Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30
31 #include <asm/param.h>
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include <asm/siginfo.h>
35 #include "audit.h" /* audit_signal_info() */
36
37 /*
38 * SLAB caches for signal bits.
39 */
40
41 static struct kmem_cache *sigqueue_cachep;
42
43 static void __user *sig_handler(struct task_struct *t, int sig)
44 {
45 return t->sighand->action[sig - 1].sa.sa_handler;
46 }
47
48 static int sig_handler_ignored(void __user *handler, int sig)
49 {
50 /* Is it explicitly or implicitly ignored? */
51 return handler == SIG_IGN ||
52 (handler == SIG_DFL && sig_kernel_ignore(sig));
53 }
54
55 static int sig_ignored(struct task_struct *t, int sig)
56 {
57 void __user *handler;
58
59 /*
60 * Blocked signals are never ignored, since the
61 * signal handler may change by the time it is
62 * unblocked.
63 */
64 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
65 return 0;
66
67 handler = sig_handler(t, sig);
68 if (!sig_handler_ignored(handler, sig))
69 return 0;
70
71 /*
72 * Tracers may want to know about even ignored signals.
73 */
74 return !tracehook_consider_ignored_signal(t, sig, handler);
75 }
76
77 /*
78 * Re-calculate pending state from the set of locally pending
79 * signals, globally pending signals, and blocked signals.
80 */
81 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
82 {
83 unsigned long ready;
84 long i;
85
86 switch (_NSIG_WORDS) {
87 default:
88 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
89 ready |= signal->sig[i] &~ blocked->sig[i];
90 break;
91
92 case 4: ready = signal->sig[3] &~ blocked->sig[3];
93 ready |= signal->sig[2] &~ blocked->sig[2];
94 ready |= signal->sig[1] &~ blocked->sig[1];
95 ready |= signal->sig[0] &~ blocked->sig[0];
96 break;
97
98 case 2: ready = signal->sig[1] &~ blocked->sig[1];
99 ready |= signal->sig[0] &~ blocked->sig[0];
100 break;
101
102 case 1: ready = signal->sig[0] &~ blocked->sig[0];
103 }
104 return ready != 0;
105 }
106
107 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
108
109 static int recalc_sigpending_tsk(struct task_struct *t)
110 {
111 if (t->signal->group_stop_count > 0 ||
112 PENDING(&t->pending, &t->blocked) ||
113 PENDING(&t->signal->shared_pending, &t->blocked)) {
114 set_tsk_thread_flag(t, TIF_SIGPENDING);
115 return 1;
116 }
117 /*
118 * We must never clear the flag in another thread, or in current
119 * when it's possible the current syscall is returning -ERESTART*.
120 * So we don't clear it here, and only callers who know they should do.
121 */
122 return 0;
123 }
124
125 /*
126 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
127 * This is superfluous when called on current, the wakeup is a harmless no-op.
128 */
129 void recalc_sigpending_and_wake(struct task_struct *t)
130 {
131 if (recalc_sigpending_tsk(t))
132 signal_wake_up(t, 0);
133 }
134
135 void recalc_sigpending(void)
136 {
137 if (unlikely(tracehook_force_sigpending()))
138 set_thread_flag(TIF_SIGPENDING);
139 else if (!recalc_sigpending_tsk(current) && !freezing(current))
140 clear_thread_flag(TIF_SIGPENDING);
141
142 }
143
144 /* Given the mask, find the first available signal that should be serviced. */
145
146 int next_signal(struct sigpending *pending, sigset_t *mask)
147 {
148 unsigned long i, *s, *m, x;
149 int sig = 0;
150
151 s = pending->signal.sig;
152 m = mask->sig;
153 switch (_NSIG_WORDS) {
154 default:
155 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
156 if ((x = *s &~ *m) != 0) {
157 sig = ffz(~x) + i*_NSIG_BPW + 1;
158 break;
159 }
160 break;
161
162 case 2: if ((x = s[0] &~ m[0]) != 0)
163 sig = 1;
164 else if ((x = s[1] &~ m[1]) != 0)
165 sig = _NSIG_BPW + 1;
166 else
167 break;
168 sig += ffz(~x);
169 break;
170
171 case 1: if ((x = *s &~ *m) != 0)
172 sig = ffz(~x) + 1;
173 break;
174 }
175
176 return sig;
177 }
178
179 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
180 int override_rlimit)
181 {
182 struct sigqueue *q = NULL;
183 struct user_struct *user;
184
185 /*
186 * In order to avoid problems with "switch_user()", we want to make
187 * sure that the compiler doesn't re-load "t->user"
188 */
189 user = t->user;
190 barrier();
191 atomic_inc(&user->sigpending);
192 if (override_rlimit ||
193 atomic_read(&user->sigpending) <=
194 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
195 q = kmem_cache_alloc(sigqueue_cachep, flags);
196 if (unlikely(q == NULL)) {
197 atomic_dec(&user->sigpending);
198 } else {
199 INIT_LIST_HEAD(&q->list);
200 q->flags = 0;
201 q->user = get_uid(user);
202 }
203 return(q);
204 }
205
206 static void __sigqueue_free(struct sigqueue *q)
207 {
208 if (q->flags & SIGQUEUE_PREALLOC)
209 return;
210 atomic_dec(&q->user->sigpending);
211 free_uid(q->user);
212 kmem_cache_free(sigqueue_cachep, q);
213 }
214
215 void flush_sigqueue(struct sigpending *queue)
216 {
217 struct sigqueue *q;
218
219 sigemptyset(&queue->signal);
220 while (!list_empty(&queue->list)) {
221 q = list_entry(queue->list.next, struct sigqueue , list);
222 list_del_init(&q->list);
223 __sigqueue_free(q);
224 }
225 }
226
227 /*
228 * Flush all pending signals for a task.
229 */
230 void flush_signals(struct task_struct *t)
231 {
232 unsigned long flags;
233
234 spin_lock_irqsave(&t->sighand->siglock, flags);
235 clear_tsk_thread_flag(t, TIF_SIGPENDING);
236 flush_sigqueue(&t->pending);
237 flush_sigqueue(&t->signal->shared_pending);
238 spin_unlock_irqrestore(&t->sighand->siglock, flags);
239 }
240
241 static void __flush_itimer_signals(struct sigpending *pending)
242 {
243 sigset_t signal, retain;
244 struct sigqueue *q, *n;
245
246 signal = pending->signal;
247 sigemptyset(&retain);
248
249 list_for_each_entry_safe(q, n, &pending->list, list) {
250 int sig = q->info.si_signo;
251
252 if (likely(q->info.si_code != SI_TIMER)) {
253 sigaddset(&retain, sig);
254 } else {
255 sigdelset(&signal, sig);
256 list_del_init(&q->list);
257 __sigqueue_free(q);
258 }
259 }
260
261 sigorsets(&pending->signal, &signal, &retain);
262 }
263
264 void flush_itimer_signals(void)
265 {
266 struct task_struct *tsk = current;
267 unsigned long flags;
268
269 spin_lock_irqsave(&tsk->sighand->siglock, flags);
270 __flush_itimer_signals(&tsk->pending);
271 __flush_itimer_signals(&tsk->signal->shared_pending);
272 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
273 }
274
275 void ignore_signals(struct task_struct *t)
276 {
277 int i;
278
279 for (i = 0; i < _NSIG; ++i)
280 t->sighand->action[i].sa.sa_handler = SIG_IGN;
281
282 flush_signals(t);
283 }
284
285 /*
286 * Flush all handlers for a task.
287 */
288
289 void
290 flush_signal_handlers(struct task_struct *t, int force_default)
291 {
292 int i;
293 struct k_sigaction *ka = &t->sighand->action[0];
294 for (i = _NSIG ; i != 0 ; i--) {
295 if (force_default || ka->sa.sa_handler != SIG_IGN)
296 ka->sa.sa_handler = SIG_DFL;
297 ka->sa.sa_flags = 0;
298 sigemptyset(&ka->sa.sa_mask);
299 ka++;
300 }
301 }
302
303 int unhandled_signal(struct task_struct *tsk, int sig)
304 {
305 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
306 if (is_global_init(tsk))
307 return 1;
308 if (handler != SIG_IGN && handler != SIG_DFL)
309 return 0;
310 return !tracehook_consider_fatal_signal(tsk, sig, handler);
311 }
312
313
314 /* Notify the system that a driver wants to block all signals for this
315 * process, and wants to be notified if any signals at all were to be
316 * sent/acted upon. If the notifier routine returns non-zero, then the
317 * signal will be acted upon after all. If the notifier routine returns 0,
318 * then then signal will be blocked. Only one block per process is
319 * allowed. priv is a pointer to private data that the notifier routine
320 * can use to determine if the signal should be blocked or not. */
321
322 void
323 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
324 {
325 unsigned long flags;
326
327 spin_lock_irqsave(&current->sighand->siglock, flags);
328 current->notifier_mask = mask;
329 current->notifier_data = priv;
330 current->notifier = notifier;
331 spin_unlock_irqrestore(&current->sighand->siglock, flags);
332 }
333
334 /* Notify the system that blocking has ended. */
335
336 void
337 unblock_all_signals(void)
338 {
339 unsigned long flags;
340
341 spin_lock_irqsave(&current->sighand->siglock, flags);
342 current->notifier = NULL;
343 current->notifier_data = NULL;
344 recalc_sigpending();
345 spin_unlock_irqrestore(&current->sighand->siglock, flags);
346 }
347
348 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
349 {
350 struct sigqueue *q, *first = NULL;
351
352 /*
353 * Collect the siginfo appropriate to this signal. Check if
354 * there is another siginfo for the same signal.
