833ea516685569952e1e62d8d9939db525c78c30
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
34
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include <asm/cacheflush.h>
40 #include "audit.h" /* audit_signal_info() */
41
42 /*
43 * SLAB caches for signal bits.
44 */
45
46 static struct kmem_cache *sigqueue_cachep;
47
48 int print_fatal_signals __read_mostly;
49
50 static void __user *sig_handler(struct task_struct *t, int sig)
51 {
52 return t->sighand->action[sig - 1].sa.sa_handler;
53 }
54
55 static int sig_handler_ignored(void __user *handler, int sig)
56 {
57 /* Is it explicitly or implicitly ignored? */
58 return handler == SIG_IGN ||
59 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 }
61
62 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
63 {
64 void __user *handler;
65
66 handler = sig_handler(t, sig);
67
68 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
69 handler == SIG_DFL && !force)
70 return 1;
71
72 return sig_handler_ignored(handler, sig);
73 }
74
75 static int sig_ignored(struct task_struct *t, int sig, bool force)
76 {
77 /*
78 * Blocked signals are never ignored, since the
79 * signal handler may change by the time it is
80 * unblocked.
81 */
82 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
83 return 0;
84
85 if (!sig_task_ignored(t, sig, force))
86 return 0;
87
88 /*
89 * Tracers may want to know about even ignored signals.
90 */
91 return !t->ptrace;
92 }
93
94 /*
95 * Re-calculate pending state from the set of locally pending
96 * signals, globally pending signals, and blocked signals.
97 */
98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 {
100 unsigned long ready;
101 long i;
102
103 switch (_NSIG_WORDS) {
104 default:
105 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
106 ready |= signal->sig[i] &~ blocked->sig[i];
107 break;
108
109 case 4: ready = signal->sig[3] &~ blocked->sig[3];
110 ready |= signal->sig[2] &~ blocked->sig[2];
111 ready |= signal->sig[1] &~ blocked->sig[1];
112 ready |= signal->sig[0] &~ blocked->sig[0];
113 break;
114
115 case 2: ready = signal->sig[1] &~ blocked->sig[1];
116 ready |= signal->sig[0] &~ blocked->sig[0];
117 break;
118
119 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 }
121 return ready != 0;
122 }
123
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125
126 static int recalc_sigpending_tsk(struct task_struct *t)
127 {
128 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
129 PENDING(&t->pending, &t->blocked) ||
130 PENDING(&t->signal->shared_pending, &t->blocked)) {
131 set_tsk_thread_flag(t, TIF_SIGPENDING);
132 return 1;
133 }
134 /*
135 * We must never clear the flag in another thread, or in current
136 * when it's possible the current syscall is returning -ERESTART*.
137 * So we don't clear it here, and only callers who know they should do.
138 */
139 return 0;
140 }
141
142 /*
143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 */
146 void recalc_sigpending_and_wake(struct task_struct *t)
147 {
148 if (recalc_sigpending_tsk(t))
149 signal_wake_up(t, 0);
150 }
151
152 void recalc_sigpending(void)
153 {
154 if (!recalc_sigpending_tsk(current) && !freezing(current))
155 clear_thread_flag(TIF_SIGPENDING);
156
157 }
158
159 /* Given the mask, find the first available signal that should be serviced. */
160
161 #define SYNCHRONOUS_MASK \
162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 sigmask(SIGTRAP) | sigmask(SIGFPE))
164
165 int next_signal(struct sigpending *pending, sigset_t *mask)
166 {
167 unsigned long i, *s, *m, x;
168 int sig = 0;
169
170 s = pending->signal.sig;
171 m = mask->sig;
172
173 /*
174 * Handle the first word specially: it contains the
175 * synchronous signals that need to be dequeued first.
176 */
177 x = *s &~ *m;
178 if (x) {
179 if (x & SYNCHRONOUS_MASK)
180 x &= SYNCHRONOUS_MASK;
181 sig = ffz(~x) + 1;
182 return sig;
183 }
184
185 switch (_NSIG_WORDS) {
186 default:
187 for (i = 1; i < _NSIG_WORDS; ++i) {
188 x = *++s &~ *++m;
189 if (!x)
190 continue;
191 sig = ffz(~x) + i*_NSIG_BPW + 1;
192 break;
193 }
194 break;
195
196 case 2:
197 x = s[1] &~ m[1];
198 if (!x)
199 break;
200 sig = ffz(~x) + _NSIG_BPW + 1;
201 break;
202
203 case 1:
204 /* Nothing to do */
205 break;
206 }
207
208 return sig;
209 }
210
211 static inline void print_dropped_signal(int sig)
212 {
213 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214
215 if (!print_fatal_signals)
216 return;
217
218 if (!__ratelimit(&ratelimit_state))
219 return;
220
221 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 current->comm, current->pid, sig);
223 }
224
225 /**
226 * task_set_jobctl_pending - set jobctl pending bits
227 * @task: target task
228 * @mask: pending bits to set
229 *
230 * Clear @mask from @task->jobctl. @mask must be subset of
231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
233 * cleared. If @task is already being killed or exiting, this function
234 * becomes noop.
235 *
236 * CONTEXT:
237 * Must be called with @task->sighand->siglock held.
238 *
239 * RETURNS:
240 * %true if @mask is set, %false if made noop because @task was dying.
241 */
242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 {
244 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
245 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
246 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247
248 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
249 return false;
250
251 if (mask & JOBCTL_STOP_SIGMASK)
252 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253
254 task->jobctl |= mask;
255 return true;
256 }
257
258 /**
259 * task_clear_jobctl_trapping - clear jobctl trapping bit
260 * @task: target task
261 *
262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263 * Clear it and wake up the ptracer. Note that we don't need any further
264 * locking. @task->siglock guarantees that @task->parent points to the
265 * ptracer.
266 *
267 * CONTEXT:
268 * Must be called with @task->sighand->siglock held.
269 */
270 void task_clear_jobctl_trapping(struct task_struct *task)
271 {
272 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
273 task->jobctl &= ~JOBCTL_TRAPPING;
274 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
275 }
276 }
277
278 /**
279 * task_clear_jobctl_pending - clear jobctl pending bits
280 * @task: target task
281 * @mask: pending bits to clear
282 *
283 * Clear @mask from @task->jobctl. @mask must be subset of
284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
285 * STOP bits are cleared together.
286 *
287 * If clearing of @mask leaves no stop or trap pending, this function calls
288 * task_clear_jobctl_trapping().
289 *
290 * CONTEXT:
291 * Must be called with @task->sighand->siglock held.
292 */
293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 {
295 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296
297 if (mask & JOBCTL_STOP_PENDING)
298 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299
300 task->jobctl &= ~mask;
301
302 if (!(task->jobctl & JOBCTL_PENDING_MASK))
303 task_clear_jobctl_trapping(task);
304 }
305
306 /**
307 * task_participate_group_stop - participate in a group stop
308 * @task: task participating in a group stop
309 *
310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311 * Group stop states are cleared and the group stop count is consumed if
312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
313 * stop, the appropriate %SIGNAL_* flags are set.
314 *
315 * CONTEXT:
316 * Must be called with @task->sighand->siglock held.
317 *
318 * RETURNS:
319 * %true if group stop completion should be notified to the parent, %false
320 * otherwise.
321 */
322 static bool task_participate_group_stop(struct task_struct *task)
323 {
324 struct signal_struct *sig = task->signal;
325 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326
327 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328
329 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330
331 if (!consume)
332 return false;
333
334 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
335 sig->group_stop_count--;
336
337 /*
338 * Tell the caller to notify completion iff we are entering into a
339 * fresh group stop. Read comment in do_signal_stop() for details.
340 */
341 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
342 sig->flags = SIGNAL_STOP_STOPPED;
343 return true;
344 }
345 return false;
346 }
347
348 /*
349 * allocate a new signal queue record
350 * - this may be called without locks if and only if t == current, otherwise an
351 * appropriate lock must be held to stop the target task from exiting
352 */
353 static struct sigqueue *
354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 {
356 struct sigqueue *q = NULL;
357 struct user_struct *user;
358
359 /*
360 * Protect access to @t credentials. This can go away when all
361 * callers hold rcu read lock.
362 */
363 rcu_read_lock();
364 user = get_uid(__task_cred(t)->user);
365 atomic_inc(&user->sigpending);
366 rcu_read_unlock();
367
368 if (override_rlimit ||
369 atomic_read(&user->sigpending) <=
370 task_rlimit(t, RLIMIT_SIGPENDING)) {
371 q = kmem_cache_alloc(sigqueue_cachep, flags);
372 } else {
373 print_dropped_signal(sig);
374 }
375
376 if (unlikely(q == NULL)) {
377 atomic_dec(&user->sigpending);
378 free_uid(user);
379 } else {
380 INIT_LIST_HEAD(&q->list);
381 q->flags = 0;
382 q->user = user;
383 }
384
385 return q;
386 }
387
388 static void __sigqueue_free(struct sigqueue *q)
389 {
390 if (q->flags & SIGQUEUE_PREALLOC)
391 return;
392 atomic_dec(&q->user->sigpending);
393 free_uid(q->user);
394 kmem_cache_free(sigqueue_cachep, q);
395 }
396
397 void flush_sigqueue(struct sigpending *queue)
398 {
399 struct sigqueue *q;
400
401 sigemptyset(&queue->signal);
402 while (!list_empty(&queue->list)) {
403 q = list_entry(queue->list.next, struct sigqueue , list);
404 list_del_init(&q->list);
405 __sigqueue_free(q);
406 }
407 }
408
409 /*
410 * Flush all pending signals for a task.
411 */
412 void __flush_signals(struct task_struct *t)
413 {
414 clear_tsk_thread_flag(t, TIF_SIGPENDING);
415 flush_sigqueue(&t->pending);
416 flush_sigqueue(&t->signal->shared_pending);
417 }
418
419 void flush_signals(struct task_struct *t)
420 {
421 unsigned long flags;
422
423 spin_lock_irqsave(&t->sighand->siglock, flags);
424 __flush_signals(t);
425 spin_unlock_irqrestore(&t->sighand->siglock, flags);
426 }
427
428 static void __flush_itimer_signals(struct sigpending *pending)
429 {
430 sigset_t signal, retain;
431 struct sigqueue *q, *n;
432
433 signal = pending->signal;
434 sigemptyset(&retain);
435
436 list_for_each_entry_safe(q, n, &pending->list, list) {
437 int sig = q->info.si_signo;
438
439 if (likely(q->info.si_code != SI_TIMER)) {
440 sigaddset(&retain, sig);
441 } else {
442 sigdelset(&signal, sig);
443 list_del_init(&q->list);
444 __sigqueue_free(q);
445 }
446 }
447
448 sigorsets(&pending->signal, &signal, &retain);
449 }
450
451 void flush_itimer_signals(void)
452 {
453 struct task_struct *tsk = current;
454 unsigned long flags;
455
456 spin_lock_irqsave(&tsk->sighand->siglock, flags);
457 __flush_itimer_signals(&tsk->pending);
458 __flush_itimer_signals(&tsk->signal->shared_pending);
459 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
460 }
461
462 void ignore_signals(struct task_struct *t)
463 {
464 int i;
465
466 for (i = 0; i < _NSIG; ++i)
467 t->sighand->action[i].sa.sa_handler = SIG_IGN;
468
469 flush_signals(t);
470 }
471
472 /*
473 * Flush all handlers for a task.
