret, blocked, ignored;
1243 struct k_sigaction *action;
1244
1245 spin_lock_irqsave(&t->sighand->siglock, flags);
1246 action = &t->sighand->action[sig-1];
1247 ignored = action->sa.sa_handler == SIG_IGN;
1248 blocked = sigismember(&t->blocked, sig);
1249 if (blocked || ignored) {
1250 action->sa.sa_handler = SIG_DFL;
1251 if (blocked) {
1252 sigdelset(&t->blocked, sig);
1253 recalc_sigpending_and_wake(t);
1254 }
1255 }
1256 if (action->sa.sa_handler == SIG_DFL)
1257 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1258 ret = specific_send_sig_info(sig, info, t);
1259 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1260
1261 return ret;
1262 }
1263
1264 /*
1265 * Nuke all other threads in the group.
1266 */
1267 int zap_other_threads(struct task_struct *p)
1268 {
1269 struct task_struct *t = p;
1270 int count = 0;
1271
1272 p->signal->group_stop_count = 0;
1273
1274 while_each_thread(p, t) {
1275 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1276 count++;
1277
1278 /* Don't bother with already dead threads */
1279 if (t->exit_state)
1280 continue;
1281 sigaddset(&t->pending.signal, SIGKILL);
1282 signal_wake_up(t, 1);
1283 }
1284
1285 return count;
1286 }
1287
1288 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1289 unsigned long *flags)
1290 {
1291 struct sighand_struct *sighand;
1292
1293 for (;;) {
1294 local_irq_save(*flags);
1295 rcu_read_lock();
1296 sighand = rcu_dereference(tsk->sighand);
1297 if (unlikely(sighand == NULL)) {
1298 rcu_read_unlock();
1299 local_irq_restore(*flags);
1300 break;
1301 }
1302
1303 spin_lock(&sighand->siglock);
1304 if (likely(sighand == tsk->sighand)) {
1305 rcu_read_unlock();
1306 break;
1307 }
1308 spin_unlock(&sighand->siglock);
1309 rcu_read_unlock();
1310 local_irq_restore(*flags);
1311 }
1312
1313 return sighand;
1314 }
1315
1316 /*
1317 * send signal info to all the members of a group
1318 */
1319 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1320 {
1321 int ret;
1322
1323 rcu_read_lock();
1324 ret = check_kill_permission(sig, info, p);
1325 rcu_read_unlock();
1326
1327 if (!ret && sig)
1328 ret = do_send_sig_info(sig, info, p, true);
1329
1330 return ret;
1331 }
1332
1333 /*
1334 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1335 * control characters do (^C, ^Z etc)
1336 * - the caller must hold at least a readlock on tasklist_lock
1337 */
1338 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1339 {
1340 struct task_struct *p = NULL;
1341 int retval, success;
1342
1343 success = 0;
1344 retval = -ESRCH;
1345 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1346 int err = group_send_sig_info(sig, info, p);
1347 success |= !err;
1348 retval = err;
1349 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1350 return success ? 0 : retval;
1351 }
1352
1353 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1354 {
1355 int error = -ESRCH;
1356 struct task_struct *p;
1357
1358 rcu_read_lock();
1359 retry:
1360 p = pid_task(pid, PIDTYPE_PID);
1361 if (p) {
1362 error = group_send_sig_info(sig, info, p);
1363 if (unlikely(error == -ESRCH))
1364 /*
1365 * The task was unhashed in between, try again.
1366 * If it is dead, pid_task() will return NULL,
1367 * if we race with de_thread() it will find the
1368 * new leader.
1369 */
1370 goto retry;
1371 }
1372 rcu_read_unlock();
1373
1374 return error;
1375 }
1376
1377 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1378 {
1379 int error;
1380 rcu_read_lock();
1381 error = kill_pid_info(sig, info, find_vpid(pid));
1382 rcu_read_unlock();
1383 return error;
1384 }
1385
1386 static int kill_as_cred_perm(const struct cred *cred,
1387 struct task_struct *target)
1388 {
1389 const struct cred *pcred = __task_cred(target);
1390 if (cred->user_ns != pcred->user_ns)
1391 return 0;
1392 if (cred->euid != pcred->suid && cred->euid != pcred->uid &&
1393 cred->uid != pcred->suid && cred->uid != pcred->uid)
1394 return 0;
1395 return 1;
1396 }
1397
1398 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1399 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1400 const struct cred *cred, u32 secid)
1401 {
1402 int ret = -EINVAL;
1403 struct task_struct *p;
1404 unsigned long flags;
1405
1406 if (!valid_signal(sig))
1407 return ret;
1408
1409 rcu_read_lock();
1410 p = pid_task(pid, PIDTYPE_PID);
1411 if (!p) {
1412 ret = -ESRCH;
1413 goto out_unlock;
1414 }
1415 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1416 ret = -EPERM;
1417 goto out_unlock;
1418 }
1419 ret = security_task_kill(p, info, sig, secid);
1420 if (ret)
1421 goto out_unlock;
1422
1423 if (sig) {
1424 if (lock_task_sighand(p, &flags)) {
1425 ret = __send_signal(sig, info, p, 1, 0);
1426 unlock_task_sighand(p, &flags);
1427 } else
1428 ret = -ESRCH;
1429 }
1430 out_unlock:
1431 rcu_read_unlock();
1432 return ret;
1433 }
1434 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1435
1436 /*
1437 * kill_something_info() interprets pid in interesting ways just like kill(2).
1438 *
1439 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1440 * is probably wrong. Should make it like BSD or SYSV.
1441 */
1442
1443 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1444 {
1445 int ret;
1446
1447 if (pid > 0) {
1448 rcu_read_lock();
1449 ret = kill_pid_info(sig, info, find_vpid(pid));
1450 rcu_read_unlock();
1451 return ret;
1452 }
1453
1454 read_lock(&tasklist_lock);
1455 if (pid != -1) {
1456 ret = __kill_pgrp_info(sig, info,
1457 pid ? find_vpid(-pid) : task_pgrp(current));
1458 } else {
1459 int retval = 0, count = 0;
1460 struct task_struct * p;
1461
1462 for_each_process(p) {
1463 if (task_pid_vnr(p) > 1 &&
1464 !same_thread_group(p, current)) {
1465 int err = group_send_sig_info(sig, info, p);
1466 ++count;
1467 if (err != -EPERM)
1468 retval = err;
1469 }
1470 }
1471 ret = count ? retval : -ESRCH;
1472 }
1473 read_unlock(&tasklist_lock);
1474
1475 return ret;
1476 }
1477
1478 /*
1479 * These are for backward compatibility with the rest of the kernel source.
1480 */
1481
1482 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1483 {
1484 /*
1485 * Make sure legacy kernel users don't send in bad values
1486 * (normal paths check this in check_kill_permission).
1487 */
1488 if (!valid_signal(sig))
1489 return -EINVAL;
1490
1491 return do_send_sig_info(sig, info, p, false);
1492 }
1493
1494 #define __si_special(priv) \
1495 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1496
1497 int
1498 send_sig(int sig, struct task_struct *p, int priv)
1499 {
1500 return send_sig_info(sig, __si_special(priv), p);
1501 }
1502
1503 void
1504 force_sig(int sig, struct task_struct *p)
1505 {
1506 force_sig_info(sig, SEND_SIG_PRIV, p);
1507 }
1508
1509 /*
1510 * When things go south during signal handling, we
1511 * will force a SIGSEGV. And if the signal that caused
1512 * the problem was already a SIGSEGV, we'll want to
1513 * make sure we don't even try to deliver the signal..