355 */
356 list_for_each_entry(q, &list->list, list) {
357 if (q->info.si_signo == sig) {
358 if (first)
359 goto still_pending;
360 first = q;
361 }
362 }
363
364 sigdelset(&list->signal, sig);
365
366 if (first) {
367 still_pending:
368 list_del_init(&first->list);
369 copy_siginfo(info, &first->info);
370 __sigqueue_free(first);
371 } else {
372 /* Ok, it wasn't in the queue. This must be
373 a fast-pathed signal or we must have been
374 out of queue space. So zero out the info.
375 */
376 info->si_signo = sig;
377 info->si_errno = 0;
378 info->si_code = 0;
379 info->si_pid = 0;
380 info->si_uid = 0;
381 }
382 }
383
384 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
385 siginfo_t *info)
386 {
387 int sig = next_signal(pending, mask);
388
389 if (sig) {
390 if (current->notifier) {
391 if (sigismember(current->notifier_mask, sig)) {
392 if (!(current->notifier)(current->notifier_data)) {
393 clear_thread_flag(TIF_SIGPENDING);
394 return 0;
395 }
396 }
397 }
398
399 collect_signal(sig, pending, info);
400 }
401
402 return sig;
403 }
404
405 /*
406 * Dequeue a signal and return the element to the caller, which is
407 * expected to free it.
408 *
409 * All callers have to hold the siglock.
410 */
411 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
412 {
413 int signr;
414
415 /* We only dequeue private signals from ourselves, we don't let
416 * signalfd steal them
417 */
418 signr = __dequeue_signal(&tsk->pending, mask, info);
419 if (!signr) {
420 signr = __dequeue_signal(&tsk->signal->shared_pending,
421 mask, info);
422 /*
423 * itimer signal ?
424 *
425 * itimers are process shared and we restart periodic
426 * itimers in the signal delivery path to prevent DoS
427 * attacks in the high resolution timer case. This is
428 * compliant with the old way of self restarting
429 * itimers, as the SIGALRM is a legacy signal and only
430 * queued once. Changing the restart behaviour to
431 * restart the timer in the signal dequeue path is
432 * reducing the timer noise on heavy loaded !highres
433 * systems too.
434 */
435 if (unlikely(signr == SIGALRM)) {
436 struct hrtimer *tmr = &tsk->signal->real_timer;
437
438 if (!hrtimer_is_queued(tmr) &&
439 tsk->signal->it_real_incr.tv64 != 0) {
440 hrtimer_forward(tmr, tmr->base->get_time(),
441 tsk->signal->it_real_incr);
442 hrtimer_restart(tmr);
443 }
444 }
445 }
446
447 recalc_sigpending();
448 if (!signr)
449 return 0;
450
451 if (unlikely(sig_kernel_stop(signr))) {
452 /*
453 * Set a marker that we have dequeued a stop signal. Our
454 * caller might release the siglock and then the pending
455 * stop signal it is about to process is no longer in the
456 * pending bitmasks, but must still be cleared by a SIGCONT
457 * (and overruled by a SIGKILL). So those cases clear this
458 * shared flag after we've set it. Note that this flag may
459 * remain set after the signal we return is ignored or
460 * handled. That doesn't matter because its only purpose
461 * is to alert stop-signal processing code when another
462 * processor has come along and cleared the flag.
463 */
464 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
465 }
466 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
467 /*
468 * Release the siglock to ensure proper locking order
469 * of timer locks outside of siglocks. Note, we leave
470 * irqs disabled here, since the posix-timers code is
471 * about to disable them again anyway.
472 */
473 spin_unlock(&tsk->sighand->siglock);
474 do_schedule_next_timer(info);
475 spin_lock(&tsk->sighand->siglock);
476 }
477 return signr;
478 }
479
480 /*
481 * Tell a process that it has a new active signal..
482 *
483 * NOTE! we rely on the previous spin_lock to
484 * lock interrupts for us! We can only be called with
485 * "siglock" held, and the local interrupt must
486 * have been disabled when that got acquired!
487 *
488 * No need to set need_resched since signal event passing
489 * goes through ->blocked
490 */
491 void signal_wake_up(struct task_struct *t, int resume)
492 {
493 unsigned int mask;
494
495 set_tsk_thread_flag(t, TIF_SIGPENDING);
496
497 /*
498 * For SIGKILL, we want to wake it up in the stopped/traced/killable
499 * case. We don't check t->state here because there is a race with it
500 * executing another processor and just now entering stopped state.
501 * By using wake_up_state, we ensure the process will wake up and
502 * handle its death signal.
503 */
504 mask = TASK_INTERRUPTIBLE;
505 if (resume)
506 mask |= TASK_WAKEKILL;
507 if (!wake_up_state(t, mask))
508 kick_process(t);
509 }
510
511 /*
512 * Remove signals in mask from the pending set and queue.
513 * Returns 1 if any signals were found.
514 *
515 * All callers must be holding the siglock.
516 *
517 * This version takes a sigset mask and looks at all signals,
518 * not just those in the first mask word.
519 */
520 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
521 {
522 struct sigqueue *q, *n;
523 sigset_t m;
524
525 sigandsets(&m, mask, &s->signal);
526 if (sigisemptyset(&m))
527 return 0;
528
529 signandsets(&s->signal, &s->signal, mask);
530 list_for_each_entry_safe(q, n, &s->list, list) {
531 if (sigismember(mask, q->info.si_signo)) {
532 list_del_init(&q->list);
533 __sigqueue_free(q);
534 }
535 }
536 return 1;
537 }
538 /*
539 * Remove signals in mask from the pending set and queue.
540 * Returns 1 if any signals were found.
541 *
542 * All callers must be holding the siglock.
543 */
544 static int rm_from_queue(unsigned long mask, struct sigpending *s)
545 {
546 struct sigqueue *q, *n;
547
548 if (!sigtestsetmask(&s->signal, mask))
549 return 0;
550
551 sigdelsetmask(&s->signal, mask);
552 list_for_each_entry_safe(q, n, &s->list, list) {
553 if (q->info.si_signo < SIGRTMIN &&
554 (mask & sigmask(q->info.si_signo))) {
555 list_del_init(&q->list);
556 __sigqueue_free(q);
557 }
558 }
559 return 1;
560 }
561
562 /*
563 * Bad permissions for sending the signal
564 */
565 static int check_kill_permission(int sig, struct siginfo *info,
566 struct task_struct *t)
567 {
568 struct pid *sid;
569 int error;
570
571 if (!valid_signal(sig))
572 return -EINVAL;
573
574 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
575 return 0;
576
577 error = audit_signal_info(sig, t); /* Let audit system see the signal */
578 if (error)
579 return error;
580
581 if ((current->euid ^ t->suid) && (current->euid ^ t->uid) &&
582 (current->uid ^ t->suid) && (current->uid ^ t->uid) &&
583 !capable(CAP_KILL)) {
584 switch (sig) {
585 case SIGCONT:
586 sid = task_session(t);
587 /*
588 * We don't return the error if sid == NULL. The
589 * task was unhashed, the caller must notice this.
590 */
591 if (!sid || sid == task_session(current))
592 break;
593 default:
594 return -EPERM;
595 }
596 }
597
598 return security_task_kill(t, info, sig, 0);
599 }
600
601 /*
602 * Handle magic process-wide effects of stop/continue signals. Unlike
603 * the signal actions, these happen immediately at signal-generation
604 * time regardless of blocking, ignoring, or handling. This does the
605 * actual continuing for SIGCONT, but not the actual stopping for stop
606 * signals. The process stop is done as a signal action for SIG_DFL.
607 *
608 * Returns true if the signal should be actually delivered, otherwise
609 * it should be dropped.
610 */
611 static int prepare_signal(int sig, struct task_struct *p)
612 {
613 struct signal_struct *signal = p->signal;
614 struct task_struct *t;
615
616 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
617 /*
618 * The process is in the middle of dying, nothing to do.
619 */
620 } else if (sig_kernel_stop(sig)) {
621 /*
622 * This is a stop signal. Remove SIGCONT from all queues.
623 */
624 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
625 t = p;
626 do {
627 rm_from_queue(sigmask(SIGCONT), &t->pending);
628 } while_each_thread(p, t);
629 } else if (sig == SIGCONT) {
630 unsigned int why;
631 /*
632 * Remove all stop signals from all queues,
633 * and wake all threads.
634 */
635 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
636 t = p;
637 do {
638 unsigned int state;
639 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
640 /*
641 * If there is a handler for SIGCONT, we must make
642 * sure that no thread returns to user mode before
643 * we post the signal, in case it was the only
644 * thread eligible to run the signal handler--then
645 * it must not do anything between resuming and
646 * running the handler. With the TIF_SIGPENDING
647 * flag set, the thread will pause and acquire the
648 * siglock that we hold now and until we've queued
649 * the pending signal.
650 *
651 * Wake up the stopped thread _after_ setting
652 * TIF_SIGPENDING
653 */
654 state = __TASK_STOPPED;
655 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
656 set_tsk_thread_flag(t, TIF_SIGPENDING);
657 state |= TASK_INTERRUPTIBLE;
658 }
659 wake_up_state(t, state);
660 } while_each_thread(p, t);
661
662 /*
663 * Notify the parent with CLD_CONTINUED if we were stopped.
664 *
665 * If we were in the middle of a group stop, we pretend it
666 * was already finished, and then continued. Since SIGCHLD
667 * doesn't queue we report only CLD_STOPPED, as if the next
668 * CLD_CONTINUED was dropped.
669 */
670 why = 0;
671 if (signal->flags & SIGNAL_STOP_STOPPED)
672 why |= SIGNAL_CLD_CONTINUED;
673 else if (signal->group_stop_count)
674 why |= SIGNAL_CLD_STOPPED;
675
676 if (why) {
677 /*
678 * The first thread which returns from finish_stop()
679 * will take ->siglock, notice SIGNAL_CLD_MASK, and
680 * notify its parent. See get_signal_to_deliver().