474 */
475
476 void
477 flush_signal_handlers(struct task_struct *t, int force_default)
478 {
479 int i;
480 struct k_sigaction *ka = &t->sighand->action[0];
481 for (i = _NSIG ; i != 0 ; i--) {
482 if (force_default || ka->sa.sa_handler != SIG_IGN)
483 ka->sa.sa_handler = SIG_DFL;
484 ka->sa.sa_flags = 0;
485 sigemptyset(&ka->sa.sa_mask);
486 ka++;
487 }
488 }
489
490 int unhandled_signal(struct task_struct *tsk, int sig)
491 {
492 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
493 if (is_global_init(tsk))
494 return 1;
495 if (handler != SIG_IGN && handler != SIG_DFL)
496 return 0;
497 /* if ptraced, let the tracer determine */
498 return !tsk->ptrace;
499 }
500
501 /*
502 * Notify the system that a driver wants to block all signals for this
503 * process, and wants to be notified if any signals at all were to be
504 * sent/acted upon. If the notifier routine returns non-zero, then the
505 * signal will be acted upon after all. If the notifier routine returns 0,
506 * then then signal will be blocked. Only one block per process is
507 * allowed. priv is a pointer to private data that the notifier routine
508 * can use to determine if the signal should be blocked or not.
509 */
510 void
511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
512 {
513 unsigned long flags;
514
515 spin_lock_irqsave(&current->sighand->siglock, flags);
516 current->notifier_mask = mask;
517 current->notifier_data = priv;
518 current->notifier = notifier;
519 spin_unlock_irqrestore(&current->sighand->siglock, flags);
520 }
521
522 /* Notify the system that blocking has ended. */
523
524 void
525 unblock_all_signals(void)
526 {
527 unsigned long flags;
528
529 spin_lock_irqsave(&current->sighand->siglock, flags);
530 current->notifier = NULL;
531 current->notifier_data = NULL;
532 recalc_sigpending();
533 spin_unlock_irqrestore(&current->sighand->siglock, flags);
534 }
535
536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
537 {
538 struct sigqueue *q, *first = NULL;
539
540 /*
541 * Collect the siginfo appropriate to this signal. Check if
542 * there is another siginfo for the same signal.
543 */
544 list_for_each_entry(q, &list->list, list) {
545 if (q->info.si_signo == sig) {
546 if (first)
547 goto still_pending;
548 first = q;
549 }
550 }
551
552 sigdelset(&list->signal, sig);
553
554 if (first) {
555 still_pending:
556 list_del_init(&first->list);
557 copy_siginfo(info, &first->info);
558 __sigqueue_free(first);
559 } else {
560 /*
561 * Ok, it wasn't in the queue. This must be
562 * a fast-pathed signal or we must have been
563 * out of queue space. So zero out the info.
564 */
565 info->si_signo = sig;
566 info->si_errno = 0;
567 info->si_code = SI_USER;
568 info->si_pid = 0;
569 info->si_uid = 0;
570 }
571 }
572
573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
574 siginfo_t *info)
575 {
576 int sig = next_signal(pending, mask);
577
578 if (sig) {
579 if (current->notifier) {
580 if (sigismember(current->notifier_mask, sig)) {
581 if (!(current->notifier)(current->notifier_data)) {
582 clear_thread_flag(TIF_SIGPENDING);
583 return 0;
584 }
585 }
586 }
587
588 collect_signal(sig, pending, info);
589 }
590
591 return sig;
592 }
593
594 /*
595 * Dequeue a signal and return the element to the caller, which is
596 * expected to free it.
597 *
598 * All callers have to hold the siglock.
599 */
600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
601 {
602 int signr;
603
604 /* We only dequeue private signals from ourselves, we don't let
605 * signalfd steal them
606 */
607 signr = __dequeue_signal(&tsk->pending, mask, info);
608 if (!signr) {
609 signr = __dequeue_signal(&tsk->signal->shared_pending,
610 mask, info);
611 /*
612 * itimer signal ?
613 *
614 * itimers are process shared and we restart periodic
615 * itimers in the signal delivery path to prevent DoS
616 * attacks in the high resolution timer case. This is
617 * compliant with the old way of self-restarting
618 * itimers, as the SIGALRM is a legacy signal and only
619 * queued once. Changing the restart behaviour to
620 * restart the timer in the signal dequeue path is
621 * reducing the timer noise on heavy loaded !highres
622 * systems too.
623 */
624 if (unlikely(signr == SIGALRM)) {
625 struct hrtimer *tmr = &tsk->signal->real_timer;
626
627 if (!hrtimer_is_queued(tmr) &&
628 tsk->signal->it_real_incr.tv64 != 0) {
629 hrtimer_forward(tmr, tmr->base->get_time(),
630 tsk->signal->it_real_incr);
631 hrtimer_restart(tmr);
632 }
633 }
634 }
635
636 recalc_sigpending();
637 if (!signr)
638 return 0;
639
640 if (unlikely(sig_kernel_stop(signr))) {
641 /*
642 * Set a marker that we have dequeued a stop signal. Our
643 * caller might release the siglock and then the pending
644 * stop signal it is about to process is no longer in the
645 * pending bitmasks, but must still be cleared by a SIGCONT
646 * (and overruled by a SIGKILL). So those cases clear this
647 * shared flag after we've set it. Note that this flag may
648 * remain set after the signal we return is ignored or
649 * handled. That doesn't matter because its only purpose
650 * is to alert stop-signal processing code when another
651 * processor has come along and cleared the flag.
652 */
653 current->jobctl |= JOBCTL_STOP_DEQUEUED;
654 }
655 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
656 /*
657 * Release the siglock to ensure proper locking order
658 * of timer locks outside of siglocks. Note, we leave
659 * irqs disabled here, since the posix-timers code is
660 * about to disable them again anyway.
661 */
662 spin_unlock(&tsk->sighand->siglock);
663 do_schedule_next_timer(info);
664 spin_lock(&tsk->sighand->siglock);
665 }
666 return signr;
667 }
668
669 /*
670 * Tell a process that it has a new active signal..
671 *
672 * NOTE! we rely on the previous spin_lock to
673 * lock interrupts for us! We can only be called with
674 * "siglock" held, and the local interrupt must
675 * have been disabled when that got acquired!
676 *
677 * No need to set need_resched since signal event passing
678 * goes through ->blocked
679 */
680 void signal_wake_up(struct task_struct *t, int resume)
681 {
682 unsigned int mask;
683
684 set_tsk_thread_flag(t, TIF_SIGPENDING);
685
686 /*
687 * For SIGKILL, we want to wake it up in the stopped/traced/killable
688 * case. We don't check t->state here because there is a race with it
689 * executing another processor and just now entering stopped state.
690 * By using wake_up_state, we ensure the process will wake up and
691 * handle its death signal.
692 */
693 mask = TASK_INTERRUPTIBLE;
694 if (resume)
695 mask |= TASK_WAKEKILL;
696 if (!wake_up_state(t, mask))
697 kick_process(t);
698 }
699
700 /*
701 * Remove signals in mask from the pending set and queue.
702 * Returns 1 if any signals were found.
703 *
704 * All callers must be holding the siglock.
705 *
706 * This version takes a sigset mask and looks at all signals,
707 * not just those in the first mask word.
708 */
709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 {
711 struct sigqueue *q, *n;
712 sigset_t m;
713
714 sigandsets(&m, mask, &s->signal);
715 if (sigisemptyset(&m))
716 return 0;
717
718 sigandnsets(&s->signal, &s->signal, mask);
719 list_for_each_entry_safe(q, n, &s->list, list) {
720 if (sigismember(mask, q->info.si_signo)) {
721 list_del_init(&q->list);
722 __sigqueue_free(q);
723 }
724 }
725 return 1;
726 }
727 /*
728 * Remove signals in mask from the pending set and queue.
729 * Returns 1 if any signals were found.
730 *
731 * All callers must be holding the siglock.
732 */
733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 {
735 struct sigqueue *q, *n;
736
737 if (!sigtestsetmask(&s->signal, mask))
738 return 0;
739
740 sigdelsetmask(&s->signal, mask);
741 list_for_each_entry_safe(q, n, &s->list, list) {
742 if (q->info.si_signo < SIGRTMIN &&
743 (mask & sigmask(q->info.si_signo))) {
744 list_del_init(&q->list);
745 __sigqueue_free(q);
746 }
747 }
748 return 1;
749 }
750
751 static inline int is_si_special(const struct siginfo *info)
752 {
753 return info <= SEND_SIG_FORCED;
754 }
755
756 static inline bool si_fromuser(const struct siginfo *info)
757 {
758 return info == SEND_SIG_NOINFO ||
759 (!is_si_special(info) && SI_FROMUSER(info));
760 }
761
762 /*
763 * called with RCU read lock from check_kill_permission()
764 */
765 static int kill_ok_by_cred(struct task_struct *t)
766 {
767 const struct cred *cred = current_cred();
768 const struct cred *tcred = __task_cred(t);
769
770 if (uid_eq(cred->euid, tcred->suid) ||
771 uid_eq(cred->euid, tcred->uid) ||
772 uid_eq(cred->uid, tcred->suid) ||
773 uid_eq(cred->uid, tcred->uid))
774 return 1;
775
776 if (ns_capable(tcred->user_ns, CAP_KILL))
777 return 1;
778
779 return 0;
780 }
781
782 /*
783 * Bad permissions for sending the signal
784 * - the caller must hold the RCU read lock
785 */
786 static int check_kill_permission(int sig, struct siginfo *info,
787 struct task_struct *t)
788 {
789 struct pid *sid;
790 int error;
791
792 if (!valid_signal(sig))
793 return -EINVAL;
794
795 if (!si_fromuser(info))
796 return 0;
797
798 error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 if (error)
800 return error;
801
802 if (!same_thread_group(current, t) &&
803 !kill_ok_by_cred(t)) {
804 switch (sig) {
805 case SIGCONT:
806 sid = task_session(t);
807 /*
808 * We don't return the error if sid == NULL. The
809 * task was unhashed, the caller must notice this.
810 */
811 if (!sid || sid == task_session(current))
812 break;
813 default:
814 return -EPERM;
815 }
816 }
817
818 return security_task_kill(t, info, sig, 0);
819 }
820
821 /**
822 * ptrace_trap_notify - schedule trap to notify ptracer
823 * @t: tracee wanting to notify tracer
824 *
825 * This function schedules sticky ptrace trap which is cleared on the next
826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * ptracer.
828 *
829 * If @t is running, STOP trap will be taken. If trapped for STOP and
830 * ptracer is listening for events, tracee is woken up so that it can
831 * re-trap for the new event. If trapped otherwise, STOP trap will be
832 * eventually taken without returning to userland after the existing traps
833 * are finished by PTRACE_CONT.
834 *
835 * CONTEXT:
836 * Must be called with @task->sighand->siglock held.
837 */
838 static void ptrace_trap_notify(struct task_struct *t)
839 {
840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 assert_spin_locked(&t->sighand->siglock);
842
843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
845 }
846
847 /*
848 * Handle magic process-wide effects of stop/continue signals. Unlike
849 * the signal actions, these happen immediately at signal-generation
850 * time regardless of blocking, ignoring, or handling. This does the
851 * actual continuing for SIGCONT, but not the actual stopping for stop
852 * signals. The process stop is done as a signal action for SIG_DFL.
853 *
854 * Returns true if the signal should be actually delivered, otherwise
855 * it should be dropped.
856 */
857 static int prepare_signal(int sig, struct task_struct *p, bool force)
858 {
859 struct signal_struct *signal = p->signal;
860 struct task_struct *t;
861
862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
863 /*
864 * The process is in the middle of dying, nothing to do.
865 */
866 } else if (sig_kernel_stop(sig)) {
867 /*
868 * This is a stop signal. Remove SIGCONT from all queues.
869 */
870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 t = p;
872 do {
873 rm_from_queue(sigmask(SIGCONT), &t->pending);
874 } while_each_thread(p, t);
875 } else if (sig == SIGCONT) {
876 unsigned int why;
877 /*
878 * Remove all stop signals from all queues, wake all threads.
879 */
880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 t = p;
882 do {
883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 if (likely(!(t->ptrace & PT_SEIZED)))
886 wake_up_state(t, __TASK_STOPPED);
887 else
888 ptrace_trap_notify(t);
889 } while_each_thread(p, t);
890
891 /*
892 * Notify the parent with CLD_CONTINUED if we were stopped.
