signals: change send_signal/do_send_sigqueue to take "boolean group" parameter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 void ignore_signals(struct task_struct *t)
235 {
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242 }
243
244 /*
245 * Flush all handlers for a task.
246 */
247
248 void
249 flush_signal_handlers(struct task_struct *t, int force_default)
250 {
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260 }
261
262 int unhandled_signal(struct task_struct *tsk, int sig)
263 {
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270 }
271
272
273 /* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281 void
282 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283 {
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292
293 /* Notify the system that blocking has ended. */
294
295 void
296 unblock_all_signals(void)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305 }
306
307 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308 {
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348 }
349
350 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352 {
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370 }
371
372 /*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379 {
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446 }
447
448 /*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459 void signal_wake_up(struct task_struct *t, int resume)
460 {
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477 }
478
479 /*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489 {
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505 }
506 /*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512 static int rm_from_queue(unsigned long mask, struct sigpending *s)
513 {
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528 }
529
530 /*
531 * Bad permissions for sending the signal
532 */
533 static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535 {
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555 }
556
557 /* forward decl */
558 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560 /*
561 * Handle magic process-wide effects of stop/continue signals.
562 * Unlike the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 */
567 static void handle_stop_signal(int sig, struct task_struct *p)
568 {
569 struct signal_struct *signal = p->signal;
570 struct task_struct *t;
571
572 if (signal->flags & SIGNAL_GROUP_EXIT)
573 /*
574 * The process is in the middle of dying already.
575 */
576 return;
577
578 if (sig_kernel_stop(sig)) {
579 /*
580 * This is a stop signal. Remove SIGCONT from all queues.
581 */
582 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
583 t = p;
584 do {
585 rm_from_queue(sigmask(SIGCONT), &t->pending);
586 } while_each_thread(p, t);
587 } else if (sig == SIGCONT) {
588 unsigned int why;
589 /*
590 * Remove all stop signals from all queues,
591 * and wake all threads.
592 */
593 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
594 t = p;
595 do {
596 unsigned int state;
597 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
598 /*
599 * If there is a handler for SIGCONT, we must make
600 * sure that no thread returns to user mode before
601 * we post the signal, in case it was the only
602 * thread eligible to run the signal handler--then
603 * it must not do anything between resuming and
604 * running the handler. With the TIF_SIGPENDING
605 * flag set, the thread will pause and acquire the
606 * siglock that we hold now and until we've queued
607 * the pending signal.
608 *
609 * Wake up the stopped thread _after_ setting
610 * TIF_SIGPENDING
611 */
612 state = __TASK_STOPPED;
613 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615 state |= TASK_INTERRUPTIBLE;
616 }
617 wake_up_state(t, state);
618 } while_each_thread(p, t);
619
620 /*
621 * Notify the parent with CLD_CONTINUED if we were stopped.
622 *
623 * If we were in the middle of a group stop, we pretend it
624 * was already finished, and then continued. Since SIGCHLD
625 * doesn't queue we report only CLD_STOPPED, as if the next
626 * CLD_CONTINUED was dropped.
627 */
628 why = 0;
629 if (signal->flags & SIGNAL_STOP_STOPPED)
630 why |= SIGNAL_CLD_CONTINUED;
631 else if (signal->group_stop_count)
632 why |= SIGNAL_CLD_STOPPED;
633
634 if (why) {
635 signal->flags = why | SIGNAL_STOP_CONTINUED;
636 signal->group_stop_count = 0;
637 signal->group_exit_code = 0;
638 } else {
639 /*
640 * We are not stopped, but there could be a stop
641 * signal in the middle of being processed after
642 * being removed from the queue. Clear that too.
643 */
644 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
645 }
646 } else if (sig == SIGKILL) {
647 /*
648 * Make sure that any pending stop signal already dequeued
649 * is undone by the wakeup for SIGKILL.
650 */
651 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
652 }
653 }
654
655 /*
656 * Test if P wants to take SIG. After we've checked all threads with this,
657 * it's equivalent to finding no threads not blocking SIG. Any threads not
658 * blocking SIG were ruled out because they are not running and already
659 * have pending signals. Such threads will dequeue from the shared queue
660 * as soon as they're available, so putting the signal on the shared queue
661 * will be equivalent to sending it to one such thread.
662 */
663 static inline int wants_signal(int sig, struct task_struct *p)
664 {
665 if (sigismember(&p->blocked, sig))
666 return 0;
667 if (p->flags & PF_EXITING)
668 return 0;
669 if (sig == SIGKILL)
670 return 1;
671 if (task_is_stopped_or_traced(p))
672 return 0;
673 return task_curr(p) || !signal_pending(p);
674 }
675
676 static void
677 __group_complete_signal(int sig, struct task_struct *p)
678 {
679 struct signal_struct *signal = p->signal;
680 struct task_struct *t;
681
682 /*
683 * Now find a thread we can wake up to take the signal off the queue.
684 *
685 * If the main thread wants the signal, it gets first crack.
686 * Probably the least surprising to the average bear.
687 */
688 if (wants_signal(sig, p))
689 t = p;
690 else if (thread_group_empty(p))
691 /*
692 * There is just one thread and it does not need to be woken.
693 * It will dequeue unblocked signals before it runs again.
694 */
695 return;
696 else {
697 /*
698 * Otherwise try to find a suitable thread.
699 */
700 t = signal->curr_target;
701 while (!wants_signal(sig, t)) {
702 t = next_thread(t);
703 if (t == signal->curr_target)
704 /*
705 * No thread needs to be woken.
706 * Any eligible threads will see
707 * the signal in the queue soon.
708 */
709 return;
710 }
711 signal->curr_target = t;
712 }
713
714 /*
715 * Found a killable thread. If the signal will be fatal,
716 * then start taking the whole group down immediately.
717 */
718 if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) &&
719 !sigismember(&t->real_blocked, sig) &&
720 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
721 /*
722 * This signal will be fatal to the whole group.
723 */
724 if (!sig_kernel_coredump(sig)) {
725 /*
726 * Start a group exit and wake everybody up.
727 * This way we don't have other threads
728 * running and doing things after a slower
729 * thread has the fatal signal pending.
730 */
731 signal->flags = SIGNAL_GROUP_EXIT;
732 signal->group_exit_code = sig;
733 signal->group_stop_count = 0;
734 t = p;
735 do {
736 sigaddset(&t->pending.signal, SIGKILL);
737 signal_wake_up(t, 1);
738 } while_each_thread(p, t);
739 return;
740 }
741 }
742
743 /*
744 * The signal is already in the shared-pending queue.
745 * Tell the chosen thread to wake up and dequeue it.
746 */
747 signal_wake_up(t, sig == SIGKILL);
748 return;
749 }
750
751 static inline int legacy_queue(struct sigpending *signals, int sig)
752 {
753 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
754 }
755
756 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
757 int group)
758 {
759 struct sigpending *pending;
760 struct sigqueue *q;
761
762 assert_spin_locked(&t->sighand->siglock);
763 handle_stop_signal(sig, t);
764
765 pending = group ? &t->signal->shared_pending : &t->pending;
766 /*
767 * Short-circuit ignored signals and support queuing
768 * exactly one non-rt signal, so that we can get more
769 * detailed information about the cause of the signal.
770 */
771 if (sig_ignored(t, sig) || legacy_queue(pending, sig))
772 return 0;
773
774 /*
775 * Deliver the signal to listening signalfds. This must be called
776 * with the sighand lock held.
777 */
778 signalfd_notify(t, sig);
779
780 /*
781 * fast-pathed signals for kernel-internal things like SIGSTOP
782 * or SIGKILL.