1514 */
1515 int
1516 force_sigsegv(int sig, struct task_struct *p)
1517 {
1518 if (sig == SIGSEGV) {
1519 unsigned long flags;
1520 spin_lock_irqsave(&p->sighand->siglock, flags);
1521 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1522 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1523 }
1524 force_sig(SIGSEGV, p);
1525 return 0;
1526 }
1527
1528 int kill_pgrp(struct pid *pid, int sig, int priv)
1529 {
1530 int ret;
1531
1532 read_lock(&tasklist_lock);
1533 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1534 read_unlock(&tasklist_lock);
1535
1536 return ret;
1537 }
1538 EXPORT_SYMBOL(kill_pgrp);
1539
1540 int kill_pid(struct pid *pid, int sig, int priv)
1541 {
1542 return kill_pid_info(sig, __si_special(priv), pid);
1543 }
1544 EXPORT_SYMBOL(kill_pid);
1545
1546 /*
1547 * These functions support sending signals using preallocated sigqueue
1548 * structures. This is needed "because realtime applications cannot
1549 * afford to lose notifications of asynchronous events, like timer
1550 * expirations or I/O completions". In the case of POSIX Timers
1551 * we allocate the sigqueue structure from the timer_create. If this
1552 * allocation fails we are able to report the failure to the application
1553 * with an EAGAIN error.
1554 */
1555 struct sigqueue *sigqueue_alloc(void)
1556 {
1557 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1558
1559 if (q)
1560 q->flags |= SIGQUEUE_PREALLOC;
1561
1562 return q;
1563 }
1564
1565 void sigqueue_free(struct sigqueue *q)
1566 {
1567 unsigned long flags;
1568 spinlock_t *lock = &current->sighand->siglock;
1569
1570 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1571 /*
1572 * We must hold ->siglock while testing q->list
1573 * to serialize with collect_signal() or with
1574 * __exit_signal()->flush_sigqueue().
1575 */
1576 spin_lock_irqsave(lock, flags);
1577 q->flags &= ~SIGQUEUE_PREALLOC;
1578 /*
1579 * If it is queued it will be freed when dequeued,
1580 * like the "regular" sigqueue.
1581 */
1582 if (!list_empty(&q->list))
1583 q = NULL;
1584 spin_unlock_irqrestore(lock, flags);
1585
1586 if (q)
1587 __sigqueue_free(q);
1588 }
1589
1590 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1591 {
1592 int sig = q->info.si_signo;
1593 struct sigpending *pending;
1594 unsigned long flags;
1595 int ret, result;
1596
1597 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1598
1599 ret = -1;
1600 if (!likely(lock_task_sighand(t, &flags)))
1601 goto ret;
1602
1603 ret = 1; /* the signal is ignored */
1604 result = TRACE_SIGNAL_IGNORED;
1605 if (!prepare_signal(sig, t, false))
1606 goto out;
1607
1608 ret = 0;
1609 if (unlikely(!list_empty(&q->list))) {
1610 /*
1611 * If an SI_TIMER entry is already queue just increment
1612 * the overrun count.
1613 */
1614 BUG_ON(q->info.si_code != SI_TIMER);
1615 q->info.si_overrun++;
1616 result = TRACE_SIGNAL_ALREADY_PENDING;
1617 goto out;
1618 }
1619 q->info.si_overrun = 0;
1620
1621 signalfd_notify(t, sig);
1622 pending = group ? &t->signal->shared_pending : &t->pending;
1623 list_add_tail(&q->list, &pending->list);
1624 sigaddset(&pending->signal, sig);
1625 complete_signal(sig, t, group);
1626 result = TRACE_SIGNAL_DELIVERED;
1627 out:
1628 trace_signal_generate(sig, &q->info, t, group, result);
1629 unlock_task_sighand(t, &flags);
1630 ret:
1631 return ret;
1632 }
1633
1634 /*
1635 * Let a parent know about the death of a child.
1636 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1637 *
1638 * Returns true if our parent ignored us and so we've switched to
1639 * self-reaping.
1640 */
1641 bool do_notify_parent(struct task_struct *tsk, int sig)
1642 {
1643 struct siginfo info;
1644 unsigned long flags;
1645 struct sighand_struct *psig;
1646 bool autoreap = false;
1647
1648 BUG_ON(sig == -1);
1649
1650 /* do_notify_parent_cldstop should have been called instead. */
1651 BUG_ON(task_is_stopped_or_traced(tsk));
1652
1653 BUG_ON(!tsk->ptrace &&
1654 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1655
1656 if (sig != SIGCHLD) {
1657 /*
1658 * This is only possible if parent == real_parent.
1659 * Check if it has changed security domain.
1660 */
1661 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1662 sig = SIGCHLD;
1663 }
1664
1665 info.si_signo = sig;
1666 info.si_errno = 0;
1667 /*
1668 * we are under tasklist_lock here so our parent is tied to
1669 * us and cannot exit and release its namespace.
1670 *
1671 * the only it can is to switch its nsproxy with sys_unshare,
1672 * bu uncharing pid namespaces is not allowed, so we'll always
1673 * see relevant namespace
1674 *
1675 * write_lock() currently calls preempt_disable() which is the
1676 * same as rcu_read_lock(), but according to Oleg, this is not
1677 * correct to rely on this
1678 */
1679 rcu_read_lock();
1680 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1681 info.si_uid = map_cred_ns(__task_cred(tsk),
1682 task_cred_xxx(tsk->parent, user_ns));
1683 rcu_read_unlock();
1684
1685 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1686 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1687
1688 info.si_status = tsk->exit_code & 0x7f;
1689 if (tsk->exit_code & 0x80)
1690 info.si_code = CLD_DUMPED;
1691 else if (tsk->exit_code & 0x7f)
1692 info.si_code = CLD_KILLED;
1693 else {
1694 info.si_code = CLD_EXITED;
1695 info.si_status = tsk->exit_code >> 8;
1696 }
1697
1698 psig = tsk->parent->sighand;
1699 spin_lock_irqsave(&psig->siglock, flags);
1700 if (!tsk->ptrace && sig == SIGCHLD &&
1701 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1702 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1703 /*
1704 * We are exiting and our parent doesn't care. POSIX.1
1705 * defines special semantics for setting SIGCHLD to SIG_IGN
1706 * or setting the SA_NOCLDWAIT flag: we should be reaped
1707 * automatically and not left for our parent's wait4 call.
1708 * Rather than having the parent do it as a magic kind of
1709 * signal handler, we just set this to tell do_exit that we
1710 * can be cleaned up without becoming a zombie. Note that
1711 * we still call __wake_up_parent in this case, because a
1712 * blocked sys_wait4 might now return -ECHILD.
1713 *
1714 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1715 * is implementation-defined: we do (if you don't want
1716 * it, just use SIG_IGN instead).
1717 */
1718 autoreap = true;
1719 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1720 sig = 0;
1721 }
1722 if (valid_signal(sig) && sig)
1723 __group_send_sig_info(sig, &info, tsk->parent);
1724 __wake_up_parent(tsk, tsk->parent);
1725 spin_unlock_irqrestore(&psig->siglock, flags);
1726
1727 return autoreap;
1728 }
1729
1730 /**
1731 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1732 * @tsk: task reporting the state change
1733 * @for_ptracer: the notification is for ptracer
1734 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1735 *
1736 * Notify @tsk's parent that the stopped/continued state has changed. If
1737 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1738 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1739 *
1740 * CONTEXT:
1741 * Must be called with tasklist_lock at least read locked.
1742 */
1743 static void do_notify_parent_cldstop(struct task_struct *tsk,
1744 bool for_ptracer, int why)
1745 {
1746 struct siginfo info;
1747 unsigned long flags;
1748 struct task_struct *parent;
1749 struct sighand_struct *sighand;
1750
1751 if (for_ptracer) {
1752 parent = tsk->parent;
1753 } else {
1754 tsk = tsk->group_leader;
1755 parent = tsk->real_parent;
1756 }
1757
1758 info.si_signo = SIGCHLD;
1759 info.si_errno = 0;
1760 /*
1761 * see comment in do_notify_parent() about the following 4 lines
1762 */
1763 rcu_read_lock();
1764 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1765 info.si_uid = map_cred_ns(__task_cred(tsk),
1766 task_cred_xxx(parent, user_ns));
1767 rcu_read_unlock();
1768
1769 info.si_utime = cputime_to_clock_t(tsk->utime);
1770 info.si_stime = cputime_to_clock_t(tsk->stime);
1771
1772 info.si_code = why;
1773 switch (why) {
1774 case CLD_CONTINUED:
1775 info.si_status = SIGCONT;
1776 break;
1777 case CLD_STOPPED:
1778 info.si_status = tsk->signal->group_exit_code & 0x7f;
1779 break;
1780 case CLD_TRAPPED:
1781 info.si_status = tsk->exit_code & 0x7f;
1782 break;
1783 default:
1784 BUG();
1785 }
1786
1787 sighand = parent->sighand;
1788 spin_lock_irqsave(&sighand->siglock, flags);
1789 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1790 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1791 __group_send_sig_info(SIGCHLD, &info, parent);
1792 /*
1793 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1794 */
1795 __wake_up_parent(tsk, parent);
1796 spin_unlock_irqrestore(&sighand->siglock, flags);
1797 }
1798
1799 static inline int may_ptrace_stop(void)
1800 {
1801 if (!likely(current->ptrace))
1802 return 0;
1803 /*
1804 * Are we in the middle of do_coredump?