893 *
894 * If we were in the middle of a group stop, we pretend it
895 * was already finished, and then continued. Since SIGCHLD
896 * doesn't queue we report only CLD_STOPPED, as if the next
897 * CLD_CONTINUED was dropped.
898 */
899 why = 0;
900 if (signal->flags & SIGNAL_STOP_STOPPED)
901 why |= SIGNAL_CLD_CONTINUED;
902 else if (signal->group_stop_count)
903 why |= SIGNAL_CLD_STOPPED;
904
905 if (why) {
906 /*
907 * The first thread which returns from do_signal_stop()
908 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 * notify its parent. See get_signal_to_deliver().
910 */
911 signal->flags = why | SIGNAL_STOP_CONTINUED;
912 signal->group_stop_count = 0;
913 signal->group_exit_code = 0;
914 }
915 }
916
917 return !sig_ignored(p, sig, force);
918 }
919
920 /*
921 * Test if P wants to take SIG. After we've checked all threads with this,
922 * it's equivalent to finding no threads not blocking SIG. Any threads not
923 * blocking SIG were ruled out because they are not running and already
924 * have pending signals. Such threads will dequeue from the shared queue
925 * as soon as they're available, so putting the signal on the shared queue
926 * will be equivalent to sending it to one such thread.
927 */
928 static inline int wants_signal(int sig, struct task_struct *p)
929 {
930 if (sigismember(&p->blocked, sig))
931 return 0;
932 if (p->flags & PF_EXITING)
933 return 0;
934 if (sig == SIGKILL)
935 return 1;
936 if (task_is_stopped_or_traced(p))
937 return 0;
938 return task_curr(p) || !signal_pending(p);
939 }
940
941 static void complete_signal(int sig, struct task_struct *p, int group)
942 {
943 struct signal_struct *signal = p->signal;
944 struct task_struct *t;
945
946 /*
947 * Now find a thread we can wake up to take the signal off the queue.
948 *
949 * If the main thread wants the signal, it gets first crack.
950 * Probably the least surprising to the average bear.
951 */
952 if (wants_signal(sig, p))
953 t = p;
954 else if (!group || thread_group_empty(p))
955 /*
956 * There is just one thread and it does not need to be woken.
957 * It will dequeue unblocked signals before it runs again.
958 */
959 return;
960 else {
961 /*
962 * Otherwise try to find a suitable thread.
963 */
964 t = signal->curr_target;
965 while (!wants_signal(sig, t)) {
966 t = next_thread(t);
967 if (t == signal->curr_target)
968 /*
969 * No thread needs to be woken.
970 * Any eligible threads will see
971 * the signal in the queue soon.
972 */
973 return;
974 }
975 signal->curr_target = t;
976 }
977
978 /*
979 * Found a killable thread. If the signal will be fatal,
980 * then start taking the whole group down immediately.
981 */
982 if (sig_fatal(p, sig) &&
983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 !sigismember(&t->real_blocked, sig) &&
985 (sig == SIGKILL || !t->ptrace)) {
986 /*
987 * This signal will be fatal to the whole group.
988 */
989 if (!sig_kernel_coredump(sig)) {
990 /*
991 * Start a group exit and wake everybody up.
992 * This way we don't have other threads
993 * running and doing things after a slower
994 * thread has the fatal signal pending.
995 */
996 signal->flags = SIGNAL_GROUP_EXIT;
997 signal->group_exit_code = sig;
998 signal->group_stop_count = 0;
999 t = p;
1000 do {
1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 sigaddset(&t->pending.signal, SIGKILL);
1003 signal_wake_up(t, 1);
1004 } while_each_thread(p, t);
1005 return;
1006 }
1007 }
1008
1009 /*
1010 * The signal is already in the shared-pending queue.
1011 * Tell the chosen thread to wake up and dequeue it.
1012 */
1013 signal_wake_up(t, sig == SIGKILL);
1014 return;
1015 }
1016
1017 static inline int legacy_queue(struct sigpending *signals, int sig)
1018 {
1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020 }
1021
1022 #ifdef CONFIG_USER_NS
1023 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1024 {
1025 if (current_user_ns() == task_cred_xxx(t, user_ns))
1026 return;
1027
1028 if (SI_FROMKERNEL(info))
1029 return;
1030
1031 rcu_read_lock();
1032 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1033 make_kuid(current_user_ns(), info->si_uid));
1034 rcu_read_unlock();
1035 }
1036 #else
1037 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1038 {
1039 return;
1040 }
1041 #endif
1042
1043 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1044 int group, int from_ancestor_ns)
1045 {
1046 struct sigpending *pending;
1047 struct sigqueue *q;
1048 int override_rlimit;
1049 int ret = 0, result;
1050
1051 assert_spin_locked(&t->sighand->siglock);
1052
1053 result = TRACE_SIGNAL_IGNORED;
1054 if (!prepare_signal(sig, t,
1055 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1056 goto ret;
1057
1058 pending = group ? &t->signal->shared_pending : &t->pending;
1059 /*
1060 * Short-circuit ignored signals and support queuing
1061 * exactly one non-rt signal, so that we can get more
1062 * detailed information about the cause of the signal.
1063 */
1064 result = TRACE_SIGNAL_ALREADY_PENDING;
1065 if (legacy_queue(pending, sig))
1066 goto ret;
1067
1068 result = TRACE_SIGNAL_DELIVERED;
1069 /*
1070 * fast-pathed signals for kernel-internal things like SIGSTOP
1071 * or SIGKILL.
1072 */
1073 if (info == SEND_SIG_FORCED)
1074 goto out_set;
1075
1076 /*
1077 * Real-time signals must be queued if sent by sigqueue, or
1078 * some other real-time mechanism. It is implementation
1079 * defined whether kill() does so. We attempt to do so, on
1080 * the principle of least surprise, but since kill is not
1081 * allowed to fail with EAGAIN when low on memory we just
1082 * make sure at least one signal gets delivered and don't
1083 * pass on the info struct.
1084 */
1085 if (sig < SIGRTMIN)
1086 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1087 else
1088 override_rlimit = 0;
1089
1090 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1091 override_rlimit);
1092 if (q) {
1093 list_add_tail(&q->list, &pending->list);
1094 switch ((unsigned long) info) {
1095 case (unsigned long) SEND_SIG_NOINFO:
1096 q->info.si_signo = sig;
1097 q->info.si_errno = 0;
1098 q->info.si_code = SI_USER;
1099 q->info.si_pid = task_tgid_nr_ns(current,
1100 task_active_pid_ns(t));
1101 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1102 break;
1103 case (unsigned long) SEND_SIG_PRIV:
1104 q->info.si_signo = sig;
1105 q->info.si_errno = 0;
1106 q->info.si_code = SI_KERNEL;
1107 q->info.si_pid = 0;
1108 q->info.si_uid = 0;
1109 break;
1110 default:
1111 copy_siginfo(&q->info, info);
1112 if (from_ancestor_ns)
1113 q->info.si_pid = 0;
1114 break;
1115 }
1116
1117 userns_fixup_signal_uid(&q->info, t);
1118
1119 } else if (!is_si_special(info)) {
1120 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1121 /*
1122 * Queue overflow, abort. We may abort if the
1123 * signal was rt and sent by user using something
1124 * other than kill().
1125 */
1126 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1127 ret = -EAGAIN;
1128 goto ret;
1129 } else {
1130 /*
1131 * This is a silent loss of information. We still
1132 * send the signal, but the *info bits are lost.
1133 */
1134 result = TRACE_SIGNAL_LOSE_INFO;
1135 }
1136 }
1137
1138 out_set:
1139 signalfd_notify(t, sig);
1140 sigaddset(&pending->signal, sig);
1141 complete_signal(sig, t, group);
1142 ret:
1143 trace_signal_generate(sig, info, t, group, result);
1144 return ret;
1145 }
1146
1147 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1148 int group)
1149 {
1150 int from_ancestor_ns = 0;
1151
1152 #ifdef CONFIG_PID_NS
1153 from_ancestor_ns = si_fromuser(info) &&
1154 !task_pid_nr_ns(current, task_active_pid_ns(t));
1155 #endif
1156
1157 return __send_signal(sig, info, t, group, from_ancestor_ns);
1158 }
1159
1160 static void print_fatal_signal(struct pt_regs *regs, int signr)
1161 {
1162 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1163 current->comm, task_pid_nr(current), signr);
1164
1165 #if defined(__i386__) && !defined(__arch_um__)
1166 printk("code at %08lx: ", regs->ip);
1167 {
1168 int i;
1169 for (i = 0; i < 16; i++) {
1170 unsigned char insn;
1171
1172 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1173 break;
1174 printk("%02x ", insn);
1175 }
1176 }
1177 #endif
1178 printk("\n");
1179 preempt_disable();
1180 show_regs(regs);
1181 preempt_enable();
1182 }
1183
1184 static int __init setup_print_fatal_signals(char *str)
1185 {
1186 get_option (&str, &print_fatal_signals);
1187
1188 return 1;
1189 }
1190
1191 __setup("print-fatal-signals=", setup_print_fatal_signals);
1192
1193 int
1194 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1195 {
1196 return send_signal(sig, info, p, 1);
1197 }
1198
1199 static int
1200 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201 {
1202 return send_signal(sig, info, t, 0);
1203 }
1204
1205 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1206 bool group)
1207 {
1208 unsigned long flags;
1209 int ret = -ESRCH;
1210
1211 if (lock_task_sighand(p, &flags)) {
1212 ret = send_signal(sig, info, p, group);
1213 unlock_task_sighand(p, &flags);
1214 }
1215
1216 return ret;
1217 }
1218
1219 /*
1220 * Force a signal that the process can't ignore: if necessary
1221 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1222 *
1223 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1224 * since we do not want to have a signal handler that was blocked
1225 * be invoked when user space had explicitly blocked it.
1226 *
1227 * We don't want to have recursive SIGSEGV's etc, for example,
1228 * that is why we also clear SIGNAL_UNKILLABLE.
1229 */
1230 int
1231 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1232 {
1233 unsigned long int flags;
1234 int ret, blocked, ignored;
1235 struct k_sigaction *action;
1236
1237 spin_lock_irqsave(&t->sighand->siglock, flags);
1238 action = &t->sighand->action[sig-1];
1239 ignored = action->sa.sa_handler == SIG_IGN;
1240 blocked = sigismember(&t->blocked, sig);
1241 if (blocked || ignored) {
1242 action->sa.sa_handler = SIG_DFL;
1243 if (blocked) {
1244 sigdelset(&t->blocked, sig);
1245 recalc_sigpending_and_wake(t);
1246 }
1247 }
1248 if (action->sa.sa_handler == SIG_DFL)
1249 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1250 ret = specific_send_sig_info(sig, info, t);
1251 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1252
1253 return ret;
1254 }
1255
1256 /*
1257 * Nuke all other threads in the group.