783 */
784 if (info == SEND_SIG_FORCED)
785 goto out_set;
786
787 /* Real-time signals must be queued if sent by sigqueue, or
788 some other real-time mechanism. It is implementation
789 defined whether kill() does so. We attempt to do so, on
790 the principle of least surprise, but since kill is not
791 allowed to fail with EAGAIN when low on memory we just
792 make sure at least one signal gets delivered and don't
793 pass on the info struct. */
794
795 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
796 (is_si_special(info) ||
797 info->si_code >= 0)));
798 if (q) {
799 list_add_tail(&q->list, &pending->list);
800 switch ((unsigned long) info) {
801 case (unsigned long) SEND_SIG_NOINFO:
802 q->info.si_signo = sig;
803 q->info.si_errno = 0;
804 q->info.si_code = SI_USER;
805 q->info.si_pid = task_pid_vnr(current);
806 q->info.si_uid = current->uid;
807 break;
808 case (unsigned long) SEND_SIG_PRIV:
809 q->info.si_signo = sig;
810 q->info.si_errno = 0;
811 q->info.si_code = SI_KERNEL;
812 q->info.si_pid = 0;
813 q->info.si_uid = 0;
814 break;
815 default:
816 copy_siginfo(&q->info, info);
817 break;
818 }
819 } else if (!is_si_special(info)) {
820 if (sig >= SIGRTMIN && info->si_code != SI_USER)
821 /*
822 * Queue overflow, abort. We may abort if the signal was rt
823 * and sent by user using something other than kill().
824 */
825 return -EAGAIN;
826 }
827
828 out_set:
829 sigaddset(&pending->signal, sig);
830 return 1;
831 }
832
833 int print_fatal_signals;
834
835 static void print_fatal_signal(struct pt_regs *regs, int signr)
836 {
837 printk("%s/%d: potentially unexpected fatal signal %d.\n",
838 current->comm, task_pid_nr(current), signr);
839
840 #if defined(__i386__) && !defined(__arch_um__)
841 printk("code at %08lx: ", regs->ip);
842 {
843 int i;
844 for (i = 0; i < 16; i++) {
845 unsigned char insn;
846
847 __get_user(insn, (unsigned char *)(regs->ip + i));
848 printk("%02x ", insn);
849 }
850 }
851 #endif
852 printk("\n");
853 show_regs(regs);
854 }
855
856 static int __init setup_print_fatal_signals(char *str)
857 {
858 get_option (&str, &print_fatal_signals);
859
860 return 1;
861 }
862
863 __setup("print-fatal-signals=", setup_print_fatal_signals);
864
865 static int
866 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
867 {
868 int ret;
869
870 ret = send_signal(sig, info, t, 0);
871 if (ret <= 0)
872 return ret;
873
874 if (!sigismember(&t->blocked, sig))
875 signal_wake_up(t, sig == SIGKILL);
876 return 0;
877 }
878
879 /*
880 * Force a signal that the process can't ignore: if necessary
881 * we unblock the signal and change any SIG_IGN to SIG_DFL.
882 *
883 * Note: If we unblock the signal, we always reset it to SIG_DFL,
884 * since we do not want to have a signal handler that was blocked
885 * be invoked when user space had explicitly blocked it.
886 *
887 * We don't want to have recursive SIGSEGV's etc, for example.
888 */
889 int
890 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
891 {
892 unsigned long int flags;
893 int ret, blocked, ignored;
894 struct k_sigaction *action;
895
896 spin_lock_irqsave(&t->sighand->siglock, flags);
897 action = &t->sighand->action[sig-1];
898 ignored = action->sa.sa_handler == SIG_IGN;
899 blocked = sigismember(&t->blocked, sig);
900 if (blocked || ignored) {
901 action->sa.sa_handler = SIG_DFL;
902 if (blocked) {
903 sigdelset(&t->blocked, sig);
904 recalc_sigpending_and_wake(t);
905 }
906 }
907 ret = specific_send_sig_info(sig, info, t);
908 spin_unlock_irqrestore(&t->sighand->siglock, flags);
909
910 return ret;
911 }
912
913 void
914 force_sig_specific(int sig, struct task_struct *t)
915 {
916 force_sig_info(sig, SEND_SIG_FORCED, t);
917 }
918
919 int
920 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
921 {
922 int ret;
923
924 /*
925 * Put this signal on the shared-pending queue, or fail with EAGAIN.
926 * We always use the shared queue for process-wide signals,
927 * to avoid several races.
928 */
929 ret = send_signal(sig, info, p, 1);
930 if (ret <= 0)
931 return ret;
932
933 __group_complete_signal(sig, p);
934 return 0;
935 }
936
937 /*
938 * Nuke all other threads in the group.
939 */
940 void zap_other_threads(struct task_struct *p)
941 {
942 struct task_struct *t;
943
944 p->signal->group_stop_count = 0;
945
946 for (t = next_thread(p); t != p; t = next_thread(t)) {
947 /*
948 * Don't bother with already dead threads
949 */
950 if (t->exit_state)
951 continue;
952
953 /* SIGKILL will be handled before any pending SIGSTOP */
954 sigaddset(&t->pending.signal, SIGKILL);
955 signal_wake_up(t, 1);
956 }
957 }
958
959 int __fatal_signal_pending(struct task_struct *tsk)
960 {
961 return sigismember(&tsk->pending.signal, SIGKILL);
962 }
963 EXPORT_SYMBOL(__fatal_signal_pending);
964
965 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
966 {
967 struct sighand_struct *sighand;
968
969 rcu_read_lock();
970 for (;;) {
971 sighand = rcu_dereference(tsk->sighand);
972 if (unlikely(sighand == NULL))
973 break;
974
975 spin_lock_irqsave(&sighand->siglock, *flags);
976 if (likely(sighand == tsk->sighand))
977 break;
978 spin_unlock_irqrestore(&sighand->siglock, *flags);
979 }
980 rcu_read_unlock();
981
982 return sighand;
983 }
984
985 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
986 {
987 unsigned long flags;
988 int ret;
989
990 ret = check_kill_permission(sig, info, p);
991
992 if (!ret && sig) {
993 ret = -ESRCH;
994 if (lock_task_sighand(p, &flags)) {
995 ret = __group_send_sig_info(sig, info, p);
996 unlock_task_sighand(p, &flags);
997 }
998 }
999
1000 return ret;
1001 }
1002
1003 /*
1004 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1005 * control characters do (^C, ^Z etc)
1006 */
1007
1008 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1009 {
1010 struct task_struct *p = NULL;
1011 int retval, success;
1012
1013 success = 0;
1014 retval = -ESRCH;
1015 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1016 int err = group_send_sig_info(sig, info, p);
1017 success |= !err;
1018 retval = err;
1019 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1020 return success ? 0 : retval;
1021 }
1022
1023 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1024 {
1025 int error = -ESRCH;
1026 struct task_struct *p;
1027
1028 rcu_read_lock();
1029 retry:
1030 p = pid_task(pid, PIDTYPE_PID);
1031 if (p) {
1032 error = group_send_sig_info(sig, info, p);
1033 if (unlikely(error == -ESRCH))
1034 /*
1035 * The task was unhashed in between, try again.
1036 * If it is dead, pid_task() will return NULL,
1037 * if we race with de_thread() it will find the
1038 * new leader.
1039 */
1040 goto retry;
1041 }
1042 rcu_read_unlock();
1043
1044 return error;
1045 }
1046
1047 int
1048 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1049 {
1050 int error;
1051 rcu_read_lock();
1052 error = kill_pid_info(sig, info, find_vpid(pid));
1053 rcu_read_unlock();
1054 return error;
1055 }
1056
1057 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1058 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1059 uid_t uid, uid_t euid, u32 secid)
1060 {
1061 int ret = -EINVAL;
1062 struct task_struct *p;
1063
1064 if (!valid_signal(sig))
1065 return ret;
1066
1067 read_lock(&tasklist_lock);
1068 p = pid_task(pid, PIDTYPE_PID);
1069 if (!p) {
1070 ret = -ESRCH;
1071 goto out_unlock;
1072 }
1073 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1074 && (euid != p->suid) && (euid != p->uid)
1075 && (uid != p->suid) && (uid != p->uid)) {
1076 ret = -EPERM;
1077 goto out_unlock;
1078 }
1079 ret = security_task_kill(p, info, sig, secid);
1080 if (ret)
1081 goto out_unlock;
1082 if (sig && p->sighand) {
1083 unsigned long flags;
1084 spin_lock_irqsave(&p->sighand->siglock, flags);
1085 ret = __group_send_sig_info(sig, info, p);
1086 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1087 }
1088 out_unlock:
1089 read_unlock(&tasklist_lock);
1090 return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1093
1094 /*
1095 * kill_something_info() interprets pid in interesting ways just like kill(2).