1805 * If so and our tracer is also part of the coredump stopping
1806 * is a deadlock situation, and pointless because our tracer
1807 * is dead so don't allow us to stop.
1808 * If SIGKILL was already sent before the caller unlocked
1809 * ->siglock we must see ->core_state != NULL. Otherwise it
1810 * is safe to enter schedule().
1811 */
1812 if (unlikely(current->mm->core_state) &&
1813 unlikely(current->mm == current->parent->mm))
1814 return 0;
1815
1816 return 1;
1817 }
1818
1819 /*
1820 * Return non-zero if there is a SIGKILL that should be waking us up.
1821 * Called with the siglock held.
1822 */
1823 static int sigkill_pending(struct task_struct *tsk)
1824 {
1825 return sigismember(&tsk->pending.signal, SIGKILL) ||
1826 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1827 }
1828
1829 /*
1830 * This must be called with current->sighand->siglock held.
1831 *
1832 * This should be the path for all ptrace stops.
1833 * We always set current->last_siginfo while stopped here.
1834 * That makes it a way to test a stopped process for
1835 * being ptrace-stopped vs being job-control-stopped.
1836 *
1837 * If we actually decide not to stop at all because the tracer
1838 * is gone, we keep current->exit_code unless clear_code.
1839 */
1840 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1841 __releases(&current->sighand->siglock)
1842 __acquires(&current->sighand->siglock)
1843 {
1844 bool gstop_done = false;
1845
1846 if (arch_ptrace_stop_needed(exit_code, info)) {
1847 /*
1848 * The arch code has something special to do before a
1849 * ptrace stop. This is allowed to block, e.g. for faults
1850 * on user stack pages. We can't keep the siglock while
1851 * calling arch_ptrace_stop, so we must release it now.
1852 * To preserve proper semantics, we must do this before
1853 * any signal bookkeeping like checking group_stop_count.
1854 * Meanwhile, a SIGKILL could come in before we retake the
1855 * siglock. That must prevent us from sleeping in TASK_TRACED.
1856 * So after regaining the lock, we must check for SIGKILL.
1857 */
1858 spin_unlock_irq(&current->sighand->siglock);
1859 arch_ptrace_stop(exit_code, info);
1860 spin_lock_irq(&current->sighand->siglock);
1861 if (sigkill_pending(current))
1862 return;
1863 }
1864
1865 /*
1866 * We're committing to trapping. TRACED should be visible before
1867 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1868 * Also, transition to TRACED and updates to ->jobctl should be
1869 * atomic with respect to siglock and should be done after the arch
1870 * hook as siglock is released and regrabbed across it.
1871 */
1872 set_current_state(TASK_TRACED);
1873
1874 current->last_siginfo = info;
1875 current->exit_code = exit_code;
1876
1877 /*
1878 * If @why is CLD_STOPPED, we're trapping to participate in a group
1879 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1880 * across siglock relocks since INTERRUPT was scheduled, PENDING
1881 * could be clear now. We act as if SIGCONT is received after
1882 * TASK_TRACED is entered - ignore it.
1883 */
1884 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1885 gstop_done = task_participate_group_stop(current);
1886
1887 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1888 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1889 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1890 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1891
1892 /* entering a trap, clear TRAPPING */
1893 task_clear_jobctl_trapping(current);
1894
1895 spin_unlock_irq(&current->sighand->siglock);
1896 read_lock(&tasklist_lock);
1897 if (may_ptrace_stop()) {
1898 /*
1899 * Notify parents of the stop.
1900 *
1901 * While ptraced, there are two parents - the ptracer and
1902 * the real_parent of the group_leader. The ptracer should
1903 * know about every stop while the real parent is only
1904 * interested in the completion of group stop. The states
1905 * for the two don't interact with each other. Notify
1906 * separately unless they're gonna be duplicates.
1907 */
1908 do_notify_parent_cldstop(current, true, why);
1909 if (gstop_done && ptrace_reparented(current))
1910 do_notify_parent_cldstop(current, false, why);
1911
1912 /*
1913 * Don't want to allow preemption here, because
1914 * sys_ptrace() needs this task to be inactive.
1915 *
1916 * XXX: implement read_unlock_no_resched().
1917 */
1918 preempt_disable();
1919 read_unlock(&tasklist_lock);
1920 preempt_enable_no_resched();
1921 schedule();
1922 } else {
1923 /*
1924 * By the time we got the lock, our tracer went away.
1925 * Don't drop the lock yet, another tracer may come.
1926 *
1927 * If @gstop_done, the ptracer went away between group stop
1928 * completion and here. During detach, it would have set
1929 * JOBCTL_STOP_PENDING on us and we'll re-enter
1930 * TASK_STOPPED in do_signal_stop() on return, so notifying
1931 * the real parent of the group stop completion is enough.
1932 */
1933 if (gstop_done)
1934 do_notify_parent_cldstop(current, false, why);
1935
1936 __set_current_state(TASK_RUNNING);
1937 if (clear_code)
1938 current->exit_code = 0;
1939 read_unlock(&tasklist_lock);
1940 }
1941
1942 /*
1943 * While in TASK_TRACED, we were considered "frozen enough".
1944 * Now that we woke up, it's crucial if we're supposed to be
1945 * frozen that we freeze now before running anything substantial.
1946 */
1947 try_to_freeze();
1948
1949 /*
1950 * We are back. Now reacquire the siglock before touching
1951 * last_siginfo, so that we are sure to have synchronized with
1952 * any signal-sending on another CPU that wants to examine it.
1953 */
1954 spin_lock_irq(&current->sighand->siglock);
1955 current->last_siginfo = NULL;
1956
1957 /* LISTENING can be set only during STOP traps, clear it */
1958 current->jobctl &= ~JOBCTL_LISTENING;
1959
1960 /*
1961 * Queued signals ignored us while we were stopped for tracing.
1962 * So check for any that we should take before resuming user mode.
1963 * This sets TIF_SIGPENDING, but never clears it.
1964 */
1965 recalc_sigpending_tsk(current);
1966 }
1967
1968 static void ptrace_do_notify(int signr, int exit_code, int why)
1969 {
1970 siginfo_t info;
1971
1972 memset(&info, 0, sizeof info);
1973 info.si_signo = signr;
1974 info.si_code = exit_code;
1975 info.si_pid = task_pid_vnr(current);
1976 info.si_uid = current_uid();
1977
1978 /* Let the debugger run. */
1979 ptrace_stop(exit_code, why, 1, &info);
1980 }
1981
1982 void ptrace_notify(int exit_code)
1983 {
1984 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1985
1986 spin_lock_irq(&current->sighand->siglock);
1987 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1988 spin_unlock_irq(&current->sighand->siglock);
1989 }
1990
1991 /**
1992 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1993 * @signr: signr causing group stop if initiating
1994 *
1995 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1996 * and participate in it. If already set, participate in the existing
1997 * group stop. If participated in a group stop (and thus slept), %true is
1998 * returned with siglock released.
1999 *
2000 * If ptraced, this function doesn't handle stop itself. Instead,
2001 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2002 * untouched. The caller must ensure that INTERRUPT trap handling takes
2003 * places afterwards.