1258 */
1259 int zap_other_threads(struct task_struct *p)
1260 {
1261 struct task_struct *t = p;
1262 int count = 0;
1263
1264 p->signal->group_stop_count = 0;
1265
1266 while_each_thread(p, t) {
1267 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1268 count++;
1269
1270 /* Don't bother with already dead threads */
1271 if (t->exit_state)
1272 continue;
1273 sigaddset(&t->pending.signal, SIGKILL);
1274 signal_wake_up(t, 1);
1275 }
1276
1277 return count;
1278 }
1279
1280 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1281 unsigned long *flags)
1282 {
1283 struct sighand_struct *sighand;
1284
1285 for (;;) {
1286 local_irq_save(*flags);
1287 rcu_read_lock();
1288 sighand = rcu_dereference(tsk->sighand);
1289 if (unlikely(sighand == NULL)) {
1290 rcu_read_unlock();
1291 local_irq_restore(*flags);
1292 break;
1293 }
1294
1295 spin_lock(&sighand->siglock);
1296 if (likely(sighand == tsk->sighand)) {
1297 rcu_read_unlock();
1298 break;
1299 }
1300 spin_unlock(&sighand->siglock);
1301 rcu_read_unlock();
1302 local_irq_restore(*flags);
1303 }
1304
1305 return sighand;
1306 }
1307
1308 /*
1309 * send signal info to all the members of a group
1310 */
1311 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1312 {
1313 int ret;
1314
1315 rcu_read_lock();
1316 ret = check_kill_permission(sig, info, p);
1317 rcu_read_unlock();
1318
1319 if (!ret && sig)
1320 ret = do_send_sig_info(sig, info, p, true);
1321
1322 return ret;
1323 }
1324
1325 /*
1326 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1327 * control characters do (^C, ^Z etc)
1328 * - the caller must hold at least a readlock on tasklist_lock
1329 */
1330 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1331 {
1332 struct task_struct *p = NULL;
1333 int retval, success;
1334
1335 success = 0;
1336 retval = -ESRCH;
1337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1338 int err = group_send_sig_info(sig, info, p);
1339 success |= !err;
1340 retval = err;
1341 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1342 return success ? 0 : retval;
1343 }
1344
1345 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1346 {
1347 int error = -ESRCH;
1348 struct task_struct *p;
1349
1350 rcu_read_lock();
1351 retry:
1352 p = pid_task(pid, PIDTYPE_PID);
1353 if (p) {
1354 error = group_send_sig_info(sig, info, p);
1355 if (unlikely(error == -ESRCH))
1356 /*
1357 * The task was unhashed in between, try again.
1358 * If it is dead, pid_task() will return NULL,
1359 * if we race with de_thread() it will find the
1360 * new leader.
1361 */
1362 goto retry;
1363 }
1364 rcu_read_unlock();
1365
1366 return error;
1367 }
1368
1369 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1370 {
1371 int error;
1372 rcu_read_lock();
1373 error = kill_pid_info(sig, info, find_vpid(pid));
1374 rcu_read_unlock();
1375 return error;
1376 }
1377
1378 static int kill_as_cred_perm(const struct cred *cred,
1379 struct task_struct *target)
1380 {
1381 const struct cred *pcred = __task_cred(target);
1382 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1383 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1384 return 0;
1385 return 1;
1386 }
1387
1388 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1389 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1390 const struct cred *cred, u32 secid)
1391 {
1392 int ret = -EINVAL;
1393 struct task_struct *p;
1394 unsigned long flags;
1395
1396 if (!valid_signal(sig))
1397 return ret;
1398
1399 rcu_read_lock();
1400 p = pid_task(pid, PIDTYPE_PID);
1401 if (!p) {
1402 ret = -ESRCH;
1403 goto out_unlock;
1404 }
1405 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1406 ret = -EPERM;
1407 goto out_unlock;
1408 }
1409 ret = security_task_kill(p, info, sig, secid);
1410 if (ret)
1411 goto out_unlock;
1412
1413 if (sig) {
1414 if (lock_task_sighand(p, &flags)) {
1415 ret = __send_signal(sig, info, p, 1, 0);
1416 unlock_task_sighand(p, &flags);
1417 } else
1418 ret = -ESRCH;
1419 }
1420 out_unlock:
1421 rcu_read_unlock();
1422 return ret;
1423 }
1424 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1425
1426 /*
1427 * kill_something_info() interprets pid in interesting ways just like kill(2).
1428 *
1429 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1430 * is probably wrong. Should make it like BSD or SYSV.
1431 */
1432
1433 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1434 {
1435 int ret;
1436
1437 if (pid > 0) {
1438 rcu_read_lock();
1439 ret = kill_pid_info(sig, info, find_vpid(pid));
1440 rcu_read_unlock();
1441 return ret;
1442 }
1443
1444 read_lock(&tasklist_lock);
1445 if (pid != -1) {
1446 ret = __kill_pgrp_info(sig, info,
1447 pid ? find_vpid(-pid) : task_pgrp(current));
1448 } else {
1449 int retval = 0, count = 0;
1450 struct task_struct * p;
1451
1452 for_each_process(p) {
1453 if (task_pid_vnr(p) > 1 &&
1454 !same_thread_group(p, current)) {
1455 int err = group_send_sig_info(sig, info, p);
1456 ++count;
1457 if (err != -EPERM)
1458 retval = err;
1459 }
1460 }
1461 ret = count ? retval : -ESRCH;
1462 }
1463 read_unlock(&tasklist_lock);
1464
1465 return ret;
1466 }
1467
1468 /*
1469 * These are for backward compatibility with the rest of the kernel source.
1470 */
1471
1472 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1473 {
1474 /*
1475 * Make sure legacy kernel users don't send in bad values
1476 * (normal paths check this in check_kill_permission).
1477 */
1478 if (!valid_signal(sig))
1479 return -EINVAL;
1480
1481 return do_send_sig_info(sig, info, p, false);
1482 }
1483
1484 #define __si_special(priv) \
1485 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1486
1487 int
1488 send_sig(int sig, struct task_struct *p, int priv)
1489 {
1490 return send_sig_info(sig, __si_special(priv), p);
1491 }
1492
1493 void
1494 force_sig(int sig, struct task_struct *p)
1495 {
1496 force_sig_info(sig, SEND_SIG_PRIV, p);
1497 }
1498
1499 /*
1500 * When things go south during signal handling, we
1501 * will force a SIGSEGV. And if the signal that caused
1502 * the problem was already a SIGSEGV, we'll want to
1503 * make sure we don't even try to deliver the signal..
1504 */
1505 int
1506 force_sigsegv(int sig, struct task_struct *p)
1507 {
1508 if (sig == SIGSEGV) {
1509 unsigned long flags;
1510 spin_lock_irqsave(&p->sighand->siglock, flags);
1511 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1512 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1513 }
1514 force_sig(SIGSEGV, p);
1515 return 0;
1516 }
1517
1518 int kill_pgrp(struct pid *pid, int sig, int priv)
1519 {
1520 int ret;
1521
1522 read_lock(&tasklist_lock);
1523 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1524 read_unlock(&tasklist_lock);
1525
1526 return ret;
1527 }
1528 EXPORT_SYMBOL(kill_pgrp);
1529
1530 int kill_pid(struct pid *pid, int sig, int priv)
1531 {
1532 return kill_pid_info(sig, __si_special(priv), pid);
1533 }
1534 EXPORT_SYMBOL(kill_pid);
1535
1536 /*
1537 * These functions support sending signals using preallocated sigqueue
1538 * structures. This is needed "because realtime applications cannot
1539 * afford to lose notifications of asynchronous events, like timer
1540 * expirations or I/O completions". In the case of POSIX Timers
1541 * we allocate the sigqueue structure from the timer_create. If this
1542 * allocation fails we are able to report the failure to the application
1543 * with an EAGAIN error.
1544 */
1545 struct sigqueue *sigqueue_alloc(void)
1546 {
1547 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1548
1549 if (q)
1550 q->flags |= SIGQUEUE_PREALLOC;
1551
1552 return q;
1553 }
1554
1555 void sigqueue_free(struct sigqueue *q)
1556 {
1557 unsigned long flags;
1558 spinlock_t *lock = &current->sighand->siglock;
1559
1560 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1561 /*
1562 * We must hold ->siglock while testing q->list
1563 * to serialize with collect_signal() or with
1564 * __exit_signal()->flush_sigqueue().
1565 */
1566 spin_lock_irqsave(lock, flags);
1567 q->flags &= ~SIGQUEUE_PREALLOC;
1568 /*
1569 * If it is queued it will be freed when dequeued,
1570 * like the "regular" sigqueue.
1571 */
1572 if (!list_empty(&q->list))
1573 q = NULL;
1574 spin_unlock_irqrestore(lock, flags);
1575
1576 if (q)
1577 __sigqueue_free(q);
1578 }
1579
1580 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1581 {
1582 int sig = q->info.si_signo;
1583 struct sigpending *pending;
1584 unsigned long flags;
1585 int ret, result;
1586
1587 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1588
1589 ret = -1;
1590 if (!likely(lock_task_sighand(t, &flags)))
1591 goto ret;
1592
1593 ret = 1; /* the signal is ignored */
1594 result = TRACE_SIGNAL_IGNORED;
1595 if (!prepare_signal(sig, t, false))
1596 goto out;
1597
1598 ret = 0;
1599 if (unlikely(!list_empty(&q->list))) {
1600 /*
1601 * If an SI_TIMER entry is already queue just increment
1602 * the overrun count.
1603 */
1604 BUG_ON(q->info.si_code != SI_TIMER);
1605 q->info.si_overrun++;
1606 result = TRACE_SIGNAL_ALREADY_PENDING;
1607 goto out;
1608 }
1609 q->info.si_overrun = 0;
1610
1611 signalfd_notify(t, sig);
1612 pending = group ? &t->signal->shared_pending : &t->pending;
1613 list_add_tail(&q->list, &pending->list);
1614 sigaddset(&pending->signal, sig);
1615 complete_signal(sig, t, group);
1616 result = TRACE_SIGNAL_DELIVERED;
1617 out:
1618 trace_signal_generate(sig, &q->info, t, group, result);
1619 unlock_task_sighand(t, &flags);
1620 ret:
1621 return ret;
1622 }
1623
1624 /*
1625 * Let a parent know about the death of a child.
1626 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1627 *
1628 * Returns true if our parent ignored us and so we've switched to
1629 * self-reaping.
1630 */
1631 bool do_notify_parent(struct task_struct *tsk, int sig)
1632 {
1633 struct siginfo info;
1634 unsigned long flags;
1635 struct sighand_struct *psig;
1636 bool autoreap = false;
1637
1638 BUG_ON(sig == -1);
1639
1640 /* do_notify_parent_cldstop should have been called instead. */
1641 BUG_ON(task_is_stopped_or_traced(tsk));
1642
1643 BUG_ON(!tsk->ptrace &&
1644 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1645
1646 if (sig != SIGCHLD) {
1647 /*
1648 * This is only possible if parent == real_parent.
1649 * Check if it has changed security domain.
1650 */
1651 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1652 sig = SIGCHLD;
1653 }
1654
1655 info.si_signo = sig;
1656 info.si_errno = 0;
1657 /*
1658 * we are under tasklist_lock here so our parent is tied to
1659 * us and cannot exit and release its namespace.
1660 *
1661 * the only it can is to switch its nsproxy with sys_unshare,
1662 * bu uncharing pid namespaces is not allowed, so we'll always
1663 * see relevant namespace
1664 *
1665 * write_lock() currently calls preempt_disable() which is the
1666 * same as rcu_read_lock(), but according to Oleg, this is not
1667 * correct to rely on this
1668 */
1669 rcu_read_lock();
1670 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672 task_uid(tsk));
1673 rcu_read_unlock();
1674
1675 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1677
1678 info.si_status = tsk->exit_code & 0x7f;
1679 if (tsk->exit_code & 0x80)
1680 info.si_code = CLD_DUMPED;
1681 else if (tsk->exit_code & 0x7f)
1682 info.si_code = CLD_KILLED;
1683 else {
1684 info.si_code = CLD_EXITED;
1685 info.si_status = tsk->exit_code >> 8;
1686 }
1687
1688 psig = tsk->parent->sighand;
1689 spin_lock_irqsave(&psig->siglock, flags);
1690 if (!tsk->ptrace && sig == SIGCHLD &&
1691 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693 /*
1694 * We are exiting and our parent doesn't care. POSIX.1
1695 * defines special semantics for setting SIGCHLD to SIG_IGN
1696 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697 * automatically and not left for our parent's wait4 call.
1698 * Rather than having the parent do it as a magic kind of
1699 * signal handler, we just set this to tell do_exit that we
1700 * can be cleaned up without becoming a zombie. Note that
1701 * we still call __wake_up_parent in this case, because a
1702 * blocked sys_wait4 might now return -ECHILD.