681 */
682 signal->flags = why | SIGNAL_STOP_CONTINUED;
683 signal->group_stop_count = 0;
684 signal->group_exit_code = 0;
685 } else {
686 /*
687 * We are not stopped, but there could be a stop
688 * signal in the middle of being processed after
689 * being removed from the queue. Clear that too.
690 */
691 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
692 }
693 }
694
695 return !sig_ignored(p, sig);
696 }
697
698 /*
699 * Test if P wants to take SIG. After we've checked all threads with this,
700 * it's equivalent to finding no threads not blocking SIG. Any threads not
701 * blocking SIG were ruled out because they are not running and already
702 * have pending signals. Such threads will dequeue from the shared queue
703 * as soon as they're available, so putting the signal on the shared queue
704 * will be equivalent to sending it to one such thread.
705 */
706 static inline int wants_signal(int sig, struct task_struct *p)
707 {
708 if (sigismember(&p->blocked, sig))
709 return 0;
710 if (p->flags & PF_EXITING)
711 return 0;
712 if (sig == SIGKILL)
713 return 1;
714 if (task_is_stopped_or_traced(p))
715 return 0;
716 return task_curr(p) || !signal_pending(p);
717 }
718
719 static void complete_signal(int sig, struct task_struct *p, int group)
720 {
721 struct signal_struct *signal = p->signal;
722 struct task_struct *t;
723
724 /*
725 * Now find a thread we can wake up to take the signal off the queue.
726 *
727 * If the main thread wants the signal, it gets first crack.
728 * Probably the least surprising to the average bear.
729 */
730 if (wants_signal(sig, p))
731 t = p;
732 else if (!group || thread_group_empty(p))
733 /*
734 * There is just one thread and it does not need to be woken.
735 * It will dequeue unblocked signals before it runs again.
736 */
737 return;
738 else {
739 /*
740 * Otherwise try to find a suitable thread.
741 */
742 t = signal->curr_target;
743 while (!wants_signal(sig, t)) {
744 t = next_thread(t);
745 if (t == signal->curr_target)
746 /*
747 * No thread needs to be woken.
748 * Any eligible threads will see
749 * the signal in the queue soon.
750 */
751 return;
752 }
753 signal->curr_target = t;
754 }
755
756 /*
757 * Found a killable thread. If the signal will be fatal,
758 * then start taking the whole group down immediately.
759 */
760 if (sig_fatal(p, sig) &&
761 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
762 !sigismember(&t->real_blocked, sig) &&
763 (sig == SIGKILL ||
764 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
765 /*
766 * This signal will be fatal to the whole group.
767 */
768 if (!sig_kernel_coredump(sig)) {
769 /*
770 * Start a group exit and wake everybody up.
771 * This way we don't have other threads
772 * running and doing things after a slower
773 * thread has the fatal signal pending.
774 */
775 signal->flags = SIGNAL_GROUP_EXIT;
776 signal->group_exit_code = sig;
777 signal->group_stop_count = 0;
778 t = p;
779 do {
780 sigaddset(&t->pending.signal, SIGKILL);
781 signal_wake_up(t, 1);
782 } while_each_thread(p, t);
783 return;
784 }
785 }
786
787 /*
788 * The signal is already in the shared-pending queue.
789 * Tell the chosen thread to wake up and dequeue it.
790 */
791 signal_wake_up(t, sig == SIGKILL);
792 return;
793 }
794
795 static inline int legacy_queue(struct sigpending *signals, int sig)
796 {
797 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
798 }
799
800 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
801 int group)
802 {
803 struct sigpending *pending;
804 struct sigqueue *q;
805
806 assert_spin_locked(&t->sighand->siglock);
807 if (!prepare_signal(sig, t))
808 return 0;
809
810 pending = group ? &t->signal->shared_pending : &t->pending;
811 /*
812 * Short-circuit ignored signals and support queuing
813 * exactly one non-rt signal, so that we can get more
814 * detailed information about the cause of the signal.
815 */
816 if (legacy_queue(pending, sig))
817 return 0;
818 /*
819 * fast-pathed signals for kernel-internal things like SIGSTOP
820 * or SIGKILL.
821 */
822 if (info == SEND_SIG_FORCED)
823 goto out_set;
824
825 /* Real-time signals must be queued if sent by sigqueue, or
826 some other real-time mechanism. It is implementation
827 defined whether kill() does so. We attempt to do so, on
828 the principle of least surprise, but since kill is not
829 allowed to fail with EAGAIN when low on memory we just
830 make sure at least one signal gets delivered and don't
831 pass on the info struct. */
832
833 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
834 (is_si_special(info) ||
835 info->si_code >= 0)));
836 if (q) {
837 list_add_tail(&q->list, &pending->list);
838 switch ((unsigned long) info) {
839 case (unsigned long) SEND_SIG_NOINFO:
840 q->info.si_signo = sig;
841 q->info.si_errno = 0;
842 q->info.si_code = SI_USER;
843 q->info.si_pid = task_pid_vnr(current);
844 q->info.si_uid = current->uid;
845 break;
846 case (unsigned long) SEND_SIG_PRIV:
847 q->info.si_signo = sig;
848 q->info.si_errno = 0;
849 q->info.si_code = SI_KERNEL;
850 q->info.si_pid = 0;
851 q->info.si_uid = 0;
852 break;
853 default:
854 copy_siginfo(&q->info, info);
855 break;
856 }
857 } else if (!is_si_special(info)) {
858 if (sig >= SIGRTMIN && info->si_code != SI_USER)
859 /*
860 * Queue overflow, abort. We may abort if the signal was rt
861 * and sent by user using something other than kill().
862 */
863 return -EAGAIN;
864 }
865
866 out_set:
867 signalfd_notify(t, sig);
868 sigaddset(&pending->signal, sig);
869 complete_signal(sig, t, group);
870 return 0;
871 }
872
873 int print_fatal_signals;
874
875 static void print_fatal_signal(struct pt_regs *regs, int signr)
876 {
877 printk("%s/%d: potentially unexpected fatal signal %d.\n",
878 current->comm, task_pid_nr(current), signr);
879
880 #if defined(__i386__) && !defined(__arch_um__)
881 printk("code at %08lx: ", regs->ip);
882 {
883 int i;
884 for (i = 0; i < 16; i++) {
885 unsigned char insn;
886
887 __get_user(insn, (unsigned char *)(regs->ip + i));
888 printk("%02x ", insn);
889 }
890 }
891 #endif
892 printk("\n");
893 show_regs(regs);
894 }
895
896 static int __init setup_print_fatal_signals(char *str)
897 {
898 get_option (&str, &print_fatal_signals);
899
900 return 1;
901 }
902
903 __setup("print-fatal-signals=", setup_print_fatal_signals);
904
905 int
906 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
907 {
908 return send_signal(sig, info, p, 1);
909 }
910
911 static int
912 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
913 {
914 return send_signal(sig, info, t, 0);
915 }
916
917 /*
918 * Force a signal that the process can't ignore: if necessary
919 * we unblock the signal and change any SIG_IGN to SIG_DFL.
920 *
921 * Note: If we unblock the signal, we always reset it to SIG_DFL,
922 * since we do not want to have a signal handler that was blocked
923 * be invoked when user space had explicitly blocked it.
924 *
925 * We don't want to have recursive SIGSEGV's etc, for example,
926 * that is why we also clear SIGNAL_UNKILLABLE.
927 */
928 int
929 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
930 {
931 unsigned long int flags;
932 int ret, blocked, ignored;
933 struct k_sigaction *action;
934
935 spin_lock_irqsave(&t->sighand->siglock, flags);
936 action = &t->sighand->action[sig-1];
937 ignored = action->sa.sa_handler == SIG_IGN;
938 blocked = sigismember(&t->blocked, sig);
939 if (blocked || ignored) {
940 action->sa.sa_handler = SIG_DFL;
941 if (blocked) {
942 sigdelset(&t->blocked, sig);
943 recalc_sigpending_and_wake(t);
944 }
945 }
946 if (action->sa.sa_handler == SIG_DFL)
947 t->signal->flags &= ~SIGNAL_UNKILLABLE;
948 ret = specific_send_sig_info(sig, info, t);
949 spin_unlock_irqrestore(&t->sighand->siglock, flags);
950
951 return ret;
952 }
953
954 void
955 force_sig_specific(int sig, struct task_struct *t)
956 {
957 force_sig_info(sig, SEND_SIG_FORCED, t);
958 }
959
960 /*
961 * Nuke all other threads in the group.
962 */
963 void zap_other_threads(struct task_struct *p)
964 {
965 struct task_struct *t;
966
967 p->signal->group_stop_count = 0;
968
969 for (t = next_thread(p); t != p; t = next_thread(t)) {
970 /*
971 * Don't bother with already dead threads
972 */
973 if (t->exit_state)
974 continue;
975
976 /* SIGKILL will be handled before any pending SIGSTOP */
977 sigaddset(&t->pending.signal, SIGKILL);
978 signal_wake_up(t, 1);
979 }
980 }
981
982 int __fatal_signal_pending(struct task_struct *tsk)
983 {
984 return sigismember(&tsk->pending.signal, SIGKILL);
985 }
986 EXPORT_SYMBOL(__fatal_signal_pending);
987
988 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
989 {
990 struct sighand_struct *sighand;
991
992 rcu_read_lock();
993 for (;;) {
994 sighand = rcu_dereference(tsk->sighand);
995 if (unlikely(sighand == NULL))
996 break;
997
998 spin_lock_irqsave(&sighand->siglock, *flags);
999 if (likely(sighand == tsk->sighand))
1000 break;
1001 spin_unlock_irqrestore(&sighand->siglock, *flags);
1002 }
1003 rcu_read_unlock();
1004
1005 return sighand;
1006 }
1007
1008 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1009 {
1010 unsigned long flags;
1011 int ret;
1012
1013 ret = check_kill_permission(sig, info, p);
1014
1015 if (!ret && sig) {
1016 ret = -ESRCH;
1017 if (lock_task_sighand(p, &flags)) {
1018 ret = __group_send_sig_info(sig, info, p);
1019 unlock_task_sighand(p, &flags);
1020 }
1021 }
1022
1023 return ret;
1024 }
1025
1026 /*
1027 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1028 * control characters do (^C, ^Z etc)
1029 */
1030
1031 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1032 {
1033 struct task_struct *p = NULL;
1034 int retval, success;
1035
1036 success = 0;
1037 retval = -ESRCH;
1038 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1039 int err = group_send_sig_info(sig, info, p);
1040 success |= !err;
1041 retval = err;
1042 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1043 return success ? 0 : retval;
1044 }
1045
1046 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1047 {
1048 int error = -ESRCH;
1049 struct task_struct *p;
1050
1051 rcu_read_lock();
1052 retry:
1053 p = pid_task(pid, PIDTYPE_PID);
1054 if (p) {
1055 error = group_send_sig_info(sig, info, p);
1056 if (unlikely(error == -ESRCH))
1057 /*
1058 * The task was unhashed in between, try again.