2004 *
2005 * CONTEXT:
2006 * Must be called with @current->sighand->siglock held, which is released
2007 * on %true return.
2008 *
2009 * RETURNS:
2010 * %false if group stop is already cancelled or ptrace trap is scheduled.
2011 * %true if participated in group stop.
2012 */
2013 static bool do_signal_stop(int signr)
2014 __releases(&current->sighand->siglock)
2015 {
2016 struct signal_struct *sig = current->signal;
2017
2018 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2019 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2020 struct task_struct *t;
2021
2022 /* signr will be recorded in task->jobctl for retries */
2023 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2024
2025 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2026 unlikely(signal_group_exit(sig)))
2027 return false;
2028 /*
2029 * There is no group stop already in progress. We must
2030 * initiate one now.
2031 *
2032 * While ptraced, a task may be resumed while group stop is
2033 * still in effect and then receive a stop signal and
2034 * initiate another group stop. This deviates from the
2035 * usual behavior as two consecutive stop signals can't
2036 * cause two group stops when !ptraced. That is why we
2037 * also check !task_is_stopped(t) below.
2038 *
2039 * The condition can be distinguished by testing whether
2040 * SIGNAL_STOP_STOPPED is already set. Don't generate
2041 * group_exit_code in such case.
2042 *
2043 * This is not necessary for SIGNAL_STOP_CONTINUED because
2044 * an intervening stop signal is required to cause two
2045 * continued events regardless of ptrace.
2046 */
2047 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2048 sig->group_exit_code = signr;
2049
2050 sig->group_stop_count = 0;
2051
2052 if (task_set_jobctl_pending(current, signr | gstop))
2053 sig->group_stop_count++;
2054
2055 for (t = next_thread(current); t != current;
2056 t = next_thread(t)) {
2057 /*
2058 * Setting state to TASK_STOPPED for a group
2059 * stop is always done with the siglock held,
2060 * so this check has no races.
2061 */
2062 if (!task_is_stopped(t) &&
2063 task_set_jobctl_pending(t, signr | gstop)) {
2064 sig->group_stop_count++;
2065 if (likely(!(t->ptrace & PT_SEIZED)))
2066 signal_wake_up(t, 0);
2067 else
2068 ptrace_trap_notify(t);
2069 }
2070 }
2071 }
2072
2073 if (likely(!current->ptrace)) {
2074 int notify = 0;
2075
2076 /*
2077 * If there are no other threads in the group, or if there
2078 * is a group stop in progress and we are the last to stop,
2079 * report to the parent.
2080 */
2081 if (task_participate_group_stop(current))
2082 notify = CLD_STOPPED;
2083
2084 __set_current_state(TASK_STOPPED);
2085 spin_unlock_irq(&current->sighand->siglock);
2086
2087 /*
2088 * Notify the parent of the group stop completion. Because
2089 * we're not holding either the siglock or tasklist_lock
2090 * here, ptracer may attach inbetween; however, this is for
2091 * group stop and should always be delivered to the real
2092 * parent of the group leader. The new ptracer will get
2093 * its notification when this task transitions into
2094 * TASK_TRACED.
2095 */
2096 if (notify) {
2097 read_lock(&tasklist_lock);
2098 do_notify_parent_cldstop(current, false, notify);
2099 read_unlock(&tasklist_lock);
2100 }
2101
2102 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2103 schedule();
2104 return true;
2105 } else {
2106 /*
2107 * While ptraced, group stop is handled by STOP trap.
2108 * Schedule it and let the caller deal with it.
2109 */
2110 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2111 return false;
2112 }
2113 }
2114
2115 /**
2116 * do_jobctl_trap - take care of ptrace jobctl traps
2117 *
2118 * When PT_SEIZED, it's used for both group stop and explicit
2119 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2120 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2121 * the stop signal; otherwise, %SIGTRAP.
2122 *
2123 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2124 * number as exit_code and no siginfo.
2125 *
2126 * CONTEXT:
2127 * Must be called with @current->sighand->siglock held, which may be
2128 * released and re-acquired before returning with intervening sleep.
2129 */
2130 static void do_jobctl_trap(void)
2131 {
2132 struct signal_struct *signal = current->signal;
2133 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2134
2135 if (current->ptrace & PT_SEIZED) {
2136 if (!signal->group_stop_count &&
2137 !(signal->flags & SIGNAL_STOP_STOPPED))
2138 signr = SIGTRAP;
2139 WARN_ON_ONCE(!signr);
2140 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2141 CLD_STOPPED);
2142 } else {
2143 WARN_ON_ONCE(!signr);
2144 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2145 current->exit_code = 0;
2146 }
2147 }
2148
2149 static int ptrace_signal(int signr, siginfo_t *info,
2150 struct pt_regs *regs, void *cookie)
2151 {
2152 ptrace_signal_deliver(regs, cookie);
2153 /*
2154 * We do not check sig_kernel_stop(signr) but set this marker
2155 * unconditionally because we do not know whether debugger will
2156 * change signr. This flag has no meaning unless we are going
2157 * to stop after return from ptrace_stop(). In this case it will
2158 * be checked in do_signal_stop(), we should only stop if it was
2159 * not cleared by SIGCONT while we were sleeping. See also the
2160 * comment in dequeue_signal().
2161 */
2162 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2163 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2164
2165 /* We're back. Did the debugger cancel the sig? */
2166 signr = current->exit_code;
2167 if (signr == 0)
2168 return signr;
2169
2170 current->exit_code = 0;
2171
2172 /*
2173 * Update the siginfo structure if the signal has
2174 * changed. If the debugger wanted something
2175 * specific in the siginfo structure then it should
2176 * have updated *info via PTRACE_SETSIGINFO.
2177 */
2178 if (signr != info->si_signo) {
2179 info->si_signo = signr;
2180 info->si_errno = 0;
2181 info->si_code = SI_USER;
2182 rcu_read_lock();
2183 info->si_pid = task_pid_vnr(current->parent);
2184 info->si_uid = map_cred_ns(__task_cred(current->parent),
2185 current_user_ns());
2186 rcu_read_unlock();
2187 }
2188
2189 /* If the (new) signal is now blocked, requeue it. */
2190 if (sigismember(&current->blocked, signr)) {
2191 specific_send_sig_info(signr, info, current);
2192 signr = 0;
2193 }
2194
2195 return signr;
2196 }
2197
2198 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2199 struct pt_regs *regs, void *cookie)
2200 {
2201 struct sighand_struct *sighand = current->sighand;
2202 struct signal_struct *signal = current->signal;
2203 int signr;
2204
2205 relock:
2206 /*
2207 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2208 * While in TASK_STOPPED, we were considered "frozen enough".
2209 * Now that we woke up, it's crucial if we're supposed to be
2210 * frozen that we freeze now before running anything substantial.
2211 */
2212 try_to_freeze();
2213
2214 spin_lock_irq(&sighand->siglock);
2215 /*
2216 * Every stopped thread goes here after wakeup. Check to see if
2217 * we should notify the parent, prepare_signal(SIGCONT) encodes
2218 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2219 */
2220 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2221 int why;
2222
2223 if (signal->flags & SIGNAL_CLD_CONTINUED)
2224 why = CLD_CONTINUED;
2225 else
2226 why = CLD_STOPPED;
2227
2228 signal->flags &= ~SIGNAL_CLD_MASK;
2229
2230 spin_unlock_irq(&sighand->siglock);
2231
2232 /*
2233 * Notify the parent that we're continuing. This event is
2234 * always per-process and doesn't make whole lot of sense
2235 * for ptracers, who shouldn't consume the state via
2236 * wait(2) either, but, for backward compatibility, notify
2237 * the ptracer of the group leader too unless it's gonna be
2238 * a duplicate.