1703 *
1704 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705 * is implementation-defined: we do (if you don't want
1706 * it, just use SIG_IGN instead).
1707 */
1708 autoreap = true;
1709 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710 sig = 0;
1711 }
1712 if (valid_signal(sig) && sig)
1713 __group_send_sig_info(sig, &info, tsk->parent);
1714 __wake_up_parent(tsk, tsk->parent);
1715 spin_unlock_irqrestore(&psig->siglock, flags);
1716
1717 return autoreap;
1718 }
1719
1720 /**
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725 *
1726 * Notify @tsk's parent that the stopped/continued state has changed. If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729 *
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1732 */
1733 static void do_notify_parent_cldstop(struct task_struct *tsk,
1734 bool for_ptracer, int why)
1735 {
1736 struct siginfo info;
1737 unsigned long flags;
1738 struct task_struct *parent;
1739 struct sighand_struct *sighand;
1740
1741 if (for_ptracer) {
1742 parent = tsk->parent;
1743 } else {
1744 tsk = tsk->group_leader;
1745 parent = tsk->real_parent;
1746 }
1747
1748 info.si_signo = SIGCHLD;
1749 info.si_errno = 0;
1750 /*
1751 * see comment in do_notify_parent() about the following 4 lines
1752 */
1753 rcu_read_lock();
1754 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 rcu_read_unlock();
1757
1758 info.si_utime = cputime_to_clock_t(tsk->utime);
1759 info.si_stime = cputime_to_clock_t(tsk->stime);
1760
1761 info.si_code = why;
1762 switch (why) {
1763 case CLD_CONTINUED:
1764 info.si_status = SIGCONT;
1765 break;
1766 case CLD_STOPPED:
1767 info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 break;
1769 case CLD_TRAPPED:
1770 info.si_status = tsk->exit_code & 0x7f;
1771 break;
1772 default:
1773 BUG();
1774 }
1775
1776 sighand = parent->sighand;
1777 spin_lock_irqsave(&sighand->siglock, flags);
1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780 __group_send_sig_info(SIGCHLD, &info, parent);
1781 /*
1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783 */
1784 __wake_up_parent(tsk, parent);
1785 spin_unlock_irqrestore(&sighand->siglock, flags);
1786 }
1787
1788 static inline int may_ptrace_stop(void)
1789 {
1790 if (!likely(current->ptrace))
1791 return 0;
1792 /*
1793 * Are we in the middle of do_coredump?
1794 * If so and our tracer is also part of the coredump stopping
1795 * is a deadlock situation, and pointless because our tracer
1796 * is dead so don't allow us to stop.
1797 * If SIGKILL was already sent before the caller unlocked
1798 * ->siglock we must see ->core_state != NULL. Otherwise it
1799 * is safe to enter schedule().
1800 */
1801 if (unlikely(current->mm->core_state) &&
1802 unlikely(current->mm == current->parent->mm))
1803 return 0;
1804
1805 return 1;
1806 }
1807
1808 /*
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1811 */
1812 static int sigkill_pending(struct task_struct *tsk)
1813 {
1814 return sigismember(&tsk->pending.signal, SIGKILL) ||
1815 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816 }
1817
1818 /*
1819 * This must be called with current->sighand->siglock held.
1820 *
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1825 *
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1828 */
1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830 __releases(&current->sighand->siglock)
1831 __acquires(&current->sighand->siglock)
1832 {
1833 bool gstop_done = false;
1834
1835 if (arch_ptrace_stop_needed(exit_code, info)) {
1836 /*
1837 * The arch code has something special to do before a
1838 * ptrace stop. This is allowed to block, e.g. for faults
1839 * on user stack pages. We can't keep the siglock while
1840 * calling arch_ptrace_stop, so we must release it now.
1841 * To preserve proper semantics, we must do this before
1842 * any signal bookkeeping like checking group_stop_count.
1843 * Meanwhile, a SIGKILL could come in before we retake the
1844 * siglock. That must prevent us from sleeping in TASK_TRACED.
1845 * So after regaining the lock, we must check for SIGKILL.
1846 */
1847 spin_unlock_irq(&current->sighand->siglock);
1848 arch_ptrace_stop(exit_code, info);
1849 spin_lock_irq(&current->sighand->siglock);
1850 if (sigkill_pending(current))
1851 return;
1852 }
1853
1854 /*
1855 * We're committing to trapping. TRACED should be visible before
1856 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857 * Also, transition to TRACED and updates to ->jobctl should be
1858 * atomic with respect to siglock and should be done after the arch
1859 * hook as siglock is released and regrabbed across it.
1860 */
1861 set_current_state(TASK_TRACED);
1862
1863 current->last_siginfo = info;
1864 current->exit_code = exit_code;
1865
1866 /*
1867 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1869 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870 * could be clear now. We act as if SIGCONT is received after
1871 * TASK_TRACED is entered - ignore it.
1872 */
1873 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874 gstop_done = task_participate_group_stop(current);
1875
1876 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880
1881 /* entering a trap, clear TRAPPING */
1882 task_clear_jobctl_trapping(current);
1883
1884 spin_unlock_irq(&current->sighand->siglock);
1885 read_lock(&tasklist_lock);
1886 if (may_ptrace_stop()) {
1887 /*
1888 * Notify parents of the stop.
1889 *
1890 * While ptraced, there are two parents - the ptracer and
1891 * the real_parent of the group_leader. The ptracer should
1892 * know about every stop while the real parent is only
1893 * interested in the completion of group stop. The states
1894 * for the two don't interact with each other. Notify
1895 * separately unless they're gonna be duplicates.
1896 */
1897 do_notify_parent_cldstop(current, true, why);
1898 if (gstop_done && ptrace_reparented(current))
1899 do_notify_parent_cldstop(current, false, why);
1900
1901 /*
1902 * Don't want to allow preemption here, because
1903 * sys_ptrace() needs this task to be inactive.
1904 *
1905 * XXX: implement read_unlock_no_resched().
1906 */
1907 preempt_disable();
1908 read_unlock(&tasklist_lock);
1909 preempt_enable_no_resched();
1910 schedule();
1911 } else {
1912 /*
1913 * By the time we got the lock, our tracer went away.
1914 * Don't drop the lock yet, another tracer may come.
1915 *
1916 * If @gstop_done, the ptracer went away between group stop
1917 * completion and here. During detach, it would have set
1918 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920 * the real parent of the group stop completion is enough.
1921 */
1922 if (gstop_done)
1923 do_notify_parent_cldstop(current, false, why);
1924
1925 __set_current_state(TASK_RUNNING);
1926 if (clear_code)
1927 current->exit_code = 0;
1928 read_unlock(&tasklist_lock);
1929 }
1930
1931 /*
1932 * While in TASK_TRACED, we were considered "frozen enough".
1933 * Now that we woke up, it's crucial if we're supposed to be
1934 * frozen that we freeze now before running anything substantial.
1935 */
1936 try_to_freeze();
1937
1938 /*
1939 * We are back. Now reacquire the siglock before touching
1940 * last_siginfo, so that we are sure to have synchronized with
1941 * any signal-sending on another CPU that wants to examine it.
1942 */
1943 spin_lock_irq(&current->sighand->siglock);
1944 current->last_siginfo = NULL;
1945
1946 /* LISTENING can be set only during STOP traps, clear it */
1947 current->jobctl &= ~JOBCTL_LISTENING;
1948
1949 /*
1950 * Queued signals ignored us while we were stopped for tracing.
1951 * So check for any that we should take before resuming user mode.
1952 * This sets TIF_SIGPENDING, but never clears it.
1953 */
1954 recalc_sigpending_tsk(current);
1955 }
1956
1957 static void ptrace_do_notify(int signr, int exit_code, int why)
1958 {
1959 siginfo_t info;
1960
1961 memset(&info, 0, sizeof info);
1962 info.si_signo = signr;
1963 info.si_code = exit_code;
1964 info.si_pid = task_pid_vnr(current);
1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967 /* Let the debugger run. */
1968 ptrace_stop(exit_code, why, 1, &info);
1969 }
1970
1971 void ptrace_notify(int exit_code)
1972 {
1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1974
1975 spin_lock_irq(&current->sighand->siglock);
1976 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977 spin_unlock_irq(&current->sighand->siglock);
1978 }
1979
1980 /**
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1983 *
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it. If already set, participate in the existing
1986 * group stop. If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1988 *
1989 * If ptraced, this function doesn't handle stop itself. Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched. The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1993 *
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1997 *
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2001 */
2002 static bool do_signal_stop(int signr)
2003 __releases(&current->sighand->siglock)
2004 {
2005 struct signal_struct *sig = current->signal;
2006
2007 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009 struct task_struct *t;
2010
2011 /* signr will be recorded in task->jobctl for retries */
2012 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2013
2014 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015 unlikely(signal_group_exit(sig)))
2016 return false;
2017 /*
2018 * There is no group stop already in progress. We must
2019 * initiate one now.
2020 *
2021 * While ptraced, a task may be resumed while group stop is
2022 * still in effect and then receive a stop signal and
2023 * initiate another group stop. This deviates from the
2024 * usual behavior as two consecutive stop signals can't
2025 * cause two group stops when !ptraced. That is why we
2026 * also check !task_is_stopped(t) below.
2027 *
2028 * The condition can be distinguished by testing whether
2029 * SIGNAL_STOP_STOPPED is already set. Don't generate
2030 * group_exit_code in such case.
2031 *
2032 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033 * an intervening stop signal is required to cause two
2034 * continued events regardless of ptrace.
2035 */
2036 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037 sig->group_exit_code = signr;
2038
2039 sig->group_stop_count = 0;
2040
2041 if (task_set_jobctl_pending(current, signr | gstop))
2042 sig->group_stop_count++;
2043
2044 for (t = next_thread(current); t != current;
2045 t = next_thread(t)) {
2046 /*
2047 * Setting state to TASK_STOPPED for a group
2048 * stop is always done with the siglock held,
2049 * so this check has no races.
2050 */
2051 if (!task_is_stopped(t) &&
2052 task_set_jobctl_pending(t, signr | gstop)) {
2053 sig->group_stop_count++;
2054 if (likely(!(t->ptrace & PT_SEIZED)))
2055 signal_wake_up(t, 0);
2056 else
2057 ptrace_trap_notify(t);
2058 }
2059 }
2060 }
2061
2062 if (likely(!current->ptrace)) {
2063 int notify = 0;
2064
2065 /*
2066 * If there are no other threads in the group, or if there
2067 * is a group stop in progress and we are the last to stop,
2068 * report to the parent.
2069 */
2070 if (task_participate_group_stop(current))
2071 notify = CLD_STOPPED;
2072
2073 __set_current_state(TASK_STOPPED);
2074 spin_unlock_irq(&current->sighand->siglock);
2075
2076 /*
2077 * Notify the parent of the group stop completion. Because
2078 * we're not holding either the siglock or tasklist_lock
2079 * here, ptracer may attach inbetween; however, this is for
2080 * group stop and should always be delivered to the real
2081 * parent of the group leader. The new ptracer will get
2082 * its notification when this task transitions into
2083 * TASK_TRACED.
2084 */
2085 if (notify) {
2086 read_lock(&tasklist_lock);
2087 do_notify_parent_cldstop(current, false, notify);
2088 read_unlock(&tasklist_lock);
2089 }
2090
2091 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2092 schedule();
2093 return true;
2094 } else {
2095 /*
2096 * While ptraced, group stop is handled by STOP trap.
2097 * Schedule it and let the caller deal with it.