1059 * If it is dead, pid_task() will return NULL,
1060 * if we race with de_thread() it will find the
1061 * new leader.
1062 */
1063 goto retry;
1064 }
1065 rcu_read_unlock();
1066
1067 return error;
1068 }
1069
1070 int
1071 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1072 {
1073 int error;
1074 rcu_read_lock();
1075 error = kill_pid_info(sig, info, find_vpid(pid));
1076 rcu_read_unlock();
1077 return error;
1078 }
1079
1080 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1081 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1082 uid_t uid, uid_t euid, u32 secid)
1083 {
1084 int ret = -EINVAL;
1085 struct task_struct *p;
1086
1087 if (!valid_signal(sig))
1088 return ret;
1089
1090 read_lock(&tasklist_lock);
1091 p = pid_task(pid, PIDTYPE_PID);
1092 if (!p) {
1093 ret = -ESRCH;
1094 goto out_unlock;
1095 }
1096 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1097 && (euid != p->suid) && (euid != p->uid)
1098 && (uid != p->suid) && (uid != p->uid)) {
1099 ret = -EPERM;
1100 goto out_unlock;
1101 }
1102 ret = security_task_kill(p, info, sig, secid);
1103 if (ret)
1104 goto out_unlock;
1105 if (sig && p->sighand) {
1106 unsigned long flags;
1107 spin_lock_irqsave(&p->sighand->siglock, flags);
1108 ret = __group_send_sig_info(sig, info, p);
1109 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1110 }
1111 out_unlock:
1112 read_unlock(&tasklist_lock);
1113 return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1116
1117 /*
1118 * kill_something_info() interprets pid in interesting ways just like kill(2).
1119 *
1120 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1121 * is probably wrong. Should make it like BSD or SYSV.
1122 */
1123
1124 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1125 {
1126 int ret;
1127
1128 if (pid > 0) {
1129 rcu_read_lock();
1130 ret = kill_pid_info(sig, info, find_vpid(pid));
1131 rcu_read_unlock();
1132 return ret;
1133 }
1134
1135 read_lock(&tasklist_lock);
1136 if (pid != -1) {
1137 ret = __kill_pgrp_info(sig, info,
1138 pid ? find_vpid(-pid) : task_pgrp(current));
1139 } else {
1140 int retval = 0, count = 0;
1141 struct task_struct * p;
1142
1143 for_each_process(p) {
1144 if (p->pid > 1 && !same_thread_group(p, current)) {
1145 int err = group_send_sig_info(sig, info, p);
1146 ++count;
1147 if (err != -EPERM)
1148 retval = err;
1149 }
1150 }
1151 ret = count ? retval : -ESRCH;
1152 }
1153 read_unlock(&tasklist_lock);
1154
1155 return ret;
1156 }
1157
1158 /*
1159 * These are for backward compatibility with the rest of the kernel source.
1160 */
1161
1162 /*
1163 * The caller must ensure the task can't exit.
1164 */
1165 int
1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1167 {
1168 int ret;
1169 unsigned long flags;
1170
1171 /*
1172 * Make sure legacy kernel users don't send in bad values
1173 * (normal paths check this in check_kill_permission).
1174 */
1175 if (!valid_signal(sig))
1176 return -EINVAL;
1177
1178 spin_lock_irqsave(&p->sighand->siglock, flags);
1179 ret = specific_send_sig_info(sig, info, p);
1180 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1181 return ret;
1182 }
1183
1184 #define __si_special(priv) \
1185 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1186
1187 int
1188 send_sig(int sig, struct task_struct *p, int priv)
1189 {
1190 return send_sig_info(sig, __si_special(priv), p);
1191 }
1192
1193 void
1194 force_sig(int sig, struct task_struct *p)
1195 {
1196 force_sig_info(sig, SEND_SIG_PRIV, p);
1197 }
1198
1199 /*
1200 * When things go south during signal handling, we
1201 * will force a SIGSEGV. And if the signal that caused
1202 * the problem was already a SIGSEGV, we'll want to
1203 * make sure we don't even try to deliver the signal..
1204 */
1205 int
1206 force_sigsegv(int sig, struct task_struct *p)
1207 {
1208 if (sig == SIGSEGV) {
1209 unsigned long flags;
1210 spin_lock_irqsave(&p->sighand->siglock, flags);
1211 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1212 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1213 }
1214 force_sig(SIGSEGV, p);
1215 return 0;
1216 }
1217
1218 int kill_pgrp(struct pid *pid, int sig, int priv)
1219 {
1220 int ret;
1221
1222 read_lock(&tasklist_lock);
1223 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1224 read_unlock(&tasklist_lock);
1225
1226 return ret;
1227 }
1228 EXPORT_SYMBOL(kill_pgrp);
1229
1230 int kill_pid(struct pid *pid, int sig, int priv)
1231 {
1232 return kill_pid_info(sig, __si_special(priv), pid);
1233 }
1234 EXPORT_SYMBOL(kill_pid);
1235
1236 /*
1237 * These functions support sending signals using preallocated sigqueue
1238 * structures. This is needed "because realtime applications cannot
1239 * afford to lose notifications of asynchronous events, like timer
1240 * expirations or I/O completions". In the case of Posix Timers
1241 * we allocate the sigqueue structure from the timer_create. If this
1242 * allocation fails we are able to report the failure to the application
1243 * with an EAGAIN error.
1244 */
1245
1246 struct sigqueue *sigqueue_alloc(void)
1247 {
1248 struct sigqueue *q;
1249
1250 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1251 q->flags |= SIGQUEUE_PREALLOC;
1252 return(q);
1253 }
1254
1255 void sigqueue_free(struct sigqueue *q)
1256 {
1257 unsigned long flags;
1258 spinlock_t *lock = &current->sighand->siglock;
1259
1260 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1261 /*
1262 * We must hold ->siglock while testing q->list
1263 * to serialize with collect_signal() or with
1264 * __exit_signal()->flush_sigqueue().
1265 */
1266 spin_lock_irqsave(lock, flags);
1267 q->flags &= ~SIGQUEUE_PREALLOC;
1268 /*
1269 * If it is queued it will be freed when dequeued,
1270 * like the "regular" sigqueue.
1271 */
1272 if (!list_empty(&q->list))
1273 q = NULL;
1274 spin_unlock_irqrestore(lock, flags);
1275
1276 if (q)
1277 __sigqueue_free(q);
1278 }
1279
1280 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1281 {
1282 int sig = q->info.si_signo;
1283 struct sigpending *pending;
1284 unsigned long flags;
1285 int ret;
1286
1287 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1288
1289 ret = -1;
1290 if (!likely(lock_task_sighand(t, &flags)))
1291 goto ret;
1292
1293 ret = 1; /* the signal is ignored */
1294 if (!prepare_signal(sig, t))
1295 goto out;
1296
1297 ret = 0;
1298 if (unlikely(!list_empty(&q->list))) {
1299 /*
1300 * If an SI_TIMER entry is already queue just increment
1301 * the overrun count.
1302 */
1303 BUG_ON(q->info.si_code != SI_TIMER);
1304 q->info.si_overrun++;
1305 goto out;
1306 }
1307 q->info.si_overrun = 0;
1308
1309 signalfd_notify(t, sig);
1310 pending = group ? &t->signal->shared_pending : &t->pending;
1311 list_add_tail(&q->list, &pending->list);
1312 sigaddset(&pending->signal, sig);
1313 complete_signal(sig, t, group);
1314 out:
1315 unlock_task_sighand(t, &flags);
1316 ret:
1317 return ret;
1318 }
1319
1320 /*
1321 * Wake up any threads in the parent blocked in wait* syscalls.
1322 */
1323 static inline void __wake_up_parent(struct task_struct *p,
1324 struct task_struct *parent)
1325 {
1326 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1327 }
1328
1329 /*
1330 * Let a parent know about the death of a child.
1331 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1332 *
1333 * Returns -1 if our parent ignored us and so we've switched to
1334 * self-reaping, or else @sig.
1335 */
1336 int do_notify_parent(struct task_struct *tsk, int sig)
1337 {
1338 struct siginfo info;
1339 unsigned long flags;
1340 struct sighand_struct *psig;
1341
1342 BUG_ON(sig == -1);
1343
1344 /* do_notify_parent_cldstop should have been called instead. */
1345 BUG_ON(task_is_stopped_or_traced(tsk));
1346
1347 BUG_ON(!tsk->ptrace &&
1348 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1349
1350 info.si_signo = sig;
1351 info.si_errno = 0;
1352 /*
1353 * we are under tasklist_lock here so our parent is tied to
1354 * us and cannot exit and release its namespace.