1096 *
1097 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1098 * is probably wrong. Should make it like BSD or SYSV.
1099 */
1100
1101 static int kill_something_info(int sig, struct siginfo *info, int pid)
1102 {
1103 int ret;
1104
1105 if (pid > 0) {
1106 rcu_read_lock();
1107 ret = kill_pid_info(sig, info, find_vpid(pid));
1108 rcu_read_unlock();
1109 return ret;
1110 }
1111
1112 read_lock(&tasklist_lock);
1113 if (pid != -1) {
1114 ret = __kill_pgrp_info(sig, info,
1115 pid ? find_vpid(-pid) : task_pgrp(current));
1116 } else {
1117 int retval = 0, count = 0;
1118 struct task_struct * p;
1119
1120 for_each_process(p) {
1121 if (p->pid > 1 && !same_thread_group(p, current)) {
1122 int err = group_send_sig_info(sig, info, p);
1123 ++count;
1124 if (err != -EPERM)
1125 retval = err;
1126 }
1127 }
1128 ret = count ? retval : -ESRCH;
1129 }
1130 read_unlock(&tasklist_lock);
1131
1132 return ret;
1133 }
1134
1135 /*
1136 * These are for backward compatibility with the rest of the kernel source.
1137 */
1138
1139 /*
1140 * The caller must ensure the task can't exit.
1141 */
1142 int
1143 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1144 {
1145 int ret;
1146 unsigned long flags;
1147
1148 /*
1149 * Make sure legacy kernel users don't send in bad values
1150 * (normal paths check this in check_kill_permission).
1151 */
1152 if (!valid_signal(sig))
1153 return -EINVAL;
1154
1155 spin_lock_irqsave(&p->sighand->siglock, flags);
1156 ret = specific_send_sig_info(sig, info, p);
1157 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1158 return ret;
1159 }
1160
1161 #define __si_special(priv) \
1162 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1163
1164 int
1165 send_sig(int sig, struct task_struct *p, int priv)
1166 {
1167 return send_sig_info(sig, __si_special(priv), p);
1168 }
1169
1170 void
1171 force_sig(int sig, struct task_struct *p)
1172 {
1173 force_sig_info(sig, SEND_SIG_PRIV, p);
1174 }
1175
1176 /*
1177 * When things go south during signal handling, we
1178 * will force a SIGSEGV. And if the signal that caused
1179 * the problem was already a SIGSEGV, we'll want to
1180 * make sure we don't even try to deliver the signal..
1181 */
1182 int
1183 force_sigsegv(int sig, struct task_struct *p)
1184 {
1185 if (sig == SIGSEGV) {
1186 unsigned long flags;
1187 spin_lock_irqsave(&p->sighand->siglock, flags);
1188 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1189 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1190 }
1191 force_sig(SIGSEGV, p);
1192 return 0;
1193 }
1194
1195 int kill_pgrp(struct pid *pid, int sig, int priv)
1196 {
1197 int ret;
1198
1199 read_lock(&tasklist_lock);
1200 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1201 read_unlock(&tasklist_lock);
1202
1203 return ret;
1204 }
1205 EXPORT_SYMBOL(kill_pgrp);
1206
1207 int kill_pid(struct pid *pid, int sig, int priv)
1208 {
1209 return kill_pid_info(sig, __si_special(priv), pid);
1210 }
1211 EXPORT_SYMBOL(kill_pid);
1212
1213 int
1214 kill_proc(pid_t pid, int sig, int priv)
1215 {
1216 int ret;
1217
1218 rcu_read_lock();
1219 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1220 rcu_read_unlock();
1221 return ret;
1222 }
1223
1224 /*
1225 * These functions support sending signals using preallocated sigqueue
1226 * structures. This is needed "because realtime applications cannot
1227 * afford to lose notifications of asynchronous events, like timer
1228 * expirations or I/O completions". In the case of Posix Timers
1229 * we allocate the sigqueue structure from the timer_create. If this
1230 * allocation fails we are able to report the failure to the application
1231 * with an EAGAIN error.
1232 */
1233
1234 struct sigqueue *sigqueue_alloc(void)
1235 {
1236 struct sigqueue *q;
1237
1238 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1239 q->flags |= SIGQUEUE_PREALLOC;
1240 return(q);
1241 }
1242
1243 void sigqueue_free(struct sigqueue *q)
1244 {
1245 unsigned long flags;
1246 spinlock_t *lock = &current->sighand->siglock;
1247
1248 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1249 /*
1250 * If the signal is still pending remove it from the
1251 * pending queue. We must hold ->siglock while testing
1252 * q->list to serialize with collect_signal().
1253 */
1254 spin_lock_irqsave(lock, flags);
1255 if (!list_empty(&q->list))
1256 list_del_init(&q->list);
1257 spin_unlock_irqrestore(lock, flags);
1258
1259 q->flags &= ~SIGQUEUE_PREALLOC;
1260 __sigqueue_free(q);
1261 }
1262
1263 static int do_send_sigqueue(int sig, struct sigqueue *q, struct task_struct *t,
1264 int group)
1265 {
1266 struct sigpending *pending;
1267
1268 handle_stop_signal(sig, t);
1269
1270 if (unlikely(!list_empty(&q->list))) {
1271 /*
1272 * If an SI_TIMER entry is already queue just increment
1273 * the overrun count.
1274 */
1275
1276 BUG_ON(q->info.si_code != SI_TIMER);
1277 q->info.si_overrun++;
1278 return 0;
1279 }
1280
1281 if (sig_ignored(t, sig))
1282 return 1;
1283
1284 signalfd_notify(t, sig);
1285 pending = group ? &t->signal->shared_pending : &t->pending;
1286 list_add_tail(&q->list, &pending->list);
1287 sigaddset(&pending->signal, sig);
1288
1289 return 0;
1290 }
1291
1292 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1293 {
1294 unsigned long flags;
1295 int ret = -1;
1296
1297 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1298
1299 /*
1300 * The rcu based delayed sighand destroy makes it possible to
1301 * run this without tasklist lock held. The task struct itself
1302 * cannot go away as create_timer did get_task_struct().
1303 *
1304 * We return -1, when the task is marked exiting, so
1305 * posix_timer_event can redirect it to the group leader
1306 */
1307 if (!likely(lock_task_sighand(p, &flags)))
1308 goto out_err;
1309
1310 ret = do_send_sigqueue(sig, q, p, 0);
1311
1312 if (!sigismember(&p->blocked, sig))
1313 signal_wake_up(p, sig == SIGKILL);
1314
1315 unlock_task_sighand(p, &flags);
1316 out_err:
1317 return ret;
1318 }
1319
1320 int
1321 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1322 {
1323 unsigned long flags;
1324 int ret;
1325
1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1327
1328 /* Since it_lock is held, p->sighand cannot be NULL. */
1329 spin_lock_irqsave(&p->sighand->siglock, flags);
1330
1331 ret = do_send_sigqueue(sig, q, p, 1);
1332
1333 __group_complete_signal(sig, p);
1334
1335 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1336
1337 return ret;
1338 }
1339
1340 /*
1341 * Wake up any threads in the parent blocked in wait* syscalls.
1342 */
1343 static inline void __wake_up_parent(struct task_struct *p,
1344 struct task_struct *parent)
1345 {
1346 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1347 }
1348
1349 /*
1350 * Let a parent know about the death of a child.