2098 */
2099 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100 return false;
2101 }
2102 }
2103
2104 /**
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2106 *
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2111 *
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2114 *
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2118 */
2119 static void do_jobctl_trap(void)
2120 {
2121 struct signal_struct *signal = current->signal;
2122 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2123
2124 if (current->ptrace & PT_SEIZED) {
2125 if (!signal->group_stop_count &&
2126 !(signal->flags & SIGNAL_STOP_STOPPED))
2127 signr = SIGTRAP;
2128 WARN_ON_ONCE(!signr);
2129 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130 CLD_STOPPED);
2131 } else {
2132 WARN_ON_ONCE(!signr);
2133 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134 current->exit_code = 0;
2135 }
2136 }
2137
2138 static int ptrace_signal(int signr, siginfo_t *info,
2139 struct pt_regs *regs, void *cookie)
2140 {
2141 ptrace_signal_deliver(regs, cookie);
2142 /*
2143 * We do not check sig_kernel_stop(signr) but set this marker
2144 * unconditionally because we do not know whether debugger will
2145 * change signr. This flag has no meaning unless we are going
2146 * to stop after return from ptrace_stop(). In this case it will
2147 * be checked in do_signal_stop(), we should only stop if it was
2148 * not cleared by SIGCONT while we were sleeping. See also the
2149 * comment in dequeue_signal().
2150 */
2151 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153
2154 /* We're back. Did the debugger cancel the sig? */
2155 signr = current->exit_code;
2156 if (signr == 0)
2157 return signr;
2158
2159 current->exit_code = 0;
2160
2161 /*
2162 * Update the siginfo structure if the signal has
2163 * changed. If the debugger wanted something
2164 * specific in the siginfo structure then it should
2165 * have updated *info via PTRACE_SETSIGINFO.
2166 */
2167 if (signr != info->si_signo) {
2168 info->si_signo = signr;
2169 info->si_errno = 0;
2170 info->si_code = SI_USER;
2171 rcu_read_lock();
2172 info->si_pid = task_pid_vnr(current->parent);
2173 info->si_uid = from_kuid_munged(current_user_ns(),
2174 task_uid(current->parent));
2175 rcu_read_unlock();
2176 }
2177
2178 /* If the (new) signal is now blocked, requeue it. */
2179 if (sigismember(&current->blocked, signr)) {
2180 specific_send_sig_info(signr, info, current);
2181 signr = 0;
2182 }
2183
2184 return signr;
2185 }
2186
2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188 struct pt_regs *regs, void *cookie)
2189 {
2190 struct sighand_struct *sighand = current->sighand;
2191 struct signal_struct *signal = current->signal;
2192 int signr;
2193
2194 relock:
2195 /*
2196 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2197 * While in TASK_STOPPED, we were considered "frozen enough".
2198 * Now that we woke up, it's crucial if we're supposed to be
2199 * frozen that we freeze now before running anything substantial.
2200 */
2201 try_to_freeze();
2202
2203 spin_lock_irq(&sighand->siglock);
2204 /*
2205 * Every stopped thread goes here after wakeup. Check to see if
2206 * we should notify the parent, prepare_signal(SIGCONT) encodes
2207 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2208 */
2209 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2210 int why;
2211
2212 if (signal->flags & SIGNAL_CLD_CONTINUED)
2213 why = CLD_CONTINUED;
2214 else
2215 why = CLD_STOPPED;
2216
2217 signal->flags &= ~SIGNAL_CLD_MASK;
2218
2219 spin_unlock_irq(&sighand->siglock);
2220
2221 /*
2222 * Notify the parent that we're continuing. This event is
2223 * always per-process and doesn't make whole lot of sense
2224 * for ptracers, who shouldn't consume the state via
2225 * wait(2) either, but, for backward compatibility, notify
2226 * the ptracer of the group leader too unless it's gonna be
2227 * a duplicate.
2228 */
2229 read_lock(&tasklist_lock);
2230 do_notify_parent_cldstop(current, false, why);
2231
2232 if (ptrace_reparented(current->group_leader))
2233 do_notify_parent_cldstop(current->group_leader,
2234 true, why);
2235 read_unlock(&tasklist_lock);
2236
2237 goto relock;
2238 }
2239
2240 for (;;) {
2241 struct k_sigaction *ka;
2242
2243 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2244 do_signal_stop(0))
2245 goto relock;
2246
2247 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2248 do_jobctl_trap();
2249 spin_unlock_irq(&sighand->siglock);
2250 goto relock;
2251 }
2252
2253 signr = dequeue_signal(current, &current->blocked, info);
2254
2255 if (!signr)
2256 break; /* will return 0 */
2257
2258 if (unlikely(current->ptrace) && signr != SIGKILL) {
2259 signr = ptrace_signal(signr, info,
2260 regs, cookie);
2261 if (!signr)
2262 continue;
2263 }
2264
2265 ka = &sighand->action[signr-1];
2266
2267 /* Trace actually delivered signals. */
2268 trace_signal_deliver(signr, info, ka);
2269
2270 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2271 continue;
2272 if (ka->sa.sa_handler != SIG_DFL) {
2273 /* Run the handler. */
2274 *return_ka = *ka;
2275
2276 if (ka->sa.sa_flags & SA_ONESHOT)
2277 ka->sa.sa_handler = SIG_DFL;
2278
2279 break; /* will return non-zero "signr" value */
2280 }
2281
2282 /*
2283 * Now we are doing the default action for this signal.
2284 */
2285 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2286 continue;
2287
2288 /*
2289 * Global init gets no signals it doesn't want.
2290 * Container-init gets no signals it doesn't want from same
2291 * container.
2292 *
2293 * Note that if global/container-init sees a sig_kernel_only()
2294 * signal here, the signal must have been generated internally
2295 * or must have come from an ancestor namespace. In either
2296 * case, the signal cannot be dropped.
2297 */
2298 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2299 !sig_kernel_only(signr))
2300 continue;
2301
2302 if (sig_kernel_stop(signr)) {
2303 /*
2304 * The default action is to stop all threads in
2305 * the thread group. The job control signals
2306 * do nothing in an orphaned pgrp, but SIGSTOP
2307 * always works. Note that siglock needs to be
2308 * dropped during the call to is_orphaned_pgrp()
2309 * because of lock ordering with tasklist_lock.
2310 * This allows an intervening SIGCONT to be posted.
2311 * We need to check for that and bail out if necessary.
2312 */
2313 if (signr != SIGSTOP) {
2314 spin_unlock_irq(&sighand->siglock);
2315
2316 /* signals can be posted during this window */
2317
2318 if (is_current_pgrp_orphaned())
2319 goto relock;
2320
2321 spin_lock_irq(&sighand->siglock);
2322 }
2323
2324 if (likely(do_signal_stop(info->si_signo))) {
2325 /* It released the siglock. */
2326 goto relock;
2327 }
2328
2329 /*
2330 * We didn't actually stop, due to a race
2331 * with SIGCONT or something like that.
2332 */
2333 continue;
2334 }
2335
2336 spin_unlock_irq(&sighand->siglock);
2337
2338 /*
2339 * Anything else is fatal, maybe with a core dump.
2340 */
2341 current->flags |= PF_SIGNALED;
2342
2343 if (sig_kernel_coredump(signr)) {
2344 if (print_fatal_signals)
2345 print_fatal_signal(regs, info->si_signo);
2346 /*
2347 * If it was able to dump core, this kills all
2348 * other threads in the group and synchronizes with
2349 * their demise. If we lost the race with another
2350 * thread getting here, it set group_exit_code
2351 * first and our do_group_exit call below will use
2352 * that value and ignore the one we pass it.
2353 */
2354 do_coredump(info->si_signo, info->si_signo, regs);
2355 }
2356
2357 /*
2358 * Death signals, no core dump.
2359 */
2360 do_group_exit(info->si_signo);
2361 /* NOTREACHED */
2362 }
2363 spin_unlock_irq(&sighand->siglock);
2364 return signr;
2365 }
2366
2367 /**
2368 * block_sigmask - add @ka's signal mask to current->blocked
2369 * @ka: action for @signr
2370 * @signr: signal that has been successfully delivered
2371 *
2372 * This function should be called when a signal has succesfully been
2373 * delivered. It adds the mask of signals for @ka to current->blocked
2374 * so that they are blocked during the execution of the signal
2375 * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2376 * set in @ka->sa.sa_flags.
2377 */
2378 void block_sigmask(struct k_sigaction *ka, int signr)
2379 {
2380 sigset_t blocked;
2381
2382 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2383 if (!(ka->sa.sa_flags & SA_NODEFER))
2384 sigaddset(&blocked, signr);
2385 set_current_blocked(&blocked);
2386 }
2387
2388 /*
2389 * It could be that complete_signal() picked us to notify about the
2390 * group-wide signal. Other threads should be notified now to take
2391 * the shared signals in @which since we will not.
2392 */
2393 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2394 {
2395 sigset_t retarget;
2396 struct task_struct *t;
2397
2398 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2399 if (sigisemptyset(&retarget))
2400 return;
2401
2402 t = tsk;
2403 while_each_thread(tsk, t) {
2404 if (t->flags & PF_EXITING)
2405 continue;
2406
2407 if (!has_pending_signals(&retarget, &t->blocked))
2408 continue;
2409 /* Remove the signals this thread can handle. */
2410 sigandsets(&retarget, &retarget, &t->blocked);
2411
2412 if (!signal_pending(t))
2413 signal_wake_up(t, 0);
2414
2415 if (sigisemptyset(&retarget))
2416 break;
2417 }
2418 }
2419
2420 void exit_signals(struct task_struct *tsk)
2421 {
2422 int group_stop = 0;
2423 sigset_t unblocked;
2424
2425 /*
2426 * @tsk is about to have PF_EXITING set - lock out users which
2427 * expect stable threadgroup.
2428 */
2429 threadgroup_change_begin(tsk);
2430
2431 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2432 tsk->flags |= PF_EXITING;
2433 threadgroup_change_end(tsk);
2434 return;
2435 }
2436
2437 spin_lock_irq(&tsk->sighand->siglock);
2438 /*
2439 * From now this task is not visible for group-wide signals,
2440 * see wants_signal(), do_signal_stop().
2441 */
2442 tsk->flags |= PF_EXITING;
2443
2444 threadgroup_change_end(tsk);
2445
2446 if (!signal_pending(tsk))
2447 goto out;
2448
2449 unblocked = tsk->blocked;
2450 signotset(&unblocked);
2451 retarget_shared_pending(tsk, &unblocked);
2452
2453 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2454 task_participate_group_stop(tsk))
2455 group_stop = CLD_STOPPED;
2456 out:
2457 spin_unlock_irq(&tsk->sighand->siglock);
2458
2459 /*
2460 * If group stop has completed, deliver the notification. This
2461 * should always go to the real parent of the group leader.
2462 */
2463 if (unlikely(group_stop)) {
2464 read_lock(&tasklist_lock);
2465 do_notify_parent_cldstop(tsk, false, group_stop);
2466 read_unlock(&tasklist_lock);
2467 }
2468 }
2469
2470 EXPORT_SYMBOL(recalc_sigpending);
2471 EXPORT_SYMBOL_GPL(dequeue_signal);
2472 EXPORT_SYMBOL(flush_signals);
2473 EXPORT_SYMBOL(force_sig);
2474 EXPORT_SYMBOL(send_sig);
2475 EXPORT_SYMBOL(send_sig_info);
2476 EXPORT_SYMBOL(sigprocmask);
2477 EXPORT_SYMBOL(block_all_signals);
2478 EXPORT_SYMBOL(unblock_all_signals);
2479
2480
2481 /*
2482 * System call entry points.
2483 */
2484
2485 /**
2486 * sys_restart_syscall - restart a system call
2487 */
2488 SYSCALL_DEFINE0(restart_syscall)
2489 {
2490 struct restart_block *restart = &current_thread_info()->restart_block;
2491 return restart->fn(restart);
2492 }
2493
2494 long do_no_restart_syscall(struct restart_block *param)
2495 {
2496 return -EINTR;
2497 }
2498
2499 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2500 {
2501 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2502 sigset_t newblocked;
2503 /* A set of now blocked but previously unblocked signals. */
2504 sigandnsets(&newblocked, newset, &current->blocked);
2505 retarget_shared_pending(tsk, &newblocked);
2506 }
2507 tsk->blocked = *newset;
2508 recalc_sigpending();
2509 }
2510
2511 /**
2512 * set_current_blocked - change current->blocked mask
2513 * @newset: new mask
2514 *
2515 * It is wrong to change ->blocked directly, this helper should be used
2516 * to ensure the process can't miss a shared signal we are going to block.