1355 *
1356 * the only it can is to switch its nsproxy with sys_unshare,
1357 * bu uncharing pid namespaces is not allowed, so we'll always
1358 * see relevant namespace
1359 *
1360 * write_lock() currently calls preempt_disable() which is the
1361 * same as rcu_read_lock(), but according to Oleg, this is not
1362 * correct to rely on this
1363 */
1364 rcu_read_lock();
1365 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1366 rcu_read_unlock();
1367
1368 info.si_uid = tsk->uid;
1369
1370 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1371 tsk->signal->utime));
1372 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1373 tsk->signal->stime));
1374
1375 info.si_status = tsk->exit_code & 0x7f;
1376 if (tsk->exit_code & 0x80)
1377 info.si_code = CLD_DUMPED;
1378 else if (tsk->exit_code & 0x7f)
1379 info.si_code = CLD_KILLED;
1380 else {
1381 info.si_code = CLD_EXITED;
1382 info.si_status = tsk->exit_code >> 8;
1383 }
1384
1385 psig = tsk->parent->sighand;
1386 spin_lock_irqsave(&psig->siglock, flags);
1387 if (!tsk->ptrace && sig == SIGCHLD &&
1388 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1389 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1390 /*
1391 * We are exiting and our parent doesn't care. POSIX.1
1392 * defines special semantics for setting SIGCHLD to SIG_IGN
1393 * or setting the SA_NOCLDWAIT flag: we should be reaped
1394 * automatically and not left for our parent's wait4 call.
1395 * Rather than having the parent do it as a magic kind of
1396 * signal handler, we just set this to tell do_exit that we
1397 * can be cleaned up without becoming a zombie. Note that
1398 * we still call __wake_up_parent in this case, because a
1399 * blocked sys_wait4 might now return -ECHILD.
1400 *
1401 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1402 * is implementation-defined: we do (if you don't want
1403 * it, just use SIG_IGN instead).
1404 */
1405 tsk->exit_signal = -1;
1406 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1407 sig = -1;
1408 }
1409 if (valid_signal(sig) && sig > 0)
1410 __group_send_sig_info(sig, &info, tsk->parent);
1411 __wake_up_parent(tsk, tsk->parent);
1412 spin_unlock_irqrestore(&psig->siglock, flags);
1413
1414 return sig;
1415 }
1416
1417 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1418 {
1419 struct siginfo info;
1420 unsigned long flags;
1421 struct task_struct *parent;
1422 struct sighand_struct *sighand;
1423
1424 if (tsk->ptrace & PT_PTRACED)
1425 parent = tsk->parent;
1426 else {
1427 tsk = tsk->group_leader;
1428 parent = tsk->real_parent;
1429 }
1430
1431 info.si_signo = SIGCHLD;
1432 info.si_errno = 0;
1433 /*
1434 * see comment in do_notify_parent() abot the following 3 lines
1435 */
1436 rcu_read_lock();
1437 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1438 rcu_read_unlock();
1439
1440 info.si_uid = tsk->uid;
1441
1442 info.si_utime = cputime_to_clock_t(tsk->utime);
1443 info.si_stime = cputime_to_clock_t(tsk->stime);
1444
1445 info.si_code = why;
1446 switch (why) {
1447 case CLD_CONTINUED:
1448 info.si_status = SIGCONT;
1449 break;
1450 case CLD_STOPPED:
1451 info.si_status = tsk->signal->group_exit_code & 0x7f;
1452 break;
1453 case CLD_TRAPPED:
1454 info.si_status = tsk->exit_code & 0x7f;
1455 break;
1456 default:
1457 BUG();
1458 }
1459
1460 sighand = parent->sighand;
1461 spin_lock_irqsave(&sighand->siglock, flags);
1462 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1463 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1464 __group_send_sig_info(SIGCHLD, &info, parent);
1465 /*
1466 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1467 */
1468 __wake_up_parent(tsk, parent);
1469 spin_unlock_irqrestore(&sighand->siglock, flags);
1470 }
1471
1472 static inline int may_ptrace_stop(void)
1473 {
1474 if (!likely(current->ptrace & PT_PTRACED))
1475 return 0;
1476 /*
1477 * Are we in the middle of do_coredump?
1478 * If so and our tracer is also part of the coredump stopping
1479 * is a deadlock situation, and pointless because our tracer
1480 * is dead so don't allow us to stop.
1481 * If SIGKILL was already sent before the caller unlocked
1482 * ->siglock we must see ->core_state != NULL. Otherwise it
1483 * is safe to enter schedule().
1484 */
1485 if (unlikely(current->mm->core_state) &&
1486 unlikely(current->mm == current->parent->mm))
1487 return 0;
1488
1489 return 1;
1490 }
1491
1492 /*
1493 * Return nonzero if there is a SIGKILL that should be waking us up.
1494 * Called with the siglock held.
1495 */
1496 static int sigkill_pending(struct task_struct *tsk)
1497 {
1498 return sigismember(&tsk->pending.signal, SIGKILL) ||
1499 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1500 }
1501
1502 /*
1503 * This must be called with current->sighand->siglock held.
1504 *
1505 * This should be the path for all ptrace stops.
1506 * We always set current->last_siginfo while stopped here.
1507 * That makes it a way to test a stopped process for
1508 * being ptrace-stopped vs being job-control-stopped.
1509 *
1510 * If we actually decide not to stop at all because the tracer
1511 * is gone, we keep current->exit_code unless clear_code.
1512 */
1513 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1514 {
1515 if (arch_ptrace_stop_needed(exit_code, info)) {
1516 /*
1517 * The arch code has something special to do before a
1518 * ptrace stop. This is allowed to block, e.g. for faults
1519 * on user stack pages. We can't keep the siglock while
1520 * calling arch_ptrace_stop, so we must release it now.
1521 * To preserve proper semantics, we must do this before
1522 * any signal bookkeeping like checking group_stop_count.
1523 * Meanwhile, a SIGKILL could come in before we retake the
1524 * siglock. That must prevent us from sleeping in TASK_TRACED.
1525 * So after regaining the lock, we must check for SIGKILL.
1526 */
1527 spin_unlock_irq(&current->sighand->siglock);
1528 arch_ptrace_stop(exit_code, info);
1529 spin_lock_irq(&current->sighand->siglock);
1530 if (sigkill_pending(current))
1531 return;
1532 }
1533
1534 /*
1535 * If there is a group stop in progress,
1536 * we must participate in the bookkeeping.
1537 */
1538 if (current->signal->group_stop_count > 0)
1539 --current->signal->group_stop_count;
1540
1541 current->last_siginfo = info;
1542 current->exit_code = exit_code;
1543
1544 /* Let the debugger run. */
1545 __set_current_state(TASK_TRACED);
1546 spin_unlock_irq(&current->sighand->siglock);
1547 read_lock(&tasklist_lock);
1548 if (may_ptrace_stop()) {
1549 do_notify_parent_cldstop(current, CLD_TRAPPED);
1550 read_unlock(&tasklist_lock);
1551 schedule();
1552 } else {
1553 /*
1554 * By the time we got the lock, our tracer went away.
1555 * Don't drop the lock yet, another tracer may come.
1556 */
1557 __set_current_state(TASK_RUNNING);
1558 if (clear_code)
1559 current->exit_code = 0;
1560 read_unlock(&tasklist_lock);
1561 }
1562
1563 /*
1564 * While in TASK_TRACED, we were considered "frozen enough".
1565 * Now that we woke up, it's crucial if we're supposed to be
1566 * frozen that we freeze now before running anything substantial.
1567 */
1568 try_to_freeze();
1569
1570 /*
1571 * We are back. Now reacquire the siglock before touching
1572 * last_siginfo, so that we are sure to have synchronized with
1573 * any signal-sending on another CPU that wants to examine it.
1574 */
1575 spin_lock_irq(&current->sighand->siglock);
1576 current->last_siginfo = NULL;
1577
1578 /*
1579 * Queued signals ignored us while we were stopped for tracing.
1580 * So check for any that we should take before resuming user mode.
1581 * This sets TIF_SIGPENDING, but never clears it.
1582 */
1583 recalc_sigpending_tsk(current);
1584 }
1585
1586 void ptrace_notify(int exit_code)
1587 {
1588 siginfo_t info;
1589
1590 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1591
1592 memset(&info, 0, sizeof info);
1593 info.si_signo = SIGTRAP;
1594 info.si_code = exit_code;
1595 info.si_pid = task_pid_vnr(current);
1596 info.si_uid = current->uid;
1597
1598 /* Let the debugger run. */
1599 spin_lock_irq(&current->sighand->siglock);
1600 ptrace_stop(exit_code, 1, &info);
1601 spin_unlock_irq(&current->sighand->siglock);
1602 }
1603
1604 static void
1605 finish_stop(int stop_count)
1606 {
1607 /*
1608 * If there are no other threads in the group, or if there is
1609 * a group stop in progress and we are the last to stop,
1610 * report to the parent. When ptraced, every thread reports itself.
1611 */
1612 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1613 read_lock(&tasklist_lock);
1614 do_notify_parent_cldstop(current, CLD_STOPPED);
1615 read_unlock(&tasklist_lock);
1616 }
1617
1618 do {
1619 schedule();
1620 } while (try_to_freeze());
1621 /*
1622 * Now we don't run again until continued.
1623 */
1624 current->exit_code = 0;
1625 }
1626
1627 /*
1628 * This performs the stopping for SIGSTOP and other stop signals.
1629 * We have to stop all threads in the thread group.
1630 * Returns nonzero if we've actually stopped and released the siglock.
1631 * Returns zero if we didn't stop and still hold the siglock.