1351 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1352 */
1353
1354 void do_notify_parent(struct task_struct *tsk, int sig)
1355 {
1356 struct siginfo info;
1357 unsigned long flags;
1358 struct sighand_struct *psig;
1359
1360 BUG_ON(sig == -1);
1361
1362 /* do_notify_parent_cldstop should have been called instead. */
1363 BUG_ON(task_is_stopped_or_traced(tsk));
1364
1365 BUG_ON(!tsk->ptrace &&
1366 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1367
1368 info.si_signo = sig;
1369 info.si_errno = 0;
1370 /*
1371 * we are under tasklist_lock here so our parent is tied to
1372 * us and cannot exit and release its namespace.
1373 *
1374 * the only it can is to switch its nsproxy with sys_unshare,
1375 * bu uncharing pid namespaces is not allowed, so we'll always
1376 * see relevant namespace
1377 *
1378 * write_lock() currently calls preempt_disable() which is the
1379 * same as rcu_read_lock(), but according to Oleg, this is not
1380 * correct to rely on this
1381 */
1382 rcu_read_lock();
1383 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1384 rcu_read_unlock();
1385
1386 info.si_uid = tsk->uid;
1387
1388 /* FIXME: find out whether or not this is supposed to be c*time. */
1389 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1390 tsk->signal->utime));
1391 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1392 tsk->signal->stime));
1393
1394 info.si_status = tsk->exit_code & 0x7f;
1395 if (tsk->exit_code & 0x80)
1396 info.si_code = CLD_DUMPED;
1397 else if (tsk->exit_code & 0x7f)
1398 info.si_code = CLD_KILLED;
1399 else {
1400 info.si_code = CLD_EXITED;
1401 info.si_status = tsk->exit_code >> 8;
1402 }
1403
1404 psig = tsk->parent->sighand;
1405 spin_lock_irqsave(&psig->siglock, flags);
1406 if (!tsk->ptrace && sig == SIGCHLD &&
1407 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1408 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1409 /*
1410 * We are exiting and our parent doesn't care. POSIX.1
1411 * defines special semantics for setting SIGCHLD to SIG_IGN
1412 * or setting the SA_NOCLDWAIT flag: we should be reaped
1413 * automatically and not left for our parent's wait4 call.
1414 * Rather than having the parent do it as a magic kind of
1415 * signal handler, we just set this to tell do_exit that we
1416 * can be cleaned up without becoming a zombie. Note that
1417 * we still call __wake_up_parent in this case, because a
1418 * blocked sys_wait4 might now return -ECHILD.
1419 *
1420 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1421 * is implementation-defined: we do (if you don't want
1422 * it, just use SIG_IGN instead).
1423 */
1424 tsk->exit_signal = -1;
1425 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1426 sig = 0;
1427 }
1428 if (valid_signal(sig) && sig > 0)
1429 __group_send_sig_info(sig, &info, tsk->parent);
1430 __wake_up_parent(tsk, tsk->parent);
1431 spin_unlock_irqrestore(&psig->siglock, flags);
1432 }
1433
1434 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1435 {
1436 struct siginfo info;
1437 unsigned long flags;
1438 struct task_struct *parent;
1439 struct sighand_struct *sighand;
1440
1441 if (tsk->ptrace & PT_PTRACED)
1442 parent = tsk->parent;
1443 else {
1444 tsk = tsk->group_leader;
1445 parent = tsk->real_parent;
1446 }
1447
1448 info.si_signo = SIGCHLD;
1449 info.si_errno = 0;
1450 /*
1451 * see comment in do_notify_parent() abot the following 3 lines
1452 */
1453 rcu_read_lock();
1454 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1455 rcu_read_unlock();
1456
1457 info.si_uid = tsk->uid;
1458
1459 /* FIXME: find out whether or not this is supposed to be c*time. */
1460 info.si_utime = cputime_to_jiffies(tsk->utime);
1461 info.si_stime = cputime_to_jiffies(tsk->stime);
1462
1463 info.si_code = why;
1464 switch (why) {
1465 case CLD_CONTINUED:
1466 info.si_status = SIGCONT;
1467 break;
1468 case CLD_STOPPED:
1469 info.si_status = tsk->signal->group_exit_code & 0x7f;
1470 break;
1471 case CLD_TRAPPED:
1472 info.si_status = tsk->exit_code & 0x7f;
1473 break;
1474 default:
1475 BUG();
1476 }
1477
1478 sighand = parent->sighand;
1479 spin_lock_irqsave(&sighand->siglock, flags);
1480 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1481 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1482 __group_send_sig_info(SIGCHLD, &info, parent);
1483 /*
1484 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1485 */
1486 __wake_up_parent(tsk, parent);
1487 spin_unlock_irqrestore(&sighand->siglock, flags);
1488 }
1489
1490 static inline int may_ptrace_stop(void)
1491 {
1492 if (!likely(current->ptrace & PT_PTRACED))
1493 return 0;
1494 /*
1495 * Are we in the middle of do_coredump?
1496 * If so and our tracer is also part of the coredump stopping
1497 * is a deadlock situation, and pointless because our tracer
1498 * is dead so don't allow us to stop.
1499 * If SIGKILL was already sent before the caller unlocked
1500 * ->siglock we must see ->core_waiters != 0. Otherwise it
1501 * is safe to enter schedule().
1502 */
1503 if (unlikely(current->mm->core_waiters) &&
1504 unlikely(current->mm == current->parent->mm))
1505 return 0;
1506
1507 return 1;
1508 }
1509
1510 /*
1511 * Return nonzero if there is a SIGKILL that should be waking us up.
1512 * Called with the siglock held.
1513 */
1514 static int sigkill_pending(struct task_struct *tsk)
1515 {
1516 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1517 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1518 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1519 }
1520
1521 /*
1522 * This must be called with current->sighand->siglock held.
1523 *
1524 * This should be the path for all ptrace stops.
1525 * We always set current->last_siginfo while stopped here.
1526 * That makes it a way to test a stopped process for
1527 * being ptrace-stopped vs being job-control-stopped.
1528 *
1529 * If we actually decide not to stop at all because the tracer
1530 * is gone, we keep current->exit_code unless clear_code.
1531 */
1532 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1533 {
1534 int killed = 0;
1535
1536 if (arch_ptrace_stop_needed(exit_code, info)) {
1537 /*
1538 * The arch code has something special to do before a
1539 * ptrace stop. This is allowed to block, e.g. for faults
1540 * on user stack pages. We can't keep the siglock while
1541 * calling arch_ptrace_stop, so we must release it now.
1542 * To preserve proper semantics, we must do this before
1543 * any signal bookkeeping like checking group_stop_count.
1544 * Meanwhile, a SIGKILL could come in before we retake the
1545 * siglock. That must prevent us from sleeping in TASK_TRACED.
1546 * So after regaining the lock, we must check for SIGKILL.
1547 */
1548 spin_unlock_irq(&current->sighand->siglock);
1549 arch_ptrace_stop(exit_code, info);
1550 spin_lock_irq(&current->sighand->siglock);
1551 killed = sigkill_pending(current);
1552 }
1553
1554 /*
1555 * If there is a group stop in progress,
1556 * we must participate in the bookkeeping.
1557 */
1558 if (current->signal->group_stop_count > 0)
1559 --current->signal->group_stop_count;
1560
1561 current->last_siginfo = info;
1562 current->exit_code = exit_code;
1563
1564 /* Let the debugger run. */
1565 __set_current_state(TASK_TRACED);
1566 spin_unlock_irq(&current->sighand->siglock);
1567 read_lock(&tasklist_lock);
1568 if (!unlikely(killed) && may_ptrace_stop()) {
1569 do_notify_parent_cldstop(current, CLD_TRAPPED);
1570 read_unlock(&tasklist_lock);
1571 schedule();
1572 } else {
1573 /*
1574 * By the time we got the lock, our tracer went away.