2239 */
2240 read_lock(&tasklist_lock);
2241 do_notify_parent_cldstop(current, false, why);
2242
2243 if (ptrace_reparented(current->group_leader))
2244 do_notify_parent_cldstop(current->group_leader,
2245 true, why);
2246 read_unlock(&tasklist_lock);
2247
2248 goto relock;
2249 }
2250
2251 for (;;) {
2252 struct k_sigaction *ka;
2253
2254 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2255 do_signal_stop(0))
2256 goto relock;
2257
2258 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2259 do_jobctl_trap();
2260 spin_unlock_irq(&sighand->siglock);
2261 goto relock;
2262 }
2263
2264 signr = dequeue_signal(current, &current->blocked, info);
2265
2266 if (!signr)
2267 break; /* will return 0 */
2268
2269 if (unlikely(current->ptrace) && signr != SIGKILL) {
2270 signr = ptrace_signal(signr, info,
2271 regs, cookie);
2272 if (!signr)
2273 continue;
2274 }
2275
2276 ka = &sighand->action[signr-1];
2277
2278 /* Trace actually delivered signals. */
2279 trace_signal_deliver(signr, info, ka);
2280
2281 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2282 continue;
2283 if (ka->sa.sa_handler != SIG_DFL) {
2284 /* Run the handler. */
2285 *return_ka = *ka;
2286
2287 if (ka->sa.sa_flags & SA_ONESHOT)
2288 ka->sa.sa_handler = SIG_DFL;
2289
2290 break; /* will return non-zero "signr" value */
2291 }
2292
2293 /*
2294 * Now we are doing the default action for this signal.
2295 */
2296 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297 continue;
2298
2299 /*
2300 * Global init gets no signals it doesn't want.
2301 * Container-init gets no signals it doesn't want from same
2302 * container.
2303 *
2304 * Note that if global/container-init sees a sig_kernel_only()
2305 * signal here, the signal must have been generated internally
2306 * or must have come from an ancestor namespace. In either
2307 * case, the signal cannot be dropped.
2308 */
2309 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310 !sig_kernel_only(signr))
2311 continue;
2312
2313 if (sig_kernel_stop(signr)) {
2314 /*
2315 * The default action is to stop all threads in
2316 * the thread group. The job control signals
2317 * do nothing in an orphaned pgrp, but SIGSTOP
2318 * always works. Note that siglock needs to be
2319 * dropped during the call to is_orphaned_pgrp()
2320 * because of lock ordering with tasklist_lock.
2321 * This allows an intervening SIGCONT to be posted.
2322 * We need to check for that and bail out if necessary.
2323 */
2324 if (signr != SIGSTOP) {
2325 spin_unlock_irq(&sighand->siglock);
2326
2327 /* signals can be posted during this window */
2328
2329 if (is_current_pgrp_orphaned())
2330 goto relock;
2331
2332 spin_lock_irq(&sighand->siglock);
2333 }
2334
2335 if (likely(do_signal_stop(info->si_signo))) {
2336 /* It released the siglock. */
2337 goto relock;
2338 }
2339
2340 /*
2341 * We didn't actually stop, due to a race
2342 * with SIGCONT or something like that.
2343 */
2344 continue;
2345 }
2346
2347 spin_unlock_irq(&sighand->siglock);
2348
2349 /*
2350 * Anything else is fatal, maybe with a core dump.
2351 */
2352 current->flags |= PF_SIGNALED;
2353
2354 if (sig_kernel_coredump(signr)) {
2355 if (print_fatal_signals)
2356 print_fatal_signal(regs, info->si_signo);
2357 /*
2358 * If it was able to dump core, this kills all
2359 * other threads in the group and synchronizes with
2360 * their demise. If we lost the race with another
2361 * thread getting here, it set group_exit_code
2362 * first and our do_group_exit call below will use
2363 * that value and ignore the one we pass it.
2364 */
2365 do_coredump(info->si_signo, info->si_signo, regs);
2366 }
2367
2368 /*
2369 * Death signals, no core dump.
2370 */
2371 do_group_exit(info->si_signo);
2372 /* NOTREACHED */
2373 }
2374 spin_unlock_irq(&sighand->siglock);
2375 return signr;
2376 }
2377
2378 /**
2379 * block_sigmask - add @ka's signal mask to current->blocked
2380 * @ka: action for @signr
2381 * @signr: signal that has been successfully delivered
2382 *
2383 * This function should be called when a signal has succesfully been
2384 * delivered. It adds the mask of signals for @ka to current->blocked
2385 * so that they are blocked during the execution of the signal
2386 * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2387 * set in @ka->sa.sa_flags.
2388 */
2389 void block_sigmask(struct k_sigaction *ka, int signr)
2390 {
2391 sigset_t blocked;
2392
2393 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2394 if (!(ka->sa.sa_flags & SA_NODEFER))
2395 sigaddset(&blocked, signr);
2396 set_current_blocked(&blocked);
2397 }
2398
2399 /*
2400 * It could be that complete_signal() picked us to notify about the
2401 * group-wide signal. Other threads should be notified now to take
2402 * the shared signals in @which since we will not.
2403 */
2404 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2405 {
2406 sigset_t retarget;
2407 struct task_struct *t;
2408
2409 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2410 if (sigisemptyset(&retarget))
2411 return;
2412
2413 t = tsk;
2414 while_each_thread(tsk, t) {
2415 if (t->flags & PF_EXITING)
2416 continue;
2417
2418 if (!has_pending_signals(&retarget, &t->blocked))
2419 continue;
2420 /* Remove the signals this thread can handle. */
2421 sigandsets(&retarget, &retarget, &t->blocked);
2422
2423 if (!signal_pending(t))
2424 signal_wake_up(t, 0);
2425
2426 if (sigisemptyset(&retarget))
2427 break;
2428 }
2429 }
2430
2431 void exit_signals(struct task_struct *tsk)
2432 {
2433 int group_stop = 0;
2434 sigset_t unblocked;
2435
2436 /*
2437 * @tsk is about to have PF_EXITING set - lock out users which
2438 * expect stable threadgroup.
2439 */
2440 threadgroup_change_begin(tsk);
2441
2442 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2443 tsk->flags |= PF_EXITING;
2444 threadgroup_change_end(tsk);
2445 return;
2446 }
2447
2448 spin_lock_irq(&tsk->sighand->siglock);
2449 /*
2450 * From now this task is not visible for group-wide signals,
2451 * see wants_signal(), do_signal_stop().
2452 */
2453 tsk->flags |= PF_EXITING;
2454
2455 threadgroup_change_end(tsk);
2456
2457 if (!signal_pending(tsk))
2458 goto out;
2459
2460 unblocked = tsk->blocked;
2461 signotset(&unblocked);
2462 retarget_shared_pending(tsk, &unblocked);
2463
2464 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2465 task_participate_group_stop(tsk))
2466 group_stop = CLD_STOPPED;
2467 out:
2468 spin_unlock_irq(&tsk->sighand->siglock);
2469
2470 /*
2471 * If group stop has completed, deliver the notification. This
2472 * should always go to the real parent of the group leader.
2473 */
2474 if (unlikely(group_stop)) {
2475 read_lock(&tasklist_lock);
2476 do_notify_parent_cldstop(tsk, false, group_stop);
2477 read_unlock(&tasklist_lock);
2478 }
2479 }
2480
2481 EXPORT_SYMBOL(recalc_sigpending);
2482 EXPORT_SYMBOL_GPL(dequeue_signal);
2483 EXPORT_SYMBOL(flush_signals);
2484 EXPORT_SYMBOL(force_sig);
2485 EXPORT_SYMBOL(send_sig);
2486 EXPORT_SYMBOL(send_sig_info);
2487 EXPORT_SYMBOL(sigprocmask);
2488 EXPORT_SYMBOL(block_all_signals);
2489 EXPORT_SYMBOL(unblock_all_signals);
2490
2491
2492 /*
2493 * System call entry points.