1632 */
1633 static int do_signal_stop(int signr)
1634 {
1635 struct signal_struct *sig = current->signal;
1636 int stop_count;
1637
1638 if (sig->group_stop_count > 0) {
1639 /*
1640 * There is a group stop in progress. We don't need to
1641 * start another one.
1642 */
1643 stop_count = --sig->group_stop_count;
1644 } else {
1645 struct task_struct *t;
1646
1647 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1648 unlikely(signal_group_exit(sig)))
1649 return 0;
1650 /*
1651 * There is no group stop already in progress.
1652 * We must initiate one now.
1653 */
1654 sig->group_exit_code = signr;
1655
1656 stop_count = 0;
1657 for (t = next_thread(current); t != current; t = next_thread(t))
1658 /*
1659 * Setting state to TASK_STOPPED for a group
1660 * stop is always done with the siglock held,
1661 * so this check has no races.
1662 */
1663 if (!(t->flags & PF_EXITING) &&
1664 !task_is_stopped_or_traced(t)) {
1665 stop_count++;
1666 signal_wake_up(t, 0);
1667 }
1668 sig->group_stop_count = stop_count;
1669 }
1670
1671 if (stop_count == 0)
1672 sig->flags = SIGNAL_STOP_STOPPED;
1673 current->exit_code = sig->group_exit_code;
1674 __set_current_state(TASK_STOPPED);
1675
1676 spin_unlock_irq(&current->sighand->siglock);
1677 finish_stop(stop_count);
1678 return 1;
1679 }
1680
1681 static int ptrace_signal(int signr, siginfo_t *info,
1682 struct pt_regs *regs, void *cookie)
1683 {
1684 if (!(current->ptrace & PT_PTRACED))
1685 return signr;
1686
1687 ptrace_signal_deliver(regs, cookie);
1688
1689 /* Let the debugger run. */
1690 ptrace_stop(signr, 0, info);
1691
1692 /* We're back. Did the debugger cancel the sig? */
1693 signr = current->exit_code;
1694 if (signr == 0)
1695 return signr;
1696
1697 current->exit_code = 0;
1698
1699 /* Update the siginfo structure if the signal has
1700 changed. If the debugger wanted something
1701 specific in the siginfo structure then it should
1702 have updated *info via PTRACE_SETSIGINFO. */
1703 if (signr != info->si_signo) {
1704 info->si_signo = signr;
1705 info->si_errno = 0;
1706 info->si_code = SI_USER;
1707 info->si_pid = task_pid_vnr(current->parent);
1708 info->si_uid = current->parent->uid;
1709 }
1710
1711 /* If the (new) signal is now blocked, requeue it. */
1712 if (sigismember(&current->blocked, signr)) {
1713 specific_send_sig_info(signr, info, current);
1714 signr = 0;
1715 }
1716
1717 return signr;
1718 }
1719
1720 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1721 struct pt_regs *regs, void *cookie)
1722 {
1723 struct sighand_struct *sighand = current->sighand;
1724 struct signal_struct *signal = current->signal;
1725 int signr;
1726
1727 relock:
1728 /*
1729 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1730 * While in TASK_STOPPED, we were considered "frozen enough".
1731 * Now that we woke up, it's crucial if we're supposed to be
1732 * frozen that we freeze now before running anything substantial.
1733 */
1734 try_to_freeze();
1735
1736 spin_lock_irq(&sighand->siglock);
1737 /*
1738 * Every stopped thread goes here after wakeup. Check to see if
1739 * we should notify the parent, prepare_signal(SIGCONT) encodes
1740 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1741 */
1742 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1743 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1744 ? CLD_CONTINUED : CLD_STOPPED;
1745 signal->flags &= ~SIGNAL_CLD_MASK;
1746 spin_unlock_irq(&sighand->siglock);
1747
1748 if (unlikely(!tracehook_notify_jctl(1, why)))
1749 goto relock;
1750
1751 read_lock(&tasklist_lock);
1752 do_notify_parent_cldstop(current->group_leader, why);
1753 read_unlock(&tasklist_lock);
1754 goto relock;
1755 }
1756
1757 for (;;) {
1758 struct k_sigaction *ka;
1759
1760 if (unlikely(signal->group_stop_count > 0) &&
1761 do_signal_stop(0))
1762 goto relock;
1763
1764 /*
1765 * Tracing can induce an artifical signal and choose sigaction.
1766 * The return value in @signr determines the default action,
1767 * but @info->si_signo is the signal number we will report.
1768 */
1769 signr = tracehook_get_signal(current, regs, info, return_ka);
1770 if (unlikely(signr < 0))
1771 goto relock;
1772 if (unlikely(signr != 0))
1773 ka = return_ka;
1774 else {
1775 signr = dequeue_signal(current, &current->blocked,
1776 info);
1777
1778 if (!signr)
1779 break; /* will return 0 */
1780
1781 if (signr != SIGKILL) {
1782 signr = ptrace_signal(signr, info,
1783 regs, cookie);
1784 if (!signr)
1785 continue;
1786 }
1787
1788 ka = &sighand->action[signr-1];
1789 }
1790
1791 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1792 continue;
1793 if (ka->sa.sa_handler != SIG_DFL) {
1794 /* Run the handler. */
1795 *return_ka = *ka;
1796
1797 if (ka->sa.sa_flags & SA_ONESHOT)
1798 ka->sa.sa_handler = SIG_DFL;
1799
1800 break; /* will return non-zero "signr" value */
1801 }
1802
1803 /*
1804 * Now we are doing the default action for this signal.
1805 */
1806 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1807 continue;
1808
1809 /*
1810 * Global init gets no signals it doesn't want.
1811 */
1812 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1813 !signal_group_exit(signal))
1814 continue;
1815
1816 if (sig_kernel_stop(signr)) {
1817 /*
1818 * The default action is to stop all threads in
1819 * the thread group. The job control signals
1820 * do nothing in an orphaned pgrp, but SIGSTOP
1821 * always works. Note that siglock needs to be
1822 * dropped during the call to is_orphaned_pgrp()
1823 * because of lock ordering with tasklist_lock.
1824 * This allows an intervening SIGCONT to be posted.
1825 * We need to check for that and bail out if necessary.
1826 */
1827 if (signr != SIGSTOP) {
1828 spin_unlock_irq(&sighand->siglock);
1829
1830 /* signals can be posted during this window */
1831
1832 if (is_current_pgrp_orphaned())
1833 goto relock;
1834
1835 spin_lock_irq(&sighand->siglock);
1836 }
1837
1838 if (likely(do_signal_stop(info->si_signo))) {
1839 /* It released the siglock. */
1840 goto relock;
1841 }
1842
1843 /*
1844 * We didn't actually stop, due to a race
1845 * with SIGCONT or something like that.
1846 */
1847 continue;
1848 }
1849
1850 spin_unlock_irq(&sighand->siglock);
1851
1852 /*
1853 * Anything else is fatal, maybe with a core dump.
1854 */
1855 current->flags |= PF_SIGNALED;
1856
1857 if (sig_kernel_coredump(signr)) {
1858 if (print_fatal_signals)
1859 print_fatal_signal(regs, info->si_signo);
1860 /*
1861 * If it was able to dump core, this kills all
1862 * other threads in the group and synchronizes with
1863 * their demise. If we lost the race with another
1864 * thread getting here, it set group_exit_code
1865 * first and our do_group_exit call below will use
1866 * that value and ignore the one we pass it.
1867 */
1868 do_coredump(info->si_signo, info->si_signo, regs);
1869 }
1870
1871 /*
1872 * Death signals, no core dump.
1873 */
1874 do_group_exit(info->si_signo);
1875 /* NOTREACHED */
1876 }
1877 spin_unlock_irq(&sighand->siglock);
1878 return signr;
1879 }
1880
1881 void exit_signals(struct task_struct *tsk)
1882 {
1883 int group_stop = 0;
1884 struct task_struct *t;
1885
1886 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1887 tsk->flags |= PF_EXITING;
1888 return;
1889 }
1890
1891 spin_lock_irq(&tsk->sighand->siglock);
1892 /*
1893 * From now this task is not visible for group-wide signals,
1894 * see wants_signal(), do_signal_stop().
1895 */
1896 tsk->flags |= PF_EXITING;
1897 if (!signal_pending(tsk))
1898 goto out;
1899
1900 /* It could be that __group_complete_signal() choose us to
1901 * notify about group-wide signal. Another thread should be
1902 * woken now to take the signal since we will not.
1903 */
1904 for (t = tsk; (t = next_thread(t)) != tsk; )
1905 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1906 recalc_sigpending_and_wake(t);
1907
1908 if (unlikely(tsk->signal->group_stop_count) &&
1909 !--tsk->signal->group_stop_count) {
1910 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1911 group_stop = 1;
1912 }
1913 out:
1914 spin_unlock_irq(&tsk->sighand->siglock);
1915
1916 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1917 read_lock(&tasklist_lock);
1918 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1919 read_unlock(&tasklist_lock);
1920 }
1921 }
1922
1923 EXPORT_SYMBOL(recalc_sigpending);
1924 EXPORT_SYMBOL_GPL(dequeue_signal);
1925 EXPORT_SYMBOL(flush_signals);
1926 EXPORT_SYMBOL(force_sig);
1927 EXPORT_SYMBOL(send_sig);
1928 EXPORT_SYMBOL(send_sig_info);
1929 EXPORT_SYMBOL(sigprocmask);
1930 EXPORT_SYMBOL(block_all_signals);
1931 EXPORT_SYMBOL(unblock_all_signals);
1932
1933
1934 /*
1935 * System call entry points.