2517 */
2518 void set_current_blocked(const sigset_t *newset)
2519 {
2520 struct task_struct *tsk = current;
2521
2522 spin_lock_irq(&tsk->sighand->siglock);
2523 __set_task_blocked(tsk, newset);
2524 spin_unlock_irq(&tsk->sighand->siglock);
2525 }
2526
2527 /*
2528 * This is also useful for kernel threads that want to temporarily
2529 * (or permanently) block certain signals.
2530 *
2531 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2532 * interface happily blocks "unblockable" signals like SIGKILL
2533 * and friends.
2534 */
2535 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2536 {
2537 struct task_struct *tsk = current;
2538 sigset_t newset;
2539
2540 /* Lockless, only current can change ->blocked, never from irq */
2541 if (oldset)
2542 *oldset = tsk->blocked;
2543
2544 switch (how) {
2545 case SIG_BLOCK:
2546 sigorsets(&newset, &tsk->blocked, set);
2547 break;
2548 case SIG_UNBLOCK:
2549 sigandnsets(&newset, &tsk->blocked, set);
2550 break;
2551 case SIG_SETMASK:
2552 newset = *set;
2553 break;
2554 default:
2555 return -EINVAL;
2556 }
2557
2558 set_current_blocked(&newset);
2559 return 0;
2560 }
2561
2562 /**
2563 * sys_rt_sigprocmask - change the list of currently blocked signals
2564 * @how: whether to add, remove, or set signals
2565 * @nset: stores pending signals
2566 * @oset: previous value of signal mask if non-null
2567 * @sigsetsize: size of sigset_t type
2568 */
2569 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2570 sigset_t __user *, oset, size_t, sigsetsize)
2571 {
2572 sigset_t old_set, new_set;
2573 int error;
2574
2575 /* XXX: Don't preclude handling different sized sigset_t's. */
2576 if (sigsetsize != sizeof(sigset_t))
2577 return -EINVAL;
2578
2579 old_set = current->blocked;
2580
2581 if (nset) {
2582 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2583 return -EFAULT;
2584 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585
2586 error = sigprocmask(how, &new_set, NULL);
2587 if (error)
2588 return error;
2589 }
2590
2591 if (oset) {
2592 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2593 return -EFAULT;
2594 }
2595
2596 return 0;
2597 }
2598
2599 long do_sigpending(void __user *set, unsigned long sigsetsize)
2600 {
2601 long error = -EINVAL;
2602 sigset_t pending;
2603
2604 if (sigsetsize > sizeof(sigset_t))
2605 goto out;
2606
2607 spin_lock_irq(&current->sighand->siglock);
2608 sigorsets(&pending, &current->pending.signal,
2609 &current->signal->shared_pending.signal);
2610 spin_unlock_irq(&current->sighand->siglock);
2611
2612 /* Outside the lock because only this thread touches it. */
2613 sigandsets(&pending, &current->blocked, &pending);
2614
2615 error = -EFAULT;
2616 if (!copy_to_user(set, &pending, sigsetsize))
2617 error = 0;
2618
2619 out:
2620 return error;
2621 }
2622
2623 /**
2624 * sys_rt_sigpending - examine a pending signal that has been raised
2625 * while blocked
2626 * @set: stores pending signals
2627 * @sigsetsize: size of sigset_t type or larger
2628 */
2629 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2630 {
2631 return do_sigpending(set, sigsetsize);
2632 }
2633
2634 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2635
2636 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2637 {
2638 int err;
2639
2640 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2641 return -EFAULT;
2642 if (from->si_code < 0)
2643 return __copy_to_user(to, from, sizeof(siginfo_t))
2644 ? -EFAULT : 0;
2645 /*
2646 * If you change siginfo_t structure, please be sure
2647 * this code is fixed accordingly.
2648 * Please remember to update the signalfd_copyinfo() function
2649 * inside fs/signalfd.c too, in case siginfo_t changes.
2650 * It should never copy any pad contained in the structure
2651 * to avoid security leaks, but must copy the generic
2652 * 3 ints plus the relevant union member.
2653 */
2654 err = __put_user(from->si_signo, &to->si_signo);
2655 err |= __put_user(from->si_errno, &to->si_errno);
2656 err |= __put_user((short)from->si_code, &to->si_code);
2657 switch (from->si_code & __SI_MASK) {
2658 case __SI_KILL:
2659 err |= __put_user(from->si_pid, &to->si_pid);
2660 err |= __put_user(from->si_uid, &to->si_uid);
2661 break;
2662 case __SI_TIMER:
2663 err |= __put_user(from->si_tid, &to->si_tid);
2664 err |= __put_user(from->si_overrun, &to->si_overrun);
2665 err |= __put_user(from->si_ptr, &to->si_ptr);
2666 break;
2667 case __SI_POLL:
2668 err |= __put_user(from->si_band, &to->si_band);
2669 err |= __put_user(from->si_fd, &to->si_fd);
2670 break;
2671 case __SI_FAULT:
2672 err |= __put_user(from->si_addr, &to->si_addr);
2673 #ifdef __ARCH_SI_TRAPNO
2674 err |= __put_user(from->si_trapno, &to->si_trapno);
2675 #endif
2676 #ifdef BUS_MCEERR_AO
2677 /*
2678 * Other callers might not initialize the si_lsb field,
2679 * so check explicitly for the right codes here.
2680 */
2681 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2682 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2683 #endif
2684 break;
2685 case __SI_CHLD:
2686 err |= __put_user(from->si_pid, &to->si_pid);
2687 err |= __put_user(from->si_uid, &to->si_uid);
2688 err |= __put_user(from->si_status, &to->si_status);
2689 err |= __put_user(from->si_utime, &to->si_utime);
2690 err |= __put_user(from->si_stime, &to->si_stime);
2691 break;
2692 case __SI_RT: /* This is not generated by the kernel as of now. */
2693 case __SI_MESGQ: /* But this is */
2694 err |= __put_user(from->si_pid, &to->si_pid);
2695 err |= __put_user(from->si_uid, &to->si_uid);
2696 err |= __put_user(from->si_ptr, &to->si_ptr);
2697 break;
2698 default: /* this is just in case for now ... */
2699 err |= __put_user(from->si_pid, &to->si_pid);
2700 err |= __put_user(from->si_uid, &to->si_uid);
2701 break;
2702 }
2703 return err;
2704 }
2705
2706 #endif
2707
2708 /**
2709 * do_sigtimedwait - wait for queued signals specified in @which
2710 * @which: queued signals to wait for
2711 * @info: if non-null, the signal's siginfo is returned here
2712 * @ts: upper bound on process time suspension
2713 */
2714 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2715 const struct timespec *ts)
2716 {
2717 struct task_struct *tsk = current;
2718 long timeout = MAX_SCHEDULE_TIMEOUT;
2719 sigset_t mask = *which;
2720 int sig;
2721
2722 if (ts) {
2723 if (!timespec_valid(ts))
2724 return -EINVAL;
2725 timeout = timespec_to_jiffies(ts);
2726 /*
2727 * We can be close to the next tick, add another one
2728 * to ensure we will wait at least the time asked for.
2729 */
2730 if (ts->tv_sec || ts->tv_nsec)
2731 timeout++;
2732 }
2733
2734 /*
2735 * Invert the set of allowed signals to get those we want to block.
2736 */
2737 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2738 signotset(&mask);
2739
2740 spin_lock_irq(&tsk->sighand->siglock);
2741 sig = dequeue_signal(tsk, &mask, info);
2742 if (!sig && timeout) {
2743 /*
2744 * None ready, temporarily unblock those we're interested
2745 * while we are sleeping in so that we'll be awakened when
2746 * they arrive. Unblocking is always fine, we can avoid
2747 * set_current_blocked().
2748 */
2749 tsk->real_blocked = tsk->blocked;
2750 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2751 recalc_sigpending();
2752 spin_unlock_irq(&tsk->sighand->siglock);
2753
2754 timeout = schedule_timeout_interruptible(timeout);
2755
2756 spin_lock_irq(&tsk->sighand->siglock);
2757 __set_task_blocked(tsk, &tsk->real_blocked);
2758 siginitset(&tsk->real_blocked, 0);
2759 sig = dequeue_signal(tsk, &mask, info);
2760 }
2761 spin_unlock_irq(&tsk->sighand->siglock);
2762
2763 if (sig)
2764 return sig;
2765 return timeout ? -EINTR : -EAGAIN;
2766 }
2767
2768 /**
2769 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2770 * in @uthese
2771 * @uthese: queued signals to wait for
2772 * @uinfo: if non-null, the signal's siginfo is returned here
2773 * @uts: upper bound on process time suspension
2774 * @sigsetsize: size of sigset_t type
2775 */
2776 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2777 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2778 size_t, sigsetsize)
2779 {
2780 sigset_t these;
2781 struct timespec ts;
2782 siginfo_t info;
2783 int ret;
2784
2785 /* XXX: Don't preclude handling different sized sigset_t's. */
2786 if (sigsetsize != sizeof(sigset_t))
2787 return -EINVAL;
2788
2789 if (copy_from_user(&these, uthese, sizeof(these)))
2790 return -EFAULT;
2791
2792 if (uts) {
2793 if (copy_from_user(&ts, uts, sizeof(ts)))
2794 return -EFAULT;
2795 }
2796
2797 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2798
2799 if (ret > 0 && uinfo) {
2800 if (copy_siginfo_to_user(uinfo, &info))
2801 ret = -EFAULT;
2802 }
2803
2804 return ret;
2805 }
2806
2807 /**
2808 * sys_kill - send a signal to a process
2809 * @pid: the PID of the process
2810 * @sig: signal to be sent
2811 */
2812 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2813 {
2814 struct siginfo info;
2815
2816 info.si_signo = sig;
2817 info.si_errno = 0;
2818 info.si_code = SI_USER;
2819 info.si_pid = task_tgid_vnr(current);
2820 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2821
2822 return kill_something_info(sig, &info, pid);
2823 }
2824
2825 static int
2826 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2827 {
2828 struct task_struct *p;
2829 int error = -ESRCH;
2830
2831 rcu_read_lock();
2832 p = find_task_by_vpid(pid);
2833 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2834 error = check_kill_permission(sig, info, p);
2835 /*
2836 * The null signal is a permissions and process existence
2837 * probe. No signal is actually delivered.
2838 */
2839 if (!error && sig) {
2840 error = do_send_sig_info(sig, info, p, false);
2841 /*
2842 * If lock_task_sighand() failed we pretend the task
2843 * dies after receiving the signal. The window is tiny,
2844 * and the signal is private anyway.
2845 */
2846 if (unlikely(error == -ESRCH))
2847 error = 0;
2848 }
2849 }
2850 rcu_read_unlock();
2851
2852 return error;
2853 }
2854
2855 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2856 {
2857 struct siginfo info;
2858
2859 info.si_signo = sig;
2860 info.si_errno = 0;
2861 info.si_code = SI_TKILL;
2862 info.si_pid = task_tgid_vnr(current);
2863 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2864
2865 return do_send_specific(tgid, pid, sig, &info);
2866 }
2867
2868 /**
2869 * sys_tgkill - send signal to one specific thread
2870 * @tgid: the thread group ID of the thread
2871 * @pid: the PID of the thread
2872 * @sig: signal to be sent
2873 *
2874 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2875 * exists but it's not belonging to the target process anymore. This
2876 * method solves the problem of threads exiting and PIDs getting reused.