1575 * Don't drop the lock yet, another tracer may come.
1576 */
1577 __set_current_state(TASK_RUNNING);
1578 if (clear_code)
1579 current->exit_code = 0;
1580 read_unlock(&tasklist_lock);
1581 }
1582
1583 /*
1584 * While in TASK_TRACED, we were considered "frozen enough".
1585 * Now that we woke up, it's crucial if we're supposed to be
1586 * frozen that we freeze now before running anything substantial.
1587 */
1588 try_to_freeze();
1589
1590 /*
1591 * We are back. Now reacquire the siglock before touching
1592 * last_siginfo, so that we are sure to have synchronized with
1593 * any signal-sending on another CPU that wants to examine it.
1594 */
1595 spin_lock_irq(&current->sighand->siglock);
1596 current->last_siginfo = NULL;
1597
1598 /*
1599 * Queued signals ignored us while we were stopped for tracing.
1600 * So check for any that we should take before resuming user mode.
1601 * This sets TIF_SIGPENDING, but never clears it.
1602 */
1603 recalc_sigpending_tsk(current);
1604 }
1605
1606 void ptrace_notify(int exit_code)
1607 {
1608 siginfo_t info;
1609
1610 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1611
1612 memset(&info, 0, sizeof info);
1613 info.si_signo = SIGTRAP;
1614 info.si_code = exit_code;
1615 info.si_pid = task_pid_vnr(current);
1616 info.si_uid = current->uid;
1617
1618 /* Let the debugger run. */
1619 spin_lock_irq(&current->sighand->siglock);
1620 ptrace_stop(exit_code, 1, &info);
1621 spin_unlock_irq(&current->sighand->siglock);
1622 }
1623
1624 static void
1625 finish_stop(int stop_count)
1626 {
1627 /*
1628 * If there are no other threads in the group, or if there is
1629 * a group stop in progress and we are the last to stop,
1630 * report to the parent. When ptraced, every thread reports itself.
1631 */
1632 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1633 read_lock(&tasklist_lock);
1634 do_notify_parent_cldstop(current, CLD_STOPPED);
1635 read_unlock(&tasklist_lock);
1636 }
1637
1638 do {
1639 schedule();
1640 } while (try_to_freeze());
1641 /*
1642 * Now we don't run again until continued.
1643 */
1644 current->exit_code = 0;
1645 }
1646
1647 /*
1648 * This performs the stopping for SIGSTOP and other stop signals.
1649 * We have to stop all threads in the thread group.
1650 * Returns nonzero if we've actually stopped and released the siglock.
1651 * Returns zero if we didn't stop and still hold the siglock.
1652 */
1653 static int do_signal_stop(int signr)
1654 {
1655 struct signal_struct *sig = current->signal;
1656 int stop_count;
1657
1658 if (sig->group_stop_count > 0) {
1659 /*
1660 * There is a group stop in progress. We don't need to
1661 * start another one.
1662 */
1663 stop_count = --sig->group_stop_count;
1664 } else {
1665 struct task_struct *t;
1666
1667 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1668 unlikely(signal_group_exit(sig)))
1669 return 0;
1670 /*
1671 * There is no group stop already in progress.
1672 * We must initiate one now.
1673 */
1674 sig->group_exit_code = signr;
1675
1676 stop_count = 0;
1677 for (t = next_thread(current); t != current; t = next_thread(t))
1678 /*
1679 * Setting state to TASK_STOPPED for a group
1680 * stop is always done with the siglock held,
1681 * so this check has no races.
1682 */
1683 if (!(t->flags & PF_EXITING) &&
1684 !task_is_stopped_or_traced(t)) {
1685 stop_count++;
1686 signal_wake_up(t, 0);
1687 }
1688 sig->group_stop_count = stop_count;
1689 }
1690
1691 if (stop_count == 0)
1692 sig->flags = SIGNAL_STOP_STOPPED;
1693 current->exit_code = sig->group_exit_code;
1694 __set_current_state(TASK_STOPPED);
1695
1696 spin_unlock_irq(&current->sighand->siglock);
1697 finish_stop(stop_count);
1698 return 1;
1699 }
1700
1701 static int ptrace_signal(int signr, siginfo_t *info,
1702 struct pt_regs *regs, void *cookie)
1703 {
1704 if (!(current->ptrace & PT_PTRACED))
1705 return signr;
1706
1707 ptrace_signal_deliver(regs, cookie);
1708
1709 /* Let the debugger run. */
1710 ptrace_stop(signr, 0, info);
1711
1712 /* We're back. Did the debugger cancel the sig? */
1713 signr = current->exit_code;
1714 if (signr == 0)
1715 return signr;
1716
1717 current->exit_code = 0;
1718
1719 /* Update the siginfo structure if the signal has
1720 changed. If the debugger wanted something
1721 specific in the siginfo structure then it should
1722 have updated *info via PTRACE_SETSIGINFO. */
1723 if (signr != info->si_signo) {
1724 info->si_signo = signr;
1725 info->si_errno = 0;
1726 info->si_code = SI_USER;
1727 info->si_pid = task_pid_vnr(current->parent);
1728 info->si_uid = current->parent->uid;
1729 }
1730
1731 /* If the (new) signal is now blocked, requeue it. */
1732 if (sigismember(&current->blocked, signr)) {
1733 specific_send_sig_info(signr, info, current);
1734 signr = 0;
1735 }
1736
1737 return signr;
1738 }
1739
1740 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1741 struct pt_regs *regs, void *cookie)
1742 {
1743 struct sighand_struct *sighand = current->sighand;
1744 struct signal_struct *signal = current->signal;
1745 int signr;
1746
1747 relock:
1748 /*
1749 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1750 * While in TASK_STOPPED, we were considered "frozen enough".
1751 * Now that we woke up, it's crucial if we're supposed to be
1752 * frozen that we freeze now before running anything substantial.
1753 */
1754 try_to_freeze();
1755
1756 spin_lock_irq(&sighand->siglock);
1757
1758 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1759 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1760 ? CLD_CONTINUED : CLD_STOPPED;
1761 signal->flags &= ~SIGNAL_CLD_MASK;
1762 spin_unlock_irq(&sighand->siglock);
1763
1764 read_lock(&tasklist_lock);
1765 do_notify_parent_cldstop(current->group_leader, why);
1766 read_unlock(&tasklist_lock);
1767 goto relock;
1768 }
1769
1770 for (;;) {
1771 struct k_sigaction *ka;
1772
1773 if (unlikely(signal->group_stop_count > 0) &&
1774 do_signal_stop(0))
1775 goto relock;
1776
1777 signr = dequeue_signal(current, &current->blocked, info);
1778 if (!signr)
1779 break; /* will return 0 */
1780
1781 if (signr != SIGKILL) {
1782 signr = ptrace_signal(signr, info, regs, cookie);
1783 if (!signr)
1784 continue;
1785 }
1786
1787 ka = &sighand->action[signr-1];
1788 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1789 continue;
1790 if (ka->sa.sa_handler != SIG_DFL) {
1791 /* Run the handler. */
1792 *return_ka = *ka;
1793
1794 if (ka->sa.sa_flags & SA_ONESHOT)
1795 ka->sa.sa_handler = SIG_DFL;
1796
1797 break; /* will return non-zero "signr" value */
1798 }
1799
1800 /*
1801 * Now we are doing the default action for this signal.
1802 */
1803 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1804 continue;
1805
1806 /*
1807 * Global init gets no signals it doesn't want.
1808 */
1809 if (is_global_init(current))
1810 continue;
1811
1812 if (sig_kernel_stop(signr)) {
1813 /*
1814 * The default action is to stop all threads in
1815 * the thread group. The job control signals
1816 * do nothing in an orphaned pgrp, but SIGSTOP
1817 * always works. Note that siglock needs to be
1818 * dropped during the call to is_orphaned_pgrp()
1819 * because of lock ordering with tasklist_lock.
1820 * This allows an intervening SIGCONT to be posted.