1936 */
1937
1938 asmlinkage long sys_restart_syscall(void)
1939 {
1940 struct restart_block *restart = &current_thread_info()->restart_block;
1941 return restart->fn(restart);
1942 }
1943
1944 long do_no_restart_syscall(struct restart_block *param)
1945 {
1946 return -EINTR;
1947 }
1948
1949 /*
1950 * We don't need to get the kernel lock - this is all local to this
1951 * particular thread.. (and that's good, because this is _heavily_
1952 * used by various programs)
1953 */
1954
1955 /*
1956 * This is also useful for kernel threads that want to temporarily
1957 * (or permanently) block certain signals.
1958 *
1959 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1960 * interface happily blocks "unblockable" signals like SIGKILL
1961 * and friends.
1962 */
1963 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1964 {
1965 int error;
1966
1967 spin_lock_irq(&current->sighand->siglock);
1968 if (oldset)
1969 *oldset = current->blocked;
1970
1971 error = 0;
1972 switch (how) {
1973 case SIG_BLOCK:
1974 sigorsets(&current->blocked, &current->blocked, set);
1975 break;
1976 case SIG_UNBLOCK:
1977 signandsets(&current->blocked, &current->blocked, set);
1978 break;
1979 case SIG_SETMASK:
1980 current->blocked = *set;
1981 break;
1982 default:
1983 error = -EINVAL;
1984 }
1985 recalc_sigpending();
1986 spin_unlock_irq(&current->sighand->siglock);
1987
1988 return error;
1989 }
1990
1991 asmlinkage long
1992 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1993 {
1994 int error = -EINVAL;
1995 sigset_t old_set, new_set;
1996
1997 /* XXX: Don't preclude handling different sized sigset_t's. */
1998 if (sigsetsize != sizeof(sigset_t))
1999 goto out;
2000
2001 if (set) {
2002 error = -EFAULT;
2003 if (copy_from_user(&new_set, set, sizeof(*set)))
2004 goto out;
2005 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2006
2007 error = sigprocmask(how, &new_set, &old_set);
2008 if (error)
2009 goto out;
2010 if (oset)
2011 goto set_old;
2012 } else if (oset) {
2013 spin_lock_irq(&current->sighand->siglock);
2014 old_set = current->blocked;
2015 spin_unlock_irq(&current->sighand->siglock);
2016
2017 set_old:
2018 error = -EFAULT;
2019 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2020 goto out;
2021 }
2022 error = 0;
2023 out:
2024 return error;
2025 }
2026
2027 long do_sigpending(void __user *set, unsigned long sigsetsize)
2028 {
2029 long error = -EINVAL;
2030 sigset_t pending;
2031
2032 if (sigsetsize > sizeof(sigset_t))
2033 goto out;
2034
2035 spin_lock_irq(&current->sighand->siglock);
2036 sigorsets(&pending, &current->pending.signal,
2037 &current->signal->shared_pending.signal);
2038 spin_unlock_irq(&current->sighand->siglock);
2039
2040 /* Outside the lock because only this thread touches it. */
2041 sigandsets(&pending, &current->blocked, &pending);
2042
2043 error = -EFAULT;
2044 if (!copy_to_user(set, &pending, sigsetsize))
2045 error = 0;
2046
2047 out:
2048 return error;
2049 }
2050
2051 asmlinkage long
2052 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2053 {
2054 return do_sigpending(set, sigsetsize);
2055 }
2056
2057 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2058
2059 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2060 {
2061 int err;
2062
2063 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2064 return -EFAULT;
2065 if (from->si_code < 0)
2066 return __copy_to_user(to, from, sizeof(siginfo_t))
2067 ? -EFAULT : 0;
2068 /*
2069 * If you change siginfo_t structure, please be sure
2070 * this code is fixed accordingly.
2071 * Please remember to update the signalfd_copyinfo() function
2072 * inside fs/signalfd.c too, in case siginfo_t changes.
2073 * It should never copy any pad contained in the structure
2074 * to avoid security leaks, but must copy the generic
2075 * 3 ints plus the relevant union member.
2076 */
2077 err = __put_user(from->si_signo, &to->si_signo);
2078 err |= __put_user(from->si_errno, &to->si_errno);
2079 err |= __put_user((short)from->si_code, &to->si_code);
2080 switch (from->si_code & __SI_MASK) {
2081 case __SI_KILL:
2082 err |= __put_user(from->si_pid, &to->si_pid);
2083 err |= __put_user(from->si_uid, &to->si_uid);
2084 break;
2085 case __SI_TIMER:
2086 err |= __put_user(from->si_tid, &to->si_tid);
2087 err |= __put_user(from->si_overrun, &to->si_overrun);
2088 err |= __put_user(from->si_ptr, &to->si_ptr);
2089 break;
2090 case __SI_POLL:
2091 err |= __put_user(from->si_band, &to->si_band);
2092 err |= __put_user(from->si_fd, &to->si_fd);
2093 break;
2094 case __SI_FAULT:
2095 err |= __put_user(from->si_addr, &to->si_addr);
2096 #ifdef __ARCH_SI_TRAPNO
2097 err |= __put_user(from->si_trapno, &to->si_trapno);
2098 #endif
2099 break;
2100 case __SI_CHLD:
2101 err |= __put_user(from->si_pid, &to->si_pid);
2102 err |= __put_user(from->si_uid, &to->si_uid);
2103 err |= __put_user(from->si_status, &to->si_status);
2104 err |= __put_user(from->si_utime, &to->si_utime);
2105 err |= __put_user(from->si_stime, &to->si_stime);
2106 break;
2107 case __SI_RT: /* This is not generated by the kernel as of now. */
2108 case __SI_MESGQ: /* But this is */
2109 err |= __put_user(from->si_pid, &to->si_pid);
2110 err |= __put_user(from->si_uid, &to->si_uid);
2111 err |= __put_user(from->si_ptr, &to->si_ptr);
2112 break;
2113 default: /* this is just in case for now ... */
2114 err |= __put_user(from->si_pid, &to->si_pid);
2115 err |= __put_user(from->si_uid, &to->si_uid);
2116 break;
2117 }
2118 return err;
2119 }
2120
2121 #endif
2122
2123 asmlinkage long
2124 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2125 siginfo_t __user *uinfo,
2126 const struct timespec __user *uts,
2127 size_t sigsetsize)
2128 {
2129 int ret, sig;
2130 sigset_t these;
2131 struct timespec ts;
2132 siginfo_t info;
2133 long timeout = 0;
2134
2135 /* XXX: Don't preclude handling different sized sigset_t's. */
2136 if (sigsetsize != sizeof(sigset_t))
2137 return -EINVAL;
2138
2139 if (copy_from_user(&these, uthese, sizeof(these)))
2140 return -EFAULT;
2141
2142 /*
2143 * Invert the set of allowed signals to get those we
2144 * want to block.
2145 */
2146 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2147 signotset(&these);
2148
2149 if (uts) {
2150 if (copy_from_user(&ts, uts, sizeof(ts)))
2151 return -EFAULT;
2152 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2153 || ts.tv_sec < 0)
2154 return -EINVAL;
2155 }
2156
2157 spin_lock_irq(&current->sighand->siglock);
2158 sig = dequeue_signal(current, &these, &info);
2159 if (!sig) {
2160 timeout = MAX_SCHEDULE_TIMEOUT;
2161 if (uts)
2162 timeout = (timespec_to_jiffies(&ts)
2163 + (ts.tv_sec || ts.tv_nsec));
2164
2165 if (timeout) {
2166 /* None ready -- temporarily unblock those we're
2167 * interested while we are sleeping in so that we'll
2168 * be awakened when they arrive. */
2169 current->real_blocked = current->blocked;
2170 sigandsets(&current->blocked, &current->blocked, &these);
2171 recalc_sigpending();
2172 spin_unlock_irq(&current->sighand->siglock);
2173
2174 timeout = schedule_timeout_interruptible(timeout);
2175
2176 spin_lock_irq(&current->sighand->siglock);
2177 sig = dequeue_signal(current, &these, &info);
2178 current->blocked = current->real_blocked;
2179 siginitset(&current->real_blocked, 0);
2180 recalc_sigpending();
2181 }
2182 }
2183 spin_unlock_irq(&current->sighand->siglock);
2184
2185 if (sig) {
2186 ret = sig;
2187 if (uinfo) {
2188 if (copy_siginfo_to_user(uinfo, &info))
2189 ret = -EFAULT;
2190 }
2191 } else {
2192 ret = -EAGAIN;
2193 if (timeout)
2194 ret = -EINTR;
2195 }
2196
2197 return ret;
2198 }
2199
2200 asmlinkage long
2201 sys_kill(pid_t pid, int sig)
2202 {
2203 struct siginfo info;
2204
2205 info.si_signo = sig;
2206 info.si_errno = 0;
2207 info.si_code = SI_USER;
2208 info.si_pid = task_tgid_vnr(current);
2209 info.si_uid = current->uid;
2210
2211 return kill_something_info(sig, &info, pid);
2212 }
2213
2214 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2215 {
2216 int error;
2217 struct siginfo info;
2218 struct task_struct *p;
2219 unsigned long flags;
2220
2221 error = -ESRCH;
2222 info.si_signo = sig;
2223 info.si_errno = 0;
2224 info.si_code = SI_TKILL;
2225 info.si_pid = task_tgid_vnr(current);
2226 info.si_uid = current->uid;
2227
2228 rcu_read_lock();
2229 p = find_task_by_vpid(pid);
2230 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2231 error = check_kill_permission(sig, &info, p);
2232 /*
2233 * The null signal is a permissions and process existence
2234 * probe. No signal is actually delivered.
2235 *
2236 * If lock_task_sighand() fails we pretend the task dies
2237 * after receiving the signal. The window is tiny, and the
2238 * signal is private anyway.