2494 */
2495
2496 /**
2497 * sys_restart_syscall - restart a system call
2498 */
2499 SYSCALL_DEFINE0(restart_syscall)
2500 {
2501 struct restart_block *restart = &current_thread_info()->restart_block;
2502 return restart->fn(restart);
2503 }
2504
2505 long do_no_restart_syscall(struct restart_block *param)
2506 {
2507 return -EINTR;
2508 }
2509
2510 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2511 {
2512 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2513 sigset_t newblocked;
2514 /* A set of now blocked but previously unblocked signals. */
2515 sigandnsets(&newblocked, newset, &current->blocked);
2516 retarget_shared_pending(tsk, &newblocked);
2517 }
2518 tsk->blocked = *newset;
2519 recalc_sigpending();
2520 }
2521
2522 /**
2523 * set_current_blocked - change current->blocked mask
2524 * @newset: new mask
2525 *
2526 * It is wrong to change ->blocked directly, this helper should be used
2527 * to ensure the process can't miss a shared signal we are going to block.
2528 */
2529 void set_current_blocked(const sigset_t *newset)
2530 {
2531 struct task_struct *tsk = current;
2532
2533 spin_lock_irq(&tsk->sighand->siglock);
2534 __set_task_blocked(tsk, newset);
2535 spin_unlock_irq(&tsk->sighand->siglock);
2536 }
2537
2538 /*
2539 * This is also useful for kernel threads that want to temporarily
2540 * (or permanently) block certain signals.
2541 *
2542 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2543 * interface happily blocks "unblockable" signals like SIGKILL
2544 * and friends.
2545 */
2546 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2547 {
2548 struct task_struct *tsk = current;
2549 sigset_t newset;
2550
2551 /* Lockless, only current can change ->blocked, never from irq */
2552 if (oldset)
2553 *oldset = tsk->blocked;
2554
2555 switch (how) {
2556 case SIG_BLOCK:
2557 sigorsets(&newset, &tsk->blocked, set);
2558 break;
2559 case SIG_UNBLOCK:
2560 sigandnsets(&newset, &tsk->blocked, set);
2561 break;
2562 case SIG_SETMASK:
2563 newset = *set;
2564 break;
2565 default:
2566 return -EINVAL;
2567 }
2568
2569 set_current_blocked(&newset);
2570 return 0;
2571 }
2572
2573 /**
2574 * sys_rt_sigprocmask - change the list of currently blocked signals
2575 * @how: whether to add, remove, or set signals
2576 * @nset: stores pending signals
2577 * @oset: previous value of signal mask if non-null
2578 * @sigsetsize: size of sigset_t type
2579 */
2580 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2581 sigset_t __user *, oset, size_t, sigsetsize)
2582 {
2583 sigset_t old_set, new_set;
2584 int error;
2585
2586 /* XXX: Don't preclude handling different sized sigset_t's. */
2587 if (sigsetsize != sizeof(sigset_t))
2588 return -EINVAL;
2589
2590 old_set = current->blocked;
2591
2592 if (nset) {
2593 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2594 return -EFAULT;
2595 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2596
2597 error = sigprocmask(how, &new_set, NULL);
2598 if (error)
2599 return error;
2600 }
2601
2602 if (oset) {
2603 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2604 return -EFAULT;
2605 }
2606
2607 return 0;
2608 }
2609
2610 long do_sigpending(void __user *set, unsigned long sigsetsize)
2611 {
2612 long error = -EINVAL;
2613 sigset_t pending;
2614
2615 if (sigsetsize > sizeof(sigset_t))
2616 goto out;
2617
2618 spin_lock_irq(&current->sighand->siglock);
2619 sigorsets(&pending, &current->pending.signal,
2620 &current->signal->shared_pending.signal);
2621 spin_unlock_irq(&current->sighand->siglock);
2622
2623 /* Outside the lock because only this thread touches it. */
2624 sigandsets(&pending, &current->blocked, &pending);
2625
2626 error = -EFAULT;
2627 if (!copy_to_user(set, &pending, sigsetsize))
2628 error = 0;
2629
2630 out:
2631 return error;
2632 }
2633
2634 /**
2635 * sys_rt_sigpending - examine a pending signal that has been raised
2636 * while blocked
2637 * @set: stores pending signals
2638 * @sigsetsize: size of sigset_t type or larger
2639 */
2640 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2641 {
2642 return do_sigpending(set, sigsetsize);
2643 }
2644
2645 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2646
2647 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2648 {
2649 int err;
2650
2651 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2652 return -EFAULT;
2653 if (from->si_code < 0)
2654 return __copy_to_user(to, from, sizeof(siginfo_t))
2655 ? -EFAULT : 0;
2656 /*
2657 * If you change siginfo_t structure, please be sure
2658 * this code is fixed accordingly.
2659 * Please remember to update the signalfd_copyinfo() function
2660 * inside fs/signalfd.c too, in case siginfo_t changes.
2661 * It should never copy any pad contained in the structure
2662 * to avoid security leaks, but must copy the generic
2663 * 3 ints plus the relevant union member.
2664 */
2665 err = __put_user(from->si_signo, &to->si_signo);
2666 err |= __put_user(from->si_errno, &to->si_errno);
2667 err |= __put_user((short)from->si_code, &to->si_code);
2668 switch (from->si_code & __SI_MASK) {
2669 case __SI_KILL:
2670 err |= __put_user(from->si_pid, &to->si_pid);
2671 err |= __put_user(from->si_uid, &to->si_uid);
2672 break;
2673 case __SI_TIMER:
2674 err |= __put_user(from->si_tid, &to->si_tid);
2675 err |= __put_user(from->si_overrun, &to->si_overrun);
2676 err |= __put_user(from->si_ptr, &to->si_ptr);
2677 break;
2678 case __SI_POLL:
2679 err |= __put_user(from->si_band, &to->si_band);
2680 err |= __put_user(from->si_fd, &to->si_fd);
2681 break;
2682 case __SI_FAULT:
2683 err |= __put_user(from->si_addr, &to->si_addr);
2684 #ifdef __ARCH_SI_TRAPNO
2685 err |= __put_user(from->si_trapno, &to->si_trapno);
2686 #endif
2687 #ifdef BUS_MCEERR_AO
2688 /*
2689 * Other callers might not initialize the si_lsb field,
2690 * so check explicitly for the right codes here.
2691 */
2692 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2693 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2694 #endif
2695 break;
2696 case __SI_CHLD:
2697 err |= __put_user(from->si_pid, &to->si_pid);
2698 err |= __put_user(from->si_uid, &to->si_uid);
2699 err |= __put_user(from->si_status, &to->si_status);
2700 err |= __put_user(from->si_utime, &to->si_utime);
2701 err |= __put_user(from->si_stime, &to->si_stime);
2702 break;
2703 case __SI_RT: /* This is not generated by the kernel as of now. */
2704 case __SI_MESGQ: /* But this is */
2705 err |= __put_user(from->si_pid, &to->si_pid);
2706 err |= __put_user(from->si_uid, &to->si_uid);
2707 err |= __put_user(from->si_ptr, &to->si_ptr);
2708 break;
2709 default: /* this is just in case for now ... */
2710 err |= __put_user(from->si_pid, &to->si_pid);
2711 err |= __put_user(from->si_uid, &to->si_uid);
2712 break;
2713 }
2714 return err;
2715 }
2716
2717 #endif
2718
2719 /**
2720 * do_sigtimedwait - wait for queued signals specified in @which
2721 * @which: queued signals to wait for
2722 * @info: if non-null, the signal's siginfo is returned here
2723 * @ts: upper bound on process time suspension
2724 */
2725 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2726 const struct timespec *ts)
2727 {
2728 struct task_struct *tsk = current;
2729 long timeout = MAX_SCHEDULE_TIMEOUT;
2730 sigset_t mask = *which;
2731 int sig;
2732
2733 if (ts) {
2734 if (!timespec_valid(ts))
2735 return -EINVAL;
2736 timeout = timespec_to_jiffies(ts);
2737 /*
2738 * We can be close to the next tick, add another one
2739 * to ensure we will wait at least the time asked for.
2740 */
2741 if (ts->tv_sec || ts->tv_nsec)
2742 timeout++;
2743 }
2744
2745 /*
2746 * Invert the set of allowed signals to get those we want to block.
2747 */
2748 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2749 signotset(&mask);
2750
2751 spin_lock_irq(&tsk->sighand->siglock);
2752 sig = dequeue_signal(tsk, &mask, info);
2753 if (!sig && timeout) {
2754 /*
2755 * None ready, temporarily unblock those we're interested
2756 * while we are sleeping in so that we'll be awakened when
2757 * they arrive. Unblocking is always fine, we can avoid
2758 * set_current_blocked().
