Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / sched_stats.h
1
2 #ifdef CONFIG_SCHEDSTATS
3 /*
4 * bump this up when changing the output format or the meaning of an existing
5 * format, so that tools can adapt (or abort)
6 */
7 #define SCHEDSTAT_VERSION 14
8
9 static int show_schedstat(struct seq_file *seq, void *v)
10 {
11 int cpu;
12
13 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
14 seq_printf(seq, "timestamp %lu\n", jiffies);
15 for_each_online_cpu(cpu) {
16 struct rq *rq = cpu_rq(cpu);
17 #ifdef CONFIG_SMP
18 struct sched_domain *sd;
19 int dcount = 0;
20 #endif
21
22 /* runqueue-specific stats */
23 seq_printf(seq,
24 "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu",
25 cpu, rq->yld_both_empty,
26 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count,
27 rq->sched_switch, rq->sched_count, rq->sched_goidle,
28 rq->ttwu_count, rq->ttwu_local,
29 rq->rq_sched_info.cpu_time,
30 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
31
32 seq_printf(seq, "\n");
33
34 #ifdef CONFIG_SMP
35 /* domain-specific stats */
36 preempt_disable();
37 for_each_domain(cpu, sd) {
38 enum cpu_idle_type itype;
39 char mask_str[NR_CPUS];
40
41 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
42 seq_printf(seq, "domain%d %s", dcount++, mask_str);
43 for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
44 itype++) {
45 seq_printf(seq, " %u %u %u %u %u %u %u %u",
46 sd->lb_count[itype],
47 sd->lb_balanced[itype],
48 sd->lb_failed[itype],
49 sd->lb_imbalance[itype],
50 sd->lb_gained[itype],
51 sd->lb_hot_gained[itype],
52 sd->lb_nobusyq[itype],
53 sd->lb_nobusyg[itype]);
54 }
55 seq_printf(seq, " %u %u %u %u %u %u %u %u %u %u %u %u\n",
56 sd->alb_count, sd->alb_failed, sd->alb_pushed,
57 sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
58 sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
59 sd->ttwu_wake_remote, sd->ttwu_move_affine,
60 sd->ttwu_move_balance);
61 }
62 preempt_enable();
63 #endif
64 }
65 return 0;
66 }
67
68 static int schedstat_open(struct inode *inode, struct file *file)
69 {
70 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
71 char *buf = kmalloc(size, GFP_KERNEL);
72 struct seq_file *m;
73 int res;
74
75 if (!buf)
76 return -ENOMEM;
77 res = single_open(file, show_schedstat, NULL);
78 if (!res) {
79 m = file->private_data;
80 m->buf = buf;
81 m->size = size;
82 } else
83 kfree(buf);
84 return res;
85 }
86
87 const struct file_operations proc_schedstat_operations = {
88 .open = schedstat_open,
89 .read = seq_read,
90 .llseek = seq_lseek,
91 .release = single_release,
92 };
93
94 /*
95 * Expects runqueue lock to be held for atomicity of update
96 */
97 static inline void
98 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
99 {
100 if (rq) {
101 rq->rq_sched_info.run_delay += delta;
102 rq->rq_sched_info.pcount++;
103 }
104 }
105
106 /*
107 * Expects runqueue lock to be held for atomicity of update
108 */
109 static inline void
110 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
111 {
112 if (rq)
113 rq->rq_sched_info.cpu_time += delta;
114 }
115 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
116 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
117 # define schedstat_set(var, val) do { var = (val); } while (0)
118 #else /* !CONFIG_SCHEDSTATS */
119 static inline void
120 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
121 {}
122 static inline void
123 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
124 {}
125 # define schedstat_inc(rq, field) do { } while (0)
126 # define schedstat_add(rq, field, amt) do { } while (0)
127 # define schedstat_set(var, val) do { } while (0)
128 #endif
129
130 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
131 /*
132 * Called when a process is dequeued from the active array and given
133 * the cpu. We should note that with the exception of interactive
134 * tasks, the expired queue will become the active queue after the active
135 * queue is empty, without explicitly dequeuing and requeuing tasks in the
136 * expired queue. (Interactive tasks may be requeued directly to the
137 * active queue, thus delaying tasks in the expired queue from running;
138 * see scheduler_tick()).
139 *
140 * This function is only called from sched_info_arrive(), rather than
141 * dequeue_task(). Even though a task may be queued and dequeued multiple
142 * times as it is shuffled about, we're really interested in knowing how
143 * long it was from the *first* time it was queued to the time that it
144 * finally hit a cpu.
145 */
146 static inline void sched_info_dequeued(struct task_struct *t)
147 {
148 t->sched_info.last_queued = 0;
149 }
150
151 /*
152 * Called when a task finally hits the cpu. We can now calculate how
153 * long it was waiting to run. We also note when it began so that we
154 * can keep stats on how long its timeslice is.
155 */
156 static void sched_info_arrive(struct task_struct *t)
157 {
158 unsigned long long now = task_rq(t)->clock, delta = 0;
159
160 if (t->sched_info.last_queued)
161 delta = now - t->sched_info.last_queued;
162 sched_info_dequeued(t);
163 t->sched_info.run_delay += delta;
164 t->sched_info.last_arrival = now;
165 t->sched_info.pcount++;
166
167 rq_sched_info_arrive(task_rq(t), delta);
168 }
169
170 /*
171 * Called when a process is queued into either the active or expired
172 * array. The time is noted and later used to determine how long we
173 * had to wait for us to reach the cpu. Since the expired queue will
174 * become the active queue after active queue is empty, without dequeuing
175 * and requeuing any tasks, we are interested in queuing to either. It
176 * is unusual but not impossible for tasks to be dequeued and immediately
177 * requeued in the same or another array: this can happen in sched_yield(),
178 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
179 * to runqueue.
180 *
181 * This function is only called from enqueue_task(), but also only updates
182 * the timestamp if it is already not set. It's assumed that
183 * sched_info_dequeued() will clear that stamp when appropriate.
184 */
185 static inline void sched_info_queued(struct task_struct *t)
186 {
187 if (unlikely(sched_info_on()))
188 if (!t->sched_info.last_queued)
189 t->sched_info.last_queued = task_rq(t)->clock;
190 }
191
192 /*
193 * Called when a process ceases being the active-running process, either
194 * voluntarily or involuntarily. Now we can calculate how long we ran.
195 */
196 static inline void sched_info_depart(struct task_struct *t)
197 {
198 unsigned long long delta = task_rq(t)->clock -
199 t->sched_info.last_arrival;
200
201 t->sched_info.cpu_time += delta;
202 rq_sched_info_depart(task_rq(t), delta);
203 }
204
205 /*
206 * Called when tasks are switched involuntarily due, typically, to expiring
207 * their time slice. (This may also be called when switching to or from
208 * the idle task.) We are only called when prev != next.
209 */
210 static inline void
211 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
212 {
213 struct rq *rq = task_rq(prev);
214
215 /*
216 * prev now departs the cpu. It's not interesting to record
217 * stats about how efficient we were at scheduling the idle
218 * process, however.
219 */
220 if (prev != rq->idle)
221 sched_info_depart(prev);
222
223 if (next != rq->idle)
224 sched_info_arrive(next);
225 }
226 static inline void
227 sched_info_switch(struct task_struct *prev, struct task_struct *next)
228 {
229 if (unlikely(sched_info_on()))
230 __sched_info_switch(prev, next);
231 }
232 #else
233 #define sched_info_queued(t) do { } while (0)
234 #define sched_info_switch(t, next) do { } while (0)
235 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
236