2239 */
2240 if (!error && sig && lock_task_sighand(p, &flags)) {
2241 error = specific_send_sig_info(sig, &info, p);
2242 unlock_task_sighand(p, &flags);
2243 }
2244 }
2245 rcu_read_unlock();
2246
2247 return error;
2248 }
2249
2250 /**
2251 * sys_tgkill - send signal to one specific thread
2252 * @tgid: the thread group ID of the thread
2253 * @pid: the PID of the thread
2254 * @sig: signal to be sent
2255 *
2256 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2257 * exists but it's not belonging to the target process anymore. This
2258 * method solves the problem of threads exiting and PIDs getting reused.
2259 */
2260 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2261 {
2262 /* This is only valid for single tasks */
2263 if (pid <= 0 || tgid <= 0)
2264 return -EINVAL;
2265
2266 return do_tkill(tgid, pid, sig);
2267 }
2268
2269 /*
2270 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2271 */
2272 asmlinkage long
2273 sys_tkill(pid_t pid, int sig)
2274 {
2275 /* This is only valid for single tasks */
2276 if (pid <= 0)
2277 return -EINVAL;
2278
2279 return do_tkill(0, pid, sig);
2280 }
2281
2282 asmlinkage long
2283 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2284 {
2285 siginfo_t info;
2286
2287 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2288 return -EFAULT;
2289
2290 /* Not even root can pretend to send signals from the kernel.
2291 Nor can they impersonate a kill(), which adds source info. */
2292 if (info.si_code >= 0)
2293 return -EPERM;
2294 info.si_signo = sig;
2295
2296 /* POSIX.1b doesn't mention process groups. */
2297 return kill_proc_info(sig, &info, pid);
2298 }
2299
2300 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2301 {
2302 struct task_struct *t = current;
2303 struct k_sigaction *k;
2304 sigset_t mask;
2305
2306 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2307 return -EINVAL;
2308
2309 k = &t->sighand->action[sig-1];
2310
2311 spin_lock_irq(&current->sighand->siglock);
2312 if (oact)
2313 *oact = *k;
2314
2315 if (act) {
2316 sigdelsetmask(&act->sa.sa_mask,
2317 sigmask(SIGKILL) | sigmask(SIGSTOP));
2318 *k = *act;
2319 /*
2320 * POSIX 3.3.1.3:
2321 * "Setting a signal action to SIG_IGN for a signal that is
2322 * pending shall cause the pending signal to be discarded,
2323 * whether or not it is blocked."
2324 *
2325 * "Setting a signal action to SIG_DFL for a signal that is
2326 * pending and whose default action is to ignore the signal
2327 * (for example, SIGCHLD), shall cause the pending signal to
2328 * be discarded, whether or not it is blocked"
2329 */
2330 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2331 sigemptyset(&mask);
2332 sigaddset(&mask, sig);
2333 rm_from_queue_full(&mask, &t->signal->shared_pending);
2334 do {
2335 rm_from_queue_full(&mask, &t->pending);
2336 t = next_thread(t);
2337 } while (t != current);
2338 }
2339 }
2340
2341 spin_unlock_irq(&current->sighand->siglock);
2342 return 0;
2343 }
2344
2345 int
2346 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2347 {
2348 stack_t oss;
2349 int error;
2350
2351 if (uoss) {
2352 oss.ss_sp = (void __user *) current->sas_ss_sp;
2353 oss.ss_size = current->sas_ss_size;
2354 oss.ss_flags = sas_ss_flags(sp);
2355 }
2356
2357 if (uss) {
2358 void __user *ss_sp;
2359 size_t ss_size;
2360 int ss_flags;
2361
2362 error = -EFAULT;
2363 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2364 || __get_user(ss_sp, &uss->ss_sp)
2365 || __get_user(ss_flags, &uss->ss_flags)
2366 || __get_user(ss_size, &uss->ss_size))
2367 goto out;
2368
2369 error = -EPERM;
2370 if (on_sig_stack(sp))
2371 goto out;
2372
2373 error = -EINVAL;
2374 /*
2375 *
2376 * Note - this code used to test ss_flags incorrectly
2377 * old code may have been written using ss_flags==0
2378 * to mean ss_flags==SS_ONSTACK (as this was the only
2379 * way that worked) - this fix preserves that older
2380 * mechanism
2381 */
2382 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2383 goto out;
2384
2385 if (ss_flags == SS_DISABLE) {
2386 ss_size = 0;
2387 ss_sp = NULL;
2388 } else {
2389 error = -ENOMEM;
2390 if (ss_size < MINSIGSTKSZ)
2391 goto out;
2392 }
2393
2394 current->sas_ss_sp = (unsigned long) ss_sp;
2395 current->sas_ss_size = ss_size;
2396 }
2397
2398 if (uoss) {
2399 error = -EFAULT;
2400 if (copy_to_user(uoss, &oss, sizeof(oss)))
2401 goto out;
2402 }
2403
2404 error = 0;
2405 out:
2406 return error;
2407 }
2408
2409 #ifdef __ARCH_WANT_SYS_SIGPENDING
2410
2411 asmlinkage long
2412 sys_sigpending(old_sigset_t __user *set)
2413 {
2414 return do_sigpending(set, sizeof(*set));
2415 }
2416
2417 #endif
2418
2419 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2420 /* Some platforms have their own version with special arguments others
2421 support only sys_rt_sigprocmask. */
2422
2423 asmlinkage long
2424 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2425 {
2426 int error;
2427 old_sigset_t old_set, new_set;
2428
2429 if (set) {
2430 error = -EFAULT;
2431 if (copy_from_user(&new_set, set, sizeof(*set)))
2432 goto out;
2433 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2434
2435 spin_lock_irq(&current->sighand->siglock);
2436 old_set = current->blocked.sig[0];
2437
2438 error = 0;
2439 switch (how) {
2440 default:
2441 error = -EINVAL;
2442 break;
2443 case SIG_BLOCK:
2444 sigaddsetmask(&current->blocked, new_set);
2445 break;
2446 case SIG_UNBLOCK:
2447 sigdelsetmask(&current->blocked, new_set);
2448 break;
2449 case SIG_SETMASK:
2450 current->blocked.sig[0] = new_set;
2451 break;
2452 }
2453
2454 recalc_sigpending();
2455 spin_unlock_irq(&current->sighand->siglock);
2456 if (error)
2457 goto out;
2458 if (oset)
2459 goto set_old;
2460 } else if (oset) {
2461 old_set = current->blocked.sig[0];
2462 set_old:
2463 error = -EFAULT;
2464 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2465 goto out;
2466 }
2467 error = 0;
2468 out:
2469 return error;
2470 }
2471 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2472
2473 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2474 asmlinkage long
2475 sys_rt_sigaction(int sig,
2476 const struct sigaction __user *act,
2477 struct sigaction __user *oact,
2478 size_t sigsetsize)
2479 {
2480 struct k_sigaction new_sa, old_sa;
2481 int ret = -EINVAL;
2482
2483 /* XXX: Don't preclude handling different sized sigset_t's. */
2484 if (sigsetsize != sizeof(sigset_t))
2485 goto out;
2486
2487 if (act) {
2488 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2489 return -EFAULT;
2490 }
2491
2492 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2493
2494 if (!ret && oact) {
2495 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2496 return -EFAULT;
2497 }
2498 out:
2499 return ret;
2500 }
2501 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2502
2503 #ifdef __ARCH_WANT_SYS_SGETMASK
2504
2505 /*
2506 * For backwards compatibility. Functionality superseded by sigprocmask.
2507 */
2508 asmlinkage long
2509 sys_sgetmask(void)
2510 {
2511 /* SMP safe */
2512 return current->blocked.sig[0];
2513 }
2514
2515 asmlinkage long
2516 sys_ssetmask(int newmask)
2517 {
2518 int old;
2519
2520 spin_lock_irq(&current->sighand->siglock);
2521 old = current->blocked.sig[0];
2522
2523 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2524 sigmask(SIGSTOP)));
2525 recalc_sigpending();
2526 spin_unlock_irq(&current->sighand->siglock);
2527
2528 return old;
2529 }
2530 #endif /* __ARCH_WANT_SGETMASK */
2531
2532 #ifdef __ARCH_WANT_SYS_SIGNAL
2533 /*
2534 * For backwards compatibility. Functionality superseded by sigaction.
2535 */
2536 asmlinkage unsigned long
2537 sys_signal(int sig, __sighandler_t handler)
2538 {
2539 struct k_sigaction new_sa, old_sa;
2540 int ret;
2541
2542 new_sa.sa.sa_handler = handler;
2543 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2544 sigemptyset(&new_sa.sa.sa_mask);
2545
2546 ret = do_sigaction(sig, &new_sa, &old_sa);
2547
2548 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2549 }
2550 #endif /* __ARCH_WANT_SYS_SIGNAL */
2551
2552 #ifdef __ARCH_WANT_SYS_PAUSE
2553
2554 asmlinkage long
2555 sys_pause(void)
2556 {
2557 current->state = TASK_INTERRUPTIBLE;
2558 schedule();
2559 return -ERESTARTNOHAND;
2560 }
2561
2562 #endif
2563
2564 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2565 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2566 {
2567 sigset_t newset;
2568
2569 /* XXX: Don't preclude handling different sized sigset_t's. */
2570 if (sigsetsize != sizeof(sigset_t))
2571 return -EINVAL;
2572
2573 if (copy_from_user(&newset, unewset, sizeof(newset)))
2574 return -EFAULT;
2575 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2576
2577 spin_lock_irq(&current->sighand->siglock);
2578 current->saved_sigmask = current->blocked;
2579 current->blocked = newset;
2580 recalc_sigpending();
2581 spin_unlock_irq(&current->sighand->siglock);
2582
2583 current->state = TASK_INTERRUPTIBLE;
2584 schedule();
2585 set_restore_sigmask();
2586 return -ERESTARTNOHAND;
2587 }
2588 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2589
2590 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2591 {
2592 return NULL;
2593 }
2594
2595 void __init signals_init(void)
2596 {
2597 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2598 }