2759 */
2760 tsk->real_blocked = tsk->blocked;
2761 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2762 recalc_sigpending();
2763 spin_unlock_irq(&tsk->sighand->siglock);
2764
2765 timeout = schedule_timeout_interruptible(timeout);
2766
2767 spin_lock_irq(&tsk->sighand->siglock);
2768 __set_task_blocked(tsk, &tsk->real_blocked);
2769 siginitset(&tsk->real_blocked, 0);
2770 sig = dequeue_signal(tsk, &mask, info);
2771 }
2772 spin_unlock_irq(&tsk->sighand->siglock);
2773
2774 if (sig)
2775 return sig;
2776 return timeout ? -EINTR : -EAGAIN;
2777 }
2778
2779 /**
2780 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2781 * in @uthese
2782 * @uthese: queued signals to wait for
2783 * @uinfo: if non-null, the signal's siginfo is returned here
2784 * @uts: upper bound on process time suspension
2785 * @sigsetsize: size of sigset_t type
2786 */
2787 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2788 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2789 size_t, sigsetsize)
2790 {
2791 sigset_t these;
2792 struct timespec ts;
2793 siginfo_t info;
2794 int ret;
2795
2796 /* XXX: Don't preclude handling different sized sigset_t's. */
2797 if (sigsetsize != sizeof(sigset_t))
2798 return -EINVAL;
2799
2800 if (copy_from_user(&these, uthese, sizeof(these)))
2801 return -EFAULT;
2802
2803 if (uts) {
2804 if (copy_from_user(&ts, uts, sizeof(ts)))
2805 return -EFAULT;
2806 }
2807
2808 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2809
2810 if (ret > 0 && uinfo) {
2811 if (copy_siginfo_to_user(uinfo, &info))
2812 ret = -EFAULT;
2813 }
2814
2815 return ret;
2816 }
2817
2818 /**
2819 * sys_kill - send a signal to a process
2820 * @pid: the PID of the process
2821 * @sig: signal to be sent
2822 */
2823 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2824 {
2825 struct siginfo info;
2826
2827 info.si_signo = sig;
2828 info.si_errno = 0;
2829 info.si_code = SI_USER;
2830 info.si_pid = task_tgid_vnr(current);
2831 info.si_uid = current_uid();
2832
2833 return kill_something_info(sig, &info, pid);
2834 }
2835
2836 static int
2837 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2838 {
2839 struct task_struct *p;
2840 int error = -ESRCH;
2841
2842 rcu_read_lock();
2843 p = find_task_by_vpid(pid);
2844 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2845 error = check_kill_permission(sig, info, p);
2846 /*
2847 * The null signal is a permissions and process existence
2848 * probe. No signal is actually delivered.
2849 */
2850 if (!error && sig) {
2851 error = do_send_sig_info(sig, info, p, false);
2852 /*
2853 * If lock_task_sighand() failed we pretend the task
2854 * dies after receiving the signal. The window is tiny,
2855 * and the signal is private anyway.
2856 */
2857 if (unlikely(error == -ESRCH))
2858 error = 0;
2859 }
2860 }
2861 rcu_read_unlock();
2862
2863 return error;
2864 }
2865
2866 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2867 {
2868 struct siginfo info;
2869
2870 info.si_signo = sig;
2871 info.si_errno = 0;
2872 info.si_code = SI_TKILL;
2873 info.si_pid = task_tgid_vnr(current);
2874 info.si_uid = current_uid();
2875
2876 return do_send_specific(tgid, pid, sig, &info);
2877 }
2878
2879 /**
2880 * sys_tgkill - send signal to one specific thread
2881 * @tgid: the thread group ID of the thread
2882 * @pid: the PID of the thread
2883 * @sig: signal to be sent
2884 *
2885 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2886 * exists but it's not belonging to the target process anymore. This
2887 * method solves the problem of threads exiting and PIDs getting reused.
2888 */
2889 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2890 {
2891 /* This is only valid for single tasks */
2892 if (pid <= 0 || tgid <= 0)
2893 return -EINVAL;
2894
2895 return do_tkill(tgid, pid, sig);
2896 }
2897
2898 /**
2899 * sys_tkill - send signal to one specific task
2900 * @pid: the PID of the task
2901 * @sig: signal to be sent
2902 *
2903 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2904 */
2905 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2906 {
2907 /* This is only valid for single tasks */
2908 if (pid <= 0)
2909 return -EINVAL;
2910
2911 return do_tkill(0, pid, sig);
2912 }
2913
2914 /**
2915 * sys_rt_sigqueueinfo - send signal information to a signal
2916 * @pid: the PID of the thread
2917 * @sig: signal to be sent
2918 * @uinfo: signal info to be sent
2919 */
2920 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2921 siginfo_t __user *, uinfo)
2922 {
2923 siginfo_t info;
2924
2925 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2926 return -EFAULT;
2927
2928 /* Not even root can pretend to send signals from the kernel.
2929 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2930 */
2931 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2932 /* We used to allow any < 0 si_code */
2933 WARN_ON_ONCE(info.si_code < 0);
2934 return -EPERM;
2935 }
2936 info.si_signo = sig;
2937
2938 /* POSIX.1b doesn't mention process groups. */
2939 return kill_proc_info(sig, &info, pid);
2940 }
2941
2942 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2943 {
2944 /* This is only valid for single tasks */
2945 if (pid <= 0 || tgid <= 0)
2946 return -EINVAL;
2947
2948 /* Not even root can pretend to send signals from the kernel.
2949 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2950 */
2951 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2952 /* We used to allow any < 0 si_code */
2953 WARN_ON_ONCE(info->si_code < 0);
2954 return -EPERM;
2955 }
2956 info->si_signo = sig;
2957
2958 return do_send_specific(tgid, pid, sig, info);
2959 }
2960
2961 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2962 siginfo_t __user *, uinfo)
2963 {
2964 siginfo_t info;
2965
2966 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2967 return -EFAULT;
2968
2969 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2970 }
2971
2972 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2973 {
2974 struct task_struct *t = current;
2975 struct k_sigaction *k;
2976 sigset_t mask;
2977
2978 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2979 return -EINVAL;
2980
2981 k = &t->sighand->action[sig-1];
2982
2983 spin_lock_irq(&current->sighand->siglock);
2984 if (oact)
2985 *oact = *k;
2986
2987 if (act) {
2988 sigdelsetmask(&act->sa.sa_mask,
2989 sigmask(SIGKILL) | sigmask(SIGSTOP));
2990 *k = *act;
2991 /*
2992 * POSIX 3.3.1.3:
2993 * "Setting a signal action to SIG_IGN for a signal that is
2994 * pending shall cause the pending signal to be discarded,
2995 * whether or not it is blocked."
2996 *
2997 * "Setting a signal action to SIG_DFL for a signal that is
2998 * pending and whose default action is to ignore the signal
2999 * (for example, SIGCHLD), shall cause the pending signal to
3000 * be discarded, whether or not it is blocked"
3001 */
3002 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3003 sigemptyset(&mask);
3004 sigaddset(&mask, sig);
3005 rm_from_queue_full(&mask, &t->signal->shared_pending);
3006 do {
3007 rm_from_queue_full(&mask, &t->pending);
3008 t = next_thread(t);
3009 } while (t != current);
3010 }
3011 }
3012
3013 spin_unlock_irq(&current->sighand->siglock);
3014 return 0;
3015 }
3016
3017 int
3018 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3019 {
3020 stack_t oss;
3021 int error;
3022
3023 oss.ss_sp = (void __user *) current->sas_ss_sp;
3024 oss.ss_size = current->sas_ss_size;
3025 oss.ss_flags = sas_ss_flags(sp);
3026
3027 if (uss) {
3028 void __user *ss_sp;
3029 size_t ss_size;
3030 int ss_flags;
3031
3032 error = -EFAULT;
3033 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3034 goto out;
3035 error = __get_user(ss_sp, &uss->ss_sp) |
3036 __get_user(ss_flags, &uss->ss_flags) |
3037 __get_user(ss_size, &uss->ss_size);
3038 if (error)
3039 goto out;
3040
3041 error = -EPERM;
3042 if (on_sig_stack(sp))
3043 goto out;
3044
3045 error = -EINVAL;
3046 /*
3047 * Note - this code used to test ss_flags incorrectly:
3048 * old code may have been written using ss_flags==0
3049 * to mean ss_flags==SS_ONSTACK (as this was the only
3050 * way that worked) - this fix preserves that older
3051 * mechanism.