1821 * We need to check for that and bail out if necessary.
1822 */
1823 if (signr != SIGSTOP) {
1824 spin_unlock_irq(&sighand->siglock);
1825
1826 /* signals can be posted during this window */
1827
1828 if (is_current_pgrp_orphaned())
1829 goto relock;
1830
1831 spin_lock_irq(&sighand->siglock);
1832 }
1833
1834 if (likely(do_signal_stop(signr))) {
1835 /* It released the siglock. */
1836 goto relock;
1837 }
1838
1839 /*
1840 * We didn't actually stop, due to a race
1841 * with SIGCONT or something like that.
1842 */
1843 continue;
1844 }
1845
1846 spin_unlock_irq(&sighand->siglock);
1847
1848 /*
1849 * Anything else is fatal, maybe with a core dump.
1850 */
1851 current->flags |= PF_SIGNALED;
1852 if ((signr != SIGKILL) && print_fatal_signals)
1853 print_fatal_signal(regs, signr);
1854 if (sig_kernel_coredump(signr)) {
1855 /*
1856 * If it was able to dump core, this kills all
1857 * other threads in the group and synchronizes with
1858 * their demise. If we lost the race with another
1859 * thread getting here, it set group_exit_code
1860 * first and our do_group_exit call below will use
1861 * that value and ignore the one we pass it.
1862 */
1863 do_coredump((long)signr, signr, regs);
1864 }
1865
1866 /*
1867 * Death signals, no core dump.
1868 */
1869 do_group_exit(signr);
1870 /* NOTREACHED */
1871 }
1872 spin_unlock_irq(&sighand->siglock);
1873 return signr;
1874 }
1875
1876 void exit_signals(struct task_struct *tsk)
1877 {
1878 int group_stop = 0;
1879 struct task_struct *t;
1880
1881 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1882 tsk->flags |= PF_EXITING;
1883 return;
1884 }
1885
1886 spin_lock_irq(&tsk->sighand->siglock);
1887 /*
1888 * From now this task is not visible for group-wide signals,
1889 * see wants_signal(), do_signal_stop().
1890 */
1891 tsk->flags |= PF_EXITING;
1892 if (!signal_pending(tsk))
1893 goto out;
1894
1895 /* It could be that __group_complete_signal() choose us to
1896 * notify about group-wide signal. Another thread should be
1897 * woken now to take the signal since we will not.
1898 */
1899 for (t = tsk; (t = next_thread(t)) != tsk; )
1900 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1901 recalc_sigpending_and_wake(t);
1902
1903 if (unlikely(tsk->signal->group_stop_count) &&
1904 !--tsk->signal->group_stop_count) {
1905 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1906 group_stop = 1;
1907 }
1908 out:
1909 spin_unlock_irq(&tsk->sighand->siglock);
1910
1911 if (unlikely(group_stop)) {
1912 read_lock(&tasklist_lock);
1913 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1914 read_unlock(&tasklist_lock);
1915 }
1916 }
1917
1918 EXPORT_SYMBOL(recalc_sigpending);
1919 EXPORT_SYMBOL_GPL(dequeue_signal);
1920 EXPORT_SYMBOL(flush_signals);
1921 EXPORT_SYMBOL(force_sig);
1922 EXPORT_SYMBOL(kill_proc);
1923 EXPORT_SYMBOL(ptrace_notify);
1924 EXPORT_SYMBOL(send_sig);
1925 EXPORT_SYMBOL(send_sig_info);
1926 EXPORT_SYMBOL(sigprocmask);
1927 EXPORT_SYMBOL(block_all_signals);
1928 EXPORT_SYMBOL(unblock_all_signals);
1929
1930
1931 /*
1932 * System call entry points.
1933 */
1934
1935 asmlinkage long sys_restart_syscall(void)
1936 {
1937 struct restart_block *restart = &current_thread_info()->restart_block;
1938 return restart->fn(restart);
1939 }
1940
1941 long do_no_restart_syscall(struct restart_block *param)
1942 {
1943 return -EINTR;
1944 }
1945
1946 /*
1947 * We don't need to get the kernel lock - this is all local to this
1948 * particular thread.. (and that's good, because this is _heavily_
1949 * used by various programs)
1950 */
1951
1952 /*
1953 * This is also useful for kernel threads that want to temporarily
1954 * (or permanently) block certain signals.
1955 *
1956 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1957 * interface happily blocks "unblockable" signals like SIGKILL
1958 * and friends.
1959 */
1960 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1961 {
1962 int error;
1963
1964 spin_lock_irq(&current->sighand->siglock);
1965 if (oldset)
1966 *oldset = current->blocked;
1967
1968 error = 0;
1969 switch (how) {
1970 case SIG_BLOCK:
1971 sigorsets(&current->blocked, &current->blocked, set);
1972 break;
1973 case SIG_UNBLOCK:
1974 signandsets(&current->blocked, &current->blocked, set);
1975 break;
1976 case SIG_SETMASK:
1977 current->blocked = *set;
1978 break;
1979 default:
1980 error = -EINVAL;
1981 }
1982 recalc_sigpending();
1983 spin_unlock_irq(&current->sighand->siglock);
1984
1985 return error;
1986 }
1987
1988 asmlinkage long
1989 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1990 {
1991 int error = -EINVAL;
1992 sigset_t old_set, new_set;
1993
1994 /* XXX: Don't preclude handling different sized sigset_t's. */
1995 if (sigsetsize != sizeof(sigset_t))
1996 goto out;
1997
1998 if (set) {
1999 error = -EFAULT;
2000 if (copy_from_user(&new_set, set, sizeof(*set)))
2001 goto out;
2002 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2003
2004 error = sigprocmask(how, &new_set, &old_set);
2005 if (error)
2006 goto out;
2007 if (oset)
2008 goto set_old;
2009 } else if (oset) {
2010 spin_lock_irq(&current->sighand->siglock);
2011 old_set = current->blocked;
2012 spin_unlock_irq(&current->sighand->siglock);
2013
2014 set_old:
2015 error = -EFAULT;
2016 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2017 goto out;
2018 }
2019 error = 0;
2020 out:
2021 return error;
2022 }
2023
2024 long do_sigpending(void __user *set, unsigned long sigsetsize)
2025 {
2026 long error = -EINVAL;
2027 sigset_t pending;
2028
2029 if (sigsetsize > sizeof(sigset_t))
2030 goto out;
2031
2032 spin_lock_irq(&current->sighand->siglock);
2033 sigorsets(&pending, &current->pending.signal,
2034 &current->signal->shared_pending.signal);
2035 spin_unlock_irq(&current->sighand->siglock);
2036
2037 /* Outside the lock because only this thread touches it. */
2038 sigandsets(&pending, &current->blocked, &pending);
2039
2040 error = -EFAULT;
2041 if (!copy_to_user(set, &pending, sigsetsize))
2042 error = 0;
2043
2044 out:
2045 return error;
2046 }
2047
2048 asmlinkage long
2049 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2050 {
2051 return do_sigpending(set, sigsetsize);
2052 }
2053
2054 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2055
2056 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2057 {
2058 int err;
2059
2060 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2061 return -EFAULT;
2062 if (from->si_code < 0)
2063 return __copy_to_user(to, from, sizeof(siginfo_t))
2064 ? -EFAULT : 0;
2065 /*
2066 * If you change siginfo_t structure, please be sure
2067 * this code is fixed accordingly.
2068 * Please remember to update the signalfd_copyinfo() function
2069 * inside fs/signalfd.c too, in case siginfo_t changes.
2070 * It should never copy any pad contained in the structure
2071 * to avoid security leaks, but must copy the generic
2072 * 3 ints plus the relevant union member.