2877 */
2878 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2879 {
2880 /* This is only valid for single tasks */
2881 if (pid <= 0 || tgid <= 0)
2882 return -EINVAL;
2883
2884 return do_tkill(tgid, pid, sig);
2885 }
2886
2887 /**
2888 * sys_tkill - send signal to one specific task
2889 * @pid: the PID of the task
2890 * @sig: signal to be sent
2891 *
2892 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2893 */
2894 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2895 {
2896 /* This is only valid for single tasks */
2897 if (pid <= 0)
2898 return -EINVAL;
2899
2900 return do_tkill(0, pid, sig);
2901 }
2902
2903 /**
2904 * sys_rt_sigqueueinfo - send signal information to a signal
2905 * @pid: the PID of the thread
2906 * @sig: signal to be sent
2907 * @uinfo: signal info to be sent
2908 */
2909 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2910 siginfo_t __user *, uinfo)
2911 {
2912 siginfo_t info;
2913
2914 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2915 return -EFAULT;
2916
2917 /* Not even root can pretend to send signals from the kernel.
2918 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2919 */
2920 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2921 /* We used to allow any < 0 si_code */
2922 WARN_ON_ONCE(info.si_code < 0);
2923 return -EPERM;
2924 }
2925 info.si_signo = sig;
2926
2927 /* POSIX.1b doesn't mention process groups. */
2928 return kill_proc_info(sig, &info, pid);
2929 }
2930
2931 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2932 {
2933 /* This is only valid for single tasks */
2934 if (pid <= 0 || tgid <= 0)
2935 return -EINVAL;
2936
2937 /* Not even root can pretend to send signals from the kernel.
2938 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2939 */
2940 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2941 /* We used to allow any < 0 si_code */
2942 WARN_ON_ONCE(info->si_code < 0);
2943 return -EPERM;
2944 }
2945 info->si_signo = sig;
2946
2947 return do_send_specific(tgid, pid, sig, info);
2948 }
2949
2950 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2951 siginfo_t __user *, uinfo)
2952 {
2953 siginfo_t info;
2954
2955 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2956 return -EFAULT;
2957
2958 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2959 }
2960
2961 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2962 {
2963 struct task_struct *t = current;
2964 struct k_sigaction *k;
2965 sigset_t mask;
2966
2967 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2968 return -EINVAL;
2969
2970 k = &t->sighand->action[sig-1];
2971
2972 spin_lock_irq(&current->sighand->siglock);
2973 if (oact)
2974 *oact = *k;
2975
2976 if (act) {
2977 sigdelsetmask(&act->sa.sa_mask,
2978 sigmask(SIGKILL) | sigmask(SIGSTOP));
2979 *k = *act;
2980 /*
2981 * POSIX 3.3.1.3:
2982 * "Setting a signal action to SIG_IGN for a signal that is
2983 * pending shall cause the pending signal to be discarded,
2984 * whether or not it is blocked."
2985 *
2986 * "Setting a signal action to SIG_DFL for a signal that is
2987 * pending and whose default action is to ignore the signal
2988 * (for example, SIGCHLD), shall cause the pending signal to
2989 * be discarded, whether or not it is blocked"
2990 */
2991 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2992 sigemptyset(&mask);
2993 sigaddset(&mask, sig);
2994 rm_from_queue_full(&mask, &t->signal->shared_pending);
2995 do {
2996 rm_from_queue_full(&mask, &t->pending);
2997 t = next_thread(t);
2998 } while (t != current);
2999 }
3000 }
3001
3002 spin_unlock_irq(&current->sighand->siglock);
3003 return 0;
3004 }
3005
3006 int
3007 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3008 {
3009 stack_t oss;
3010 int error;
3011
3012 oss.ss_sp = (void __user *) current->sas_ss_sp;
3013 oss.ss_size = current->sas_ss_size;
3014 oss.ss_flags = sas_ss_flags(sp);
3015
3016 if (uss) {
3017 void __user *ss_sp;
3018 size_t ss_size;
3019 int ss_flags;
3020
3021 error = -EFAULT;
3022 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3023 goto out;
3024 error = __get_user(ss_sp, &uss->ss_sp) |
3025 __get_user(ss_flags, &uss->ss_flags) |
3026 __get_user(ss_size, &uss->ss_size);
3027 if (error)
3028 goto out;
3029
3030 error = -EPERM;
3031 if (on_sig_stack(sp))
3032 goto out;
3033
3034 error = -EINVAL;
3035 /*
3036 * Note - this code used to test ss_flags incorrectly:
3037 * old code may have been written using ss_flags==0
3038 * to mean ss_flags==SS_ONSTACK (as this was the only
3039 * way that worked) - this fix preserves that older
3040 * mechanism.
3041 */
3042 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3043 goto out;
3044
3045 if (ss_flags == SS_DISABLE) {
3046 ss_size = 0;
3047 ss_sp = NULL;
3048 } else {
3049 error = -ENOMEM;
3050 if (ss_size < MINSIGSTKSZ)
3051 goto out;
3052 }
3053
3054 current->sas_ss_sp = (unsigned long) ss_sp;
3055 current->sas_ss_size = ss_size;
3056 }
3057
3058 error = 0;
3059 if (uoss) {
3060 error = -EFAULT;
3061 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3062 goto out;
3063 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3064 __put_user(oss.ss_size, &uoss->ss_size) |
3065 __put_user(oss.ss_flags, &uoss->ss_flags);
3066 }
3067
3068 out:
3069 return error;
3070 }
3071
3072 #ifdef __ARCH_WANT_SYS_SIGPENDING
3073
3074 /**
3075 * sys_sigpending - examine pending signals
3076 * @set: where mask of pending signal is returned
3077 */
3078 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3079 {
3080 return do_sigpending(set, sizeof(*set));
3081 }
3082
3083 #endif
3084
3085 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3086 /**
3087 * sys_sigprocmask - examine and change blocked signals
3088 * @how: whether to add, remove, or set signals
3089 * @nset: signals to add or remove (if non-null)
3090 * @oset: previous value of signal mask if non-null
3091 *
3092 * Some platforms have their own version with special arguments;
3093 * others support only sys_rt_sigprocmask.
3094 */
3095
3096 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3097 old_sigset_t __user *, oset)
3098 {
3099 old_sigset_t old_set, new_set;
3100 sigset_t new_blocked;
3101
3102 old_set = current->blocked.sig[0];
3103
3104 if (nset) {
3105 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3106 return -EFAULT;
3107 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3108
3109 new_blocked = current->blocked;
3110
3111 switch (how) {
3112 case SIG_BLOCK:
3113 sigaddsetmask(&new_blocked, new_set);
3114 break;
3115 case SIG_UNBLOCK:
3116 sigdelsetmask(&new_blocked, new_set);
3117 break;
3118 case SIG_SETMASK:
3119 new_blocked.sig[0] = new_set;
3120 break;
3121 default:
3122 return -EINVAL;
3123 }
3124
3125 set_current_blocked(&new_blocked);
3126 }
3127
3128 if (oset) {
3129 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3130 return -EFAULT;
3131 }
3132
3133 return 0;
3134 }
3135 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3136
3137 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3138 /**
3139 * sys_rt_sigaction - alter an action taken by a process
3140 * @sig: signal to be sent
3141 * @act: new sigaction
3142 * @oact: used to save the previous sigaction
3143 * @sigsetsize: size of sigset_t type
3144 */
3145 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3146 const struct sigaction __user *, act,
3147 struct sigaction __user *, oact,
3148 size_t, sigsetsize)
3149 {
3150 struct k_sigaction new_sa, old_sa;
3151 int ret = -EINVAL;
3152
3153 /* XXX: Don't preclude handling different sized sigset_t's. */
3154 if (sigsetsize != sizeof(sigset_t))
3155 goto out;
3156
3157 if (act) {
3158 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3159 return -EFAULT;
3160 }
3161
3162 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3163
3164 if (!ret && oact) {
3165 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3166 return -EFAULT;
3167 }
3168 out:
3169 return ret;
3170 }
3171 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3172
3173 #ifdef __ARCH_WANT_SYS_SGETMASK
3174
3175 /*
3176 * For backwards compatibility. Functionality superseded by sigprocmask.
3177 */
3178 SYSCALL_DEFINE0(sgetmask)
3179 {
3180 /* SMP safe */
3181 return current->blocked.sig[0];
3182 }
3183
3184 SYSCALL_DEFINE1(ssetmask, int, newmask)
3185 {
3186 int old = current->blocked.sig[0];
3187 sigset_t newset;
3188
3189 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3190 set_current_blocked(&newset);
3191
3192 return old;
3193 }
3194 #endif /* __ARCH_WANT_SGETMASK */
3195
3196 #ifdef __ARCH_WANT_SYS_SIGNAL
3197 /*
3198 * For backwards compatibility. Functionality superseded by sigaction.
3199 */
3200 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3201 {
3202 struct k_sigaction new_sa, old_sa;
3203 int ret;
3204
3205 new_sa.sa.sa_handler = handler;
3206 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3207 sigemptyset(&new_sa.sa.sa_mask);
3208
3209 ret = do_sigaction(sig, &new_sa, &old_sa);
3210
3211 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3212 }
3213 #endif /* __ARCH_WANT_SYS_SIGNAL */
3214
3215 #ifdef __ARCH_WANT_SYS_PAUSE
3216
3217 SYSCALL_DEFINE0(pause)
3218 {
3219 while (!signal_pending(current)) {
3220 current->state = TASK_INTERRUPTIBLE;
3221 schedule();
3222 }
3223 return -ERESTARTNOHAND;
3224 }
3225
3226 #endif
3227
3228 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3229 /**
3230 * sys_rt_sigsuspend - replace the signal mask for a value with the
3231 * @unewset value until a signal is received
3232 * @unewset: new signal mask value
3233 * @sigsetsize: size of sigset_t type
3234 */
3235 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3236 {
3237 sigset_t newset;
3238
3239 /* XXX: Don't preclude handling different sized sigset_t's. */
3240 if (sigsetsize != sizeof(sigset_t))
3241 return -EINVAL;
3242
3243 if (copy_from_user(&newset, unewset, sizeof(newset)))
3244 return -EFAULT;
3245 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3246
3247 current->saved_sigmask = current->blocked;
3248 set_current_blocked(&newset);
3249
3250 current->state = TASK_INTERRUPTIBLE;
3251 schedule();
3252 set_restore_sigmask();
3253 return -ERESTARTNOHAND;
3254 }
3255 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3256
3257 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3258 {
3259 return NULL;
3260 }
3261
3262 void __init signals_init(void)
3263 {
3264 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3265 }
3266
3267 #ifdef CONFIG_KGDB_KDB
3268 #include <linux/kdb.h>
3269 /*
3270 * kdb_send_sig_info - Allows kdb to send signals without exposing
3271 * signal internals. This function checks if the required locks are
3272 * available before calling the main signal code, to avoid kdb
3273 * deadlocks.
3274 */
3275 void
3276 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3277 {
3278 static struct task_struct *kdb_prev_t;
3279 int sig, new_t;
3280 if (!spin_trylock(&t->sighand->siglock)) {
3281 kdb_printf("Can't do kill command now.\n"
3282 "The sigmask lock is held somewhere else in "
3283 "kernel, try again later\n");
3284 return;
3285 }
3286 spin_unlock(&t->sighand->siglock);
3287 new_t = kdb_prev_t != t;
3288 kdb_prev_t = t;
3289 if (t->state != TASK_RUNNING && new_t) {
3290 kdb_printf("Process is not RUNNING, sending a signal from "
3291 "kdb risks deadlock\n"
3292 "on the run queue locks. "
3293 "The signal has _not_ been sent.\n"
3294 "Reissue the kill command if you want to risk "
3295 "the deadlock.\n");
3296 return;
3297 }
3298 sig = info->si_signo;
3299 if (send_sig_info(sig, info, t))
3300 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3301 sig, t->pid);
3302 else
3303 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3304 }
3305 #endif /* CONFIG_KGDB_KDB */