3052 */
3053 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3054 goto out;
3055
3056 if (ss_flags == SS_DISABLE) {
3057 ss_size = 0;
3058 ss_sp = NULL;
3059 } else {
3060 error = -ENOMEM;
3061 if (ss_size < MINSIGSTKSZ)
3062 goto out;
3063 }
3064
3065 current->sas_ss_sp = (unsigned long) ss_sp;
3066 current->sas_ss_size = ss_size;
3067 }
3068
3069 error = 0;
3070 if (uoss) {
3071 error = -EFAULT;
3072 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3073 goto out;
3074 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3075 __put_user(oss.ss_size, &uoss->ss_size) |
3076 __put_user(oss.ss_flags, &uoss->ss_flags);
3077 }
3078
3079 out:
3080 return error;
3081 }
3082
3083 #ifdef __ARCH_WANT_SYS_SIGPENDING
3084
3085 /**
3086 * sys_sigpending - examine pending signals
3087 * @set: where mask of pending signal is returned
3088 */
3089 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3090 {
3091 return do_sigpending(set, sizeof(*set));
3092 }
3093
3094 #endif
3095
3096 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3097 /**
3098 * sys_sigprocmask - examine and change blocked signals
3099 * @how: whether to add, remove, or set signals
3100 * @nset: signals to add or remove (if non-null)
3101 * @oset: previous value of signal mask if non-null
3102 *
3103 * Some platforms have their own version with special arguments;
3104 * others support only sys_rt_sigprocmask.
3105 */
3106
3107 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3108 old_sigset_t __user *, oset)
3109 {
3110 old_sigset_t old_set, new_set;
3111 sigset_t new_blocked;
3112
3113 old_set = current->blocked.sig[0];
3114
3115 if (nset) {
3116 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3117 return -EFAULT;
3118 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3119
3120 new_blocked = current->blocked;
3121
3122 switch (how) {
3123 case SIG_BLOCK:
3124 sigaddsetmask(&new_blocked, new_set);
3125 break;
3126 case SIG_UNBLOCK:
3127 sigdelsetmask(&new_blocked, new_set);
3128 break;
3129 case SIG_SETMASK:
3130 new_blocked.sig[0] = new_set;
3131 break;
3132 default:
3133 return -EINVAL;
3134 }
3135
3136 set_current_blocked(&new_blocked);
3137 }
3138
3139 if (oset) {
3140 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3141 return -EFAULT;
3142 }
3143
3144 return 0;
3145 }
3146 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3147
3148 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3149 /**
3150 * sys_rt_sigaction - alter an action taken by a process
3151 * @sig: signal to be sent
3152 * @act: new sigaction
3153 * @oact: used to save the previous sigaction
3154 * @sigsetsize: size of sigset_t type
3155 */
3156 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3157 const struct sigaction __user *, act,
3158 struct sigaction __user *, oact,
3159 size_t, sigsetsize)
3160 {
3161 struct k_sigaction new_sa, old_sa;
3162 int ret = -EINVAL;
3163
3164 /* XXX: Don't preclude handling different sized sigset_t's. */
3165 if (sigsetsize != sizeof(sigset_t))
3166 goto out;
3167
3168 if (act) {
3169 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3170 return -EFAULT;
3171 }
3172
3173 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3174
3175 if (!ret && oact) {
3176 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3177 return -EFAULT;
3178 }
3179 out:
3180 return ret;
3181 }
3182 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3183
3184 #ifdef __ARCH_WANT_SYS_SGETMASK
3185
3186 /*
3187 * For backwards compatibility. Functionality superseded by sigprocmask.
3188 */
3189 SYSCALL_DEFINE0(sgetmask)
3190 {
3191 /* SMP safe */
3192 return current->blocked.sig[0];
3193 }
3194
3195 SYSCALL_DEFINE1(ssetmask, int, newmask)
3196 {
3197 int old = current->blocked.sig[0];
3198 sigset_t newset;
3199
3200 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3201 set_current_blocked(&newset);
3202
3203 return old;
3204 }
3205 #endif /* __ARCH_WANT_SGETMASK */
3206
3207 #ifdef __ARCH_WANT_SYS_SIGNAL
3208 /*
3209 * For backwards compatibility. Functionality superseded by sigaction.
3210 */
3211 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3212 {
3213 struct k_sigaction new_sa, old_sa;
3214 int ret;
3215
3216 new_sa.sa.sa_handler = handler;
3217 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3218 sigemptyset(&new_sa.sa.sa_mask);
3219
3220 ret = do_sigaction(sig, &new_sa, &old_sa);
3221
3222 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3223 }
3224 #endif /* __ARCH_WANT_SYS_SIGNAL */
3225
3226 #ifdef __ARCH_WANT_SYS_PAUSE
3227
3228 SYSCALL_DEFINE0(pause)
3229 {
3230 while (!signal_pending(current)) {
3231 current->state = TASK_INTERRUPTIBLE;
3232 schedule();
3233 }
3234 return -ERESTARTNOHAND;
3235 }
3236
3237 #endif
3238
3239 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3240 /**
3241 * sys_rt_sigsuspend - replace the signal mask for a value with the
3242 * @unewset value until a signal is received
3243 * @unewset: new signal mask value
3244 * @sigsetsize: size of sigset_t type
3245 */
3246 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3247 {
3248 sigset_t newset;
3249
3250 /* XXX: Don't preclude handling different sized sigset_t's. */
3251 if (sigsetsize != sizeof(sigset_t))
3252 return -EINVAL;
3253
3254 if (copy_from_user(&newset, unewset, sizeof(newset)))
3255 return -EFAULT;
3256 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3257
3258 current->saved_sigmask = current->blocked;
3259 set_current_blocked(&newset);
3260
3261 current->state = TASK_INTERRUPTIBLE;
3262 schedule();
3263 set_restore_sigmask();
3264 return -ERESTARTNOHAND;
3265 }
3266 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3267
3268 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3269 {
3270 return NULL;
3271 }
3272
3273 void __init signals_init(void)
3274 {
3275 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3276 }
3277
3278 #ifdef CONFIG_KGDB_KDB
3279 #include <linux/kdb.h>
3280 /*
3281 * kdb_send_sig_info - Allows kdb to send signals without exposing
3282 * signal internals. This function checks if the required locks are
3283 * available before calling the main signal code, to avoid kdb
3284 * deadlocks.
3285 */
3286 void
3287 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3288 {
3289 static struct task_struct *kdb_prev_t;
3290 int sig, new_t;
3291 if (!spin_trylock(&t->sighand->siglock)) {
3292 kdb_printf("Can't do kill command now.\n"
3293 "The sigmask lock is held somewhere else in "
3294 "kernel, try again later\n");
3295 return;
3296 }
3297 spin_unlock(&t->sighand->siglock);
3298 new_t = kdb_prev_t != t;
3299 kdb_prev_t = t;
3300 if (t->state != TASK_RUNNING && new_t) {
3301 kdb_printf("Process is not RUNNING, sending a signal from "
3302 "kdb risks deadlock\n"
3303 "on the run queue locks. "
3304 "The signal has _not_ been sent.\n"
3305 "Reissue the kill command if you want to risk "
3306 "the deadlock.\n");
3307 return;
3308 }
3309 sig = info->si_signo;
3310 if (send_sig_info(sig, info, t))
3311 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3312 sig, t->pid);
3313 else
3314 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3315 }
3316 #endif /* CONFIG_KGDB_KDB */