2073 */
2074 err = __put_user(from->si_signo, &to->si_signo);
2075 err |= __put_user(from->si_errno, &to->si_errno);
2076 err |= __put_user((short)from->si_code, &to->si_code);
2077 switch (from->si_code & __SI_MASK) {
2078 case __SI_KILL:
2079 err |= __put_user(from->si_pid, &to->si_pid);
2080 err |= __put_user(from->si_uid, &to->si_uid);
2081 break;
2082 case __SI_TIMER:
2083 err |= __put_user(from->si_tid, &to->si_tid);
2084 err |= __put_user(from->si_overrun, &to->si_overrun);
2085 err |= __put_user(from->si_ptr, &to->si_ptr);
2086 break;
2087 case __SI_POLL:
2088 err |= __put_user(from->si_band, &to->si_band);
2089 err |= __put_user(from->si_fd, &to->si_fd);
2090 break;
2091 case __SI_FAULT:
2092 err |= __put_user(from->si_addr, &to->si_addr);
2093 #ifdef __ARCH_SI_TRAPNO
2094 err |= __put_user(from->si_trapno, &to->si_trapno);
2095 #endif
2096 break;
2097 case __SI_CHLD:
2098 err |= __put_user(from->si_pid, &to->si_pid);
2099 err |= __put_user(from->si_uid, &to->si_uid);
2100 err |= __put_user(from->si_status, &to->si_status);
2101 err |= __put_user(from->si_utime, &to->si_utime);
2102 err |= __put_user(from->si_stime, &to->si_stime);
2103 break;
2104 case __SI_RT: /* This is not generated by the kernel as of now. */
2105 case __SI_MESGQ: /* But this is */
2106 err |= __put_user(from->si_pid, &to->si_pid);
2107 err |= __put_user(from->si_uid, &to->si_uid);
2108 err |= __put_user(from->si_ptr, &to->si_ptr);
2109 break;
2110 default: /* this is just in case for now ... */
2111 err |= __put_user(from->si_pid, &to->si_pid);
2112 err |= __put_user(from->si_uid, &to->si_uid);
2113 break;
2114 }
2115 return err;
2116 }
2117
2118 #endif
2119
2120 asmlinkage long
2121 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2122 siginfo_t __user *uinfo,
2123 const struct timespec __user *uts,
2124 size_t sigsetsize)
2125 {
2126 int ret, sig;
2127 sigset_t these;
2128 struct timespec ts;
2129 siginfo_t info;
2130 long timeout = 0;
2131
2132 /* XXX: Don't preclude handling different sized sigset_t's. */
2133 if (sigsetsize != sizeof(sigset_t))
2134 return -EINVAL;
2135
2136 if (copy_from_user(&these, uthese, sizeof(these)))
2137 return -EFAULT;
2138
2139 /*
2140 * Invert the set of allowed signals to get those we
2141 * want to block.
2142 */
2143 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2144 signotset(&these);
2145
2146 if (uts) {
2147 if (copy_from_user(&ts, uts, sizeof(ts)))
2148 return -EFAULT;
2149 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2150 || ts.tv_sec < 0)
2151 return -EINVAL;
2152 }
2153
2154 spin_lock_irq(&current->sighand->siglock);
2155 sig = dequeue_signal(current, &these, &info);
2156 if (!sig) {
2157 timeout = MAX_SCHEDULE_TIMEOUT;
2158 if (uts)
2159 timeout = (timespec_to_jiffies(&ts)
2160 + (ts.tv_sec || ts.tv_nsec));
2161
2162 if (timeout) {
2163 /* None ready -- temporarily unblock those we're
2164 * interested while we are sleeping in so that we'll
2165 * be awakened when they arrive. */
2166 current->real_blocked = current->blocked;
2167 sigandsets(&current->blocked, &current->blocked, &these);
2168 recalc_sigpending();
2169 spin_unlock_irq(&current->sighand->siglock);
2170
2171 timeout = schedule_timeout_interruptible(timeout);
2172
2173 spin_lock_irq(&current->sighand->siglock);
2174 sig = dequeue_signal(current, &these, &info);
2175 current->blocked = current->real_blocked;
2176 siginitset(&current->real_blocked, 0);
2177 recalc_sigpending();
2178 }
2179 }
2180 spin_unlock_irq(&current->sighand->siglock);
2181
2182 if (sig) {
2183 ret = sig;
2184 if (uinfo) {
2185 if (copy_siginfo_to_user(uinfo, &info))
2186 ret = -EFAULT;
2187 }
2188 } else {
2189 ret = -EAGAIN;
2190 if (timeout)
2191 ret = -EINTR;
2192 }
2193
2194 return ret;
2195 }
2196
2197 asmlinkage long
2198 sys_kill(int pid, int sig)
2199 {
2200 struct siginfo info;
2201
2202 info.si_signo = sig;
2203 info.si_errno = 0;
2204 info.si_code = SI_USER;
2205 info.si_pid = task_tgid_vnr(current);
2206 info.si_uid = current->uid;
2207
2208 return kill_something_info(sig, &info, pid);
2209 }
2210
2211 static int do_tkill(int tgid, int pid, int sig)
2212 {
2213 int error;
2214 struct siginfo info;
2215 struct task_struct *p;
2216 unsigned long flags;
2217
2218 error = -ESRCH;
2219 info.si_signo = sig;
2220 info.si_errno = 0;
2221 info.si_code = SI_TKILL;
2222 info.si_pid = task_tgid_vnr(current);
2223 info.si_uid = current->uid;
2224
2225 rcu_read_lock();
2226 p = find_task_by_vpid(pid);
2227 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2228 error = check_kill_permission(sig, &info, p);
2229 /*
2230 * The null signal is a permissions and process existence
2231 * probe. No signal is actually delivered.
2232 *
2233 * If lock_task_sighand() fails we pretend the task dies
2234 * after receiving the signal. The window is tiny, and the
2235 * signal is private anyway.
2236 */
2237 if (!error && sig && lock_task_sighand(p, &flags)) {
2238 error = specific_send_sig_info(sig, &info, p);
2239 unlock_task_sighand(p, &flags);
2240 }
2241 }
2242 rcu_read_unlock();
2243
2244 return error;
2245 }
2246
2247 /**
2248 * sys_tgkill - send signal to one specific thread
2249 * @tgid: the thread group ID of the thread
2250 * @pid: the PID of the thread
2251 * @sig: signal to be sent
2252 *
2253 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2254 * exists but it's not belonging to the target process anymore. This
2255 * method solves the problem of threads exiting and PIDs getting reused.
2256 */
2257 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2258 {
2259 /* This is only valid for single tasks */
2260 if (pid <= 0 || tgid <= 0)
2261 return -EINVAL;
2262
2263 return do_tkill(tgid, pid, sig);
2264 }
2265
2266 /*
2267 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2268 */
2269 asmlinkage long
2270 sys_tkill(int pid, int sig)
2271 {
2272 /* This is only valid for single tasks */
2273 if (pid <= 0)
2274 return -EINVAL;
2275
2276 return do_tkill(0, pid, sig);
2277 }
2278
2279 asmlinkage long
2280 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2281 {
2282 siginfo_t info;
2283
2284 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2285 return -EFAULT;
2286
2287 /* Not even root can pretend to send signals from the kernel.
2288 Nor can they impersonate a kill(), which adds source info. */
2289 if (info.si_code >= 0)
2290 return -EPERM;
2291 info.si_signo = sig;
2292
2293 /* POSIX.1b doesn't mention process groups. */
2294 return kill_proc_info(sig, &info, pid);
2295 }
2296
2297 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2298 {
2299 struct task_struct *t = current;
2300 struct k_sigaction *k;
2301 sigset_t mask;
2302
2303 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2304 return -EINVAL;
2305
2306 k = &t->sighand->action[sig-1];
2307
2308 spin_lock_irq(&current->sighand->siglock);
2309 if (oact)
2310 *oact = *k;
2311
2312 if (act) {
2313 sigdelsetmask(&act->sa.sa_mask,
2314 sigmask(SIGKILL) | sigmask(SIGSTOP));
2315 *k = *act;
2316 /*
2317 * POSIX 3.3.1.3:
2318 * "Setting a signal action to SIG_IGN for a signal that is
2319 * pending shall cause the pending signal to be discarded,
2320 * whether or not it is blocked."
2321 *
2322 * "Setting a signal action to SIG_DFL for a signal that is
2323 * pending and whose default action is to ignore the signal
2324 * (for example, SIGCHLD), shall cause the pending signal to
2325 * be discarded, whether or not it is blocked"
2326 */
2327 if (__sig_ignored(t, sig)) {
2328 sigemptyset(&mask);
2329 sigaddset(&mask, sig);
2330 rm_from_queue_full(&mask, &t->signal->shared_pending);
2331 do {
2332 rm_from_queue_full(&mask, &t->pending);
2333 t = next_thread(t);
2334 } while (t != current);
2335 }
2336 }
2337
2338 spin_unlock_irq(&current->sighand->siglock);
2339 return 0;
2340 }
2341
2342 int
2343 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2344 {
2345 stack_t oss;
2346 int error;
2347
2348 if (uoss) {
2349 oss.ss_sp = (void __user *) current->sas_ss_sp;
2350 oss.ss_size = current->sas_ss_size;
2351 oss.ss_flags = sas_ss_flags(sp);
2352 }
2353
2354 if (uss) {
2355 void __user *ss_sp;
2356 size_t ss_size;
2357 int ss_flags;
2358
2359 error = -EFAULT;
2360 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2361 || __get_user(ss_sp, &uss->ss_sp)
2362 || __get_user(ss_flags, &uss->ss_flags)
2363 || __get_user(ss_size, &uss->ss_size))
2364 goto out;
2365
2366 error = -EPERM;
2367 if (on_sig_stack(sp))
2368 goto out;
2369
2370 error = -EINVAL;
2371 /*
2372 *
2373 * Note - this code used to test ss_flags incorrectly
2374 * old code may have been written using ss_flags==0
2375 * to mean ss_flags==SS_ONSTACK (as this was the only
2376 * way that worked) - this fix preserves that older
2377 * mechanism
2378 */
2379 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2380 goto out;
2381
2382 if (ss_flags == SS_DISABLE) {
2383 ss_size = 0;
2384 ss_sp = NULL;
2385 } else {
2386 error = -ENOMEM;
2387 if (ss_size < MINSIGSTKSZ)
2388 goto out;
2389 }
2390
2391 current->sas_ss_sp = (unsigned long) ss_sp;
2392 current->sas_ss_size = ss_size;
2393 }
2394
2395 if (uoss) {
2396 error = -EFAULT;
2397 if (copy_to_user(uoss, &oss, sizeof(oss)))
2398 goto out;
2399 }
2400
2401 error = 0;
2402 out:
2403 return error;
2404 }
2405
2406 #ifdef __ARCH_WANT_SYS_SIGPENDING
2407
2408 asmlinkage long
2409 sys_sigpending(old_sigset_t __user *set)
2410 {
2411 return do_sigpending(set, sizeof(*set));
2412 }
2413
2414 #endif
2415
2416 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2417 /* Some platforms have their own version with special arguments others
2418 support only sys_rt_sigprocmask. */
2419
2420 asmlinkage long
2421 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2422 {
2423 int error;
2424 old_sigset_t old_set, new_set;
2425
2426 if (set) {
2427 error = -EFAULT;
2428 if (copy_from_user(&new_set, set, sizeof(*set)))
2429 goto out;
2430 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2431
2432 spin_lock_irq(&current->sighand->siglock);
2433 old_set = current->blocked.sig[0];
2434
2435 error = 0;
2436 switch (how) {
2437 default:
2438 error = -EINVAL;
2439 break;
2440 case SIG_BLOCK:
2441 sigaddsetmask(&current->blocked, new_set);
2442 break;
2443 case SIG_UNBLOCK:
2444 sigdelsetmask(&current->blocked, new_set);
2445 break;
2446 case SIG_SETMASK:
2447 current->blocked.sig[0] = new_set;
2448 break;
2449 }
2450
2451 recalc_sigpending();
2452 spin_unlock_irq(&current->sighand->siglock);
2453 if (error)
2454 goto out;
2455 if (oset)
2456 goto set_old;
2457 } else if (oset) {
2458 old_set = current->blocked.sig[0];
2459 set_old:
2460 error = -EFAULT;
2461 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2462 goto out;
2463 }
2464 error = 0;
2465 out:
2466 return error;
2467 }
2468 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2469
2470 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2471 asmlinkage long
2472 sys_rt_sigaction(int sig,
2473 const struct sigaction __user *act,
2474 struct sigaction __user *oact,
2475 size_t sigsetsize)
2476 {
2477 struct k_sigaction new_sa, old_sa;
2478 int ret = -EINVAL;
2479
2480 /* XXX: Don't preclude handling different sized sigset_t's. */
2481 if (sigsetsize != sizeof(sigset_t))
2482 goto out;
2483
2484 if (act) {
2485 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2486 return -EFAULT;
2487 }
2488
2489 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2490
2491 if (!ret && oact) {
2492 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2493 return -EFAULT;
2494 }
2495 out:
2496 return ret;
2497 }
2498 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2499
2500 #ifdef __ARCH_WANT_SYS_SGETMASK
2501
2502 /*
2503 * For backwards compatibility. Functionality superseded by sigprocmask.
2504 */
2505 asmlinkage long
2506 sys_sgetmask(void)
2507 {
2508 /* SMP safe */
2509 return current->blocked.sig[0];
2510 }
2511
2512 asmlinkage long
2513 sys_ssetmask(int newmask)
2514 {
2515 int old;
2516
2517 spin_lock_irq(&current->sighand->siglock);
2518 old = current->blocked.sig[0];
2519
2520 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2521 sigmask(SIGSTOP)));
2522 recalc_sigpending();
2523 spin_unlock_irq(&current->sighand->siglock);
2524
2525 return old;
2526 }
2527 #endif /* __ARCH_WANT_SGETMASK */
2528
2529 #ifdef __ARCH_WANT_SYS_SIGNAL
2530 /*
2531 * For backwards compatibility. Functionality superseded by sigaction.
2532 */
2533 asmlinkage unsigned long
2534 sys_signal(int sig, __sighandler_t handler)
2535 {
2536 struct k_sigaction new_sa, old_sa;
2537 int ret;
2538
2539 new_sa.sa.sa_handler = handler;
2540 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2541 sigemptyset(&new_sa.sa.sa_mask);
2542
2543 ret = do_sigaction(sig, &new_sa, &old_sa);
2544
2545 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2546 }
2547 #endif /* __ARCH_WANT_SYS_SIGNAL */
2548
2549 #ifdef __ARCH_WANT_SYS_PAUSE
2550
2551 asmlinkage long
2552 sys_pause(void)
2553 {
2554 current->state = TASK_INTERRUPTIBLE;
2555 schedule();
2556 return -ERESTARTNOHAND;
2557 }
2558
2559 #endif
2560
2561 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2562 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2563 {
2564 sigset_t newset;
2565
2566 /* XXX: Don't preclude handling different sized sigset_t's. */
2567 if (sigsetsize != sizeof(sigset_t))
2568 return -EINVAL;
2569
2570 if (copy_from_user(&newset, unewset, sizeof(newset)))
2571 return -EFAULT;
2572 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2573
2574 spin_lock_irq(&current->sighand->siglock);
2575 current->saved_sigmask = current->blocked;
2576 current->blocked = newset;
2577 recalc_sigpending();
2578 spin_unlock_irq(&current->sighand->siglock);
2579
2580 current->state = TASK_INTERRUPTIBLE;
2581 schedule();
2582 set_thread_flag(TIF_RESTORE_SIGMASK);
2583 return -ERESTARTNOHAND;
2584 }
2585 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2586
2587 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2588 {
2589 return NULL;
2590 }
2591
2592 void __init signals_init(void)
2593 {
2594 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2595 }